xref: /linux/tools/sched_ext/scx_central.bpf.c (revision 9208c05f9fdfd927ea160b97dfef3c379049fff2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * A central FIFO sched_ext scheduler which demonstrates the followings:
4  *
5  * a. Making all scheduling decisions from one CPU:
6  *
7  *    The central CPU is the only one making scheduling decisions. All other
8  *    CPUs kick the central CPU when they run out of tasks to run.
9  *
10  *    There is one global BPF queue and the central CPU schedules all CPUs by
11  *    dispatching from the global queue to each CPU's local dsq from dispatch().
12  *    This isn't the most straightforward. e.g. It'd be easier to bounce
13  *    through per-CPU BPF queues. The current design is chosen to maximally
14  *    utilize and verify various SCX mechanisms such as LOCAL_ON dispatching.
15  *
16  * b. Tickless operation
17  *
18  *    All tasks are dispatched with the infinite slice which allows stopping the
19  *    ticks on CONFIG_NO_HZ_FULL kernels running with the proper nohz_full
20  *    parameter. The tickless operation can be observed through
21  *    /proc/interrupts.
22  *
23  *    Periodic switching is enforced by a periodic timer checking all CPUs and
24  *    preempting them as necessary. Unfortunately, BPF timer currently doesn't
25  *    have a way to pin to a specific CPU, so the periodic timer isn't pinned to
26  *    the central CPU.
27  *
28  * c. Preemption
29  *
30  *    Kthreads are unconditionally queued to the head of a matching local dsq
31  *    and dispatched with SCX_DSQ_PREEMPT. This ensures that a kthread is always
32  *    prioritized over user threads, which is required for ensuring forward
33  *    progress as e.g. the periodic timer may run on a ksoftirqd and if the
34  *    ksoftirqd gets starved by a user thread, there may not be anything else to
35  *    vacate that user thread.
36  *
37  *    SCX_KICK_PREEMPT is used to trigger scheduling and CPUs to move to the
38  *    next tasks.
39  *
40  * This scheduler is designed to maximize usage of various SCX mechanisms. A
41  * more practical implementation would likely put the scheduling loop outside
42  * the central CPU's dispatch() path and add some form of priority mechanism.
43  *
44  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
45  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
46  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
47  */
48 #include <scx/common.bpf.h>
49 
50 char _license[] SEC("license") = "GPL";
51 
52 enum {
53 	FALLBACK_DSQ_ID		= 0,
54 	MS_TO_NS		= 1000LLU * 1000,
55 	TIMER_INTERVAL_NS	= 1 * MS_TO_NS,
56 };
57 
58 const volatile s32 central_cpu;
59 const volatile u32 nr_cpu_ids = 1;	/* !0 for veristat, set during init */
60 const volatile u64 slice_ns = SCX_SLICE_DFL;
61 
62 bool timer_pinned = true;
63 u64 nr_total, nr_locals, nr_queued, nr_lost_pids;
64 u64 nr_timers, nr_dispatches, nr_mismatches, nr_retries;
65 u64 nr_overflows;
66 
67 UEI_DEFINE(uei);
68 
69 struct {
70 	__uint(type, BPF_MAP_TYPE_QUEUE);
71 	__uint(max_entries, 4096);
72 	__type(value, s32);
73 } central_q SEC(".maps");
74 
75 /* can't use percpu map due to bad lookups */
76 bool RESIZABLE_ARRAY(data, cpu_gimme_task);
77 u64 RESIZABLE_ARRAY(data, cpu_started_at);
78 
79 struct central_timer {
80 	struct bpf_timer timer;
81 };
82 
83 struct {
84 	__uint(type, BPF_MAP_TYPE_ARRAY);
85 	__uint(max_entries, 1);
86 	__type(key, u32);
87 	__type(value, struct central_timer);
88 } central_timer SEC(".maps");
89 
90 static bool vtime_before(u64 a, u64 b)
91 {
92 	return (s64)(a - b) < 0;
93 }
94 
95 s32 BPF_STRUCT_OPS(central_select_cpu, struct task_struct *p,
96 		   s32 prev_cpu, u64 wake_flags)
97 {
98 	/*
99 	 * Steer wakeups to the central CPU as much as possible to avoid
100 	 * disturbing other CPUs. It's safe to blindly return the central cpu as
101 	 * select_cpu() is a hint and if @p can't be on it, the kernel will
102 	 * automatically pick a fallback CPU.
103 	 */
104 	return central_cpu;
105 }
106 
107 void BPF_STRUCT_OPS(central_enqueue, struct task_struct *p, u64 enq_flags)
108 {
109 	s32 pid = p->pid;
110 
111 	__sync_fetch_and_add(&nr_total, 1);
112 
113 	/*
114 	 * Push per-cpu kthreads at the head of local dsq's and preempt the
115 	 * corresponding CPU. This ensures that e.g. ksoftirqd isn't blocked
116 	 * behind other threads which is necessary for forward progress
117 	 * guarantee as we depend on the BPF timer which may run from ksoftirqd.
118 	 */
119 	if ((p->flags & PF_KTHREAD) && p->nr_cpus_allowed == 1) {
120 		__sync_fetch_and_add(&nr_locals, 1);
121 		scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL, SCX_SLICE_INF,
122 				   enq_flags | SCX_ENQ_PREEMPT);
123 		return;
124 	}
125 
126 	if (bpf_map_push_elem(&central_q, &pid, 0)) {
127 		__sync_fetch_and_add(&nr_overflows, 1);
128 		scx_bpf_dsq_insert(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, enq_flags);
129 		return;
130 	}
131 
132 	__sync_fetch_and_add(&nr_queued, 1);
133 
134 	if (!scx_bpf_task_running(p))
135 		scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
136 }
137 
138 static bool dispatch_to_cpu(s32 cpu)
139 {
140 	struct task_struct *p;
141 	s32 pid;
142 
143 	bpf_repeat(BPF_MAX_LOOPS) {
144 		if (bpf_map_pop_elem(&central_q, &pid))
145 			break;
146 
147 		__sync_fetch_and_sub(&nr_queued, 1);
148 
149 		p = bpf_task_from_pid(pid);
150 		if (!p) {
151 			__sync_fetch_and_add(&nr_lost_pids, 1);
152 			continue;
153 		}
154 
155 		/*
156 		 * If we can't run the task at the top, do the dumb thing and
157 		 * bounce it to the fallback dsq.
158 		 */
159 		if (!bpf_cpumask_test_cpu(cpu, p->cpus_ptr)) {
160 			__sync_fetch_and_add(&nr_mismatches, 1);
161 			scx_bpf_dsq_insert(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, 0);
162 			bpf_task_release(p);
163 			/*
164 			 * We might run out of dispatch buffer slots if we continue dispatching
165 			 * to the fallback DSQ, without dispatching to the local DSQ of the
166 			 * target CPU. In such a case, break the loop now as will fail the
167 			 * next dispatch operation.
168 			 */
169 			if (!scx_bpf_dispatch_nr_slots())
170 				break;
171 			continue;
172 		}
173 
174 		/* dispatch to local and mark that @cpu doesn't need more */
175 		scx_bpf_dsq_insert(p, SCX_DSQ_LOCAL_ON | cpu, SCX_SLICE_INF, 0);
176 
177 		if (cpu != central_cpu)
178 			scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE);
179 
180 		bpf_task_release(p);
181 		return true;
182 	}
183 
184 	return false;
185 }
186 
187 void BPF_STRUCT_OPS(central_dispatch, s32 cpu, struct task_struct *prev)
188 {
189 	if (cpu == central_cpu) {
190 		/* dispatch for all other CPUs first */
191 		__sync_fetch_and_add(&nr_dispatches, 1);
192 
193 		bpf_for(cpu, 0, nr_cpu_ids) {
194 			bool *gimme;
195 
196 			if (!scx_bpf_dispatch_nr_slots())
197 				break;
198 
199 			/* central's gimme is never set */
200 			gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids);
201 			if (!gimme || !*gimme)
202 				continue;
203 
204 			if (dispatch_to_cpu(cpu))
205 				*gimme = false;
206 		}
207 
208 		/*
209 		 * Retry if we ran out of dispatch buffer slots as we might have
210 		 * skipped some CPUs and also need to dispatch for self. The ext
211 		 * core automatically retries if the local dsq is empty but we
212 		 * can't rely on that as we're dispatching for other CPUs too.
213 		 * Kick self explicitly to retry.
214 		 */
215 		if (!scx_bpf_dispatch_nr_slots()) {
216 			__sync_fetch_and_add(&nr_retries, 1);
217 			scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
218 			return;
219 		}
220 
221 		/* look for a task to run on the central CPU */
222 		if (scx_bpf_dsq_move_to_local(FALLBACK_DSQ_ID))
223 			return;
224 		dispatch_to_cpu(central_cpu);
225 	} else {
226 		bool *gimme;
227 
228 		if (scx_bpf_dsq_move_to_local(FALLBACK_DSQ_ID))
229 			return;
230 
231 		gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids);
232 		if (gimme)
233 			*gimme = true;
234 
235 		/*
236 		 * Force dispatch on the scheduling CPU so that it finds a task
237 		 * to run for us.
238 		 */
239 		scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT);
240 	}
241 }
242 
243 void BPF_STRUCT_OPS(central_running, struct task_struct *p)
244 {
245 	s32 cpu = scx_bpf_task_cpu(p);
246 	u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
247 	if (started_at)
248 		*started_at = bpf_ktime_get_ns() ?: 1;	/* 0 indicates idle */
249 }
250 
251 void BPF_STRUCT_OPS(central_stopping, struct task_struct *p, bool runnable)
252 {
253 	s32 cpu = scx_bpf_task_cpu(p);
254 	u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
255 	if (started_at)
256 		*started_at = 0;
257 }
258 
259 static int central_timerfn(void *map, int *key, struct bpf_timer *timer)
260 {
261 	u64 now = bpf_ktime_get_ns();
262 	u64 nr_to_kick = nr_queued;
263 	s32 i, curr_cpu;
264 
265 	curr_cpu = bpf_get_smp_processor_id();
266 	if (timer_pinned && (curr_cpu != central_cpu)) {
267 		scx_bpf_error("Central timer ran on CPU %d, not central CPU %d",
268 			      curr_cpu, central_cpu);
269 		return 0;
270 	}
271 
272 	bpf_for(i, 0, nr_cpu_ids) {
273 		s32 cpu = (nr_timers + i) % nr_cpu_ids;
274 		u64 *started_at;
275 
276 		if (cpu == central_cpu)
277 			continue;
278 
279 		/* kick iff the current one exhausted its slice */
280 		started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids);
281 		if (started_at && *started_at &&
282 		    vtime_before(now, *started_at + slice_ns))
283 			continue;
284 
285 		/* and there's something pending */
286 		if (scx_bpf_dsq_nr_queued(FALLBACK_DSQ_ID) ||
287 		    scx_bpf_dsq_nr_queued(SCX_DSQ_LOCAL_ON | cpu))
288 			;
289 		else if (nr_to_kick)
290 			nr_to_kick--;
291 		else
292 			continue;
293 
294 		scx_bpf_kick_cpu(cpu, SCX_KICK_PREEMPT);
295 	}
296 
297 	bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN);
298 	__sync_fetch_and_add(&nr_timers, 1);
299 	return 0;
300 }
301 
302 int BPF_STRUCT_OPS_SLEEPABLE(central_init)
303 {
304 	u32 key = 0;
305 	struct bpf_timer *timer;
306 	int ret;
307 
308 	ret = scx_bpf_create_dsq(FALLBACK_DSQ_ID, -1);
309 	if (ret)
310 		return ret;
311 
312 	timer = bpf_map_lookup_elem(&central_timer, &key);
313 	if (!timer)
314 		return -ESRCH;
315 
316 	if (bpf_get_smp_processor_id() != central_cpu) {
317 		scx_bpf_error("init from non-central CPU");
318 		return -EINVAL;
319 	}
320 
321 	bpf_timer_init(timer, &central_timer, CLOCK_MONOTONIC);
322 	bpf_timer_set_callback(timer, central_timerfn);
323 
324 	ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN);
325 	/*
326 	 * BPF_F_TIMER_CPU_PIN is pretty new (>=6.7). If we're running in a
327 	 * kernel which doesn't have it, bpf_timer_start() will return -EINVAL.
328 	 * Retry without the PIN. This would be the perfect use case for
329 	 * bpf_core_enum_value_exists() but the enum type doesn't have a name
330 	 * and can't be used with bpf_core_enum_value_exists(). Oh well...
331 	 */
332 	if (ret == -EINVAL) {
333 		timer_pinned = false;
334 		ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, 0);
335 	}
336 	if (ret)
337 		scx_bpf_error("bpf_timer_start failed (%d)", ret);
338 	return ret;
339 }
340 
341 void BPF_STRUCT_OPS(central_exit, struct scx_exit_info *ei)
342 {
343 	UEI_RECORD(uei, ei);
344 }
345 
346 SCX_OPS_DEFINE(central_ops,
347 	       /*
348 		* We are offloading all scheduling decisions to the central CPU
349 		* and thus being the last task on a given CPU doesn't mean
350 		* anything special. Enqueue the last tasks like any other tasks.
351 		*/
352 	       .flags			= SCX_OPS_ENQ_LAST,
353 
354 	       .select_cpu		= (void *)central_select_cpu,
355 	       .enqueue			= (void *)central_enqueue,
356 	       .dispatch		= (void *)central_dispatch,
357 	       .running			= (void *)central_running,
358 	       .stopping		= (void *)central_stopping,
359 	       .init			= (void *)central_init,
360 	       .exit			= (void *)central_exit,
361 	       .name			= "central");
362