xref: /linux/tools/sched_ext/include/scx/common.bpf.h (revision bd7143e74e8ce0b35b32fa76e92d78e52cb12883)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
4  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
5  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
6  */
7 #ifndef __SCX_COMMON_BPF_H
8 #define __SCX_COMMON_BPF_H
9 
10 /*
11  * The generated kfunc prototypes in vmlinux.h are missing address space
12  * attributes which cause build failures. For now, suppress the generated
13  * prototypes. See https://github.com/sched-ext/scx/issues/1111.
14  */
15 #define BPF_NO_KFUNC_PROTOTYPES
16 
17 #ifdef LSP
18 #define __bpf__
19 #include "../vmlinux.h"
20 #else
21 #include "vmlinux.h"
22 #endif
23 
24 #include <bpf/bpf_helpers.h>
25 #include <bpf/bpf_tracing.h>
26 #include <asm-generic/errno.h>
27 #include "user_exit_info.bpf.h"
28 #include "enum_defs.autogen.h"
29 
30 #define PF_IDLE				0x00000002	/* I am an IDLE thread */
31 #define PF_IO_WORKER			0x00000010	/* Task is an IO worker */
32 #define PF_WQ_WORKER			0x00000020	/* I'm a workqueue worker */
33 #define PF_KCOMPACTD			0x00010000      /* I am kcompactd */
34 #define PF_KSWAPD			0x00020000      /* I am kswapd */
35 #define PF_KTHREAD			0x00200000	/* I am a kernel thread */
36 #define PF_EXITING			0x00000004
37 #define CLOCK_MONOTONIC			1
38 
39 #ifndef NR_CPUS
40 #define NR_CPUS 1024
41 #endif
42 
43 #ifndef NUMA_NO_NODE
44 #define	NUMA_NO_NODE	(-1)
45 #endif
46 
47 extern int LINUX_KERNEL_VERSION __kconfig;
48 extern const char CONFIG_CC_VERSION_TEXT[64] __kconfig __weak;
49 extern const char CONFIG_LOCALVERSION[64] __kconfig __weak;
50 
51 /*
52  * Earlier versions of clang/pahole lost upper 32bits in 64bit enums which can
53  * lead to really confusing misbehaviors. Let's trigger a build failure.
54  */
55 static inline void ___vmlinux_h_sanity_check___(void)
56 {
57 	_Static_assert(SCX_DSQ_FLAG_BUILTIN,
58 		       "bpftool generated vmlinux.h is missing high bits for 64bit enums, upgrade clang and pahole");
59 }
60 
61 s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) __ksym;
62 s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) __ksym;
63 s32 __scx_bpf_select_cpu_and(struct task_struct *p, const struct cpumask *cpus_allowed,
64 			     struct scx_bpf_select_cpu_and_args *args) __ksym __weak;
65 bool __scx_bpf_dsq_insert_vtime(struct task_struct *p, struct scx_bpf_dsq_insert_vtime_args *args) __ksym __weak;
66 u32 scx_bpf_dispatch_nr_slots(void) __ksym;
67 void scx_bpf_dispatch_cancel(void) __ksym;
68 bool scx_bpf_dsq_move_to_local(u64 dsq_id) __ksym __weak;
69 void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, u64 slice) __ksym __weak;
70 void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, u64 vtime) __ksym __weak;
71 bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
72 bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, struct task_struct *p, u64 dsq_id, u64 enq_flags) __ksym __weak;
73 u32 scx_bpf_reenqueue_local(void) __ksym;
74 void scx_bpf_kick_cpu(s32 cpu, u64 flags) __ksym;
75 s32 scx_bpf_dsq_nr_queued(u64 dsq_id) __ksym;
76 void scx_bpf_destroy_dsq(u64 dsq_id) __ksym;
77 int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, u64 flags) __ksym __weak;
78 struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) __ksym __weak;
79 void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) __ksym __weak;
80 void scx_bpf_exit_bstr(s64 exit_code, char *fmt, unsigned long long *data, u32 data__sz) __ksym __weak;
81 void scx_bpf_error_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym;
82 void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym __weak;
83 u32 scx_bpf_cpuperf_cap(s32 cpu) __ksym __weak;
84 u32 scx_bpf_cpuperf_cur(s32 cpu) __ksym __weak;
85 void scx_bpf_cpuperf_set(s32 cpu, u32 perf) __ksym __weak;
86 u32 scx_bpf_nr_node_ids(void) __ksym __weak;
87 u32 scx_bpf_nr_cpu_ids(void) __ksym __weak;
88 int scx_bpf_cpu_node(s32 cpu) __ksym __weak;
89 const struct cpumask *scx_bpf_get_possible_cpumask(void) __ksym __weak;
90 const struct cpumask *scx_bpf_get_online_cpumask(void) __ksym __weak;
91 void scx_bpf_put_cpumask(const struct cpumask *cpumask) __ksym __weak;
92 const struct cpumask *scx_bpf_get_idle_cpumask_node(int node) __ksym __weak;
93 const struct cpumask *scx_bpf_get_idle_cpumask(void) __ksym;
94 const struct cpumask *scx_bpf_get_idle_smtmask_node(int node) __ksym __weak;
95 const struct cpumask *scx_bpf_get_idle_smtmask(void) __ksym;
96 void scx_bpf_put_idle_cpumask(const struct cpumask *cpumask) __ksym;
97 bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) __ksym;
98 s32 scx_bpf_pick_idle_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;
99 s32 scx_bpf_pick_idle_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
100 s32 scx_bpf_pick_any_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak;
101 s32 scx_bpf_pick_any_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym;
102 bool scx_bpf_task_running(const struct task_struct *p) __ksym;
103 s32 scx_bpf_task_cpu(const struct task_struct *p) __ksym;
104 struct rq *scx_bpf_cpu_rq(s32 cpu) __ksym;
105 struct rq *scx_bpf_locked_rq(void) __ksym;
106 struct task_struct *scx_bpf_cpu_curr(s32 cpu) __ksym __weak;
107 struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) __ksym __weak;
108 u64 scx_bpf_now(void) __ksym __weak;
109 void scx_bpf_events(struct scx_event_stats *events, size_t events__sz) __ksym __weak;
110 
111 /*
112  * Use the following as @it__iter when calling scx_bpf_dsq_move[_vtime]() from
113  * within bpf_for_each() loops.
114  */
115 #define BPF_FOR_EACH_ITER	(&___it)
116 
117 #define scx_read_event(e, name)							\
118 	(bpf_core_field_exists((e)->name) ? (e)->name : 0)
119 
120 static inline __attribute__((format(printf, 1, 2)))
121 void ___scx_bpf_bstr_format_checker(const char *fmt, ...) {}
122 
123 #define SCX_STRINGIFY(x) #x
124 #define SCX_TOSTRING(x) SCX_STRINGIFY(x)
125 
126 /*
127  * Helper macro for initializing the fmt and variadic argument inputs to both
128  * bstr exit kfuncs. Callers to this function should use ___fmt and ___param to
129  * refer to the initialized list of inputs to the bstr kfunc.
130  */
131 #define scx_bpf_bstr_preamble(fmt, args...)					\
132 	static char ___fmt[] = fmt;						\
133 	/*									\
134 	 * Note that __param[] must have at least one				\
135 	 * element to keep the verifier happy.					\
136 	 */									\
137 	unsigned long long ___param[___bpf_narg(args) ?: 1] = {};		\
138 										\
139 	_Pragma("GCC diagnostic push")						\
140 	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")			\
141 	___bpf_fill(___param, args);						\
142 	_Pragma("GCC diagnostic pop")
143 
144 /*
145  * scx_bpf_exit() wraps the scx_bpf_exit_bstr() kfunc with variadic arguments
146  * instead of an array of u64. Using this macro will cause the scheduler to
147  * exit cleanly with the specified exit code being passed to user space.
148  */
149 #define scx_bpf_exit(code, fmt, args...)					\
150 ({										\
151 	scx_bpf_bstr_preamble(fmt, args)					\
152 	scx_bpf_exit_bstr(code, ___fmt, ___param, sizeof(___param));		\
153 	___scx_bpf_bstr_format_checker(fmt, ##args);				\
154 })
155 
156 /*
157  * scx_bpf_error() wraps the scx_bpf_error_bstr() kfunc with variadic arguments
158  * instead of an array of u64. Invoking this macro will cause the scheduler to
159  * exit in an erroneous state, with diagnostic information being passed to the
160  * user. It appends the file and line number to aid debugging.
161  */
162 #define scx_bpf_error(fmt, args...)						\
163 ({										\
164 	scx_bpf_bstr_preamble(							\
165 		__FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args)		\
166 	scx_bpf_error_bstr(___fmt, ___param, sizeof(___param));			\
167 	___scx_bpf_bstr_format_checker(						\
168 		__FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args);		\
169 })
170 
171 /*
172  * scx_bpf_dump() wraps the scx_bpf_dump_bstr() kfunc with variadic arguments
173  * instead of an array of u64. To be used from ops.dump() and friends.
174  */
175 #define scx_bpf_dump(fmt, args...)						\
176 ({										\
177 	scx_bpf_bstr_preamble(fmt, args)					\
178 	scx_bpf_dump_bstr(___fmt, ___param, sizeof(___param));			\
179 	___scx_bpf_bstr_format_checker(fmt, ##args);				\
180 })
181 
182 /*
183  * scx_bpf_dump_header() is a wrapper around scx_bpf_dump that adds a header
184  * of system information for debugging.
185  */
186 #define scx_bpf_dump_header()							\
187 ({										\
188 	scx_bpf_dump("kernel: %d.%d.%d %s\ncc: %s\n",				\
189 		     LINUX_KERNEL_VERSION >> 16,				\
190 		     LINUX_KERNEL_VERSION >> 8 & 0xFF,				\
191 		     LINUX_KERNEL_VERSION & 0xFF,				\
192 		     CONFIG_LOCALVERSION,					\
193 		     CONFIG_CC_VERSION_TEXT);					\
194 })
195 
196 #define BPF_STRUCT_OPS(name, args...)						\
197 SEC("struct_ops/"#name)								\
198 BPF_PROG(name, ##args)
199 
200 #define BPF_STRUCT_OPS_SLEEPABLE(name, args...)					\
201 SEC("struct_ops.s/"#name)							\
202 BPF_PROG(name, ##args)
203 
204 /**
205  * RESIZABLE_ARRAY - Generates annotations for an array that may be resized
206  * @elfsec: the data section of the BPF program in which to place the array
207  * @arr: the name of the array
208  *
209  * libbpf has an API for setting map value sizes. Since data sections (i.e.
210  * bss, data, rodata) themselves are maps, a data section can be resized. If
211  * a data section has an array as its last element, the BTF info for that
212  * array will be adjusted so that length of the array is extended to meet the
213  * new length of the data section. This macro annotates an array to have an
214  * element count of one with the assumption that this array can be resized
215  * within the userspace program. It also annotates the section specifier so
216  * this array exists in a custom sub data section which can be resized
217  * independently.
218  *
219  * See RESIZE_ARRAY() for the userspace convenience macro for resizing an
220  * array declared with RESIZABLE_ARRAY().
221  */
222 #define RESIZABLE_ARRAY(elfsec, arr) arr[1] SEC("."#elfsec"."#arr)
223 
224 /**
225  * MEMBER_VPTR - Obtain the verified pointer to a struct or array member
226  * @base: struct or array to index
227  * @member: dereferenced member (e.g. .field, [idx0][idx1], .field[idx0] ...)
228  *
229  * The verifier often gets confused by the instruction sequence the compiler
230  * generates for indexing struct fields or arrays. This macro forces the
231  * compiler to generate a code sequence which first calculates the byte offset,
232  * checks it against the struct or array size and add that byte offset to
233  * generate the pointer to the member to help the verifier.
234  *
235  * Ideally, we want to abort if the calculated offset is out-of-bounds. However,
236  * BPF currently doesn't support abort, so evaluate to %NULL instead. The caller
237  * must check for %NULL and take appropriate action to appease the verifier. To
238  * avoid confusing the verifier, it's best to check for %NULL and dereference
239  * immediately.
240  *
241  *	vptr = MEMBER_VPTR(my_array, [i][j]);
242  *	if (!vptr)
243  *		return error;
244  *	*vptr = new_value;
245  *
246  * sizeof(@base) should encompass the memory area to be accessed and thus can't
247  * be a pointer to the area. Use `MEMBER_VPTR(*ptr, .member)` instead of
248  * `MEMBER_VPTR(ptr, ->member)`.
249  */
250 #ifndef MEMBER_VPTR
251 #define MEMBER_VPTR(base, member) (typeof((base) member) *)			\
252 ({										\
253 	u64 __base = (u64)&(base);						\
254 	u64 __addr = (u64)&((base) member) - __base;				\
255 	_Static_assert(sizeof(base) >= sizeof((base) member),			\
256 		       "@base is smaller than @member, is @base a pointer?");	\
257 	asm volatile (								\
258 		"if %0 <= %[max] goto +2\n"					\
259 		"%0 = 0\n"							\
260 		"goto +1\n"							\
261 		"%0 += %1\n"							\
262 		: "+r"(__addr)							\
263 		: "r"(__base),							\
264 		  [max]"i"(sizeof(base) - sizeof((base) member)));		\
265 	__addr;									\
266 })
267 #endif /* MEMBER_VPTR */
268 
269 /**
270  * ARRAY_ELEM_PTR - Obtain the verified pointer to an array element
271  * @arr: array to index into
272  * @i: array index
273  * @n: number of elements in array
274  *
275  * Similar to MEMBER_VPTR() but is intended for use with arrays where the
276  * element count needs to be explicit.
277  * It can be used in cases where a global array is defined with an initial
278  * size but is intended to be be resized before loading the BPF program.
279  * Without this version of the macro, MEMBER_VPTR() will use the compile time
280  * size of the array to compute the max, which will result in rejection by
281  * the verifier.
282  */
283 #ifndef ARRAY_ELEM_PTR
284 #define ARRAY_ELEM_PTR(arr, i, n) (typeof(arr[i]) *)				\
285 ({										\
286 	u64 __base = (u64)arr;							\
287 	u64 __addr = (u64)&(arr[i]) - __base;					\
288 	asm volatile (								\
289 		"if %0 <= %[max] goto +2\n"					\
290 		"%0 = 0\n"							\
291 		"goto +1\n"							\
292 		"%0 += %1\n"							\
293 		: "+r"(__addr)							\
294 		: "r"(__base),							\
295 		  [max]"r"(sizeof(arr[0]) * ((n) - 1)));			\
296 	__addr;									\
297 })
298 #endif /* ARRAY_ELEM_PTR */
299 
300 /*
301  * BPF declarations and helpers
302  */
303 
304 /* list and rbtree */
305 #define __contains(name, node) __attribute__((btf_decl_tag("contains:" #name ":" #node)))
306 #define private(name) SEC(".data." #name) __hidden __attribute__((aligned(8)))
307 
308 void *bpf_obj_new_impl(__u64 local_type_id, void *meta) __ksym;
309 void bpf_obj_drop_impl(void *kptr, void *meta) __ksym;
310 
311 #define bpf_obj_new(type) ((type *)bpf_obj_new_impl(bpf_core_type_id_local(type), NULL))
312 #define bpf_obj_drop(kptr) bpf_obj_drop_impl(kptr, NULL)
313 
314 int bpf_list_push_front_impl(struct bpf_list_head *head,
315 				    struct bpf_list_node *node,
316 				    void *meta, __u64 off) __ksym;
317 #define bpf_list_push_front(head, node) bpf_list_push_front_impl(head, node, NULL, 0)
318 
319 int bpf_list_push_back_impl(struct bpf_list_head *head,
320 				   struct bpf_list_node *node,
321 				   void *meta, __u64 off) __ksym;
322 #define bpf_list_push_back(head, node) bpf_list_push_back_impl(head, node, NULL, 0)
323 
324 struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) __ksym;
325 struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) __ksym;
326 struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
327 				      struct bpf_rb_node *node) __ksym;
328 int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
329 			bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
330 			void *meta, __u64 off) __ksym;
331 #define bpf_rbtree_add(head, node, less) bpf_rbtree_add_impl(head, node, less, NULL, 0)
332 
333 struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) __ksym;
334 
335 void *bpf_refcount_acquire_impl(void *kptr, void *meta) __ksym;
336 #define bpf_refcount_acquire(kptr) bpf_refcount_acquire_impl(kptr, NULL)
337 
338 /* task */
339 struct task_struct *bpf_task_from_pid(s32 pid) __ksym;
340 struct task_struct *bpf_task_acquire(struct task_struct *p) __ksym;
341 void bpf_task_release(struct task_struct *p) __ksym;
342 
343 /* cgroup */
344 struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) __ksym;
345 void bpf_cgroup_release(struct cgroup *cgrp) __ksym;
346 struct cgroup *bpf_cgroup_from_id(u64 cgid) __ksym;
347 
348 /* css iteration */
349 struct bpf_iter_css;
350 struct cgroup_subsys_state;
351 extern int bpf_iter_css_new(struct bpf_iter_css *it,
352 			    struct cgroup_subsys_state *start,
353 			    unsigned int flags) __weak __ksym;
354 extern struct cgroup_subsys_state *
355 bpf_iter_css_next(struct bpf_iter_css *it) __weak __ksym;
356 extern void bpf_iter_css_destroy(struct bpf_iter_css *it) __weak __ksym;
357 
358 /* cpumask */
359 struct bpf_cpumask *bpf_cpumask_create(void) __ksym;
360 struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) __ksym;
361 void bpf_cpumask_release(struct bpf_cpumask *cpumask) __ksym;
362 u32 bpf_cpumask_first(const struct cpumask *cpumask) __ksym;
363 u32 bpf_cpumask_first_zero(const struct cpumask *cpumask) __ksym;
364 void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
365 void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
366 bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask) __ksym;
367 bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
368 bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym;
369 void bpf_cpumask_setall(struct bpf_cpumask *cpumask) __ksym;
370 void bpf_cpumask_clear(struct bpf_cpumask *cpumask) __ksym;
371 bool bpf_cpumask_and(struct bpf_cpumask *dst, const struct cpumask *src1,
372 		     const struct cpumask *src2) __ksym;
373 void bpf_cpumask_or(struct bpf_cpumask *dst, const struct cpumask *src1,
374 		    const struct cpumask *src2) __ksym;
375 void bpf_cpumask_xor(struct bpf_cpumask *dst, const struct cpumask *src1,
376 		     const struct cpumask *src2) __ksym;
377 bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2) __ksym;
378 bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2) __ksym;
379 bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2) __ksym;
380 bool bpf_cpumask_empty(const struct cpumask *cpumask) __ksym;
381 bool bpf_cpumask_full(const struct cpumask *cpumask) __ksym;
382 void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src) __ksym;
383 u32 bpf_cpumask_any_distribute(const struct cpumask *cpumask) __ksym;
384 u32 bpf_cpumask_any_and_distribute(const struct cpumask *src1,
385 				   const struct cpumask *src2) __ksym;
386 u32 bpf_cpumask_weight(const struct cpumask *cpumask) __ksym;
387 
388 int bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) __ksym;
389 int *bpf_iter_bits_next(struct bpf_iter_bits *it) __ksym;
390 void bpf_iter_bits_destroy(struct bpf_iter_bits *it) __ksym;
391 
392 #define def_iter_struct(name)							\
393 struct bpf_iter_##name {							\
394     struct bpf_iter_bits it;							\
395     const struct cpumask *bitmap;						\
396 };
397 
398 #define def_iter_new(name)							\
399 static inline int bpf_iter_##name##_new(					\
400 	struct bpf_iter_##name *it, const u64 *unsafe_ptr__ign, u32 nr_words)	\
401 {										\
402 	it->bitmap = scx_bpf_get_##name##_cpumask();				\
403 	return bpf_iter_bits_new(&it->it, (const u64 *)it->bitmap,		\
404 				 sizeof(struct cpumask) / 8);			\
405 }
406 
407 #define def_iter_next(name)							\
408 static inline int *bpf_iter_##name##_next(struct bpf_iter_##name *it) {		\
409 	return bpf_iter_bits_next(&it->it);					\
410 }
411 
412 #define def_iter_destroy(name)							\
413 static inline void bpf_iter_##name##_destroy(struct bpf_iter_##name *it) {	\
414 	scx_bpf_put_cpumask(it->bitmap);					\
415 	bpf_iter_bits_destroy(&it->it);						\
416 }
417 #define def_for_each_cpu(cpu, name) for_each_##name##_cpu(cpu)
418 
419 /// Provides iterator for possible and online cpus.
420 ///
421 /// # Example
422 ///
423 /// ```
424 /// static inline void example_use() {
425 ///     int *cpu;
426 ///
427 ///     for_each_possible_cpu(cpu){
428 ///         bpf_printk("CPU %d is possible", *cpu);
429 ///     }
430 ///
431 ///     for_each_online_cpu(cpu){
432 ///         bpf_printk("CPU %d is online", *cpu);
433 ///     }
434 /// }
435 /// ```
436 def_iter_struct(possible);
437 def_iter_new(possible);
438 def_iter_next(possible);
439 def_iter_destroy(possible);
440 #define for_each_possible_cpu(cpu) bpf_for_each(possible, cpu, NULL, 0)
441 
442 def_iter_struct(online);
443 def_iter_new(online);
444 def_iter_next(online);
445 def_iter_destroy(online);
446 #define for_each_online_cpu(cpu) bpf_for_each(online, cpu, NULL, 0)
447 
448 /*
449  * Access a cpumask in read-only mode (typically to check bits).
450  */
451 static __always_inline const struct cpumask *cast_mask(struct bpf_cpumask *mask)
452 {
453 	return (const struct cpumask *)mask;
454 }
455 
456 /*
457  * Return true if task @p cannot migrate to a different CPU, false
458  * otherwise.
459  */
460 static inline bool is_migration_disabled(const struct task_struct *p)
461 {
462 	/*
463 	 * Testing p->migration_disabled in a BPF code is tricky because the
464 	 * migration is _always_ disabled while running the BPF code.
465 	 * The prolog (__bpf_prog_enter) and epilog (__bpf_prog_exit) for BPF
466 	 * code execution disable and re-enable the migration of the current
467 	 * task, respectively. So, the _current_ task of the sched_ext ops is
468 	 * always migration-disabled. Moreover, p->migration_disabled could be
469 	 * two or greater when a sched_ext ops BPF code (e.g., ops.tick) is
470 	 * executed in the middle of the other BPF code execution.
471 	 *
472 	 * Therefore, we should decide that the _current_ task is
473 	 * migration-disabled only when its migration_disabled count is greater
474 	 * than one. In other words, when  p->migration_disabled == 1, there is
475 	 * an ambiguity, so we should check if @p is the current task or not.
476 	 */
477 	if (bpf_core_field_exists(p->migration_disabled)) {
478 		if (p->migration_disabled == 1)
479 			return bpf_get_current_task_btf() != p;
480 		else
481 			return p->migration_disabled;
482 	}
483 	return false;
484 }
485 
486 /* rcu */
487 void bpf_rcu_read_lock(void) __ksym;
488 void bpf_rcu_read_unlock(void) __ksym;
489 
490 /*
491  * Time helpers, most of which are from jiffies.h.
492  */
493 
494 /**
495  * time_delta - Calculate the delta between new and old time stamp
496  * @after: first comparable as u64
497  * @before: second comparable as u64
498  *
499  * Return: the time difference, which is >= 0
500  */
501 static inline s64 time_delta(u64 after, u64 before)
502 {
503 	return (s64)(after - before) > 0 ? (s64)(after - before) : 0;
504 }
505 
506 /**
507  * time_after - returns true if the time a is after time b.
508  * @a: first comparable as u64
509  * @b: second comparable as u64
510  *
511  * Do this with "<0" and ">=0" to only test the sign of the result. A
512  * good compiler would generate better code (and a really good compiler
513  * wouldn't care). Gcc is currently neither.
514  *
515  * Return: %true is time a is after time b, otherwise %false.
516  */
517 static inline bool time_after(u64 a, u64 b)
518 {
519 	return (s64)(b - a) < 0;
520 }
521 
522 /**
523  * time_before - returns true if the time a is before time b.
524  * @a: first comparable as u64
525  * @b: second comparable as u64
526  *
527  * Return: %true is time a is before time b, otherwise %false.
528  */
529 static inline bool time_before(u64 a, u64 b)
530 {
531 	return time_after(b, a);
532 }
533 
534 /**
535  * time_after_eq - returns true if the time a is after or the same as time b.
536  * @a: first comparable as u64
537  * @b: second comparable as u64
538  *
539  * Return: %true is time a is after or the same as time b, otherwise %false.
540  */
541 static inline bool time_after_eq(u64 a, u64 b)
542 {
543 	return (s64)(a - b) >= 0;
544 }
545 
546 /**
547  * time_before_eq - returns true if the time a is before or the same as time b.
548  * @a: first comparable as u64
549  * @b: second comparable as u64
550  *
551  * Return: %true is time a is before or the same as time b, otherwise %false.
552  */
553 static inline bool time_before_eq(u64 a, u64 b)
554 {
555 	return time_after_eq(b, a);
556 }
557 
558 /**
559  * time_in_range - Calculate whether a is in the range of [b, c].
560  * @a: time to test
561  * @b: beginning of the range
562  * @c: end of the range
563  *
564  * Return: %true is time a is in the range [b, c], otherwise %false.
565  */
566 static inline bool time_in_range(u64 a, u64 b, u64 c)
567 {
568 	return time_after_eq(a, b) && time_before_eq(a, c);
569 }
570 
571 /**
572  * time_in_range_open - Calculate whether a is in the range of [b, c).
573  * @a: time to test
574  * @b: beginning of the range
575  * @c: end of the range
576  *
577  * Return: %true is time a is in the range [b, c), otherwise %false.
578  */
579 static inline bool time_in_range_open(u64 a, u64 b, u64 c)
580 {
581 	return time_after_eq(a, b) && time_before(a, c);
582 }
583 
584 
585 /*
586  * Other helpers
587  */
588 
589 /* useful compiler attributes */
590 #ifndef likely
591 #define likely(x) __builtin_expect(!!(x), 1)
592 #endif
593 #ifndef unlikely
594 #define unlikely(x) __builtin_expect(!!(x), 0)
595 #endif
596 #ifndef __maybe_unused
597 #define __maybe_unused __attribute__((__unused__))
598 #endif
599 
600 /*
601  * READ/WRITE_ONCE() are from kernel (include/asm-generic/rwonce.h). They
602  * prevent compiler from caching, redoing or reordering reads or writes.
603  */
604 typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
605 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
606 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
607 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
608 
609 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
610 {
611 	switch (size) {
612 	case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
613 	case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
614 	case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
615 	case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
616 	default:
617 		barrier();
618 		__builtin_memcpy((void *)res, (const void *)p, size);
619 		barrier();
620 	}
621 }
622 
623 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
624 {
625 	switch (size) {
626 	case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
627 	case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
628 	case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
629 	case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
630 	default:
631 		barrier();
632 		__builtin_memcpy((void *)p, (const void *)res, size);
633 		barrier();
634 	}
635 }
636 
637 /*
638  * __unqual_typeof(x) - Declare an unqualified scalar type, leaving
639  *			non-scalar types unchanged,
640  *
641  * Prefer C11 _Generic for better compile-times and simpler code. Note: 'char'
642  * is not type-compatible with 'signed char', and we define a separate case.
643  *
644  * This is copied verbatim from kernel's include/linux/compiler_types.h, but
645  * with default expression (for pointers) changed from (x) to (typeof(x)0).
646  *
647  * This is because LLVM has a bug where for lvalue (x), it does not get rid of
648  * an extra address_space qualifier, but does in case of rvalue (typeof(x)0).
649  * Hence, for pointers, we need to create an rvalue expression to get the
650  * desired type. See https://github.com/llvm/llvm-project/issues/53400.
651  */
652 #define __scalar_type_to_expr_cases(type) \
653 	unsigned type : (unsigned type)0, signed type : (signed type)0
654 
655 #define __unqual_typeof(x)                              \
656 	typeof(_Generic((x),                            \
657 		char: (char)0,                          \
658 		__scalar_type_to_expr_cases(char),      \
659 		__scalar_type_to_expr_cases(short),     \
660 		__scalar_type_to_expr_cases(int),       \
661 		__scalar_type_to_expr_cases(long),      \
662 		__scalar_type_to_expr_cases(long long), \
663 		default: (typeof(x))0))
664 
665 #define READ_ONCE(x)								\
666 ({										\
667 	union { __unqual_typeof(x) __val; char __c[1]; } __u =			\
668 		{ .__c = { 0 } };						\
669 	__read_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x));	\
670 	__u.__val;								\
671 })
672 
673 #define WRITE_ONCE(x, val)							\
674 ({										\
675 	union { __unqual_typeof(x) __val; char __c[1]; } __u =			\
676 		{ .__val = (val) }; 						\
677 	__write_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x));	\
678 	__u.__val;								\
679 })
680 
681 /*
682  * __calc_avg - Calculate exponential weighted moving average (EWMA) with
683  * @old and @new values. @decay represents how large the @old value remains.
684  * With a larger @decay value, the moving average changes slowly, exhibiting
685  * fewer fluctuations.
686  */
687 #define __calc_avg(old, new, decay) ({						\
688 	typeof(decay) thr = 1 << (decay);					\
689 	typeof(old) ret;							\
690 	if (((old) < thr) || ((new) < thr)) {					\
691 		if (((old) == 1) && ((new) == 0))				\
692 			ret = 0;						\
693 		else								\
694 			ret = ((old) - ((old) >> 1)) + ((new) >> 1);		\
695 	} else {								\
696 		ret = ((old) - ((old) >> (decay))) + ((new) >> (decay));	\
697 	}									\
698 	ret;									\
699 })
700 
701 /*
702  * log2_u32 - Compute the base 2 logarithm of a 32-bit exponential value.
703  * @v: The value for which we're computing the base 2 logarithm.
704  */
705 static inline u32 log2_u32(u32 v)
706 {
707         u32 r;
708         u32 shift;
709 
710         r = (v > 0xFFFF) << 4; v >>= r;
711         shift = (v > 0xFF) << 3; v >>= shift; r |= shift;
712         shift = (v > 0xF) << 2; v >>= shift; r |= shift;
713         shift = (v > 0x3) << 1; v >>= shift; r |= shift;
714         r |= (v >> 1);
715         return r;
716 }
717 
718 /*
719  * log2_u64 - Compute the base 2 logarithm of a 64-bit exponential value.
720  * @v: The value for which we're computing the base 2 logarithm.
721  */
722 static inline u32 log2_u64(u64 v)
723 {
724         u32 hi = v >> 32;
725         if (hi)
726                 return log2_u32(hi) + 32 + 1;
727         else
728                 return log2_u32(v) + 1;
729 }
730 
731 /*
732  * sqrt_u64 - Calculate the square root of value @x using Newton's method.
733  */
734 static inline u64 __sqrt_u64(u64 x)
735 {
736 	if (x == 0 || x == 1)
737 		return x;
738 
739 	u64 r = ((1ULL << 32) > x) ? x : (1ULL << 32);
740 
741 	for (int i = 0; i < 8; ++i) {
742 		u64 q = x / r;
743 		if (r <= q)
744 			break;
745 		r = (r + q) >> 1;
746 	}
747 	return r;
748 }
749 
750 /*
751  * Return a value proportionally scaled to the task's weight.
752  */
753 static inline u64 scale_by_task_weight(const struct task_struct *p, u64 value)
754 {
755 	return (value * p->scx.weight) / 100;
756 }
757 
758 /*
759  * Return a value inversely proportional to the task's weight.
760  */
761 static inline u64 scale_by_task_weight_inverse(const struct task_struct *p, u64 value)
762 {
763 	return value * 100 / p->scx.weight;
764 }
765 
766 
767 #include "compat.bpf.h"
768 #include "enums.bpf.h"
769 
770 #endif	/* __SCX_COMMON_BPF_H */
771