xref: /linux/tools/testing/memblock/tests/basic_api.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 #include "basic_api.h"
3 #include <string.h>
4 #include <linux/memblock.h>
5 
6 #define EXPECTED_MEMBLOCK_REGIONS			128
7 #define FUNC_ADD					"memblock_add"
8 #define FUNC_RESERVE					"memblock_reserve"
9 #define FUNC_REMOVE					"memblock_remove"
10 #define FUNC_FREE					"memblock_free"
11 #define FUNC_TRIM					"memblock_trim_memory"
12 
13 static int memblock_initialization_check(void)
14 {
15 	PREFIX_PUSH();
16 
17 	ASSERT_NE(memblock.memory.regions, NULL);
18 	ASSERT_EQ(memblock.memory.cnt, 0);
19 	ASSERT_EQ(memblock.memory.max, EXPECTED_MEMBLOCK_REGIONS);
20 	ASSERT_EQ(strcmp(memblock.memory.name, "memory"), 0);
21 
22 	ASSERT_NE(memblock.reserved.regions, NULL);
23 	ASSERT_EQ(memblock.reserved.cnt, 0);
24 	ASSERT_EQ(memblock.memory.max, EXPECTED_MEMBLOCK_REGIONS);
25 	ASSERT_EQ(strcmp(memblock.reserved.name, "reserved"), 0);
26 
27 	ASSERT_EQ(memblock.bottom_up, false);
28 	ASSERT_EQ(memblock.current_limit, MEMBLOCK_ALLOC_ANYWHERE);
29 
30 	test_pass_pop();
31 
32 	return 0;
33 }
34 
35 /*
36  * A simple test that adds a memory block of a specified base address
37  * and size to the collection of available memory regions (memblock.memory).
38  * Expect to create a new entry. The region counter and total memory get
39  * updated.
40  */
41 static int memblock_add_simple_check(void)
42 {
43 	struct memblock_region *rgn;
44 
45 	rgn = &memblock.memory.regions[0];
46 
47 	struct region r = {
48 		.base = SZ_1G,
49 		.size = SZ_4M
50 	};
51 
52 	PREFIX_PUSH();
53 
54 	reset_memblock_regions();
55 	memblock_add(r.base, r.size);
56 
57 	ASSERT_EQ(rgn->base, r.base);
58 	ASSERT_EQ(rgn->size, r.size);
59 
60 	ASSERT_EQ(memblock.memory.cnt, 1);
61 	ASSERT_EQ(memblock.memory.total_size, r.size);
62 
63 	test_pass_pop();
64 
65 	return 0;
66 }
67 
68 /*
69  * A simple test that adds a memory block of a specified base address, size,
70  * NUMA node and memory flags to the collection of available memory regions.
71  * Expect to create a new entry. The region counter and total memory get
72  * updated.
73  */
74 static int memblock_add_node_simple_check(void)
75 {
76 	struct memblock_region *rgn;
77 
78 	rgn = &memblock.memory.regions[0];
79 
80 	struct region r = {
81 		.base = SZ_1M,
82 		.size = SZ_16M
83 	};
84 
85 	PREFIX_PUSH();
86 
87 	reset_memblock_regions();
88 	memblock_add_node(r.base, r.size, 1, MEMBLOCK_HOTPLUG);
89 
90 	ASSERT_EQ(rgn->base, r.base);
91 	ASSERT_EQ(rgn->size, r.size);
92 #ifdef CONFIG_NUMA
93 	ASSERT_EQ(rgn->nid, 1);
94 #endif
95 	ASSERT_EQ(rgn->flags, MEMBLOCK_HOTPLUG);
96 
97 	ASSERT_EQ(memblock.memory.cnt, 1);
98 	ASSERT_EQ(memblock.memory.total_size, r.size);
99 
100 	test_pass_pop();
101 
102 	return 0;
103 }
104 
105 /*
106  * A test that tries to add two memory blocks that don't overlap with one
107  * another:
108  *
109  *  |        +--------+        +--------+  |
110  *  |        |   r1   |        |   r2   |  |
111  *  +--------+--------+--------+--------+--+
112  *
113  * Expect to add two correctly initialized entries to the collection of
114  * available memory regions (memblock.memory). The total size and
115  * region counter fields get updated.
116  */
117 static int memblock_add_disjoint_check(void)
118 {
119 	struct memblock_region *rgn1, *rgn2;
120 
121 	rgn1 = &memblock.memory.regions[0];
122 	rgn2 = &memblock.memory.regions[1];
123 
124 	struct region r1 = {
125 		.base = SZ_1G,
126 		.size = SZ_8K
127 	};
128 	struct region r2 = {
129 		.base = SZ_1G + SZ_16K,
130 		.size = SZ_8K
131 	};
132 
133 	PREFIX_PUSH();
134 
135 	reset_memblock_regions();
136 	memblock_add(r1.base, r1.size);
137 	memblock_add(r2.base, r2.size);
138 
139 	ASSERT_EQ(rgn1->base, r1.base);
140 	ASSERT_EQ(rgn1->size, r1.size);
141 
142 	ASSERT_EQ(rgn2->base, r2.base);
143 	ASSERT_EQ(rgn2->size, r2.size);
144 
145 	ASSERT_EQ(memblock.memory.cnt, 2);
146 	ASSERT_EQ(memblock.memory.total_size, r1.size + r2.size);
147 
148 	test_pass_pop();
149 
150 	return 0;
151 }
152 
153 /*
154  * A test that tries to add two memory blocks r1 and r2, where r2 overlaps
155  * with the beginning of r1 (that is r1.base < r2.base + r2.size):
156  *
157  *  |    +----+----+------------+          |
158  *  |    |    |r2  |   r1       |          |
159  *  +----+----+----+------------+----------+
160  *       ^    ^
161  *       |    |
162  *       |    r1.base
163  *       |
164  *       r2.base
165  *
166  * Expect to merge the two entries into one region that starts at r2.base
167  * and has size of two regions minus their intersection. The total size of
168  * the available memory is updated, and the region counter stays the same.
169  */
170 static int memblock_add_overlap_top_check(void)
171 {
172 	struct memblock_region *rgn;
173 	phys_addr_t total_size;
174 
175 	rgn = &memblock.memory.regions[0];
176 
177 	struct region r1 = {
178 		.base = SZ_512M,
179 		.size = SZ_1G
180 	};
181 	struct region r2 = {
182 		.base = SZ_256M,
183 		.size = SZ_512M
184 	};
185 
186 	PREFIX_PUSH();
187 
188 	total_size = (r1.base - r2.base) + r1.size;
189 
190 	reset_memblock_regions();
191 	memblock_add(r1.base, r1.size);
192 	memblock_add(r2.base, r2.size);
193 
194 	ASSERT_EQ(rgn->base, r2.base);
195 	ASSERT_EQ(rgn->size, total_size);
196 
197 	ASSERT_EQ(memblock.memory.cnt, 1);
198 	ASSERT_EQ(memblock.memory.total_size, total_size);
199 
200 	test_pass_pop();
201 
202 	return 0;
203 }
204 
205 /*
206  * A test that tries to add two memory blocks r1 and r2, where r2 overlaps
207  * with the end of r1 (that is r2.base < r1.base + r1.size):
208  *
209  *  |  +--+------+----------+              |
210  *  |  |  | r1   | r2       |              |
211  *  +--+--+------+----------+--------------+
212  *     ^  ^
213  *     |  |
214  *     |  r2.base
215  *     |
216  *     r1.base
217  *
218  * Expect to merge the two entries into one region that starts at r1.base
219  * and has size of two regions minus their intersection. The total size of
220  * the available memory is updated, and the region counter stays the same.
221  */
222 static int memblock_add_overlap_bottom_check(void)
223 {
224 	struct memblock_region *rgn;
225 	phys_addr_t total_size;
226 
227 	rgn = &memblock.memory.regions[0];
228 
229 	struct region r1 = {
230 		.base = SZ_128M,
231 		.size = SZ_512M
232 	};
233 	struct region r2 = {
234 		.base = SZ_256M,
235 		.size = SZ_1G
236 	};
237 
238 	PREFIX_PUSH();
239 
240 	total_size = (r2.base - r1.base) + r2.size;
241 
242 	reset_memblock_regions();
243 	memblock_add(r1.base, r1.size);
244 	memblock_add(r2.base, r2.size);
245 
246 	ASSERT_EQ(rgn->base, r1.base);
247 	ASSERT_EQ(rgn->size, total_size);
248 
249 	ASSERT_EQ(memblock.memory.cnt, 1);
250 	ASSERT_EQ(memblock.memory.total_size, total_size);
251 
252 	test_pass_pop();
253 
254 	return 0;
255 }
256 
257 /*
258  * A test that tries to add two memory blocks r1 and r2, where r2 is
259  * within the range of r1 (that is r1.base < r2.base &&
260  * r2.base + r2.size < r1.base + r1.size):
261  *
262  *  |   +-------+--+-----------------------+
263  *  |   |       |r2|      r1               |
264  *  +---+-------+--+-----------------------+
265  *      ^
266  *      |
267  *      r1.base
268  *
269  * Expect to merge two entries into one region that stays the same.
270  * The counter and total size of available memory are not updated.
271  */
272 static int memblock_add_within_check(void)
273 {
274 	struct memblock_region *rgn;
275 
276 	rgn = &memblock.memory.regions[0];
277 
278 	struct region r1 = {
279 		.base = SZ_8M,
280 		.size = SZ_32M
281 	};
282 	struct region r2 = {
283 		.base = SZ_16M,
284 		.size = SZ_1M
285 	};
286 
287 	PREFIX_PUSH();
288 
289 	reset_memblock_regions();
290 	memblock_add(r1.base, r1.size);
291 	memblock_add(r2.base, r2.size);
292 
293 	ASSERT_EQ(rgn->base, r1.base);
294 	ASSERT_EQ(rgn->size, r1.size);
295 
296 	ASSERT_EQ(memblock.memory.cnt, 1);
297 	ASSERT_EQ(memblock.memory.total_size, r1.size);
298 
299 	test_pass_pop();
300 
301 	return 0;
302 }
303 
304 /*
305  * A simple test that tries to add the same memory block twice. Expect
306  * the counter and total size of available memory to not be updated.
307  */
308 static int memblock_add_twice_check(void)
309 {
310 	struct region r = {
311 		.base = SZ_16K,
312 		.size = SZ_2M
313 	};
314 
315 	PREFIX_PUSH();
316 
317 	reset_memblock_regions();
318 
319 	memblock_add(r.base, r.size);
320 	memblock_add(r.base, r.size);
321 
322 	ASSERT_EQ(memblock.memory.cnt, 1);
323 	ASSERT_EQ(memblock.memory.total_size, r.size);
324 
325 	test_pass_pop();
326 
327 	return 0;
328 }
329 
330 /*
331  * A test that tries to add two memory blocks that don't overlap with one
332  * another and then add a third memory block in the space between the first two:
333  *
334  *  |        +--------+--------+--------+  |
335  *  |        |   r1   |   r3   |   r2   |  |
336  *  +--------+--------+--------+--------+--+
337  *
338  * Expect to merge the three entries into one region that starts at r1.base
339  * and has size of r1.size + r2.size + r3.size. The region counter and total
340  * size of the available memory are updated.
341  */
342 static int memblock_add_between_check(void)
343 {
344 	struct memblock_region *rgn;
345 	phys_addr_t total_size;
346 
347 	rgn = &memblock.memory.regions[0];
348 
349 	struct region r1 = {
350 		.base = SZ_1G,
351 		.size = SZ_8K
352 	};
353 	struct region r2 = {
354 		.base = SZ_1G + SZ_16K,
355 		.size = SZ_8K
356 	};
357 	struct region r3 = {
358 		.base = SZ_1G + SZ_8K,
359 		.size = SZ_8K
360 	};
361 
362 	PREFIX_PUSH();
363 
364 	total_size = r1.size + r2.size + r3.size;
365 
366 	reset_memblock_regions();
367 	memblock_add(r1.base, r1.size);
368 	memblock_add(r2.base, r2.size);
369 	memblock_add(r3.base, r3.size);
370 
371 	ASSERT_EQ(rgn->base, r1.base);
372 	ASSERT_EQ(rgn->size, total_size);
373 
374 	ASSERT_EQ(memblock.memory.cnt, 1);
375 	ASSERT_EQ(memblock.memory.total_size, total_size);
376 
377 	test_pass_pop();
378 
379 	return 0;
380 }
381 
382 /*
383  * A simple test that tries to add a memory block r when r extends past
384  * PHYS_ADDR_MAX:
385  *
386  *                               +--------+
387  *                               |    r   |
388  *                               +--------+
389  *  |                            +----+
390  *  |                            | rgn|
391  *  +----------------------------+----+
392  *
393  * Expect to add a memory block of size PHYS_ADDR_MAX - r.base. Expect the
394  * total size of available memory and the counter to be updated.
395  */
396 static int memblock_add_near_max_check(void)
397 {
398 	struct memblock_region *rgn;
399 	phys_addr_t total_size;
400 
401 	rgn = &memblock.memory.regions[0];
402 
403 	struct region r = {
404 		.base = PHYS_ADDR_MAX - SZ_1M,
405 		.size = SZ_2M
406 	};
407 
408 	PREFIX_PUSH();
409 
410 	total_size = PHYS_ADDR_MAX - r.base;
411 
412 	reset_memblock_regions();
413 	memblock_add(r.base, r.size);
414 
415 	ASSERT_EQ(rgn->base, r.base);
416 	ASSERT_EQ(rgn->size, total_size);
417 
418 	ASSERT_EQ(memblock.memory.cnt, 1);
419 	ASSERT_EQ(memblock.memory.total_size, total_size);
420 
421 	test_pass_pop();
422 
423 	return 0;
424 }
425 
426 /*
427  * A test that trying to add the 129th memory block.
428  * Expect to trigger memblock_double_array() to double the
429  * memblock.memory.max, find a new valid memory as
430  * memory.regions.
431  */
432 static int memblock_add_many_check(void)
433 {
434 	int i;
435 	void *orig_region;
436 	struct region r = {
437 		.base = SZ_16K,
438 		.size = SZ_16K,
439 	};
440 	phys_addr_t new_memory_regions_size;
441 	phys_addr_t base, size = SZ_64;
442 	phys_addr_t gap_size = SZ_64;
443 
444 	PREFIX_PUSH();
445 
446 	reset_memblock_regions();
447 	memblock_allow_resize();
448 
449 	dummy_physical_memory_init();
450 	/*
451 	 * We allocated enough memory by using dummy_physical_memory_init(), and
452 	 * split it into small block. First we split a large enough memory block
453 	 * as the memory region which will be choosed by memblock_double_array().
454 	 */
455 	base = PAGE_ALIGN(dummy_physical_memory_base());
456 	new_memory_regions_size = PAGE_ALIGN(INIT_MEMBLOCK_REGIONS * 2 *
457 					     sizeof(struct memblock_region));
458 	memblock_add(base, new_memory_regions_size);
459 
460 	/* This is the base of small memory block. */
461 	base += new_memory_regions_size + gap_size;
462 
463 	orig_region = memblock.memory.regions;
464 
465 	for (i = 0; i < INIT_MEMBLOCK_REGIONS; i++) {
466 		/*
467 		 * Add these small block to fulfill the memblock. We keep a
468 		 * gap between the nearby memory to avoid being merged.
469 		 */
470 		memblock_add(base, size);
471 		base += size + gap_size;
472 
473 		ASSERT_EQ(memblock.memory.cnt, i + 2);
474 		ASSERT_EQ(memblock.memory.total_size, new_memory_regions_size +
475 						      (i + 1) * size);
476 	}
477 
478 	/*
479 	 * At there, memblock_double_array() has been succeed, check if it
480 	 * update the memory.max.
481 	 */
482 	ASSERT_EQ(memblock.memory.max, INIT_MEMBLOCK_REGIONS * 2);
483 
484 	/* memblock_double_array() will reserve the memory it used. Check it. */
485 	ASSERT_EQ(memblock.reserved.cnt, 1);
486 	ASSERT_EQ(memblock.reserved.total_size, new_memory_regions_size);
487 
488 	/*
489 	 * Now memblock_double_array() works fine. Let's check after the
490 	 * double_array(), the memblock_add() still works as normal.
491 	 */
492 	memblock_add(r.base, r.size);
493 	ASSERT_EQ(memblock.memory.regions[0].base, r.base);
494 	ASSERT_EQ(memblock.memory.regions[0].size, r.size);
495 
496 	ASSERT_EQ(memblock.memory.cnt, INIT_MEMBLOCK_REGIONS + 2);
497 	ASSERT_EQ(memblock.memory.total_size, INIT_MEMBLOCK_REGIONS * size +
498 					      new_memory_regions_size +
499 					      r.size);
500 	ASSERT_EQ(memblock.memory.max, INIT_MEMBLOCK_REGIONS * 2);
501 
502 	dummy_physical_memory_cleanup();
503 
504 	/*
505 	 * The current memory.regions is occupying a range of memory that
506 	 * allocated from dummy_physical_memory_init(). After free the memory,
507 	 * we must not use it. So restore the origin memory region to make sure
508 	 * the tests can run as normal and not affected by the double array.
509 	 */
510 	memblock.memory.regions = orig_region;
511 	memblock.memory.cnt = INIT_MEMBLOCK_REGIONS;
512 
513 	test_pass_pop();
514 
515 	return 0;
516 }
517 
518 static int memblock_add_checks(void)
519 {
520 	prefix_reset();
521 	prefix_push(FUNC_ADD);
522 	test_print("Running %s tests...\n", FUNC_ADD);
523 
524 	memblock_add_simple_check();
525 	memblock_add_node_simple_check();
526 	memblock_add_disjoint_check();
527 	memblock_add_overlap_top_check();
528 	memblock_add_overlap_bottom_check();
529 	memblock_add_within_check();
530 	memblock_add_twice_check();
531 	memblock_add_between_check();
532 	memblock_add_near_max_check();
533 	memblock_add_many_check();
534 
535 	prefix_pop();
536 
537 	return 0;
538 }
539 
540 /*
541  * A simple test that marks a memory block of a specified base address
542  * and size as reserved and to the collection of reserved memory regions
543  * (memblock.reserved). Expect to create a new entry. The region counter
544  * and total memory size are updated.
545  */
546 static int memblock_reserve_simple_check(void)
547 {
548 	struct memblock_region *rgn;
549 
550 	rgn =  &memblock.reserved.regions[0];
551 
552 	struct region r = {
553 		.base = SZ_2G,
554 		.size = SZ_128M
555 	};
556 
557 	PREFIX_PUSH();
558 
559 	reset_memblock_regions();
560 	memblock_reserve(r.base, r.size);
561 
562 	ASSERT_EQ(rgn->base, r.base);
563 	ASSERT_EQ(rgn->size, r.size);
564 
565 	test_pass_pop();
566 
567 	return 0;
568 }
569 
570 /*
571  * A test that tries to mark two memory blocks that don't overlap as reserved:
572  *
573  *  |        +--+      +----------------+  |
574  *  |        |r1|      |       r2       |  |
575  *  +--------+--+------+----------------+--+
576  *
577  * Expect to add two entries to the collection of reserved memory regions
578  * (memblock.reserved). The total size and region counter for
579  * memblock.reserved are updated.
580  */
581 static int memblock_reserve_disjoint_check(void)
582 {
583 	struct memblock_region *rgn1, *rgn2;
584 
585 	rgn1 = &memblock.reserved.regions[0];
586 	rgn2 = &memblock.reserved.regions[1];
587 
588 	struct region r1 = {
589 		.base = SZ_256M,
590 		.size = SZ_16M
591 	};
592 	struct region r2 = {
593 		.base = SZ_512M,
594 		.size = SZ_512M
595 	};
596 
597 	PREFIX_PUSH();
598 
599 	reset_memblock_regions();
600 	memblock_reserve(r1.base, r1.size);
601 	memblock_reserve(r2.base, r2.size);
602 
603 	ASSERT_EQ(rgn1->base, r1.base);
604 	ASSERT_EQ(rgn1->size, r1.size);
605 
606 	ASSERT_EQ(rgn2->base, r2.base);
607 	ASSERT_EQ(rgn2->size, r2.size);
608 
609 	ASSERT_EQ(memblock.reserved.cnt, 2);
610 	ASSERT_EQ(memblock.reserved.total_size, r1.size + r2.size);
611 
612 	test_pass_pop();
613 
614 	return 0;
615 }
616 
617 /*
618  * A test that tries to mark two memory blocks r1 and r2 as reserved,
619  * where r2 overlaps with the beginning of r1 (that is
620  * r1.base < r2.base + r2.size):
621  *
622  *  |  +--------------+--+--------------+  |
623  *  |  |       r2     |  |     r1       |  |
624  *  +--+--------------+--+--------------+--+
625  *     ^              ^
626  *     |              |
627  *     |              r1.base
628  *     |
629  *     r2.base
630  *
631  * Expect to merge two entries into one region that starts at r2.base and
632  * has size of two regions minus their intersection. The total size of the
633  * reserved memory is updated, and the region counter is not updated.
634  */
635 static int memblock_reserve_overlap_top_check(void)
636 {
637 	struct memblock_region *rgn;
638 	phys_addr_t total_size;
639 
640 	rgn = &memblock.reserved.regions[0];
641 
642 	struct region r1 = {
643 		.base = SZ_1G,
644 		.size = SZ_1G
645 	};
646 	struct region r2 = {
647 		.base = SZ_128M,
648 		.size = SZ_1G
649 	};
650 
651 	PREFIX_PUSH();
652 
653 	total_size = (r1.base - r2.base) + r1.size;
654 
655 	reset_memblock_regions();
656 	memblock_reserve(r1.base, r1.size);
657 	memblock_reserve(r2.base, r2.size);
658 
659 	ASSERT_EQ(rgn->base, r2.base);
660 	ASSERT_EQ(rgn->size, total_size);
661 
662 	ASSERT_EQ(memblock.reserved.cnt, 1);
663 	ASSERT_EQ(memblock.reserved.total_size, total_size);
664 
665 	test_pass_pop();
666 
667 	return 0;
668 }
669 
670 /*
671  * A test that tries to mark two memory blocks r1 and r2 as reserved,
672  * where r2 overlaps with the end of r1 (that is
673  * r2.base < r1.base + r1.size):
674  *
675  *  |  +--------------+--+--------------+  |
676  *  |  |       r1     |  |     r2       |  |
677  *  +--+--------------+--+--------------+--+
678  *     ^              ^
679  *     |              |
680  *     |              r2.base
681  *     |
682  *     r1.base
683  *
684  * Expect to merge two entries into one region that starts at r1.base and
685  * has size of two regions minus their intersection. The total size of the
686  * reserved memory is updated, and the region counter is not updated.
687  */
688 static int memblock_reserve_overlap_bottom_check(void)
689 {
690 	struct memblock_region *rgn;
691 	phys_addr_t total_size;
692 
693 	rgn = &memblock.reserved.regions[0];
694 
695 	struct region r1 = {
696 		.base = SZ_2K,
697 		.size = SZ_128K
698 	};
699 	struct region r2 = {
700 		.base = SZ_128K,
701 		.size = SZ_128K
702 	};
703 
704 	PREFIX_PUSH();
705 
706 	total_size = (r2.base - r1.base) + r2.size;
707 
708 	reset_memblock_regions();
709 	memblock_reserve(r1.base, r1.size);
710 	memblock_reserve(r2.base, r2.size);
711 
712 	ASSERT_EQ(rgn->base, r1.base);
713 	ASSERT_EQ(rgn->size, total_size);
714 
715 	ASSERT_EQ(memblock.reserved.cnt, 1);
716 	ASSERT_EQ(memblock.reserved.total_size, total_size);
717 
718 	test_pass_pop();
719 
720 	return 0;
721 }
722 
723 /*
724  * A test that tries to mark two memory blocks r1 and r2 as reserved,
725  * where r2 is within the range of r1 (that is
726  * (r1.base < r2.base) && (r2.base + r2.size < r1.base + r1.size)):
727  *
728  *  | +-----+--+---------------------------|
729  *  | |     |r2|          r1               |
730  *  +-+-----+--+---------------------------+
731  *    ^     ^
732  *    |     |
733  *    |     r2.base
734  *    |
735  *    r1.base
736  *
737  * Expect to merge two entries into one region that stays the same. The
738  * counter and total size of available memory are not updated.
739  */
740 static int memblock_reserve_within_check(void)
741 {
742 	struct memblock_region *rgn;
743 
744 	rgn = &memblock.reserved.regions[0];
745 
746 	struct region r1 = {
747 		.base = SZ_1M,
748 		.size = SZ_8M
749 	};
750 	struct region r2 = {
751 		.base = SZ_2M,
752 		.size = SZ_64K
753 	};
754 
755 	PREFIX_PUSH();
756 
757 	reset_memblock_regions();
758 	memblock_reserve(r1.base, r1.size);
759 	memblock_reserve(r2.base, r2.size);
760 
761 	ASSERT_EQ(rgn->base, r1.base);
762 	ASSERT_EQ(rgn->size, r1.size);
763 
764 	ASSERT_EQ(memblock.reserved.cnt, 1);
765 	ASSERT_EQ(memblock.reserved.total_size, r1.size);
766 
767 	test_pass_pop();
768 
769 	return 0;
770 }
771 
772 /*
773  * A simple test that tries to reserve the same memory block twice.
774  * Expect the region counter and total size of reserved memory to not
775  * be updated.
776  */
777 static int memblock_reserve_twice_check(void)
778 {
779 	struct region r = {
780 		.base = SZ_16K,
781 		.size = SZ_2M
782 	};
783 
784 	PREFIX_PUSH();
785 
786 	reset_memblock_regions();
787 
788 	memblock_reserve(r.base, r.size);
789 	memblock_reserve(r.base, r.size);
790 
791 	ASSERT_EQ(memblock.reserved.cnt, 1);
792 	ASSERT_EQ(memblock.reserved.total_size, r.size);
793 
794 	test_pass_pop();
795 
796 	return 0;
797 }
798 
799 /*
800  * A test that tries to mark two memory blocks that don't overlap as reserved
801  * and then reserve a third memory block in the space between the first two:
802  *
803  *  |        +--------+--------+--------+  |
804  *  |        |   r1   |   r3   |   r2   |  |
805  *  +--------+--------+--------+--------+--+
806  *
807  * Expect to merge the three entries into one reserved region that starts at
808  * r1.base and has size of r1.size + r2.size + r3.size. The region counter and
809  * total for memblock.reserved are updated.
810  */
811 static int memblock_reserve_between_check(void)
812 {
813 	struct memblock_region *rgn;
814 	phys_addr_t total_size;
815 
816 	rgn = &memblock.reserved.regions[0];
817 
818 	struct region r1 = {
819 		.base = SZ_1G,
820 		.size = SZ_8K
821 	};
822 	struct region r2 = {
823 		.base = SZ_1G + SZ_16K,
824 		.size = SZ_8K
825 	};
826 	struct region r3 = {
827 		.base = SZ_1G + SZ_8K,
828 		.size = SZ_8K
829 	};
830 
831 	PREFIX_PUSH();
832 
833 	total_size = r1.size + r2.size + r3.size;
834 
835 	reset_memblock_regions();
836 	memblock_reserve(r1.base, r1.size);
837 	memblock_reserve(r2.base, r2.size);
838 	memblock_reserve(r3.base, r3.size);
839 
840 	ASSERT_EQ(rgn->base, r1.base);
841 	ASSERT_EQ(rgn->size, total_size);
842 
843 	ASSERT_EQ(memblock.reserved.cnt, 1);
844 	ASSERT_EQ(memblock.reserved.total_size, total_size);
845 
846 	test_pass_pop();
847 
848 	return 0;
849 }
850 
851 /*
852  * A simple test that tries to reserve a memory block r when r extends past
853  * PHYS_ADDR_MAX:
854  *
855  *                               +--------+
856  *                               |    r   |
857  *                               +--------+
858  *  |                            +----+
859  *  |                            | rgn|
860  *  +----------------------------+----+
861  *
862  * Expect to reserve a memory block of size PHYS_ADDR_MAX - r.base. Expect the
863  * total size of reserved memory and the counter to be updated.
864  */
865 static int memblock_reserve_near_max_check(void)
866 {
867 	struct memblock_region *rgn;
868 	phys_addr_t total_size;
869 
870 	rgn = &memblock.reserved.regions[0];
871 
872 	struct region r = {
873 		.base = PHYS_ADDR_MAX - SZ_1M,
874 		.size = SZ_2M
875 	};
876 
877 	PREFIX_PUSH();
878 
879 	total_size = PHYS_ADDR_MAX - r.base;
880 
881 	reset_memblock_regions();
882 	memblock_reserve(r.base, r.size);
883 
884 	ASSERT_EQ(rgn->base, r.base);
885 	ASSERT_EQ(rgn->size, total_size);
886 
887 	ASSERT_EQ(memblock.reserved.cnt, 1);
888 	ASSERT_EQ(memblock.reserved.total_size, total_size);
889 
890 	test_pass_pop();
891 
892 	return 0;
893 }
894 
895 /*
896  * A test that trying to reserve the 129th memory block.
897  * Expect to trigger memblock_double_array() to double the
898  * memblock.memory.max, find a new valid memory as
899  * reserved.regions.
900  */
901 static int memblock_reserve_many_check(void)
902 {
903 	int i;
904 	void *orig_region;
905 	struct region r = {
906 		.base = SZ_16K,
907 		.size = SZ_16K,
908 	};
909 	phys_addr_t memory_base = SZ_128K;
910 	phys_addr_t new_reserved_regions_size;
911 
912 	PREFIX_PUSH();
913 
914 	reset_memblock_regions();
915 	memblock_allow_resize();
916 
917 	/* Add a valid memory region used by double_array(). */
918 	dummy_physical_memory_init();
919 	memblock_add(dummy_physical_memory_base(), MEM_SIZE);
920 
921 	for (i = 0; i < INIT_MEMBLOCK_REGIONS; i++) {
922 		/* Reserve some fakes memory region to fulfill the memblock. */
923 		memblock_reserve(memory_base, MEM_SIZE);
924 
925 		ASSERT_EQ(memblock.reserved.cnt, i + 1);
926 		ASSERT_EQ(memblock.reserved.total_size, (i + 1) * MEM_SIZE);
927 
928 		/* Keep the gap so these memory region will not be merged. */
929 		memory_base += MEM_SIZE * 2;
930 	}
931 
932 	orig_region = memblock.reserved.regions;
933 
934 	/* This reserve the 129 memory_region, and makes it double array. */
935 	memblock_reserve(memory_base, MEM_SIZE);
936 
937 	/*
938 	 * This is the memory region size used by the doubled reserved.regions,
939 	 * and it has been reserved due to it has been used. The size is used to
940 	 * calculate the total_size that the memblock.reserved have now.
941 	 */
942 	new_reserved_regions_size = PAGE_ALIGN((INIT_MEMBLOCK_REGIONS * 2) *
943 					sizeof(struct memblock_region));
944 	/*
945 	 * The double_array() will find a free memory region as the new
946 	 * reserved.regions, and the used memory region will be reserved, so
947 	 * there will be one more region exist in the reserved memblock. And the
948 	 * one more reserved region's size is new_reserved_regions_size.
949 	 */
950 	ASSERT_EQ(memblock.reserved.cnt, INIT_MEMBLOCK_REGIONS + 2);
951 	ASSERT_EQ(memblock.reserved.total_size, (INIT_MEMBLOCK_REGIONS + 1) * MEM_SIZE +
952 						new_reserved_regions_size);
953 	ASSERT_EQ(memblock.reserved.max, INIT_MEMBLOCK_REGIONS * 2);
954 
955 	/*
956 	 * Now memblock_double_array() works fine. Let's check after the
957 	 * double_array(), the memblock_reserve() still works as normal.
958 	 */
959 	memblock_reserve(r.base, r.size);
960 	ASSERT_EQ(memblock.reserved.regions[0].base, r.base);
961 	ASSERT_EQ(memblock.reserved.regions[0].size, r.size);
962 
963 	ASSERT_EQ(memblock.reserved.cnt, INIT_MEMBLOCK_REGIONS + 3);
964 	ASSERT_EQ(memblock.reserved.total_size, (INIT_MEMBLOCK_REGIONS + 1) * MEM_SIZE +
965 						new_reserved_regions_size +
966 						r.size);
967 	ASSERT_EQ(memblock.reserved.max, INIT_MEMBLOCK_REGIONS * 2);
968 
969 	dummy_physical_memory_cleanup();
970 
971 	/*
972 	 * The current reserved.regions is occupying a range of memory that
973 	 * allocated from dummy_physical_memory_init(). After free the memory,
974 	 * we must not use it. So restore the origin memory region to make sure
975 	 * the tests can run as normal and not affected by the double array.
976 	 */
977 	memblock.reserved.regions = orig_region;
978 	memblock.reserved.cnt = INIT_MEMBLOCK_RESERVED_REGIONS;
979 
980 	test_pass_pop();
981 
982 	return 0;
983 }
984 
985 
986 /*
987  * A test that trying to reserve the 129th memory block at all locations.
988  * Expect to trigger memblock_double_array() to double the
989  * memblock.memory.max, find a new valid memory as reserved.regions.
990  *
991  *  0               1               2                 128
992  *  +-------+       +-------+       +-------+         +-------+
993  *  |  32K  |       |  32K  |       |  32K  |   ...   |  32K  |
994  *  +-------+-------+-------+-------+-------+         +-------+
995  *          |<-32K->|       |<-32K->|
996  *
997  */
998 /* Keep the gap so these memory region will not be merged. */
999 #define MEMORY_BASE(idx) (SZ_128K + (MEM_SIZE * 2) * (idx))
1000 static int memblock_reserve_all_locations_check(void)
1001 {
1002 	int i, skip;
1003 	void *orig_region;
1004 	struct region r = {
1005 		.base = SZ_16K,
1006 		.size = SZ_16K,
1007 	};
1008 	phys_addr_t new_reserved_regions_size;
1009 
1010 	PREFIX_PUSH();
1011 
1012 	/* Reserve the 129th memory block for all possible positions*/
1013 	for (skip = 0; skip < INIT_MEMBLOCK_REGIONS + 1; skip++) {
1014 		reset_memblock_regions();
1015 		memblock_allow_resize();
1016 
1017 		/* Add a valid memory region used by double_array(). */
1018 		dummy_physical_memory_init();
1019 		memblock_add(dummy_physical_memory_base(), MEM_SIZE);
1020 
1021 		for (i = 0; i < INIT_MEMBLOCK_REGIONS + 1; i++) {
1022 			if (i == skip)
1023 				continue;
1024 
1025 			/* Reserve some fakes memory region to fulfill the memblock. */
1026 			memblock_reserve(MEMORY_BASE(i), MEM_SIZE);
1027 
1028 			if (i < skip) {
1029 				ASSERT_EQ(memblock.reserved.cnt, i + 1);
1030 				ASSERT_EQ(memblock.reserved.total_size, (i + 1) * MEM_SIZE);
1031 			} else {
1032 				ASSERT_EQ(memblock.reserved.cnt, i);
1033 				ASSERT_EQ(memblock.reserved.total_size, i * MEM_SIZE);
1034 			}
1035 		}
1036 
1037 		orig_region = memblock.reserved.regions;
1038 
1039 		/* This reserve the 129 memory_region, and makes it double array. */
1040 		memblock_reserve(MEMORY_BASE(skip), MEM_SIZE);
1041 
1042 		/*
1043 		 * This is the memory region size used by the doubled reserved.regions,
1044 		 * and it has been reserved due to it has been used. The size is used to
1045 		 * calculate the total_size that the memblock.reserved have now.
1046 		 */
1047 		new_reserved_regions_size = PAGE_ALIGN((INIT_MEMBLOCK_REGIONS * 2) *
1048 						sizeof(struct memblock_region));
1049 		/*
1050 		 * The double_array() will find a free memory region as the new
1051 		 * reserved.regions, and the used memory region will be reserved, so
1052 		 * there will be one more region exist in the reserved memblock. And the
1053 		 * one more reserved region's size is new_reserved_regions_size.
1054 		 */
1055 		ASSERT_EQ(memblock.reserved.cnt, INIT_MEMBLOCK_REGIONS + 2);
1056 		ASSERT_EQ(memblock.reserved.total_size, (INIT_MEMBLOCK_REGIONS + 1) * MEM_SIZE +
1057 							new_reserved_regions_size);
1058 		ASSERT_EQ(memblock.reserved.max, INIT_MEMBLOCK_REGIONS * 2);
1059 
1060 		/*
1061 		 * Now memblock_double_array() works fine. Let's check after the
1062 		 * double_array(), the memblock_reserve() still works as normal.
1063 		 */
1064 		memblock_reserve(r.base, r.size);
1065 		ASSERT_EQ(memblock.reserved.regions[0].base, r.base);
1066 		ASSERT_EQ(memblock.reserved.regions[0].size, r.size);
1067 
1068 		ASSERT_EQ(memblock.reserved.cnt, INIT_MEMBLOCK_REGIONS + 3);
1069 		ASSERT_EQ(memblock.reserved.total_size, (INIT_MEMBLOCK_REGIONS + 1) * MEM_SIZE +
1070 							new_reserved_regions_size +
1071 							r.size);
1072 		ASSERT_EQ(memblock.reserved.max, INIT_MEMBLOCK_REGIONS * 2);
1073 
1074 		dummy_physical_memory_cleanup();
1075 
1076 		/*
1077 		 * The current reserved.regions is occupying a range of memory that
1078 		 * allocated from dummy_physical_memory_init(). After free the memory,
1079 		 * we must not use it. So restore the origin memory region to make sure
1080 		 * the tests can run as normal and not affected by the double array.
1081 		 */
1082 		memblock.reserved.regions = orig_region;
1083 		memblock.reserved.cnt = INIT_MEMBLOCK_RESERVED_REGIONS;
1084 	}
1085 
1086 	test_pass_pop();
1087 
1088 	return 0;
1089 }
1090 
1091 /*
1092  * A test that trying to reserve the 129th memory block at all locations.
1093  * Expect to trigger memblock_double_array() to double the
1094  * memblock.memory.max, find a new valid memory as reserved.regions. And make
1095  * sure it doesn't conflict with the range we want to reserve.
1096  *
1097  * For example, we have 128 regions in reserved and now want to reserve
1098  * the skipped one. Since reserved is full, memblock_double_array() would find
1099  * an available range in memory for the new array. We intended to put two
1100  * ranges in memory with one is the exact range of the skipped one. Before
1101  * commit 48c3b583bbdd ("mm/memblock: fix overlapping allocation when doubling
1102  * reserved array"), the new array would sits in the skipped range which is a
1103  * conflict. The expected new array should be allocated from memory.regions[0].
1104  *
1105  *           0                               1
1106  * memory    +-------+                       +-------+
1107  *           |  32K  |                       |  32K  |
1108  *           +-------+ ------+-------+-------+-------+
1109  *                   |<-32K->|<-32K->|<-32K->|
1110  *
1111  *                           0               skipped           127
1112  * reserved                  +-------+       .........         +-------+
1113  *                           |  32K  |       .  32K  .   ...   |  32K  |
1114  *                           +-------+-------+-------+         +-------+
1115  *                                   |<-32K->|
1116  *                                           ^
1117  *                                           |
1118  *                                           |
1119  *                                           skipped one
1120  */
1121 /* Keep the gap so these memory region will not be merged. */
1122 #define MEMORY_BASE_OFFSET(idx, offset) ((offset) + (MEM_SIZE * 2) * (idx))
1123 static int memblock_reserve_many_may_conflict_check(void)
1124 {
1125 	int i, skip;
1126 	void *orig_region;
1127 	struct region r = {
1128 		.base = SZ_16K,
1129 		.size = SZ_16K,
1130 	};
1131 	phys_addr_t new_reserved_regions_size;
1132 
1133 	/*
1134 	 *  0        1          129
1135 	 *  +---+    +---+      +---+
1136 	 *  |32K|    |32K|  ..  |32K|
1137 	 *  +---+    +---+      +---+
1138 	 *
1139 	 * Pre-allocate the range for 129 memory block + one range for double
1140 	 * memblock.reserved.regions at idx 0.
1141 	 */
1142 	dummy_physical_memory_init();
1143 	phys_addr_t memory_base = dummy_physical_memory_base();
1144 	phys_addr_t offset = PAGE_ALIGN(memory_base);
1145 
1146 	PREFIX_PUSH();
1147 
1148 	/* Reserve the 129th memory block for all possible positions*/
1149 	for (skip = 1; skip <= INIT_MEMBLOCK_REGIONS + 1; skip++) {
1150 		reset_memblock_regions();
1151 		memblock_allow_resize();
1152 
1153 		reset_memblock_attributes();
1154 		/* Add a valid memory region used by double_array(). */
1155 		memblock_add(MEMORY_BASE_OFFSET(0, offset), MEM_SIZE);
1156 		/*
1157 		 * Add a memory region which will be reserved as 129th memory
1158 		 * region. This is not expected to be used by double_array().
1159 		 */
1160 		memblock_add(MEMORY_BASE_OFFSET(skip, offset), MEM_SIZE);
1161 
1162 		for (i = 1; i <= INIT_MEMBLOCK_REGIONS + 1; i++) {
1163 			if (i == skip)
1164 				continue;
1165 
1166 			/* Reserve some fakes memory region to fulfill the memblock. */
1167 			memblock_reserve(MEMORY_BASE_OFFSET(i, offset), MEM_SIZE);
1168 
1169 			if (i < skip) {
1170 				ASSERT_EQ(memblock.reserved.cnt, i);
1171 				ASSERT_EQ(memblock.reserved.total_size, i * MEM_SIZE);
1172 			} else {
1173 				ASSERT_EQ(memblock.reserved.cnt, i - 1);
1174 				ASSERT_EQ(memblock.reserved.total_size, (i - 1) * MEM_SIZE);
1175 			}
1176 		}
1177 
1178 		orig_region = memblock.reserved.regions;
1179 
1180 		/* This reserve the 129 memory_region, and makes it double array. */
1181 		memblock_reserve(MEMORY_BASE_OFFSET(skip, offset), MEM_SIZE);
1182 
1183 		/*
1184 		 * This is the memory region size used by the doubled reserved.regions,
1185 		 * and it has been reserved due to it has been used. The size is used to
1186 		 * calculate the total_size that the memblock.reserved have now.
1187 		 */
1188 		new_reserved_regions_size = PAGE_ALIGN((INIT_MEMBLOCK_REGIONS * 2) *
1189 						sizeof(struct memblock_region));
1190 		/*
1191 		 * The double_array() will find a free memory region as the new
1192 		 * reserved.regions, and the used memory region will be reserved, so
1193 		 * there will be one more region exist in the reserved memblock. And the
1194 		 * one more reserved region's size is new_reserved_regions_size.
1195 		 */
1196 		ASSERT_EQ(memblock.reserved.cnt, INIT_MEMBLOCK_REGIONS + 2);
1197 		ASSERT_EQ(memblock.reserved.total_size, (INIT_MEMBLOCK_REGIONS + 1) * MEM_SIZE +
1198 							new_reserved_regions_size);
1199 		ASSERT_EQ(memblock.reserved.max, INIT_MEMBLOCK_REGIONS * 2);
1200 
1201 		/*
1202 		 * The first reserved region is allocated for double array
1203 		 * with the size of new_reserved_regions_size and the base to be
1204 		 * MEMORY_BASE_OFFSET(0, offset) + SZ_32K - new_reserved_regions_size
1205 		 */
1206 		ASSERT_EQ(memblock.reserved.regions[0].base + memblock.reserved.regions[0].size,
1207 			  MEMORY_BASE_OFFSET(0, offset) + SZ_32K);
1208 		ASSERT_EQ(memblock.reserved.regions[0].size, new_reserved_regions_size);
1209 
1210 		/*
1211 		 * Now memblock_double_array() works fine. Let's check after the
1212 		 * double_array(), the memblock_reserve() still works as normal.
1213 		 */
1214 		memblock_reserve(r.base, r.size);
1215 		ASSERT_EQ(memblock.reserved.regions[0].base, r.base);
1216 		ASSERT_EQ(memblock.reserved.regions[0].size, r.size);
1217 
1218 		ASSERT_EQ(memblock.reserved.cnt, INIT_MEMBLOCK_REGIONS + 3);
1219 		ASSERT_EQ(memblock.reserved.total_size, (INIT_MEMBLOCK_REGIONS + 1) * MEM_SIZE +
1220 							new_reserved_regions_size +
1221 							r.size);
1222 		ASSERT_EQ(memblock.reserved.max, INIT_MEMBLOCK_REGIONS * 2);
1223 
1224 		/*
1225 		 * The current reserved.regions is occupying a range of memory that
1226 		 * allocated from dummy_physical_memory_init(). After free the memory,
1227 		 * we must not use it. So restore the origin memory region to make sure
1228 		 * the tests can run as normal and not affected by the double array.
1229 		 */
1230 		memblock.reserved.regions = orig_region;
1231 		memblock.reserved.cnt = INIT_MEMBLOCK_RESERVED_REGIONS;
1232 	}
1233 
1234 	dummy_physical_memory_cleanup();
1235 
1236 	test_pass_pop();
1237 
1238 	return 0;
1239 }
1240 
1241 static int memblock_reserve_checks(void)
1242 {
1243 	prefix_reset();
1244 	prefix_push(FUNC_RESERVE);
1245 	test_print("Running %s tests...\n", FUNC_RESERVE);
1246 
1247 	memblock_reserve_simple_check();
1248 	memblock_reserve_disjoint_check();
1249 	memblock_reserve_overlap_top_check();
1250 	memblock_reserve_overlap_bottom_check();
1251 	memblock_reserve_within_check();
1252 	memblock_reserve_twice_check();
1253 	memblock_reserve_between_check();
1254 	memblock_reserve_near_max_check();
1255 	memblock_reserve_many_check();
1256 	memblock_reserve_all_locations_check();
1257 	memblock_reserve_many_may_conflict_check();
1258 
1259 	prefix_pop();
1260 
1261 	return 0;
1262 }
1263 
1264 /*
1265  * A simple test that tries to remove a region r1 from the array of
1266  * available memory regions. By "removing" a region we mean overwriting it
1267  * with the next region r2 in memblock.memory:
1268  *
1269  *  |  ......          +----------------+  |
1270  *  |  : r1 :          |       r2       |  |
1271  *  +--+----+----------+----------------+--+
1272  *                     ^
1273  *                     |
1274  *                     rgn.base
1275  *
1276  * Expect to add two memory blocks r1 and r2 and then remove r1 so that
1277  * r2 is the first available region. The region counter and total size
1278  * are updated.
1279  */
1280 static int memblock_remove_simple_check(void)
1281 {
1282 	struct memblock_region *rgn;
1283 
1284 	rgn = &memblock.memory.regions[0];
1285 
1286 	struct region r1 = {
1287 		.base = SZ_2K,
1288 		.size = SZ_4K
1289 	};
1290 	struct region r2 = {
1291 		.base = SZ_128K,
1292 		.size = SZ_4M
1293 	};
1294 
1295 	PREFIX_PUSH();
1296 
1297 	reset_memblock_regions();
1298 	memblock_add(r1.base, r1.size);
1299 	memblock_add(r2.base, r2.size);
1300 	memblock_remove(r1.base, r1.size);
1301 
1302 	ASSERT_EQ(rgn->base, r2.base);
1303 	ASSERT_EQ(rgn->size, r2.size);
1304 
1305 	ASSERT_EQ(memblock.memory.cnt, 1);
1306 	ASSERT_EQ(memblock.memory.total_size, r2.size);
1307 
1308 	test_pass_pop();
1309 
1310 	return 0;
1311 }
1312 
1313 /*
1314  * A test that tries to remove a region r2 that was not registered as
1315  * available memory (i.e. has no corresponding entry in memblock.memory):
1316  *
1317  *                     +----------------+
1318  *                     |       r2       |
1319  *                     +----------------+
1320  *  |  +----+                              |
1321  *  |  | r1 |                              |
1322  *  +--+----+------------------------------+
1323  *     ^
1324  *     |
1325  *     rgn.base
1326  *
1327  * Expect the array, regions counter and total size to not be modified.
1328  */
1329 static int memblock_remove_absent_check(void)
1330 {
1331 	struct memblock_region *rgn;
1332 
1333 	rgn = &memblock.memory.regions[0];
1334 
1335 	struct region r1 = {
1336 		.base = SZ_512K,
1337 		.size = SZ_4M
1338 	};
1339 	struct region r2 = {
1340 		.base = SZ_64M,
1341 		.size = SZ_1G
1342 	};
1343 
1344 	PREFIX_PUSH();
1345 
1346 	reset_memblock_regions();
1347 	memblock_add(r1.base, r1.size);
1348 	memblock_remove(r2.base, r2.size);
1349 
1350 	ASSERT_EQ(rgn->base, r1.base);
1351 	ASSERT_EQ(rgn->size, r1.size);
1352 
1353 	ASSERT_EQ(memblock.memory.cnt, 1);
1354 	ASSERT_EQ(memblock.memory.total_size, r1.size);
1355 
1356 	test_pass_pop();
1357 
1358 	return 0;
1359 }
1360 
1361 /*
1362  * A test that tries to remove a region r2 that overlaps with the
1363  * beginning of the already existing entry r1
1364  * (that is r1.base < r2.base + r2.size):
1365  *
1366  *           +-----------------+
1367  *           |       r2        |
1368  *           +-----------------+
1369  *  |                 .........+--------+  |
1370  *  |                 :     r1 |  rgn   |  |
1371  *  +-----------------+--------+--------+--+
1372  *                    ^        ^
1373  *                    |        |
1374  *                    |        rgn.base
1375  *                    r1.base
1376  *
1377  * Expect that only the intersection of both regions is removed from the
1378  * available memory pool. The regions counter and total size are updated.
1379  */
1380 static int memblock_remove_overlap_top_check(void)
1381 {
1382 	struct memblock_region *rgn;
1383 	phys_addr_t r1_end, r2_end, total_size;
1384 
1385 	rgn = &memblock.memory.regions[0];
1386 
1387 	struct region r1 = {
1388 		.base = SZ_32M,
1389 		.size = SZ_32M
1390 	};
1391 	struct region r2 = {
1392 		.base = SZ_16M,
1393 		.size = SZ_32M
1394 	};
1395 
1396 	PREFIX_PUSH();
1397 
1398 	r1_end = r1.base + r1.size;
1399 	r2_end = r2.base + r2.size;
1400 	total_size = r1_end - r2_end;
1401 
1402 	reset_memblock_regions();
1403 	memblock_add(r1.base, r1.size);
1404 	memblock_remove(r2.base, r2.size);
1405 
1406 	ASSERT_EQ(rgn->base, r1.base + r2.base);
1407 	ASSERT_EQ(rgn->size, total_size);
1408 
1409 	ASSERT_EQ(memblock.memory.cnt, 1);
1410 	ASSERT_EQ(memblock.memory.total_size, total_size);
1411 
1412 	test_pass_pop();
1413 
1414 	return 0;
1415 }
1416 
1417 /*
1418  * A test that tries to remove a region r2 that overlaps with the end of
1419  * the already existing region r1 (that is r2.base < r1.base + r1.size):
1420  *
1421  *        +--------------------------------+
1422  *        |               r2               |
1423  *        +--------------------------------+
1424  *  | +---+.....                           |
1425  *  | |rgn| r1 :                           |
1426  *  +-+---+----+---------------------------+
1427  *    ^
1428  *    |
1429  *    r1.base
1430  *
1431  * Expect that only the intersection of both regions is removed from the
1432  * available memory pool. The regions counter and total size are updated.
1433  */
1434 static int memblock_remove_overlap_bottom_check(void)
1435 {
1436 	struct memblock_region *rgn;
1437 	phys_addr_t total_size;
1438 
1439 	rgn = &memblock.memory.regions[0];
1440 
1441 	struct region r1 = {
1442 		.base = SZ_2M,
1443 		.size = SZ_64M
1444 	};
1445 	struct region r2 = {
1446 		.base = SZ_32M,
1447 		.size = SZ_256M
1448 	};
1449 
1450 	PREFIX_PUSH();
1451 
1452 	total_size = r2.base - r1.base;
1453 
1454 	reset_memblock_regions();
1455 	memblock_add(r1.base, r1.size);
1456 	memblock_remove(r2.base, r2.size);
1457 
1458 	ASSERT_EQ(rgn->base, r1.base);
1459 	ASSERT_EQ(rgn->size, total_size);
1460 
1461 	ASSERT_EQ(memblock.memory.cnt, 1);
1462 	ASSERT_EQ(memblock.memory.total_size, total_size);
1463 
1464 	test_pass_pop();
1465 
1466 	return 0;
1467 }
1468 
1469 /*
1470  * A test that tries to remove a region r2 that is within the range of
1471  * the already existing entry r1 (that is
1472  * (r1.base < r2.base) && (r2.base + r2.size < r1.base + r1.size)):
1473  *
1474  *                  +----+
1475  *                  | r2 |
1476  *                  +----+
1477  *  | +-------------+....+---------------+ |
1478  *  | |     rgn1    | r1 |     rgn2      | |
1479  *  +-+-------------+----+---------------+-+
1480  *    ^
1481  *    |
1482  *    r1.base
1483  *
1484  * Expect that the region is split into two - one that ends at r2.base and
1485  * another that starts at r2.base + r2.size, with appropriate sizes. The
1486  * region counter and total size are updated.
1487  */
1488 static int memblock_remove_within_check(void)
1489 {
1490 	struct memblock_region *rgn1, *rgn2;
1491 	phys_addr_t r1_size, r2_size, total_size;
1492 
1493 	rgn1 = &memblock.memory.regions[0];
1494 	rgn2 = &memblock.memory.regions[1];
1495 
1496 	struct region r1 = {
1497 		.base = SZ_1M,
1498 		.size = SZ_32M
1499 	};
1500 	struct region r2 = {
1501 		.base = SZ_16M,
1502 		.size = SZ_1M
1503 	};
1504 
1505 	PREFIX_PUSH();
1506 
1507 	r1_size = r2.base - r1.base;
1508 	r2_size = (r1.base + r1.size) - (r2.base + r2.size);
1509 	total_size = r1_size + r2_size;
1510 
1511 	reset_memblock_regions();
1512 	memblock_add(r1.base, r1.size);
1513 	memblock_remove(r2.base, r2.size);
1514 
1515 	ASSERT_EQ(rgn1->base, r1.base);
1516 	ASSERT_EQ(rgn1->size, r1_size);
1517 
1518 	ASSERT_EQ(rgn2->base, r2.base + r2.size);
1519 	ASSERT_EQ(rgn2->size, r2_size);
1520 
1521 	ASSERT_EQ(memblock.memory.cnt, 2);
1522 	ASSERT_EQ(memblock.memory.total_size, total_size);
1523 
1524 	test_pass_pop();
1525 
1526 	return 0;
1527 }
1528 
1529 /*
1530  * A simple test that tries to remove a region r1 from the array of
1531  * available memory regions when r1 is the only available region.
1532  * Expect to add a memory block r1 and then remove r1 so that a dummy
1533  * region is added. The region counter stays the same, and the total size
1534  * is updated.
1535  */
1536 static int memblock_remove_only_region_check(void)
1537 {
1538 	struct memblock_region *rgn;
1539 
1540 	rgn = &memblock.memory.regions[0];
1541 
1542 	struct region r1 = {
1543 		.base = SZ_2K,
1544 		.size = SZ_4K
1545 	};
1546 
1547 	PREFIX_PUSH();
1548 
1549 	reset_memblock_regions();
1550 	memblock_add(r1.base, r1.size);
1551 	memblock_remove(r1.base, r1.size);
1552 
1553 	ASSERT_EQ(rgn->base, 0);
1554 	ASSERT_EQ(rgn->size, 0);
1555 
1556 	ASSERT_EQ(memblock.memory.cnt, 0);
1557 	ASSERT_EQ(memblock.memory.total_size, 0);
1558 
1559 	test_pass_pop();
1560 
1561 	return 0;
1562 }
1563 
1564 /*
1565  * A simple test that tries remove a region r2 from the array of available
1566  * memory regions when r2 extends past PHYS_ADDR_MAX:
1567  *
1568  *                               +--------+
1569  *                               |   r2   |
1570  *                               +--------+
1571  *  |                        +---+....+
1572  *  |                        |rgn|    |
1573  *  +------------------------+---+----+
1574  *
1575  * Expect that only the portion between PHYS_ADDR_MAX and r2.base is removed.
1576  * Expect the total size of available memory to be updated and the counter to
1577  * not be updated.
1578  */
1579 static int memblock_remove_near_max_check(void)
1580 {
1581 	struct memblock_region *rgn;
1582 	phys_addr_t total_size;
1583 
1584 	rgn = &memblock.memory.regions[0];
1585 
1586 	struct region r1 = {
1587 		.base = PHYS_ADDR_MAX - SZ_2M,
1588 		.size = SZ_2M
1589 	};
1590 
1591 	struct region r2 = {
1592 		.base = PHYS_ADDR_MAX - SZ_1M,
1593 		.size = SZ_2M
1594 	};
1595 
1596 	PREFIX_PUSH();
1597 
1598 	total_size = r1.size - (PHYS_ADDR_MAX - r2.base);
1599 
1600 	reset_memblock_regions();
1601 	memblock_add(r1.base, r1.size);
1602 	memblock_remove(r2.base, r2.size);
1603 
1604 	ASSERT_EQ(rgn->base, r1.base);
1605 	ASSERT_EQ(rgn->size, total_size);
1606 
1607 	ASSERT_EQ(memblock.memory.cnt, 1);
1608 	ASSERT_EQ(memblock.memory.total_size, total_size);
1609 
1610 	test_pass_pop();
1611 
1612 	return 0;
1613 }
1614 
1615 /*
1616  * A test that tries to remove a region r3 that overlaps with two existing
1617  * regions r1 and r2:
1618  *
1619  *            +----------------+
1620  *            |       r3       |
1621  *            +----------------+
1622  *  |    +----+.....   ........+--------+
1623  *  |    |    |r1  :   :       |r2      |     |
1624  *  +----+----+----+---+-------+--------+-----+
1625  *
1626  * Expect that only the intersections of r1 with r3 and r2 with r3 are removed
1627  * from the available memory pool. Expect the total size of available memory to
1628  * be updated and the counter to not be updated.
1629  */
1630 static int memblock_remove_overlap_two_check(void)
1631 {
1632 	struct memblock_region *rgn1, *rgn2;
1633 	phys_addr_t new_r1_size, new_r2_size, r2_end, r3_end, total_size;
1634 
1635 	rgn1 = &memblock.memory.regions[0];
1636 	rgn2 = &memblock.memory.regions[1];
1637 
1638 	struct region r1 = {
1639 		.base = SZ_16M,
1640 		.size = SZ_32M
1641 	};
1642 	struct region r2 = {
1643 		.base = SZ_64M,
1644 		.size = SZ_64M
1645 	};
1646 	struct region r3 = {
1647 		.base = SZ_32M,
1648 		.size = SZ_64M
1649 	};
1650 
1651 	PREFIX_PUSH();
1652 
1653 	r2_end = r2.base + r2.size;
1654 	r3_end = r3.base + r3.size;
1655 	new_r1_size = r3.base - r1.base;
1656 	new_r2_size = r2_end - r3_end;
1657 	total_size = new_r1_size + new_r2_size;
1658 
1659 	reset_memblock_regions();
1660 	memblock_add(r1.base, r1.size);
1661 	memblock_add(r2.base, r2.size);
1662 	memblock_remove(r3.base, r3.size);
1663 
1664 	ASSERT_EQ(rgn1->base, r1.base);
1665 	ASSERT_EQ(rgn1->size, new_r1_size);
1666 
1667 	ASSERT_EQ(rgn2->base, r3_end);
1668 	ASSERT_EQ(rgn2->size, new_r2_size);
1669 
1670 	ASSERT_EQ(memblock.memory.cnt, 2);
1671 	ASSERT_EQ(memblock.memory.total_size, total_size);
1672 
1673 	test_pass_pop();
1674 
1675 	return 0;
1676 }
1677 
1678 static int memblock_remove_checks(void)
1679 {
1680 	prefix_reset();
1681 	prefix_push(FUNC_REMOVE);
1682 	test_print("Running %s tests...\n", FUNC_REMOVE);
1683 
1684 	memblock_remove_simple_check();
1685 	memblock_remove_absent_check();
1686 	memblock_remove_overlap_top_check();
1687 	memblock_remove_overlap_bottom_check();
1688 	memblock_remove_within_check();
1689 	memblock_remove_only_region_check();
1690 	memblock_remove_near_max_check();
1691 	memblock_remove_overlap_two_check();
1692 
1693 	prefix_pop();
1694 
1695 	return 0;
1696 }
1697 
1698 /*
1699  * A simple test that tries to free a memory block r1 that was marked
1700  * earlier as reserved. By "freeing" a region we mean overwriting it with
1701  * the next entry r2 in memblock.reserved:
1702  *
1703  *  |              ......           +----+ |
1704  *  |              : r1 :           | r2 | |
1705  *  +--------------+----+-----------+----+-+
1706  *                                  ^
1707  *                                  |
1708  *                                  rgn.base
1709  *
1710  * Expect to reserve two memory regions and then erase r1 region with the
1711  * value of r2. The region counter and total size are updated.
1712  */
1713 static int memblock_free_simple_check(void)
1714 {
1715 	struct memblock_region *rgn;
1716 
1717 	rgn = &memblock.reserved.regions[0];
1718 
1719 	struct region r1 = {
1720 		.base = SZ_4M,
1721 		.size = SZ_1M
1722 	};
1723 	struct region r2 = {
1724 		.base = SZ_8M,
1725 		.size = SZ_1M
1726 	};
1727 
1728 	PREFIX_PUSH();
1729 
1730 	reset_memblock_regions();
1731 	memblock_reserve(r1.base, r1.size);
1732 	memblock_reserve(r2.base, r2.size);
1733 	memblock_free((void *)r1.base, r1.size);
1734 
1735 	ASSERT_EQ(rgn->base, r2.base);
1736 	ASSERT_EQ(rgn->size, r2.size);
1737 
1738 	ASSERT_EQ(memblock.reserved.cnt, 1);
1739 	ASSERT_EQ(memblock.reserved.total_size, r2.size);
1740 
1741 	test_pass_pop();
1742 
1743 	return 0;
1744 }
1745 
1746 /*
1747  * A test that tries to free a region r2 that was not marked as reserved
1748  * (i.e. has no corresponding entry in memblock.reserved):
1749  *
1750  *                     +----------------+
1751  *                     |       r2       |
1752  *                     +----------------+
1753  *  |  +----+                              |
1754  *  |  | r1 |                              |
1755  *  +--+----+------------------------------+
1756  *     ^
1757  *     |
1758  *     rgn.base
1759  *
1760  * The array, regions counter and total size are not modified.
1761  */
1762 static int memblock_free_absent_check(void)
1763 {
1764 	struct memblock_region *rgn;
1765 
1766 	rgn = &memblock.reserved.regions[0];
1767 
1768 	struct region r1 = {
1769 		.base = SZ_2M,
1770 		.size = SZ_8K
1771 	};
1772 	struct region r2 = {
1773 		.base = SZ_16M,
1774 		.size = SZ_128M
1775 	};
1776 
1777 	PREFIX_PUSH();
1778 
1779 	reset_memblock_regions();
1780 	memblock_reserve(r1.base, r1.size);
1781 	memblock_free((void *)r2.base, r2.size);
1782 
1783 	ASSERT_EQ(rgn->base, r1.base);
1784 	ASSERT_EQ(rgn->size, r1.size);
1785 
1786 	ASSERT_EQ(memblock.reserved.cnt, 1);
1787 	ASSERT_EQ(memblock.reserved.total_size, r1.size);
1788 
1789 	test_pass_pop();
1790 
1791 	return 0;
1792 }
1793 
1794 /*
1795  * A test that tries to free a region r2 that overlaps with the beginning
1796  * of the already existing entry r1 (that is r1.base < r2.base + r2.size):
1797  *
1798  *     +----+
1799  *     | r2 |
1800  *     +----+
1801  *  |    ...+--------------+               |
1802  *  |    :  |    r1        |               |
1803  *  +----+--+--------------+---------------+
1804  *       ^  ^
1805  *       |  |
1806  *       |  rgn.base
1807  *       |
1808  *       r1.base
1809  *
1810  * Expect that only the intersection of both regions is freed. The
1811  * regions counter and total size are updated.
1812  */
1813 static int memblock_free_overlap_top_check(void)
1814 {
1815 	struct memblock_region *rgn;
1816 	phys_addr_t total_size;
1817 
1818 	rgn = &memblock.reserved.regions[0];
1819 
1820 	struct region r1 = {
1821 		.base = SZ_8M,
1822 		.size = SZ_32M
1823 	};
1824 	struct region r2 = {
1825 		.base = SZ_1M,
1826 		.size = SZ_8M
1827 	};
1828 
1829 	PREFIX_PUSH();
1830 
1831 	total_size = (r1.size + r1.base) - (r2.base + r2.size);
1832 
1833 	reset_memblock_regions();
1834 	memblock_reserve(r1.base, r1.size);
1835 	memblock_free((void *)r2.base, r2.size);
1836 
1837 	ASSERT_EQ(rgn->base, r2.base + r2.size);
1838 	ASSERT_EQ(rgn->size, total_size);
1839 
1840 	ASSERT_EQ(memblock.reserved.cnt, 1);
1841 	ASSERT_EQ(memblock.reserved.total_size, total_size);
1842 
1843 	test_pass_pop();
1844 
1845 	return 0;
1846 }
1847 
1848 /*
1849  * A test that tries to free a region r2 that overlaps with the end of
1850  * the already existing entry r1 (that is r2.base < r1.base + r1.size):
1851  *
1852  *                   +----------------+
1853  *                   |       r2       |
1854  *                   +----------------+
1855  *  |    +-----------+.....                |
1856  *  |    |       r1  |    :                |
1857  *  +----+-----------+----+----------------+
1858  *
1859  * Expect that only the intersection of both regions is freed. The
1860  * regions counter and total size are updated.
1861  */
1862 static int memblock_free_overlap_bottom_check(void)
1863 {
1864 	struct memblock_region *rgn;
1865 	phys_addr_t total_size;
1866 
1867 	rgn = &memblock.reserved.regions[0];
1868 
1869 	struct region r1 = {
1870 		.base = SZ_8M,
1871 		.size = SZ_32M
1872 	};
1873 	struct region r2 = {
1874 		.base = SZ_32M,
1875 		.size = SZ_32M
1876 	};
1877 
1878 	PREFIX_PUSH();
1879 
1880 	total_size = r2.base - r1.base;
1881 
1882 	reset_memblock_regions();
1883 	memblock_reserve(r1.base, r1.size);
1884 	memblock_free((void *)r2.base, r2.size);
1885 
1886 	ASSERT_EQ(rgn->base, r1.base);
1887 	ASSERT_EQ(rgn->size, total_size);
1888 
1889 	ASSERT_EQ(memblock.reserved.cnt, 1);
1890 	ASSERT_EQ(memblock.reserved.total_size, total_size);
1891 
1892 	test_pass_pop();
1893 
1894 	return 0;
1895 }
1896 
1897 /*
1898  * A test that tries to free a region r2 that is within the range of the
1899  * already existing entry r1 (that is
1900  * (r1.base < r2.base) && (r2.base + r2.size < r1.base + r1.size)):
1901  *
1902  *                    +----+
1903  *                    | r2 |
1904  *                    +----+
1905  *  |    +------------+....+---------------+
1906  *  |    |    rgn1    | r1 |     rgn2      |
1907  *  +----+------------+----+---------------+
1908  *       ^
1909  *       |
1910  *       r1.base
1911  *
1912  * Expect that the region is split into two - one that ends at r2.base and
1913  * another that starts at r2.base + r2.size, with appropriate sizes. The
1914  * region counter and total size fields are updated.
1915  */
1916 static int memblock_free_within_check(void)
1917 {
1918 	struct memblock_region *rgn1, *rgn2;
1919 	phys_addr_t r1_size, r2_size, total_size;
1920 
1921 	rgn1 = &memblock.reserved.regions[0];
1922 	rgn2 = &memblock.reserved.regions[1];
1923 
1924 	struct region r1 = {
1925 		.base = SZ_1M,
1926 		.size = SZ_8M
1927 	};
1928 	struct region r2 = {
1929 		.base = SZ_4M,
1930 		.size = SZ_1M
1931 	};
1932 
1933 	PREFIX_PUSH();
1934 
1935 	r1_size = r2.base - r1.base;
1936 	r2_size = (r1.base + r1.size) - (r2.base + r2.size);
1937 	total_size = r1_size + r2_size;
1938 
1939 	reset_memblock_regions();
1940 	memblock_reserve(r1.base, r1.size);
1941 	memblock_free((void *)r2.base, r2.size);
1942 
1943 	ASSERT_EQ(rgn1->base, r1.base);
1944 	ASSERT_EQ(rgn1->size, r1_size);
1945 
1946 	ASSERT_EQ(rgn2->base, r2.base + r2.size);
1947 	ASSERT_EQ(rgn2->size, r2_size);
1948 
1949 	ASSERT_EQ(memblock.reserved.cnt, 2);
1950 	ASSERT_EQ(memblock.reserved.total_size, total_size);
1951 
1952 	test_pass_pop();
1953 
1954 	return 0;
1955 }
1956 
1957 /*
1958  * A simple test that tries to free a memory block r1 that was marked
1959  * earlier as reserved when r1 is the only available region.
1960  * Expect to reserve a memory block r1 and then free r1 so that r1 is
1961  * overwritten with a dummy region. The region counter stays the same,
1962  * and the total size is updated.
1963  */
1964 static int memblock_free_only_region_check(void)
1965 {
1966 	struct memblock_region *rgn;
1967 
1968 	rgn = &memblock.reserved.regions[0];
1969 
1970 	struct region r1 = {
1971 		.base = SZ_2K,
1972 		.size = SZ_4K
1973 	};
1974 
1975 	PREFIX_PUSH();
1976 
1977 	reset_memblock_regions();
1978 	memblock_reserve(r1.base, r1.size);
1979 	memblock_free((void *)r1.base, r1.size);
1980 
1981 	ASSERT_EQ(rgn->base, 0);
1982 	ASSERT_EQ(rgn->size, 0);
1983 
1984 	ASSERT_EQ(memblock.reserved.cnt, 0);
1985 	ASSERT_EQ(memblock.reserved.total_size, 0);
1986 
1987 	test_pass_pop();
1988 
1989 	return 0;
1990 }
1991 
1992 /*
1993  * A simple test that tries free a region r2 when r2 extends past PHYS_ADDR_MAX:
1994  *
1995  *                               +--------+
1996  *                               |   r2   |
1997  *                               +--------+
1998  *  |                        +---+....+
1999  *  |                        |rgn|    |
2000  *  +------------------------+---+----+
2001  *
2002  * Expect that only the portion between PHYS_ADDR_MAX and r2.base is freed.
2003  * Expect the total size of reserved memory to be updated and the counter to
2004  * not be updated.
2005  */
2006 static int memblock_free_near_max_check(void)
2007 {
2008 	struct memblock_region *rgn;
2009 	phys_addr_t total_size;
2010 
2011 	rgn = &memblock.reserved.regions[0];
2012 
2013 	struct region r1 = {
2014 		.base = PHYS_ADDR_MAX - SZ_2M,
2015 		.size = SZ_2M
2016 	};
2017 
2018 	struct region r2 = {
2019 		.base = PHYS_ADDR_MAX - SZ_1M,
2020 		.size = SZ_2M
2021 	};
2022 
2023 	PREFIX_PUSH();
2024 
2025 	total_size = r1.size - (PHYS_ADDR_MAX - r2.base);
2026 
2027 	reset_memblock_regions();
2028 	memblock_reserve(r1.base, r1.size);
2029 	memblock_free((void *)r2.base, r2.size);
2030 
2031 	ASSERT_EQ(rgn->base, r1.base);
2032 	ASSERT_EQ(rgn->size, total_size);
2033 
2034 	ASSERT_EQ(memblock.reserved.cnt, 1);
2035 	ASSERT_EQ(memblock.reserved.total_size, total_size);
2036 
2037 	test_pass_pop();
2038 
2039 	return 0;
2040 }
2041 
2042 /*
2043  * A test that tries to free a reserved region r3 that overlaps with two
2044  * existing reserved regions r1 and r2:
2045  *
2046  *            +----------------+
2047  *            |       r3       |
2048  *            +----------------+
2049  *  |    +----+.....   ........+--------+
2050  *  |    |    |r1  :   :       |r2      |     |
2051  *  +----+----+----+---+-------+--------+-----+
2052  *
2053  * Expect that only the intersections of r1 with r3 and r2 with r3 are freed
2054  * from the collection of reserved memory. Expect the total size of reserved
2055  * memory to be updated and the counter to not be updated.
2056  */
2057 static int memblock_free_overlap_two_check(void)
2058 {
2059 	struct memblock_region *rgn1, *rgn2;
2060 	phys_addr_t new_r1_size, new_r2_size, r2_end, r3_end, total_size;
2061 
2062 	rgn1 = &memblock.reserved.regions[0];
2063 	rgn2 = &memblock.reserved.regions[1];
2064 
2065 	struct region r1 = {
2066 		.base = SZ_16M,
2067 		.size = SZ_32M
2068 	};
2069 	struct region r2 = {
2070 		.base = SZ_64M,
2071 		.size = SZ_64M
2072 	};
2073 	struct region r3 = {
2074 		.base = SZ_32M,
2075 		.size = SZ_64M
2076 	};
2077 
2078 	PREFIX_PUSH();
2079 
2080 	r2_end = r2.base + r2.size;
2081 	r3_end = r3.base + r3.size;
2082 	new_r1_size = r3.base - r1.base;
2083 	new_r2_size = r2_end - r3_end;
2084 	total_size = new_r1_size + new_r2_size;
2085 
2086 	reset_memblock_regions();
2087 	memblock_reserve(r1.base, r1.size);
2088 	memblock_reserve(r2.base, r2.size);
2089 	memblock_free((void *)r3.base, r3.size);
2090 
2091 	ASSERT_EQ(rgn1->base, r1.base);
2092 	ASSERT_EQ(rgn1->size, new_r1_size);
2093 
2094 	ASSERT_EQ(rgn2->base, r3_end);
2095 	ASSERT_EQ(rgn2->size, new_r2_size);
2096 
2097 	ASSERT_EQ(memblock.reserved.cnt, 2);
2098 	ASSERT_EQ(memblock.reserved.total_size, total_size);
2099 
2100 	test_pass_pop();
2101 
2102 	return 0;
2103 }
2104 
2105 static int memblock_free_checks(void)
2106 {
2107 	prefix_reset();
2108 	prefix_push(FUNC_FREE);
2109 	test_print("Running %s tests...\n", FUNC_FREE);
2110 
2111 	memblock_free_simple_check();
2112 	memblock_free_absent_check();
2113 	memblock_free_overlap_top_check();
2114 	memblock_free_overlap_bottom_check();
2115 	memblock_free_within_check();
2116 	memblock_free_only_region_check();
2117 	memblock_free_near_max_check();
2118 	memblock_free_overlap_two_check();
2119 
2120 	prefix_pop();
2121 
2122 	return 0;
2123 }
2124 
2125 static int memblock_set_bottom_up_check(void)
2126 {
2127 	prefix_push("memblock_set_bottom_up");
2128 
2129 	memblock_set_bottom_up(false);
2130 	ASSERT_EQ(memblock.bottom_up, false);
2131 	memblock_set_bottom_up(true);
2132 	ASSERT_EQ(memblock.bottom_up, true);
2133 
2134 	reset_memblock_attributes();
2135 	test_pass_pop();
2136 
2137 	return 0;
2138 }
2139 
2140 static int memblock_bottom_up_check(void)
2141 {
2142 	prefix_push("memblock_bottom_up");
2143 
2144 	memblock_set_bottom_up(false);
2145 	ASSERT_EQ(memblock_bottom_up(), memblock.bottom_up);
2146 	ASSERT_EQ(memblock_bottom_up(), false);
2147 	memblock_set_bottom_up(true);
2148 	ASSERT_EQ(memblock_bottom_up(), memblock.bottom_up);
2149 	ASSERT_EQ(memblock_bottom_up(), true);
2150 
2151 	reset_memblock_attributes();
2152 	test_pass_pop();
2153 
2154 	return 0;
2155 }
2156 
2157 static int memblock_bottom_up_checks(void)
2158 {
2159 	test_print("Running memblock_*bottom_up tests...\n");
2160 
2161 	prefix_reset();
2162 	memblock_set_bottom_up_check();
2163 	prefix_reset();
2164 	memblock_bottom_up_check();
2165 
2166 	return 0;
2167 }
2168 
2169 /*
2170  * A test that tries to trim memory when both ends of the memory region are
2171  * aligned. Expect that the memory will not be trimmed. Expect the counter to
2172  * not be updated.
2173  */
2174 static int memblock_trim_memory_aligned_check(void)
2175 {
2176 	struct memblock_region *rgn;
2177 	const phys_addr_t alignment = SMP_CACHE_BYTES;
2178 
2179 	rgn = &memblock.memory.regions[0];
2180 
2181 	struct region r = {
2182 		.base = alignment,
2183 		.size = alignment * 4
2184 	};
2185 
2186 	PREFIX_PUSH();
2187 
2188 	reset_memblock_regions();
2189 	memblock_add(r.base, r.size);
2190 	memblock_trim_memory(alignment);
2191 
2192 	ASSERT_EQ(rgn->base, r.base);
2193 	ASSERT_EQ(rgn->size, r.size);
2194 
2195 	ASSERT_EQ(memblock.memory.cnt, 1);
2196 
2197 	test_pass_pop();
2198 
2199 	return 0;
2200 }
2201 
2202 /*
2203  * A test that tries to trim memory when there are two available regions, r1 and
2204  * r2. Region r1 is aligned on both ends and region r2 is unaligned on one end
2205  * and smaller than the alignment:
2206  *
2207  *                                     alignment
2208  *                                     |--------|
2209  * |        +-----------------+        +------+   |
2210  * |        |        r1       |        |  r2  |   |
2211  * +--------+-----------------+--------+------+---+
2212  *          ^        ^        ^        ^      ^
2213  *          |________|________|________|      |
2214  *                            |               Unaligned address
2215  *                Aligned addresses
2216  *
2217  * Expect that r1 will not be trimmed and r2 will be removed. Expect the
2218  * counter to be updated.
2219  */
2220 static int memblock_trim_memory_too_small_check(void)
2221 {
2222 	struct memblock_region *rgn;
2223 	const phys_addr_t alignment = SMP_CACHE_BYTES;
2224 
2225 	rgn = &memblock.memory.regions[0];
2226 
2227 	struct region r1 = {
2228 		.base = alignment,
2229 		.size = alignment * 2
2230 	};
2231 	struct region r2 = {
2232 		.base = alignment * 4,
2233 		.size = alignment - SZ_2
2234 	};
2235 
2236 	PREFIX_PUSH();
2237 
2238 	reset_memblock_regions();
2239 	memblock_add(r1.base, r1.size);
2240 	memblock_add(r2.base, r2.size);
2241 	memblock_trim_memory(alignment);
2242 
2243 	ASSERT_EQ(rgn->base, r1.base);
2244 	ASSERT_EQ(rgn->size, r1.size);
2245 
2246 	ASSERT_EQ(memblock.memory.cnt, 1);
2247 
2248 	test_pass_pop();
2249 
2250 	return 0;
2251 }
2252 
2253 /*
2254  * A test that tries to trim memory when there are two available regions, r1 and
2255  * r2. Region r1 is aligned on both ends and region r2 is unaligned at the base
2256  * and aligned at the end:
2257  *
2258  *                               Unaligned address
2259  *                                       |
2260  *                                       v
2261  * |        +-----------------+          +---------------+   |
2262  * |        |        r1       |          |      r2       |   |
2263  * +--------+-----------------+----------+---------------+---+
2264  *          ^        ^        ^        ^        ^        ^
2265  *          |________|________|________|________|________|
2266  *                            |
2267  *                    Aligned addresses
2268  *
2269  * Expect that r1 will not be trimmed and r2 will be trimmed at the base.
2270  * Expect the counter to not be updated.
2271  */
2272 static int memblock_trim_memory_unaligned_base_check(void)
2273 {
2274 	struct memblock_region *rgn1, *rgn2;
2275 	const phys_addr_t alignment = SMP_CACHE_BYTES;
2276 	phys_addr_t offset = SZ_2;
2277 	phys_addr_t new_r2_base, new_r2_size;
2278 
2279 	rgn1 = &memblock.memory.regions[0];
2280 	rgn2 = &memblock.memory.regions[1];
2281 
2282 	struct region r1 = {
2283 		.base = alignment,
2284 		.size = alignment * 2
2285 	};
2286 	struct region r2 = {
2287 		.base = alignment * 4 + offset,
2288 		.size = alignment * 2 - offset
2289 	};
2290 
2291 	PREFIX_PUSH();
2292 
2293 	new_r2_base = r2.base + (alignment - offset);
2294 	new_r2_size = r2.size - (alignment - offset);
2295 
2296 	reset_memblock_regions();
2297 	memblock_add(r1.base, r1.size);
2298 	memblock_add(r2.base, r2.size);
2299 	memblock_trim_memory(alignment);
2300 
2301 	ASSERT_EQ(rgn1->base, r1.base);
2302 	ASSERT_EQ(rgn1->size, r1.size);
2303 
2304 	ASSERT_EQ(rgn2->base, new_r2_base);
2305 	ASSERT_EQ(rgn2->size, new_r2_size);
2306 
2307 	ASSERT_EQ(memblock.memory.cnt, 2);
2308 
2309 	test_pass_pop();
2310 
2311 	return 0;
2312 }
2313 
2314 /*
2315  * A test that tries to trim memory when there are two available regions, r1 and
2316  * r2. Region r1 is aligned on both ends and region r2 is aligned at the base
2317  * and unaligned at the end:
2318  *
2319  *                                             Unaligned address
2320  *                                                     |
2321  *                                                     v
2322  * |        +-----------------+        +---------------+   |
2323  * |        |        r1       |        |      r2       |   |
2324  * +--------+-----------------+--------+---------------+---+
2325  *          ^        ^        ^        ^        ^        ^
2326  *          |________|________|________|________|________|
2327  *                            |
2328  *                    Aligned addresses
2329  *
2330  * Expect that r1 will not be trimmed and r2 will be trimmed at the end.
2331  * Expect the counter to not be updated.
2332  */
2333 static int memblock_trim_memory_unaligned_end_check(void)
2334 {
2335 	struct memblock_region *rgn1, *rgn2;
2336 	const phys_addr_t alignment = SMP_CACHE_BYTES;
2337 	phys_addr_t offset = SZ_2;
2338 	phys_addr_t new_r2_size;
2339 
2340 	rgn1 = &memblock.memory.regions[0];
2341 	rgn2 = &memblock.memory.regions[1];
2342 
2343 	struct region r1 = {
2344 		.base = alignment,
2345 		.size = alignment * 2
2346 	};
2347 	struct region r2 = {
2348 		.base = alignment * 4,
2349 		.size = alignment * 2 - offset
2350 	};
2351 
2352 	PREFIX_PUSH();
2353 
2354 	new_r2_size = r2.size - (alignment - offset);
2355 
2356 	reset_memblock_regions();
2357 	memblock_add(r1.base, r1.size);
2358 	memblock_add(r2.base, r2.size);
2359 	memblock_trim_memory(alignment);
2360 
2361 	ASSERT_EQ(rgn1->base, r1.base);
2362 	ASSERT_EQ(rgn1->size, r1.size);
2363 
2364 	ASSERT_EQ(rgn2->base, r2.base);
2365 	ASSERT_EQ(rgn2->size, new_r2_size);
2366 
2367 	ASSERT_EQ(memblock.memory.cnt, 2);
2368 
2369 	test_pass_pop();
2370 
2371 	return 0;
2372 }
2373 
2374 static int memblock_trim_memory_checks(void)
2375 {
2376 	prefix_reset();
2377 	prefix_push(FUNC_TRIM);
2378 	test_print("Running %s tests...\n", FUNC_TRIM);
2379 
2380 	memblock_trim_memory_aligned_check();
2381 	memblock_trim_memory_too_small_check();
2382 	memblock_trim_memory_unaligned_base_check();
2383 	memblock_trim_memory_unaligned_end_check();
2384 
2385 	prefix_pop();
2386 
2387 	return 0;
2388 }
2389 
2390 static int memblock_overlaps_region_check(void)
2391 {
2392 	struct region r = {
2393 		.base = SZ_1G,
2394 		.size = SZ_4M
2395 	};
2396 
2397 	PREFIX_PUSH();
2398 
2399 	reset_memblock_regions();
2400 	memblock_add(r.base, r.size);
2401 
2402 	/* Far Away */
2403 	ASSERT_FALSE(memblock_overlaps_region(&memblock.memory, SZ_1M, SZ_1M));
2404 	ASSERT_FALSE(memblock_overlaps_region(&memblock.memory, SZ_2G, SZ_1M));
2405 
2406 	/* Neighbor */
2407 	ASSERT_FALSE(memblock_overlaps_region(&memblock.memory, SZ_1G - SZ_1M, SZ_1M));
2408 	ASSERT_FALSE(memblock_overlaps_region(&memblock.memory, SZ_1G + SZ_4M, SZ_1M));
2409 
2410 	/* Partial Overlap */
2411 	ASSERT_TRUE(memblock_overlaps_region(&memblock.memory, SZ_1G - SZ_1M, SZ_2M));
2412 	ASSERT_TRUE(memblock_overlaps_region(&memblock.memory, SZ_1G + SZ_2M, SZ_2M));
2413 
2414 	/* Totally Overlap */
2415 	ASSERT_TRUE(memblock_overlaps_region(&memblock.memory, SZ_1G, SZ_4M));
2416 	ASSERT_TRUE(memblock_overlaps_region(&memblock.memory, SZ_1G - SZ_2M, SZ_8M));
2417 	ASSERT_TRUE(memblock_overlaps_region(&memblock.memory, SZ_1G + SZ_1M, SZ_1M));
2418 
2419 	test_pass_pop();
2420 
2421 	return 0;
2422 }
2423 
2424 static int memblock_overlaps_region_checks(void)
2425 {
2426 	prefix_reset();
2427 	prefix_push("memblock_overlaps_region");
2428 	test_print("Running memblock_overlaps_region tests...\n");
2429 
2430 	memblock_overlaps_region_check();
2431 
2432 	prefix_pop();
2433 
2434 	return 0;
2435 }
2436 
2437 int memblock_basic_checks(void)
2438 {
2439 	memblock_initialization_check();
2440 	memblock_add_checks();
2441 	memblock_reserve_checks();
2442 	memblock_remove_checks();
2443 	memblock_free_checks();
2444 	memblock_bottom_up_checks();
2445 	memblock_trim_memory_checks();
2446 	memblock_overlaps_region_checks();
2447 
2448 	return 0;
2449 }
2450