1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 4 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 5 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 6 */ 7 #ifndef __SCX_COMMON_BPF_H 8 #define __SCX_COMMON_BPF_H 9 10 /* 11 * The generated kfunc prototypes in vmlinux.h are missing address space 12 * attributes which cause build failures. For now, suppress the generated 13 * prototypes. See https://github.com/sched-ext/scx/issues/1111. 14 */ 15 #define BPF_NO_KFUNC_PROTOTYPES 16 17 #ifdef LSP 18 #define __bpf__ 19 #include "../vmlinux.h" 20 #else 21 #include "vmlinux.h" 22 #endif 23 24 #include <bpf/bpf_helpers.h> 25 #include <bpf/bpf_tracing.h> 26 #include <asm-generic/errno.h> 27 #include "user_exit_info.bpf.h" 28 #include "enum_defs.autogen.h" 29 30 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 31 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ 32 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 33 #define PF_KCOMPACTD 0x00010000 /* I am kcompactd */ 34 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 35 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 36 #define PF_EXITING 0x00000004 37 #define CLOCK_MONOTONIC 1 38 39 #ifndef NR_CPUS 40 #define NR_CPUS 1024 41 #endif 42 43 #ifndef NUMA_NO_NODE 44 #define NUMA_NO_NODE (-1) 45 #endif 46 47 extern int LINUX_KERNEL_VERSION __kconfig; 48 extern const char CONFIG_CC_VERSION_TEXT[64] __kconfig __weak; 49 extern const char CONFIG_LOCALVERSION[64] __kconfig __weak; 50 51 /* 52 * Earlier versions of clang/pahole lost upper 32bits in 64bit enums which can 53 * lead to really confusing misbehaviors. Let's trigger a build failure. 54 */ 55 static inline void ___vmlinux_h_sanity_check___(void) 56 { 57 _Static_assert(SCX_DSQ_FLAG_BUILTIN, 58 "bpftool generated vmlinux.h is missing high bits for 64bit enums, upgrade clang and pahole"); 59 } 60 61 s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) __ksym; 62 s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) __ksym; 63 s32 __scx_bpf_select_cpu_and(struct task_struct *p, const struct cpumask *cpus_allowed, 64 struct scx_bpf_select_cpu_and_args *args) __ksym __weak; 65 bool __scx_bpf_dsq_insert_vtime(struct task_struct *p, struct scx_bpf_dsq_insert_vtime_args *args) __ksym __weak; 66 u32 scx_bpf_dispatch_nr_slots(void) __ksym; 67 void scx_bpf_dispatch_cancel(void) __ksym; 68 bool scx_bpf_dsq_move_to_local(u64 dsq_id) __ksym __weak; 69 void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, u64 slice) __ksym __weak; 70 void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, u64 vtime) __ksym __weak; 71 bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak; 72 bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak; 73 u32 scx_bpf_reenqueue_local(void) __ksym; 74 void scx_bpf_kick_cpu(s32 cpu, u64 flags) __ksym; 75 s32 scx_bpf_dsq_nr_queued(u64 dsq_id) __ksym; 76 void scx_bpf_destroy_dsq(u64 dsq_id) __ksym; 77 int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, u64 flags) __ksym __weak; 78 struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) __ksym __weak; 79 void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) __ksym __weak; 80 void scx_bpf_exit_bstr(s64 exit_code, char *fmt, unsigned long long *data, u32 data__sz) __ksym __weak; 81 void scx_bpf_error_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym; 82 void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym __weak; 83 u32 scx_bpf_cpuperf_cap(s32 cpu) __ksym __weak; 84 u32 scx_bpf_cpuperf_cur(s32 cpu) __ksym __weak; 85 void scx_bpf_cpuperf_set(s32 cpu, u32 perf) __ksym __weak; 86 u32 scx_bpf_nr_node_ids(void) __ksym __weak; 87 u32 scx_bpf_nr_cpu_ids(void) __ksym __weak; 88 int scx_bpf_cpu_node(s32 cpu) __ksym __weak; 89 const struct cpumask *scx_bpf_get_possible_cpumask(void) __ksym __weak; 90 const struct cpumask *scx_bpf_get_online_cpumask(void) __ksym __weak; 91 void scx_bpf_put_cpumask(const struct cpumask *cpumask) __ksym __weak; 92 const struct cpumask *scx_bpf_get_idle_cpumask_node(int node) __ksym __weak; 93 const struct cpumask *scx_bpf_get_idle_cpumask(void) __ksym; 94 const struct cpumask *scx_bpf_get_idle_smtmask_node(int node) __ksym __weak; 95 const struct cpumask *scx_bpf_get_idle_smtmask(void) __ksym; 96 void scx_bpf_put_idle_cpumask(const struct cpumask *cpumask) __ksym; 97 bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) __ksym; 98 s32 scx_bpf_pick_idle_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak; 99 s32 scx_bpf_pick_idle_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym; 100 s32 scx_bpf_pick_any_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak; 101 s32 scx_bpf_pick_any_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym; 102 bool scx_bpf_task_running(const struct task_struct *p) __ksym; 103 s32 scx_bpf_task_cpu(const struct task_struct *p) __ksym; 104 bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice) __ksym __weak; 105 bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime) __ksym __weak; 106 struct rq *scx_bpf_cpu_rq(s32 cpu) __ksym; 107 struct rq *scx_bpf_locked_rq(void) __ksym; 108 struct task_struct *scx_bpf_cpu_curr(s32 cpu) __ksym __weak; 109 struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) __ksym __weak; 110 u64 scx_bpf_now(void) __ksym __weak; 111 void scx_bpf_events(struct scx_event_stats *events, size_t events__sz) __ksym __weak; 112 113 /* 114 * Use the following as @it__iter when calling scx_bpf_dsq_move[_vtime]() from 115 * within bpf_for_each() loops. 116 */ 117 #define BPF_FOR_EACH_ITER (&___it) 118 119 #define scx_read_event(e, name) \ 120 (bpf_core_field_exists((e)->name) ? (e)->name : 0) 121 122 static inline __attribute__((format(printf, 1, 2))) 123 void ___scx_bpf_bstr_format_checker(const char *fmt, ...) {} 124 125 #define SCX_STRINGIFY(x) #x 126 #define SCX_TOSTRING(x) SCX_STRINGIFY(x) 127 128 /* 129 * Helper macro for initializing the fmt and variadic argument inputs to both 130 * bstr exit kfuncs. Callers to this function should use ___fmt and ___param to 131 * refer to the initialized list of inputs to the bstr kfunc. 132 */ 133 #define scx_bpf_bstr_preamble(fmt, args...) \ 134 static char ___fmt[] = fmt; \ 135 /* \ 136 * Note that __param[] must have at least one \ 137 * element to keep the verifier happy. \ 138 */ \ 139 unsigned long long ___param[___bpf_narg(args) ?: 1] = {}; \ 140 \ 141 _Pragma("GCC diagnostic push") \ 142 _Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \ 143 ___bpf_fill(___param, args); \ 144 _Pragma("GCC diagnostic pop") 145 146 /* 147 * scx_bpf_exit() wraps the scx_bpf_exit_bstr() kfunc with variadic arguments 148 * instead of an array of u64. Using this macro will cause the scheduler to 149 * exit cleanly with the specified exit code being passed to user space. 150 */ 151 #define scx_bpf_exit(code, fmt, args...) \ 152 ({ \ 153 scx_bpf_bstr_preamble(fmt, args) \ 154 scx_bpf_exit_bstr(code, ___fmt, ___param, sizeof(___param)); \ 155 ___scx_bpf_bstr_format_checker(fmt, ##args); \ 156 }) 157 158 /* 159 * scx_bpf_error() wraps the scx_bpf_error_bstr() kfunc with variadic arguments 160 * instead of an array of u64. Invoking this macro will cause the scheduler to 161 * exit in an erroneous state, with diagnostic information being passed to the 162 * user. It appends the file and line number to aid debugging. 163 */ 164 #define scx_bpf_error(fmt, args...) \ 165 ({ \ 166 scx_bpf_bstr_preamble( \ 167 __FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args) \ 168 scx_bpf_error_bstr(___fmt, ___param, sizeof(___param)); \ 169 ___scx_bpf_bstr_format_checker( \ 170 __FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args); \ 171 }) 172 173 /* 174 * scx_bpf_dump() wraps the scx_bpf_dump_bstr() kfunc with variadic arguments 175 * instead of an array of u64. To be used from ops.dump() and friends. 176 */ 177 #define scx_bpf_dump(fmt, args...) \ 178 ({ \ 179 scx_bpf_bstr_preamble(fmt, args) \ 180 scx_bpf_dump_bstr(___fmt, ___param, sizeof(___param)); \ 181 ___scx_bpf_bstr_format_checker(fmt, ##args); \ 182 }) 183 184 /* 185 * scx_bpf_dump_header() is a wrapper around scx_bpf_dump that adds a header 186 * of system information for debugging. 187 */ 188 #define scx_bpf_dump_header() \ 189 ({ \ 190 scx_bpf_dump("kernel: %d.%d.%d %s\ncc: %s\n", \ 191 LINUX_KERNEL_VERSION >> 16, \ 192 LINUX_KERNEL_VERSION >> 8 & 0xFF, \ 193 LINUX_KERNEL_VERSION & 0xFF, \ 194 CONFIG_LOCALVERSION, \ 195 CONFIG_CC_VERSION_TEXT); \ 196 }) 197 198 #define BPF_STRUCT_OPS(name, args...) \ 199 SEC("struct_ops/"#name) \ 200 BPF_PROG(name, ##args) 201 202 #define BPF_STRUCT_OPS_SLEEPABLE(name, args...) \ 203 SEC("struct_ops.s/"#name) \ 204 BPF_PROG(name, ##args) 205 206 /** 207 * RESIZABLE_ARRAY - Generates annotations for an array that may be resized 208 * @elfsec: the data section of the BPF program in which to place the array 209 * @arr: the name of the array 210 * 211 * libbpf has an API for setting map value sizes. Since data sections (i.e. 212 * bss, data, rodata) themselves are maps, a data section can be resized. If 213 * a data section has an array as its last element, the BTF info for that 214 * array will be adjusted so that length of the array is extended to meet the 215 * new length of the data section. This macro annotates an array to have an 216 * element count of one with the assumption that this array can be resized 217 * within the userspace program. It also annotates the section specifier so 218 * this array exists in a custom sub data section which can be resized 219 * independently. 220 * 221 * See RESIZE_ARRAY() for the userspace convenience macro for resizing an 222 * array declared with RESIZABLE_ARRAY(). 223 */ 224 #define RESIZABLE_ARRAY(elfsec, arr) arr[1] SEC("."#elfsec"."#arr) 225 226 /** 227 * MEMBER_VPTR - Obtain the verified pointer to a struct or array member 228 * @base: struct or array to index 229 * @member: dereferenced member (e.g. .field, [idx0][idx1], .field[idx0] ...) 230 * 231 * The verifier often gets confused by the instruction sequence the compiler 232 * generates for indexing struct fields or arrays. This macro forces the 233 * compiler to generate a code sequence which first calculates the byte offset, 234 * checks it against the struct or array size and add that byte offset to 235 * generate the pointer to the member to help the verifier. 236 * 237 * Ideally, we want to abort if the calculated offset is out-of-bounds. However, 238 * BPF currently doesn't support abort, so evaluate to %NULL instead. The caller 239 * must check for %NULL and take appropriate action to appease the verifier. To 240 * avoid confusing the verifier, it's best to check for %NULL and dereference 241 * immediately. 242 * 243 * vptr = MEMBER_VPTR(my_array, [i][j]); 244 * if (!vptr) 245 * return error; 246 * *vptr = new_value; 247 * 248 * sizeof(@base) should encompass the memory area to be accessed and thus can't 249 * be a pointer to the area. Use `MEMBER_VPTR(*ptr, .member)` instead of 250 * `MEMBER_VPTR(ptr, ->member)`. 251 */ 252 #ifndef MEMBER_VPTR 253 #define MEMBER_VPTR(base, member) (typeof((base) member) *) \ 254 ({ \ 255 u64 __base = (u64)&(base); \ 256 u64 __addr = (u64)&((base) member) - __base; \ 257 _Static_assert(sizeof(base) >= sizeof((base) member), \ 258 "@base is smaller than @member, is @base a pointer?"); \ 259 asm volatile ( \ 260 "if %0 <= %[max] goto +2\n" \ 261 "%0 = 0\n" \ 262 "goto +1\n" \ 263 "%0 += %1\n" \ 264 : "+r"(__addr) \ 265 : "r"(__base), \ 266 [max]"i"(sizeof(base) - sizeof((base) member))); \ 267 __addr; \ 268 }) 269 #endif /* MEMBER_VPTR */ 270 271 /** 272 * ARRAY_ELEM_PTR - Obtain the verified pointer to an array element 273 * @arr: array to index into 274 * @i: array index 275 * @n: number of elements in array 276 * 277 * Similar to MEMBER_VPTR() but is intended for use with arrays where the 278 * element count needs to be explicit. 279 * It can be used in cases where a global array is defined with an initial 280 * size but is intended to be be resized before loading the BPF program. 281 * Without this version of the macro, MEMBER_VPTR() will use the compile time 282 * size of the array to compute the max, which will result in rejection by 283 * the verifier. 284 */ 285 #ifndef ARRAY_ELEM_PTR 286 #define ARRAY_ELEM_PTR(arr, i, n) (typeof(arr[i]) *) \ 287 ({ \ 288 u64 __base = (u64)arr; \ 289 u64 __addr = (u64)&(arr[i]) - __base; \ 290 asm volatile ( \ 291 "if %0 <= %[max] goto +2\n" \ 292 "%0 = 0\n" \ 293 "goto +1\n" \ 294 "%0 += %1\n" \ 295 : "+r"(__addr) \ 296 : "r"(__base), \ 297 [max]"r"(sizeof(arr[0]) * ((n) - 1))); \ 298 __addr; \ 299 }) 300 #endif /* ARRAY_ELEM_PTR */ 301 302 /* 303 * BPF declarations and helpers 304 */ 305 306 /* list and rbtree */ 307 #define __contains(name, node) __attribute__((btf_decl_tag("contains:" #name ":" #node))) 308 #define private(name) SEC(".data." #name) __hidden __attribute__((aligned(8))) 309 310 void *bpf_obj_new_impl(__u64 local_type_id, void *meta) __ksym; 311 void bpf_obj_drop_impl(void *kptr, void *meta) __ksym; 312 313 #define bpf_obj_new(type) ((type *)bpf_obj_new_impl(bpf_core_type_id_local(type), NULL)) 314 #define bpf_obj_drop(kptr) bpf_obj_drop_impl(kptr, NULL) 315 316 int bpf_list_push_front_impl(struct bpf_list_head *head, 317 struct bpf_list_node *node, 318 void *meta, __u64 off) __ksym; 319 #define bpf_list_push_front(head, node) bpf_list_push_front_impl(head, node, NULL, 0) 320 321 int bpf_list_push_back_impl(struct bpf_list_head *head, 322 struct bpf_list_node *node, 323 void *meta, __u64 off) __ksym; 324 #define bpf_list_push_back(head, node) bpf_list_push_back_impl(head, node, NULL, 0) 325 326 struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) __ksym; 327 struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) __ksym; 328 struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 329 struct bpf_rb_node *node) __ksym; 330 int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 331 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 332 void *meta, __u64 off) __ksym; 333 #define bpf_rbtree_add(head, node, less) bpf_rbtree_add_impl(head, node, less, NULL, 0) 334 335 struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) __ksym; 336 337 void *bpf_refcount_acquire_impl(void *kptr, void *meta) __ksym; 338 #define bpf_refcount_acquire(kptr) bpf_refcount_acquire_impl(kptr, NULL) 339 340 /* task */ 341 struct task_struct *bpf_task_from_pid(s32 pid) __ksym; 342 struct task_struct *bpf_task_acquire(struct task_struct *p) __ksym; 343 void bpf_task_release(struct task_struct *p) __ksym; 344 345 /* cgroup */ 346 struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) __ksym; 347 void bpf_cgroup_release(struct cgroup *cgrp) __ksym; 348 struct cgroup *bpf_cgroup_from_id(u64 cgid) __ksym; 349 350 /* css iteration */ 351 struct bpf_iter_css; 352 struct cgroup_subsys_state; 353 extern int bpf_iter_css_new(struct bpf_iter_css *it, 354 struct cgroup_subsys_state *start, 355 unsigned int flags) __weak __ksym; 356 extern struct cgroup_subsys_state * 357 bpf_iter_css_next(struct bpf_iter_css *it) __weak __ksym; 358 extern void bpf_iter_css_destroy(struct bpf_iter_css *it) __weak __ksym; 359 360 /* cpumask */ 361 struct bpf_cpumask *bpf_cpumask_create(void) __ksym; 362 struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) __ksym; 363 void bpf_cpumask_release(struct bpf_cpumask *cpumask) __ksym; 364 u32 bpf_cpumask_first(const struct cpumask *cpumask) __ksym; 365 u32 bpf_cpumask_first_zero(const struct cpumask *cpumask) __ksym; 366 void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; 367 void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; 368 bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask) __ksym; 369 bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; 370 bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; 371 void bpf_cpumask_setall(struct bpf_cpumask *cpumask) __ksym; 372 void bpf_cpumask_clear(struct bpf_cpumask *cpumask) __ksym; 373 bool bpf_cpumask_and(struct bpf_cpumask *dst, const struct cpumask *src1, 374 const struct cpumask *src2) __ksym; 375 void bpf_cpumask_or(struct bpf_cpumask *dst, const struct cpumask *src1, 376 const struct cpumask *src2) __ksym; 377 void bpf_cpumask_xor(struct bpf_cpumask *dst, const struct cpumask *src1, 378 const struct cpumask *src2) __ksym; 379 bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2) __ksym; 380 bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2) __ksym; 381 bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2) __ksym; 382 bool bpf_cpumask_empty(const struct cpumask *cpumask) __ksym; 383 bool bpf_cpumask_full(const struct cpumask *cpumask) __ksym; 384 void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src) __ksym; 385 u32 bpf_cpumask_any_distribute(const struct cpumask *cpumask) __ksym; 386 u32 bpf_cpumask_any_and_distribute(const struct cpumask *src1, 387 const struct cpumask *src2) __ksym; 388 u32 bpf_cpumask_weight(const struct cpumask *cpumask) __ksym; 389 390 int bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) __ksym; 391 int *bpf_iter_bits_next(struct bpf_iter_bits *it) __ksym; 392 void bpf_iter_bits_destroy(struct bpf_iter_bits *it) __ksym; 393 394 #define def_iter_struct(name) \ 395 struct bpf_iter_##name { \ 396 struct bpf_iter_bits it; \ 397 const struct cpumask *bitmap; \ 398 }; 399 400 #define def_iter_new(name) \ 401 static inline int bpf_iter_##name##_new( \ 402 struct bpf_iter_##name *it, const u64 *unsafe_ptr__ign, u32 nr_words) \ 403 { \ 404 it->bitmap = scx_bpf_get_##name##_cpumask(); \ 405 return bpf_iter_bits_new(&it->it, (const u64 *)it->bitmap, \ 406 sizeof(struct cpumask) / 8); \ 407 } 408 409 #define def_iter_next(name) \ 410 static inline int *bpf_iter_##name##_next(struct bpf_iter_##name *it) { \ 411 return bpf_iter_bits_next(&it->it); \ 412 } 413 414 #define def_iter_destroy(name) \ 415 static inline void bpf_iter_##name##_destroy(struct bpf_iter_##name *it) { \ 416 scx_bpf_put_cpumask(it->bitmap); \ 417 bpf_iter_bits_destroy(&it->it); \ 418 } 419 #define def_for_each_cpu(cpu, name) for_each_##name##_cpu(cpu) 420 421 /// Provides iterator for possible and online cpus. 422 /// 423 /// # Example 424 /// 425 /// ``` 426 /// static inline void example_use() { 427 /// int *cpu; 428 /// 429 /// for_each_possible_cpu(cpu){ 430 /// bpf_printk("CPU %d is possible", *cpu); 431 /// } 432 /// 433 /// for_each_online_cpu(cpu){ 434 /// bpf_printk("CPU %d is online", *cpu); 435 /// } 436 /// } 437 /// ``` 438 def_iter_struct(possible); 439 def_iter_new(possible); 440 def_iter_next(possible); 441 def_iter_destroy(possible); 442 #define for_each_possible_cpu(cpu) bpf_for_each(possible, cpu, NULL, 0) 443 444 def_iter_struct(online); 445 def_iter_new(online); 446 def_iter_next(online); 447 def_iter_destroy(online); 448 #define for_each_online_cpu(cpu) bpf_for_each(online, cpu, NULL, 0) 449 450 /* 451 * Access a cpumask in read-only mode (typically to check bits). 452 */ 453 static __always_inline const struct cpumask *cast_mask(struct bpf_cpumask *mask) 454 { 455 return (const struct cpumask *)mask; 456 } 457 458 /* 459 * Return true if task @p cannot migrate to a different CPU, false 460 * otherwise. 461 */ 462 static inline bool is_migration_disabled(const struct task_struct *p) 463 { 464 /* 465 * Testing p->migration_disabled in a BPF code is tricky because the 466 * migration is _always_ disabled while running the BPF code. 467 * The prolog (__bpf_prog_enter) and epilog (__bpf_prog_exit) for BPF 468 * code execution disable and re-enable the migration of the current 469 * task, respectively. So, the _current_ task of the sched_ext ops is 470 * always migration-disabled. Moreover, p->migration_disabled could be 471 * two or greater when a sched_ext ops BPF code (e.g., ops.tick) is 472 * executed in the middle of the other BPF code execution. 473 * 474 * Therefore, we should decide that the _current_ task is 475 * migration-disabled only when its migration_disabled count is greater 476 * than one. In other words, when p->migration_disabled == 1, there is 477 * an ambiguity, so we should check if @p is the current task or not. 478 */ 479 if (bpf_core_field_exists(p->migration_disabled)) { 480 if (p->migration_disabled == 1) 481 return bpf_get_current_task_btf() != p; 482 else 483 return p->migration_disabled; 484 } 485 return false; 486 } 487 488 /* rcu */ 489 void bpf_rcu_read_lock(void) __ksym; 490 void bpf_rcu_read_unlock(void) __ksym; 491 492 /* 493 * Time helpers, most of which are from jiffies.h. 494 */ 495 496 /** 497 * time_delta - Calculate the delta between new and old time stamp 498 * @after: first comparable as u64 499 * @before: second comparable as u64 500 * 501 * Return: the time difference, which is >= 0 502 */ 503 static inline s64 time_delta(u64 after, u64 before) 504 { 505 return (s64)(after - before) > 0 ? (s64)(after - before) : 0; 506 } 507 508 /** 509 * time_after - returns true if the time a is after time b. 510 * @a: first comparable as u64 511 * @b: second comparable as u64 512 * 513 * Do this with "<0" and ">=0" to only test the sign of the result. A 514 * good compiler would generate better code (and a really good compiler 515 * wouldn't care). Gcc is currently neither. 516 * 517 * Return: %true is time a is after time b, otherwise %false. 518 */ 519 static inline bool time_after(u64 a, u64 b) 520 { 521 return (s64)(b - a) < 0; 522 } 523 524 /** 525 * time_before - returns true if the time a is before time b. 526 * @a: first comparable as u64 527 * @b: second comparable as u64 528 * 529 * Return: %true is time a is before time b, otherwise %false. 530 */ 531 static inline bool time_before(u64 a, u64 b) 532 { 533 return time_after(b, a); 534 } 535 536 /** 537 * time_after_eq - returns true if the time a is after or the same as time b. 538 * @a: first comparable as u64 539 * @b: second comparable as u64 540 * 541 * Return: %true is time a is after or the same as time b, otherwise %false. 542 */ 543 static inline bool time_after_eq(u64 a, u64 b) 544 { 545 return (s64)(a - b) >= 0; 546 } 547 548 /** 549 * time_before_eq - returns true if the time a is before or the same as time b. 550 * @a: first comparable as u64 551 * @b: second comparable as u64 552 * 553 * Return: %true is time a is before or the same as time b, otherwise %false. 554 */ 555 static inline bool time_before_eq(u64 a, u64 b) 556 { 557 return time_after_eq(b, a); 558 } 559 560 /** 561 * time_in_range - Calculate whether a is in the range of [b, c]. 562 * @a: time to test 563 * @b: beginning of the range 564 * @c: end of the range 565 * 566 * Return: %true is time a is in the range [b, c], otherwise %false. 567 */ 568 static inline bool time_in_range(u64 a, u64 b, u64 c) 569 { 570 return time_after_eq(a, b) && time_before_eq(a, c); 571 } 572 573 /** 574 * time_in_range_open - Calculate whether a is in the range of [b, c). 575 * @a: time to test 576 * @b: beginning of the range 577 * @c: end of the range 578 * 579 * Return: %true is time a is in the range [b, c), otherwise %false. 580 */ 581 static inline bool time_in_range_open(u64 a, u64 b, u64 c) 582 { 583 return time_after_eq(a, b) && time_before(a, c); 584 } 585 586 587 /* 588 * Other helpers 589 */ 590 591 /* useful compiler attributes */ 592 #ifndef likely 593 #define likely(x) __builtin_expect(!!(x), 1) 594 #endif 595 #ifndef unlikely 596 #define unlikely(x) __builtin_expect(!!(x), 0) 597 #endif 598 #ifndef __maybe_unused 599 #define __maybe_unused __attribute__((__unused__)) 600 #endif 601 602 /* 603 * READ/WRITE_ONCE() are from kernel (include/asm-generic/rwonce.h). They 604 * prevent compiler from caching, redoing or reordering reads or writes. 605 */ 606 typedef __u8 __attribute__((__may_alias__)) __u8_alias_t; 607 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t; 608 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t; 609 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t; 610 611 static __always_inline void __read_once_size(const volatile void *p, void *res, int size) 612 { 613 switch (size) { 614 case 1: *(__u8_alias_t *) res = *(volatile __u8_alias_t *) p; break; 615 case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break; 616 case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break; 617 case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break; 618 default: 619 barrier(); 620 __builtin_memcpy((void *)res, (const void *)p, size); 621 barrier(); 622 } 623 } 624 625 static __always_inline void __write_once_size(volatile void *p, void *res, int size) 626 { 627 switch (size) { 628 case 1: *(volatile __u8_alias_t *) p = *(__u8_alias_t *) res; break; 629 case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break; 630 case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break; 631 case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break; 632 default: 633 barrier(); 634 __builtin_memcpy((void *)p, (const void *)res, size); 635 barrier(); 636 } 637 } 638 639 /* 640 * __unqual_typeof(x) - Declare an unqualified scalar type, leaving 641 * non-scalar types unchanged, 642 * 643 * Prefer C11 _Generic for better compile-times and simpler code. Note: 'char' 644 * is not type-compatible with 'signed char', and we define a separate case. 645 * 646 * This is copied verbatim from kernel's include/linux/compiler_types.h, but 647 * with default expression (for pointers) changed from (x) to (typeof(x)0). 648 * 649 * This is because LLVM has a bug where for lvalue (x), it does not get rid of 650 * an extra address_space qualifier, but does in case of rvalue (typeof(x)0). 651 * Hence, for pointers, we need to create an rvalue expression to get the 652 * desired type. See https://github.com/llvm/llvm-project/issues/53400. 653 */ 654 #define __scalar_type_to_expr_cases(type) \ 655 unsigned type : (unsigned type)0, signed type : (signed type)0 656 657 #define __unqual_typeof(x) \ 658 typeof(_Generic((x), \ 659 char: (char)0, \ 660 __scalar_type_to_expr_cases(char), \ 661 __scalar_type_to_expr_cases(short), \ 662 __scalar_type_to_expr_cases(int), \ 663 __scalar_type_to_expr_cases(long), \ 664 __scalar_type_to_expr_cases(long long), \ 665 default: (typeof(x))0)) 666 667 #define READ_ONCE(x) \ 668 ({ \ 669 union { __unqual_typeof(x) __val; char __c[1]; } __u = \ 670 { .__c = { 0 } }; \ 671 __read_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x)); \ 672 __u.__val; \ 673 }) 674 675 #define WRITE_ONCE(x, val) \ 676 ({ \ 677 union { __unqual_typeof(x) __val; char __c[1]; } __u = \ 678 { .__val = (val) }; \ 679 __write_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x)); \ 680 __u.__val; \ 681 }) 682 683 /* 684 * __calc_avg - Calculate exponential weighted moving average (EWMA) with 685 * @old and @new values. @decay represents how large the @old value remains. 686 * With a larger @decay value, the moving average changes slowly, exhibiting 687 * fewer fluctuations. 688 */ 689 #define __calc_avg(old, new, decay) ({ \ 690 typeof(decay) thr = 1 << (decay); \ 691 typeof(old) ret; \ 692 if (((old) < thr) || ((new) < thr)) { \ 693 if (((old) == 1) && ((new) == 0)) \ 694 ret = 0; \ 695 else \ 696 ret = ((old) - ((old) >> 1)) + ((new) >> 1); \ 697 } else { \ 698 ret = ((old) - ((old) >> (decay))) + ((new) >> (decay)); \ 699 } \ 700 ret; \ 701 }) 702 703 /* 704 * log2_u32 - Compute the base 2 logarithm of a 32-bit exponential value. 705 * @v: The value for which we're computing the base 2 logarithm. 706 */ 707 static inline u32 log2_u32(u32 v) 708 { 709 u32 r; 710 u32 shift; 711 712 r = (v > 0xFFFF) << 4; v >>= r; 713 shift = (v > 0xFF) << 3; v >>= shift; r |= shift; 714 shift = (v > 0xF) << 2; v >>= shift; r |= shift; 715 shift = (v > 0x3) << 1; v >>= shift; r |= shift; 716 r |= (v >> 1); 717 return r; 718 } 719 720 /* 721 * log2_u64 - Compute the base 2 logarithm of a 64-bit exponential value. 722 * @v: The value for which we're computing the base 2 logarithm. 723 */ 724 static inline u32 log2_u64(u64 v) 725 { 726 u32 hi = v >> 32; 727 if (hi) 728 return log2_u32(hi) + 32 + 1; 729 else 730 return log2_u32(v) + 1; 731 } 732 733 /* 734 * sqrt_u64 - Calculate the square root of value @x using Newton's method. 735 */ 736 static inline u64 __sqrt_u64(u64 x) 737 { 738 if (x == 0 || x == 1) 739 return x; 740 741 u64 r = ((1ULL << 32) > x) ? x : (1ULL << 32); 742 743 for (int i = 0; i < 8; ++i) { 744 u64 q = x / r; 745 if (r <= q) 746 break; 747 r = (r + q) >> 1; 748 } 749 return r; 750 } 751 752 /* 753 * Return a value proportionally scaled to the task's weight. 754 */ 755 static inline u64 scale_by_task_weight(const struct task_struct *p, u64 value) 756 { 757 return (value * p->scx.weight) / 100; 758 } 759 760 /* 761 * Return a value inversely proportional to the task's weight. 762 */ 763 static inline u64 scale_by_task_weight_inverse(const struct task_struct *p, u64 value) 764 { 765 return value * 100 / p->scx.weight; 766 } 767 768 769 #include "compat.bpf.h" 770 #include "enums.bpf.h" 771 772 #endif /* __SCX_COMMON_BPF_H */ 773