xref: /linux/tools/sched_ext/include/scx/common.bpf.h (revision de68c05189cc4508c3ac4e1e44da1ddb16b1bceb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
4  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
5  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
6  */
7 #ifndef __SCX_COMMON_BPF_H
8 #define __SCX_COMMON_BPF_H
9 
10 /*
11  * The generated kfunc prototypes in vmlinux.h are missing address space
12  * attributes which cause build failures. For now, suppress the generated
13  * prototypes. See https://github.com/sched-ext/scx/issues/1111.
14  */
15 #define BPF_NO_KFUNC_PROTOTYPES
16 
17 #ifdef LSP
18 #define __bpf__
19 #include "../vmlinux.h"
20 #else
21 #include "vmlinux.h"
22 #endif
23 
24 #include <bpf/bpf_helpers.h>
25 #include <bpf/bpf_tracing.h>
26 #include <asm-generic/errno.h>
27 #include "user_exit_info.bpf.h"
28 #include "enum_defs.autogen.h"
29 
30 #define PF_IDLE				0x00000002	/* I am an IDLE thread */
31 #define PF_IO_WORKER			0x00000010	/* Task is an IO worker */
32 #define PF_WQ_WORKER			0x00000020	/* I'm a workqueue worker */
33 #define PF_KCOMPACTD			0x00010000      /* I am kcompactd */
34 #define PF_KSWAPD			0x00020000      /* I am kswapd */
35 #define PF_KTHREAD			0x00200000	/* I am a kernel thread */
36 #define PF_EXITING			0x00000004
37 #define CLOCK_MONOTONIC			1
38 
39 #ifndef NR_CPUS
40 #define NR_CPUS 1024
41 #endif
42 
43 #ifndef NUMA_NO_NODE
44 #define	NUMA_NO_NODE	(-1)
45 #endif
46 
47 extern int LINUX_KERNEL_VERSION __kconfig;
48 extern const char CONFIG_CC_VERSION_TEXT[64] __kconfig __weak;
49 extern const char CONFIG_LOCALVERSION[64] __kconfig __weak;
50 
51 /*
52  * Earlier versions of clang/pahole lost upper 32bits in 64bit enums which can
53  * lead to really confusing misbehaviors. Let's trigger a build failure.
54  */
55 static inline void ___vmlinux_h_sanity_check___(void)
56 {
57 	_Static_assert(SCX_DSQ_FLAG_BUILTIN,
58 		       "bpftool generated vmlinux.h is missing high bits for 64bit enums, upgrade clang and pahole");
59 }
60 
61 s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) __ksym;
62 s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) __ksym;
63 s32 scx_bpf_select_cpu_and(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
64 			   const struct cpumask *cpus_allowed, u64 flags) __ksym __weak;
65 void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, u64 enq_flags) __ksym __weak;
66 void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) __ksym __weak;
67 u32 scx_bpf_dispatch_nr_slots(void) __ksym;
68 void scx_bpf_dispatch_cancel(void) __ksym;
69 bool scx_bpf_dsq_move_to_local(u64 dsq_id) __ksym __weak;
70 void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, u64 slice) __ksym __weak;
71 void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, u64 vtime) __ksym __weak;
72 bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
73 bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
74 u32 scx_bpf_reenqueue_local(void) __ksym;
75 void scx_bpf_kick_cpu(s32 cpu, u64 flags) __ksym;
76 s32 scx_bpf_dsq_nr_queued(u64 dsq_id) __ksym;
77 void scx_bpf_destroy_dsq(u64 dsq_id) __ksym;
78 int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, u64 flags) __ksym __weak;
79 struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) __ksym __weak;
80 void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) __ksym __weak;
81 void scx_bpf_exit_bstr(s64 exit_code, char *fmt, unsigned long long *data, u32 data__sz) __ksym __weak;
82 void scx_bpf_error_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym;
83 void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym __weak;
84 u32 scx_bpf_cpuperf_cap(s32 cpu) __ksym __weak;
85 u32 scx_bpf_cpuperf_cur(s32 cpu) __ksym __weak;
86 void scx_bpf_cpuperf_set(s32 cpu, u32 perf) __ksym __weak;
87 u32 scx_bpf_nr_node_ids(void) __ksym __weak;
88 u32 scx_bpf_nr_cpu_ids(void) __ksym __weak;
89 int scx_bpf_cpu_node(s32 cpu) __ksym __weak;
90 const struct cpumask *scx_bpf_get_possible_cpumask(void) __ksym __weak;
91 const struct cpumask *scx_bpf_get_online_cpumask(void) __ksym __weak;
92 void scx_bpf_put_cpumask(const struct cpumask *cpumask) __ksym __weak;
93 const struct cpumask *scx_bpf_get_idle_cpumask_node(int node) __ksym __weak;
94 const struct cpumask *scx_bpf_get_idle_cpumask(void) __ksym;
95 const struct cpumask *scx_bpf_get_idle_smtmask_node(int node) __ksym __weak;
96 const struct cpumask *scx_bpf_get_idle_smtmask(void) __ksym;
97 void scx_bpf_put_idle_cpumask(const struct cpumask *cpumask) __ksym;
98 bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) __ksym;
99 s32 scx_bpf_pick_idle_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;
100 s32 scx_bpf_pick_idle_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
101 s32 scx_bpf_pick_any_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;
102 s32 scx_bpf_pick_any_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
103 bool scx_bpf_task_running(const struct task_struct *p) __ksym;
104 s32 scx_bpf_task_cpu(const struct task_struct *p) __ksym;
105 struct rq *scx_bpf_cpu_rq(s32 cpu) __ksym;
106 struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) __ksym __weak;
107 u64 scx_bpf_now(void) __ksym __weak;
108 void scx_bpf_events(struct scx_event_stats *events, size_t events__sz) __ksym __weak;
109 
110 /*
111  * Use the following as @it__iter when calling scx_bpf_dsq_move[_vtime]() from
112  * within bpf_for_each() loops.
113  */
114 #define BPF_FOR_EACH_ITER	(&___it)
115 
116 #define scx_read_event(e, name)							\
117 	(bpf_core_field_exists((e)->name) ? (e)->name : 0)
118 
119 static inline __attribute__((format(printf, 1, 2)))
120 void ___scx_bpf_bstr_format_checker(const char *fmt, ...) {}
121 
122 #define SCX_STRINGIFY(x) #x
123 #define SCX_TOSTRING(x) SCX_STRINGIFY(x)
124 
125 /*
126  * Helper macro for initializing the fmt and variadic argument inputs to both
127  * bstr exit kfuncs. Callers to this function should use ___fmt and ___param to
128  * refer to the initialized list of inputs to the bstr kfunc.
129  */
130 #define scx_bpf_bstr_preamble(fmt, args...)					\
131 	static char ___fmt[] = fmt;						\
132 	/*									\
133 	 * Note that __param[] must have at least one				\
134 	 * element to keep the verifier happy.					\
135 	 */									\
136 	unsigned long long ___param[___bpf_narg(args) ?: 1] = {};		\
137 										\
138 	_Pragma("GCC diagnostic push")						\
139 	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")			\
140 	___bpf_fill(___param, args);						\
141 	_Pragma("GCC diagnostic pop")
142 
143 /*
144  * scx_bpf_exit() wraps the scx_bpf_exit_bstr() kfunc with variadic arguments
145  * instead of an array of u64. Using this macro will cause the scheduler to
146  * exit cleanly with the specified exit code being passed to user space.
147  */
148 #define scx_bpf_exit(code, fmt, args...)					\
149 ({										\
150 	scx_bpf_bstr_preamble(fmt, args)					\
151 	scx_bpf_exit_bstr(code, ___fmt, ___param, sizeof(___param));		\
152 	___scx_bpf_bstr_format_checker(fmt, ##args);				\
153 })
154 
155 /*
156  * scx_bpf_error() wraps the scx_bpf_error_bstr() kfunc with variadic arguments
157  * instead of an array of u64. Invoking this macro will cause the scheduler to
158  * exit in an erroneous state, with diagnostic information being passed to the
159  * user. It appends the file and line number to aid debugging.
160  */
161 #define scx_bpf_error(fmt, args...)						\
162 ({										\
163 	scx_bpf_bstr_preamble(							\
164 		__FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args)		\
165 	scx_bpf_error_bstr(___fmt, ___param, sizeof(___param));			\
166 	___scx_bpf_bstr_format_checker(						\
167 		__FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args);		\
168 })
169 
170 /*
171  * scx_bpf_dump() wraps the scx_bpf_dump_bstr() kfunc with variadic arguments
172  * instead of an array of u64. To be used from ops.dump() and friends.
173  */
174 #define scx_bpf_dump(fmt, args...)						\
175 ({										\
176 	scx_bpf_bstr_preamble(fmt, args)					\
177 	scx_bpf_dump_bstr(___fmt, ___param, sizeof(___param));			\
178 	___scx_bpf_bstr_format_checker(fmt, ##args);				\
179 })
180 
181 /*
182  * scx_bpf_dump_header() is a wrapper around scx_bpf_dump that adds a header
183  * of system information for debugging.
184  */
185 #define scx_bpf_dump_header()							\
186 ({										\
187 	scx_bpf_dump("kernel: %d.%d.%d %s\ncc: %s\n",				\
188 		     LINUX_KERNEL_VERSION >> 16,				\
189 		     LINUX_KERNEL_VERSION >> 8 & 0xFF,				\
190 		     LINUX_KERNEL_VERSION & 0xFF,				\
191 		     CONFIG_LOCALVERSION,					\
192 		     CONFIG_CC_VERSION_TEXT);					\
193 })
194 
195 #define BPF_STRUCT_OPS(name, args...)						\
196 SEC("struct_ops/"#name)								\
197 BPF_PROG(name, ##args)
198 
199 #define BPF_STRUCT_OPS_SLEEPABLE(name, args...)					\
200 SEC("struct_ops.s/"#name)							\
201 BPF_PROG(name, ##args)
202 
203 /**
204  * RESIZABLE_ARRAY - Generates annotations for an array that may be resized
205  * @elfsec: the data section of the BPF program in which to place the array
206  * @arr: the name of the array
207  *
208  * libbpf has an API for setting map value sizes. Since data sections (i.e.
209  * bss, data, rodata) themselves are maps, a data section can be resized. If
210  * a data section has an array as its last element, the BTF info for that
211  * array will be adjusted so that length of the array is extended to meet the
212  * new length of the data section. This macro annotates an array to have an
213  * element count of one with the assumption that this array can be resized
214  * within the userspace program. It also annotates the section specifier so
215  * this array exists in a custom sub data section which can be resized
216  * independently.
217  *
218  * See RESIZE_ARRAY() for the userspace convenience macro for resizing an
219  * array declared with RESIZABLE_ARRAY().
220  */
221 #define RESIZABLE_ARRAY(elfsec, arr) arr[1] SEC("."#elfsec"."#arr)
222 
223 /**
224  * MEMBER_VPTR - Obtain the verified pointer to a struct or array member
225  * @base: struct or array to index
226  * @member: dereferenced member (e.g. .field, [idx0][idx1], .field[idx0] ...)
227  *
228  * The verifier often gets confused by the instruction sequence the compiler
229  * generates for indexing struct fields or arrays. This macro forces the
230  * compiler to generate a code sequence which first calculates the byte offset,
231  * checks it against the struct or array size and add that byte offset to
232  * generate the pointer to the member to help the verifier.
233  *
234  * Ideally, we want to abort if the calculated offset is out-of-bounds. However,
235  * BPF currently doesn't support abort, so evaluate to %NULL instead. The caller
236  * must check for %NULL and take appropriate action to appease the verifier. To
237  * avoid confusing the verifier, it's best to check for %NULL and dereference
238  * immediately.
239  *
240  *	vptr = MEMBER_VPTR(my_array, [i][j]);
241  *	if (!vptr)
242  *		return error;
243  *	*vptr = new_value;
244  *
245  * sizeof(@base) should encompass the memory area to be accessed and thus can't
246  * be a pointer to the area. Use `MEMBER_VPTR(*ptr, .member)` instead of
247  * `MEMBER_VPTR(ptr, ->member)`.
248  */
249 #ifndef MEMBER_VPTR
250 #define MEMBER_VPTR(base, member) (typeof((base) member) *)			\
251 ({										\
252 	u64 __base = (u64)&(base);						\
253 	u64 __addr = (u64)&((base) member) - __base;				\
254 	_Static_assert(sizeof(base) >= sizeof((base) member),			\
255 		       "@base is smaller than @member, is @base a pointer?");	\
256 	asm volatile (								\
257 		"if %0 <= %[max] goto +2\n"					\
258 		"%0 = 0\n"							\
259 		"goto +1\n"							\
260 		"%0 += %1\n"							\
261 		: "+r"(__addr)							\
262 		: "r"(__base),							\
263 		  [max]"i"(sizeof(base) - sizeof((base) member)));		\
264 	__addr;									\
265 })
266 #endif /* MEMBER_VPTR */
267 
268 /**
269  * ARRAY_ELEM_PTR - Obtain the verified pointer to an array element
270  * @arr: array to index into
271  * @i: array index
272  * @n: number of elements in array
273  *
274  * Similar to MEMBER_VPTR() but is intended for use with arrays where the
275  * element count needs to be explicit.
276  * It can be used in cases where a global array is defined with an initial
277  * size but is intended to be be resized before loading the BPF program.
278  * Without this version of the macro, MEMBER_VPTR() will use the compile time
279  * size of the array to compute the max, which will result in rejection by
280  * the verifier.
281  */
282 #ifndef ARRAY_ELEM_PTR
283 #define ARRAY_ELEM_PTR(arr, i, n) (typeof(arr[i]) *)				\
284 ({										\
285 	u64 __base = (u64)arr;							\
286 	u64 __addr = (u64)&(arr[i]) - __base;					\
287 	asm volatile (								\
288 		"if %0 <= %[max] goto +2\n"					\
289 		"%0 = 0\n"							\
290 		"goto +1\n"							\
291 		"%0 += %1\n"							\
292 		: "+r"(__addr)							\
293 		: "r"(__base),							\
294 		  [max]"r"(sizeof(arr[0]) * ((n) - 1)));			\
295 	__addr;									\
296 })
297 #endif /* ARRAY_ELEM_PTR */
298 
299 /*
300  * BPF declarations and helpers
301  */
302 
303 /* list and rbtree */
304 #define __contains(name, node) __attribute__((btf_decl_tag("contains:" #name ":" #node)))
305 #define private(name) SEC(".data." #name) __hidden __attribute__((aligned(8)))
306 
307 void *bpf_obj_new_impl(__u64 local_type_id, void *meta) __ksym;
308 void bpf_obj_drop_impl(void *kptr, void *meta) __ksym;
309 
310 #define bpf_obj_new(type) ((type *)bpf_obj_new_impl(bpf_core_type_id_local(type), NULL))
311 #define bpf_obj_drop(kptr) bpf_obj_drop_impl(kptr, NULL)
312 
313 int bpf_list_push_front_impl(struct bpf_list_head *head,
314 				    struct bpf_list_node *node,
315 				    void *meta, __u64 off) __ksym;
316 #define bpf_list_push_front(head, node) bpf_list_push_front_impl(head, node, NULL, 0)
317 
318 int bpf_list_push_back_impl(struct bpf_list_head *head,
319 				   struct bpf_list_node *node,
320 				   void *meta, __u64 off) __ksym;
321 #define bpf_list_push_back(head, node) bpf_list_push_back_impl(head, node, NULL, 0)
322 
323 struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) __ksym;
324 struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) __ksym;
325 struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
326 				      struct bpf_rb_node *node) __ksym;
327 int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
328 			bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
329 			void *meta, __u64 off) __ksym;
330 #define bpf_rbtree_add(head, node, less) bpf_rbtree_add_impl(head, node, less, NULL, 0)
331 
332 struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) __ksym;
333 
334 void *bpf_refcount_acquire_impl(void *kptr, void *meta) __ksym;
335 #define bpf_refcount_acquire(kptr) bpf_refcount_acquire_impl(kptr, NULL)
336 
337 /* task */
338 struct task_struct *bpf_task_from_pid(s32 pid) __ksym;
339 struct task_struct *bpf_task_acquire(struct task_struct *p) __ksym;
340 void bpf_task_release(struct task_struct *p) __ksym;
341 
342 /* cgroup */
343 struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) __ksym;
344 void bpf_cgroup_release(struct cgroup *cgrp) __ksym;
345 struct cgroup *bpf_cgroup_from_id(u64 cgid) __ksym;
346 
347 /* css iteration */
348 struct bpf_iter_css;
349 struct cgroup_subsys_state;
350 extern int bpf_iter_css_new(struct bpf_iter_css *it,
351 			    struct cgroup_subsys_state *start,
352 			    unsigned int flags) __weak __ksym;
353 extern struct cgroup_subsys_state *
354 bpf_iter_css_next(struct bpf_iter_css *it) __weak __ksym;
355 extern void bpf_iter_css_destroy(struct bpf_iter_css *it) __weak __ksym;
356 
357 /* cpumask */
358 struct bpf_cpumask *bpf_cpumask_create(void) __ksym;
359 struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) __ksym;
360 void bpf_cpumask_release(struct bpf_cpumask *cpumask) __ksym;
361 u32 bpf_cpumask_first(const struct cpumask *cpumask) __ksym;
362 u32 bpf_cpumask_first_zero(const struct cpumask *cpumask) __ksym;
363 void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
364 void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
365 bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask) __ksym;
366 bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
367 bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
368 void bpf_cpumask_setall(struct bpf_cpumask *cpumask) __ksym;
369 void bpf_cpumask_clear(struct bpf_cpumask *cpumask) __ksym;
370 bool bpf_cpumask_and(struct bpf_cpumask *dst, const struct cpumask *src1,
371 		     const struct cpumask *src2) __ksym;
372 void bpf_cpumask_or(struct bpf_cpumask *dst, const struct cpumask *src1,
373 		    const struct cpumask *src2) __ksym;
374 void bpf_cpumask_xor(struct bpf_cpumask *dst, const struct cpumask *src1,
375 		     const struct cpumask *src2) __ksym;
376 bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2) __ksym;
377 bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2) __ksym;
378 bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2) __ksym;
379 bool bpf_cpumask_empty(const struct cpumask *cpumask) __ksym;
380 bool bpf_cpumask_full(const struct cpumask *cpumask) __ksym;
381 void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src) __ksym;
382 u32 bpf_cpumask_any_distribute(const struct cpumask *cpumask) __ksym;
383 u32 bpf_cpumask_any_and_distribute(const struct cpumask *src1,
384 				   const struct cpumask *src2) __ksym;
385 u32 bpf_cpumask_weight(const struct cpumask *cpumask) __ksym;
386 
387 int bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) __ksym;
388 int *bpf_iter_bits_next(struct bpf_iter_bits *it) __ksym;
389 void bpf_iter_bits_destroy(struct bpf_iter_bits *it) __ksym;
390 
391 #define def_iter_struct(name)							\
392 struct bpf_iter_##name {							\
393     struct bpf_iter_bits it;							\
394     const struct cpumask *bitmap;						\
395 };
396 
397 #define def_iter_new(name)							\
398 static inline int bpf_iter_##name##_new(					\
399 	struct bpf_iter_##name *it, const u64 *unsafe_ptr__ign, u32 nr_words)	\
400 {										\
401 	it->bitmap = scx_bpf_get_##name##_cpumask();				\
402 	return bpf_iter_bits_new(&it->it, (const u64 *)it->bitmap,		\
403 				 sizeof(struct cpumask) / 8);			\
404 }
405 
406 #define def_iter_next(name)							\
407 static inline int *bpf_iter_##name##_next(struct bpf_iter_##name *it) {		\
408 	return bpf_iter_bits_next(&it->it);					\
409 }
410 
411 #define def_iter_destroy(name)							\
412 static inline void bpf_iter_##name##_destroy(struct bpf_iter_##name *it) {	\
413 	scx_bpf_put_cpumask(it->bitmap);					\
414 	bpf_iter_bits_destroy(&it->it);						\
415 }
416 #define def_for_each_cpu(cpu, name) for_each_##name##_cpu(cpu)
417 
418 /// Provides iterator for possible and online cpus.
419 ///
420 /// # Example
421 ///
422 /// ```
423 /// static inline void example_use() {
424 ///     int *cpu;
425 ///
426 ///     for_each_possible_cpu(cpu){
427 ///         bpf_printk("CPU %d is possible", *cpu);
428 ///     }
429 ///
430 ///     for_each_online_cpu(cpu){
431 ///         bpf_printk("CPU %d is online", *cpu);
432 ///     }
433 /// }
434 /// ```
435 def_iter_struct(possible);
436 def_iter_new(possible);
437 def_iter_next(possible);
438 def_iter_destroy(possible);
439 #define for_each_possible_cpu(cpu) bpf_for_each(possible, cpu, NULL, 0)
440 
441 def_iter_struct(online);
442 def_iter_new(online);
443 def_iter_next(online);
444 def_iter_destroy(online);
445 #define for_each_online_cpu(cpu) bpf_for_each(online, cpu, NULL, 0)
446 
447 /*
448  * Access a cpumask in read-only mode (typically to check bits).
449  */
450 static __always_inline const struct cpumask *cast_mask(struct bpf_cpumask *mask)
451 {
452 	return (const struct cpumask *)mask;
453 }
454 
455 /*
456  * Return true if task @p cannot migrate to a different CPU, false
457  * otherwise.
458  */
459 static inline bool is_migration_disabled(const struct task_struct *p)
460 {
461 	/*
462 	 * Testing p->migration_disabled in a BPF code is tricky because the
463 	 * migration is _always_ disabled while running the BPF code.
464 	 * The prolog (__bpf_prog_enter) and epilog (__bpf_prog_exit) for BPF
465 	 * code execution disable and re-enable the migration of the current
466 	 * task, respectively. So, the _current_ task of the sched_ext ops is
467 	 * always migration-disabled. Moreover, p->migration_disabled could be
468 	 * two or greater when a sched_ext ops BPF code (e.g., ops.tick) is
469 	 * executed in the middle of the other BPF code execution.
470 	 *
471 	 * Therefore, we should decide that the _current_ task is
472 	 * migration-disabled only when its migration_disabled count is greater
473 	 * than one. In other words, when  p->migration_disabled == 1, there is
474 	 * an ambiguity, so we should check if @p is the current task or not.
475 	 */
476 	if (bpf_core_field_exists(p->migration_disabled)) {
477 		if (p->migration_disabled == 1)
478 			return bpf_get_current_task_btf() != p;
479 		else
480 			return p->migration_disabled;
481 	}
482 	return false;
483 }
484 
485 /* rcu */
486 void bpf_rcu_read_lock(void) __ksym;
487 void bpf_rcu_read_unlock(void) __ksym;
488 
489 /*
490  * Time helpers, most of which are from jiffies.h.
491  */
492 
493 /**
494  * time_delta - Calculate the delta between new and old time stamp
495  * @after: first comparable as u64
496  * @before: second comparable as u64
497  *
498  * Return: the time difference, which is >= 0
499  */
500 static inline s64 time_delta(u64 after, u64 before)
501 {
502 	return (s64)(after - before) > 0 ? (s64)(after - before) : 0;
503 }
504 
505 /**
506  * time_after - returns true if the time a is after time b.
507  * @a: first comparable as u64
508  * @b: second comparable as u64
509  *
510  * Do this with "<0" and ">=0" to only test the sign of the result. A
511  * good compiler would generate better code (and a really good compiler
512  * wouldn't care). Gcc is currently neither.
513  *
514  * Return: %true is time a is after time b, otherwise %false.
515  */
516 static inline bool time_after(u64 a, u64 b)
517 {
518 	return (s64)(b - a) < 0;
519 }
520 
521 /**
522  * time_before - returns true if the time a is before time b.
523  * @a: first comparable as u64
524  * @b: second comparable as u64
525  *
526  * Return: %true is time a is before time b, otherwise %false.
527  */
528 static inline bool time_before(u64 a, u64 b)
529 {
530 	return time_after(b, a);
531 }
532 
533 /**
534  * time_after_eq - returns true if the time a is after or the same as time b.
535  * @a: first comparable as u64
536  * @b: second comparable as u64
537  *
538  * Return: %true is time a is after or the same as time b, otherwise %false.
539  */
540 static inline bool time_after_eq(u64 a, u64 b)
541 {
542 	return (s64)(a - b) >= 0;
543 }
544 
545 /**
546  * time_before_eq - returns true if the time a is before or the same as time b.
547  * @a: first comparable as u64
548  * @b: second comparable as u64
549  *
550  * Return: %true is time a is before or the same as time b, otherwise %false.
551  */
552 static inline bool time_before_eq(u64 a, u64 b)
553 {
554 	return time_after_eq(b, a);
555 }
556 
557 /**
558  * time_in_range - Calculate whether a is in the range of [b, c].
559  * @a: time to test
560  * @b: beginning of the range
561  * @c: end of the range
562  *
563  * Return: %true is time a is in the range [b, c], otherwise %false.
564  */
565 static inline bool time_in_range(u64 a, u64 b, u64 c)
566 {
567 	return time_after_eq(a, b) && time_before_eq(a, c);
568 }
569 
570 /**
571  * time_in_range_open - Calculate whether a is in the range of [b, c).
572  * @a: time to test
573  * @b: beginning of the range
574  * @c: end of the range
575  *
576  * Return: %true is time a is in the range [b, c), otherwise %false.
577  */
578 static inline bool time_in_range_open(u64 a, u64 b, u64 c)
579 {
580 	return time_after_eq(a, b) && time_before(a, c);
581 }
582 
583 
584 /*
585  * Other helpers
586  */
587 
588 /* useful compiler attributes */
589 #ifndef likely
590 #define likely(x) __builtin_expect(!!(x), 1)
591 #endif
592 #ifndef unlikely
593 #define unlikely(x) __builtin_expect(!!(x), 0)
594 #endif
595 #ifndef __maybe_unused
596 #define __maybe_unused __attribute__((__unused__))
597 #endif
598 
599 /*
600  * READ/WRITE_ONCE() are from kernel (include/asm-generic/rwonce.h). They
601  * prevent compiler from caching, redoing or reordering reads or writes.
602  */
603 typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
604 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
605 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
606 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
607 
608 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
609 {
610 	switch (size) {
611 	case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
612 	case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
613 	case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
614 	case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
615 	default:
616 		barrier();
617 		__builtin_memcpy((void *)res, (const void *)p, size);
618 		barrier();
619 	}
620 }
621 
622 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
623 {
624 	switch (size) {
625 	case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
626 	case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
627 	case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
628 	case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
629 	default:
630 		barrier();
631 		__builtin_memcpy((void *)p, (const void *)res, size);
632 		barrier();
633 	}
634 }
635 
636 /*
637  * __unqual_typeof(x) - Declare an unqualified scalar type, leaving
638  *			non-scalar types unchanged,
639  *
640  * Prefer C11 _Generic for better compile-times and simpler code. Note: 'char'
641  * is not type-compatible with 'signed char', and we define a separate case.
642  *
643  * This is copied verbatim from kernel's include/linux/compiler_types.h, but
644  * with default expression (for pointers) changed from (x) to (typeof(x)0).
645  *
646  * This is because LLVM has a bug where for lvalue (x), it does not get rid of
647  * an extra address_space qualifier, but does in case of rvalue (typeof(x)0).
648  * Hence, for pointers, we need to create an rvalue expression to get the
649  * desired type. See https://github.com/llvm/llvm-project/issues/53400.
650  */
651 #define __scalar_type_to_expr_cases(type) \
652 	unsigned type : (unsigned type)0, signed type : (signed type)0
653 
654 #define __unqual_typeof(x)                              \
655 	typeof(_Generic((x),                            \
656 		char: (char)0,                          \
657 		__scalar_type_to_expr_cases(char),      \
658 		__scalar_type_to_expr_cases(short),     \
659 		__scalar_type_to_expr_cases(int),       \
660 		__scalar_type_to_expr_cases(long),      \
661 		__scalar_type_to_expr_cases(long long), \
662 		default: (typeof(x))0))
663 
664 #define READ_ONCE(x)								\
665 ({										\
666 	union { __unqual_typeof(x) __val; char __c[1]; } __u =			\
667 		{ .__c = { 0 } };						\
668 	__read_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x));	\
669 	__u.__val;								\
670 })
671 
672 #define WRITE_ONCE(x, val)							\
673 ({										\
674 	union { __unqual_typeof(x) __val; char __c[1]; } __u =			\
675 		{ .__val = (val) }; 						\
676 	__write_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x));	\
677 	__u.__val;								\
678 })
679 
680 /*
681  * __calc_avg - Calculate exponential weighted moving average (EWMA) with
682  * @old and @new values. @decay represents how large the @old value remains.
683  * With a larger @decay value, the moving average changes slowly, exhibiting
684  * fewer fluctuations.
685  */
686 #define __calc_avg(old, new, decay) ({						\
687 	typeof(decay) thr = 1 << (decay);					\
688 	typeof(old) ret;							\
689 	if (((old) < thr) || ((new) < thr)) {					\
690 		if (((old) == 1) && ((new) == 0))				\
691 			ret = 0;						\
692 		else								\
693 			ret = ((old) - ((old) >> 1)) + ((new) >> 1);		\
694 	} else {								\
695 		ret = ((old) - ((old) >> (decay))) + ((new) >> (decay));	\
696 	}									\
697 	ret;									\
698 })
699 
700 /*
701  * log2_u32 - Compute the base 2 logarithm of a 32-bit exponential value.
702  * @v: The value for which we're computing the base 2 logarithm.
703  */
704 static inline u32 log2_u32(u32 v)
705 {
706         u32 r;
707         u32 shift;
708 
709         r = (v > 0xFFFF) << 4; v >>= r;
710         shift = (v > 0xFF) << 3; v >>= shift; r |= shift;
711         shift = (v > 0xF) << 2; v >>= shift; r |= shift;
712         shift = (v > 0x3) << 1; v >>= shift; r |= shift;
713         r |= (v >> 1);
714         return r;
715 }
716 
717 /*
718  * log2_u64 - Compute the base 2 logarithm of a 64-bit exponential value.
719  * @v: The value for which we're computing the base 2 logarithm.
720  */
721 static inline u32 log2_u64(u64 v)
722 {
723         u32 hi = v >> 32;
724         if (hi)
725                 return log2_u32(hi) + 32 + 1;
726         else
727                 return log2_u32(v) + 1;
728 }
729 
730 /*
731  * sqrt_u64 - Calculate the square root of value @x using Newton's method.
732  */
733 static inline u64 __sqrt_u64(u64 x)
734 {
735 	if (x == 0 || x == 1)
736 		return x;
737 
738 	u64 r = ((1ULL << 32) > x) ? x : (1ULL << 32);
739 
740 	for (int i = 0; i < 8; ++i) {
741 		u64 q = x / r;
742 		if (r <= q)
743 			break;
744 		r = (r + q) >> 1;
745 	}
746 	return r;
747 }
748 
749 /*
750  * Return a value proportionally scaled to the task's weight.
751  */
752 static inline u64 scale_by_task_weight(const struct task_struct *p, u64 value)
753 {
754 	return (value * p->scx.weight) / 100;
755 }
756 
757 /*
758  * Return a value inversely proportional to the task's weight.
759  */
760 static inline u64 scale_by_task_weight_inverse(const struct task_struct *p, u64 value)
761 {
762 	return value * 100 / p->scx.weight;
763 }
764 
765 
766 #include "compat.bpf.h"
767 #include "enums.bpf.h"
768 
769 #endif	/* __SCX_COMMON_BPF_H */
770