xref: /linux/tools/sched_ext/include/scx/common.bpf.h (revision f72aa1b276281b4e4f75261af8425bc99d903f3e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
4  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
5  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
6  */
7 #ifndef __SCX_COMMON_BPF_H
8 #define __SCX_COMMON_BPF_H
9 
10 #ifdef LSP
11 #define __bpf__
12 #include "../vmlinux/vmlinux.h"
13 #else
14 #include "vmlinux.h"
15 #endif
16 
17 #include <bpf/bpf_helpers.h>
18 #include <bpf/bpf_tracing.h>
19 #include <asm-generic/errno.h>
20 #include "user_exit_info.h"
21 
22 #define PF_WQ_WORKER			0x00000020	/* I'm a workqueue worker */
23 #define PF_KTHREAD			0x00200000	/* I am a kernel thread */
24 #define PF_EXITING			0x00000004
25 #define CLOCK_MONOTONIC			1
26 
27 /*
28  * Earlier versions of clang/pahole lost upper 32bits in 64bit enums which can
29  * lead to really confusing misbehaviors. Let's trigger a build failure.
30  */
31 static inline void ___vmlinux_h_sanity_check___(void)
32 {
33 	_Static_assert(SCX_DSQ_FLAG_BUILTIN,
34 		       "bpftool generated vmlinux.h is missing high bits for 64bit enums, upgrade clang and pahole");
35 }
36 
37 s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) __ksym;
38 s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) __ksym;
39 void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, u64 enq_flags) __ksym;
40 void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) __ksym;
41 u32 scx_bpf_dispatch_nr_slots(void) __ksym;
42 void scx_bpf_dispatch_cancel(void) __ksym;
43 bool scx_bpf_consume(u64 dsq_id) __ksym;
44 void scx_bpf_dispatch_from_dsq_set_slice(struct bpf_iter_scx_dsq *it__iter, u64 slice) __ksym __weak;
45 void scx_bpf_dispatch_from_dsq_set_vtime(struct bpf_iter_scx_dsq *it__iter, u64 vtime) __ksym __weak;
46 bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
47 bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
48 u32 scx_bpf_reenqueue_local(void) __ksym;
49 void scx_bpf_kick_cpu(s32 cpu, u64 flags) __ksym;
50 s32 scx_bpf_dsq_nr_queued(u64 dsq_id) __ksym;
51 void scx_bpf_destroy_dsq(u64 dsq_id) __ksym;
52 int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, u64 flags) __ksym __weak;
53 struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) __ksym __weak;
54 void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) __ksym __weak;
55 void scx_bpf_exit_bstr(s64 exit_code, char *fmt, unsigned long long *data, u32 data__sz) __ksym __weak;
56 void scx_bpf_error_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym;
57 void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym __weak;
58 u32 scx_bpf_cpuperf_cap(s32 cpu) __ksym __weak;
59 u32 scx_bpf_cpuperf_cur(s32 cpu) __ksym __weak;
60 void scx_bpf_cpuperf_set(s32 cpu, u32 perf) __ksym __weak;
61 u32 scx_bpf_nr_cpu_ids(void) __ksym __weak;
62 const struct cpumask *scx_bpf_get_possible_cpumask(void) __ksym __weak;
63 const struct cpumask *scx_bpf_get_online_cpumask(void) __ksym __weak;
64 void scx_bpf_put_cpumask(const struct cpumask *cpumask) __ksym __weak;
65 const struct cpumask *scx_bpf_get_idle_cpumask(void) __ksym;
66 const struct cpumask *scx_bpf_get_idle_smtmask(void) __ksym;
67 void scx_bpf_put_idle_cpumask(const struct cpumask *cpumask) __ksym;
68 bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) __ksym;
69 s32 scx_bpf_pick_idle_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
70 s32 scx_bpf_pick_any_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
71 bool scx_bpf_task_running(const struct task_struct *p) __ksym;
72 s32 scx_bpf_task_cpu(const struct task_struct *p) __ksym;
73 struct rq *scx_bpf_cpu_rq(s32 cpu) __ksym;
74 struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) __ksym __weak;
75 
76 /*
77  * Use the following as @it__iter when calling
78  * scx_bpf_dispatch[_vtime]_from_dsq() from within bpf_for_each() loops.
79  */
80 #define BPF_FOR_EACH_ITER	(&___it)
81 
82 static inline __attribute__((format(printf, 1, 2)))
83 void ___scx_bpf_bstr_format_checker(const char *fmt, ...) {}
84 
85 /*
86  * Helper macro for initializing the fmt and variadic argument inputs to both
87  * bstr exit kfuncs. Callers to this function should use ___fmt and ___param to
88  * refer to the initialized list of inputs to the bstr kfunc.
89  */
90 #define scx_bpf_bstr_preamble(fmt, args...)					\
91 	static char ___fmt[] = fmt;						\
92 	/*									\
93 	 * Note that __param[] must have at least one				\
94 	 * element to keep the verifier happy.					\
95 	 */									\
96 	unsigned long long ___param[___bpf_narg(args) ?: 1] = {};		\
97 										\
98 	_Pragma("GCC diagnostic push")						\
99 	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")			\
100 	___bpf_fill(___param, args);						\
101 	_Pragma("GCC diagnostic pop")						\
102 
103 /*
104  * scx_bpf_exit() wraps the scx_bpf_exit_bstr() kfunc with variadic arguments
105  * instead of an array of u64. Using this macro will cause the scheduler to
106  * exit cleanly with the specified exit code being passed to user space.
107  */
108 #define scx_bpf_exit(code, fmt, args...)					\
109 ({										\
110 	scx_bpf_bstr_preamble(fmt, args)					\
111 	scx_bpf_exit_bstr(code, ___fmt, ___param, sizeof(___param));		\
112 	___scx_bpf_bstr_format_checker(fmt, ##args);				\
113 })
114 
115 /*
116  * scx_bpf_error() wraps the scx_bpf_error_bstr() kfunc with variadic arguments
117  * instead of an array of u64. Invoking this macro will cause the scheduler to
118  * exit in an erroneous state, with diagnostic information being passed to the
119  * user.
120  */
121 #define scx_bpf_error(fmt, args...)						\
122 ({										\
123 	scx_bpf_bstr_preamble(fmt, args)					\
124 	scx_bpf_error_bstr(___fmt, ___param, sizeof(___param));			\
125 	___scx_bpf_bstr_format_checker(fmt, ##args);				\
126 })
127 
128 /*
129  * scx_bpf_dump() wraps the scx_bpf_dump_bstr() kfunc with variadic arguments
130  * instead of an array of u64. To be used from ops.dump() and friends.
131  */
132 #define scx_bpf_dump(fmt, args...)						\
133 ({										\
134 	scx_bpf_bstr_preamble(fmt, args)					\
135 	scx_bpf_dump_bstr(___fmt, ___param, sizeof(___param));			\
136 	___scx_bpf_bstr_format_checker(fmt, ##args);				\
137 })
138 
139 #define BPF_STRUCT_OPS(name, args...)						\
140 SEC("struct_ops/"#name)								\
141 BPF_PROG(name, ##args)
142 
143 #define BPF_STRUCT_OPS_SLEEPABLE(name, args...)					\
144 SEC("struct_ops.s/"#name)							\
145 BPF_PROG(name, ##args)
146 
147 /**
148  * RESIZABLE_ARRAY - Generates annotations for an array that may be resized
149  * @elfsec: the data section of the BPF program in which to place the array
150  * @arr: the name of the array
151  *
152  * libbpf has an API for setting map value sizes. Since data sections (i.e.
153  * bss, data, rodata) themselves are maps, a data section can be resized. If
154  * a data section has an array as its last element, the BTF info for that
155  * array will be adjusted so that length of the array is extended to meet the
156  * new length of the data section. This macro annotates an array to have an
157  * element count of one with the assumption that this array can be resized
158  * within the userspace program. It also annotates the section specifier so
159  * this array exists in a custom sub data section which can be resized
160  * independently.
161  *
162  * See RESIZE_ARRAY() for the userspace convenience macro for resizing an
163  * array declared with RESIZABLE_ARRAY().
164  */
165 #define RESIZABLE_ARRAY(elfsec, arr) arr[1] SEC("."#elfsec"."#arr)
166 
167 /**
168  * MEMBER_VPTR - Obtain the verified pointer to a struct or array member
169  * @base: struct or array to index
170  * @member: dereferenced member (e.g. .field, [idx0][idx1], .field[idx0] ...)
171  *
172  * The verifier often gets confused by the instruction sequence the compiler
173  * generates for indexing struct fields or arrays. This macro forces the
174  * compiler to generate a code sequence which first calculates the byte offset,
175  * checks it against the struct or array size and add that byte offset to
176  * generate the pointer to the member to help the verifier.
177  *
178  * Ideally, we want to abort if the calculated offset is out-of-bounds. However,
179  * BPF currently doesn't support abort, so evaluate to %NULL instead. The caller
180  * must check for %NULL and take appropriate action to appease the verifier. To
181  * avoid confusing the verifier, it's best to check for %NULL and dereference
182  * immediately.
183  *
184  *	vptr = MEMBER_VPTR(my_array, [i][j]);
185  *	if (!vptr)
186  *		return error;
187  *	*vptr = new_value;
188  *
189  * sizeof(@base) should encompass the memory area to be accessed and thus can't
190  * be a pointer to the area. Use `MEMBER_VPTR(*ptr, .member)` instead of
191  * `MEMBER_VPTR(ptr, ->member)`.
192  */
193 #define MEMBER_VPTR(base, member) (typeof((base) member) *)			\
194 ({										\
195 	u64 __base = (u64)&(base);						\
196 	u64 __addr = (u64)&((base) member) - __base;				\
197 	_Static_assert(sizeof(base) >= sizeof((base) member),			\
198 		       "@base is smaller than @member, is @base a pointer?");	\
199 	asm volatile (								\
200 		"if %0 <= %[max] goto +2\n"					\
201 		"%0 = 0\n"							\
202 		"goto +1\n"							\
203 		"%0 += %1\n"							\
204 		: "+r"(__addr)							\
205 		: "r"(__base),							\
206 		  [max]"i"(sizeof(base) - sizeof((base) member)));		\
207 	__addr;									\
208 })
209 
210 /**
211  * ARRAY_ELEM_PTR - Obtain the verified pointer to an array element
212  * @arr: array to index into
213  * @i: array index
214  * @n: number of elements in array
215  *
216  * Similar to MEMBER_VPTR() but is intended for use with arrays where the
217  * element count needs to be explicit.
218  * It can be used in cases where a global array is defined with an initial
219  * size but is intended to be be resized before loading the BPF program.
220  * Without this version of the macro, MEMBER_VPTR() will use the compile time
221  * size of the array to compute the max, which will result in rejection by
222  * the verifier.
223  */
224 #define ARRAY_ELEM_PTR(arr, i, n) (typeof(arr[i]) *)				\
225 ({										\
226 	u64 __base = (u64)arr;							\
227 	u64 __addr = (u64)&(arr[i]) - __base;					\
228 	asm volatile (								\
229 		"if %0 <= %[max] goto +2\n"					\
230 		"%0 = 0\n"							\
231 		"goto +1\n"							\
232 		"%0 += %1\n"							\
233 		: "+r"(__addr)							\
234 		: "r"(__base),							\
235 		  [max]"r"(sizeof(arr[0]) * ((n) - 1)));			\
236 	__addr;									\
237 })
238 
239 
240 /*
241  * BPF declarations and helpers
242  */
243 
244 /* list and rbtree */
245 #define __contains(name, node) __attribute__((btf_decl_tag("contains:" #name ":" #node)))
246 #define private(name) SEC(".data." #name) __hidden __attribute__((aligned(8)))
247 
248 void *bpf_obj_new_impl(__u64 local_type_id, void *meta) __ksym;
249 void bpf_obj_drop_impl(void *kptr, void *meta) __ksym;
250 
251 #define bpf_obj_new(type) ((type *)bpf_obj_new_impl(bpf_core_type_id_local(type), NULL))
252 #define bpf_obj_drop(kptr) bpf_obj_drop_impl(kptr, NULL)
253 
254 void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node) __ksym;
255 void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node) __ksym;
256 struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) __ksym;
257 struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) __ksym;
258 struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
259 				      struct bpf_rb_node *node) __ksym;
260 int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
261 			bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
262 			void *meta, __u64 off) __ksym;
263 #define bpf_rbtree_add(head, node, less) bpf_rbtree_add_impl(head, node, less, NULL, 0)
264 
265 struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) __ksym;
266 
267 void *bpf_refcount_acquire_impl(void *kptr, void *meta) __ksym;
268 #define bpf_refcount_acquire(kptr) bpf_refcount_acquire_impl(kptr, NULL)
269 
270 /* task */
271 struct task_struct *bpf_task_from_pid(s32 pid) __ksym;
272 struct task_struct *bpf_task_acquire(struct task_struct *p) __ksym;
273 void bpf_task_release(struct task_struct *p) __ksym;
274 
275 /* cgroup */
276 struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) __ksym;
277 void bpf_cgroup_release(struct cgroup *cgrp) __ksym;
278 struct cgroup *bpf_cgroup_from_id(u64 cgid) __ksym;
279 
280 /* css iteration */
281 struct bpf_iter_css;
282 struct cgroup_subsys_state;
283 extern int bpf_iter_css_new(struct bpf_iter_css *it,
284 			    struct cgroup_subsys_state *start,
285 			    unsigned int flags) __weak __ksym;
286 extern struct cgroup_subsys_state *
287 bpf_iter_css_next(struct bpf_iter_css *it) __weak __ksym;
288 extern void bpf_iter_css_destroy(struct bpf_iter_css *it) __weak __ksym;
289 
290 /* cpumask */
291 struct bpf_cpumask *bpf_cpumask_create(void) __ksym;
292 struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) __ksym;
293 void bpf_cpumask_release(struct bpf_cpumask *cpumask) __ksym;
294 u32 bpf_cpumask_first(const struct cpumask *cpumask) __ksym;
295 u32 bpf_cpumask_first_zero(const struct cpumask *cpumask) __ksym;
296 void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
297 void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
298 bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask) __ksym;
299 bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
300 bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
301 void bpf_cpumask_setall(struct bpf_cpumask *cpumask) __ksym;
302 void bpf_cpumask_clear(struct bpf_cpumask *cpumask) __ksym;
303 bool bpf_cpumask_and(struct bpf_cpumask *dst, const struct cpumask *src1,
304 		     const struct cpumask *src2) __ksym;
305 void bpf_cpumask_or(struct bpf_cpumask *dst, const struct cpumask *src1,
306 		    const struct cpumask *src2) __ksym;
307 void bpf_cpumask_xor(struct bpf_cpumask *dst, const struct cpumask *src1,
308 		     const struct cpumask *src2) __ksym;
309 bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2) __ksym;
310 bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2) __ksym;
311 bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2) __ksym;
312 bool bpf_cpumask_empty(const struct cpumask *cpumask) __ksym;
313 bool bpf_cpumask_full(const struct cpumask *cpumask) __ksym;
314 void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src) __ksym;
315 u32 bpf_cpumask_any_distribute(const struct cpumask *cpumask) __ksym;
316 u32 bpf_cpumask_any_and_distribute(const struct cpumask *src1,
317 				   const struct cpumask *src2) __ksym;
318 u32 bpf_cpumask_weight(const struct cpumask *cpumask) __ksym;
319 
320 /*
321  * Access a cpumask in read-only mode (typically to check bits).
322  */
323 static __always_inline const struct cpumask *cast_mask(struct bpf_cpumask *mask)
324 {
325 	return (const struct cpumask *)mask;
326 }
327 
328 /* rcu */
329 void bpf_rcu_read_lock(void) __ksym;
330 void bpf_rcu_read_unlock(void) __ksym;
331 
332 
333 /*
334  * Other helpers
335  */
336 
337 /* useful compiler attributes */
338 #define likely(x) __builtin_expect(!!(x), 1)
339 #define unlikely(x) __builtin_expect(!!(x), 0)
340 #define __maybe_unused __attribute__((__unused__))
341 
342 /*
343  * READ/WRITE_ONCE() are from kernel (include/asm-generic/rwonce.h). They
344  * prevent compiler from caching, redoing or reordering reads or writes.
345  */
346 typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
347 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
348 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
349 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
350 
351 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
352 {
353 	switch (size) {
354 	case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
355 	case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
356 	case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
357 	case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
358 	default:
359 		barrier();
360 		__builtin_memcpy((void *)res, (const void *)p, size);
361 		barrier();
362 	}
363 }
364 
365 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
366 {
367 	switch (size) {
368 	case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
369 	case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
370 	case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
371 	case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
372 	default:
373 		barrier();
374 		__builtin_memcpy((void *)p, (const void *)res, size);
375 		barrier();
376 	}
377 }
378 
379 #define READ_ONCE(x)					\
380 ({							\
381 	union { typeof(x) __val; char __c[1]; } __u =	\
382 		{ .__c = { 0 } };			\
383 	__read_once_size(&(x), __u.__c, sizeof(x));	\
384 	__u.__val;					\
385 })
386 
387 #define WRITE_ONCE(x, val)				\
388 ({							\
389 	union { typeof(x) __val; char __c[1]; } __u =	\
390 		{ .__val = (val) }; 			\
391 	__write_once_size(&(x), __u.__c, sizeof(x));	\
392 	__u.__val;					\
393 })
394 
395 /*
396  * log2_u32 - Compute the base 2 logarithm of a 32-bit exponential value.
397  * @v: The value for which we're computing the base 2 logarithm.
398  */
399 static inline u32 log2_u32(u32 v)
400 {
401         u32 r;
402         u32 shift;
403 
404         r = (v > 0xFFFF) << 4; v >>= r;
405         shift = (v > 0xFF) << 3; v >>= shift; r |= shift;
406         shift = (v > 0xF) << 2; v >>= shift; r |= shift;
407         shift = (v > 0x3) << 1; v >>= shift; r |= shift;
408         r |= (v >> 1);
409         return r;
410 }
411 
412 /*
413  * log2_u64 - Compute the base 2 logarithm of a 64-bit exponential value.
414  * @v: The value for which we're computing the base 2 logarithm.
415  */
416 static inline u32 log2_u64(u64 v)
417 {
418         u32 hi = v >> 32;
419         if (hi)
420                 return log2_u32(hi) + 32 + 1;
421         else
422                 return log2_u32(v) + 1;
423 }
424 
425 #include "compat.bpf.h"
426 
427 #endif	/* __SCX_COMMON_BPF_H */
428