1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 4 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 5 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 6 */ 7 #ifndef __SCX_COMMON_BPF_H 8 #define __SCX_COMMON_BPF_H 9 10 /* 11 * The generated kfunc prototypes in vmlinux.h are missing address space 12 * attributes which cause build failures. For now, suppress the generated 13 * prototypes. See https://github.com/sched-ext/scx/issues/1111. 14 */ 15 #define BPF_NO_KFUNC_PROTOTYPES 16 17 #ifdef LSP 18 #define __bpf__ 19 #include "../vmlinux.h" 20 #else 21 #include "vmlinux.h" 22 #endif 23 24 #include <bpf/bpf_helpers.h> 25 #include <bpf/bpf_tracing.h> 26 #include <asm-generic/errno.h> 27 #include "user_exit_info.bpf.h" 28 #include "enum_defs.autogen.h" 29 30 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 31 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ 32 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 33 #define PF_KCOMPACTD 0x00010000 /* I am kcompactd */ 34 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 35 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 36 #define PF_EXITING 0x00000004 37 #define CLOCK_MONOTONIC 1 38 39 #ifndef NR_CPUS 40 #define NR_CPUS 1024 41 #endif 42 43 #ifndef NUMA_NO_NODE 44 #define NUMA_NO_NODE (-1) 45 #endif 46 47 extern int LINUX_KERNEL_VERSION __kconfig; 48 extern const char CONFIG_CC_VERSION_TEXT[64] __kconfig __weak; 49 extern const char CONFIG_LOCALVERSION[64] __kconfig __weak; 50 51 /* 52 * Earlier versions of clang/pahole lost upper 32bits in 64bit enums which can 53 * lead to really confusing misbehaviors. Let's trigger a build failure. 54 */ 55 static inline void ___vmlinux_h_sanity_check___(void) 56 { 57 _Static_assert(SCX_DSQ_FLAG_BUILTIN, 58 "bpftool generated vmlinux.h is missing high bits for 64bit enums, upgrade clang and pahole"); 59 } 60 61 s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) __ksym; 62 s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) __ksym; 63 s32 __scx_bpf_select_cpu_and(struct task_struct *p, const struct cpumask *cpus_allowed, 64 struct scx_bpf_select_cpu_and_args *args) __ksym __weak; 65 bool __scx_bpf_dsq_insert_vtime(struct task_struct *p, struct scx_bpf_dsq_insert_vtime_args *args) __ksym __weak; 66 u32 scx_bpf_dispatch_nr_slots(void) __ksym; 67 void scx_bpf_dispatch_cancel(void) __ksym; 68 void scx_bpf_kick_cpu(s32 cpu, u64 flags) __ksym; 69 s32 scx_bpf_dsq_nr_queued(u64 dsq_id) __ksym; 70 void scx_bpf_destroy_dsq(u64 dsq_id) __ksym; 71 struct task_struct *scx_bpf_dsq_peek(u64 dsq_id) __ksym __weak; 72 int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, u64 flags) __ksym __weak; 73 struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) __ksym __weak; 74 void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) __ksym __weak; 75 void scx_bpf_exit_bstr(s64 exit_code, char *fmt, unsigned long long *data, u32 data__sz) __ksym __weak; 76 void scx_bpf_error_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym; 77 void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym __weak; 78 u32 scx_bpf_cpuperf_cap(s32 cpu) __ksym __weak; 79 u32 scx_bpf_cpuperf_cur(s32 cpu) __ksym __weak; 80 void scx_bpf_cpuperf_set(s32 cpu, u32 perf) __ksym __weak; 81 u32 scx_bpf_nr_node_ids(void) __ksym __weak; 82 u32 scx_bpf_nr_cpu_ids(void) __ksym __weak; 83 int scx_bpf_cpu_node(s32 cpu) __ksym __weak; 84 const struct cpumask *scx_bpf_get_possible_cpumask(void) __ksym __weak; 85 const struct cpumask *scx_bpf_get_online_cpumask(void) __ksym __weak; 86 void scx_bpf_put_cpumask(const struct cpumask *cpumask) __ksym __weak; 87 const struct cpumask *scx_bpf_get_idle_cpumask_node(int node) __ksym __weak; 88 const struct cpumask *scx_bpf_get_idle_cpumask(void) __ksym; 89 const struct cpumask *scx_bpf_get_idle_smtmask_node(int node) __ksym __weak; 90 const struct cpumask *scx_bpf_get_idle_smtmask(void) __ksym; 91 void scx_bpf_put_idle_cpumask(const struct cpumask *cpumask) __ksym; 92 bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) __ksym; 93 s32 scx_bpf_pick_idle_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak; 94 s32 scx_bpf_pick_idle_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym; 95 s32 scx_bpf_pick_any_cpu_node(const cpumask_t *cpus_allowed, int node, u64 flags) __ksym __weak; 96 s32 scx_bpf_pick_any_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym; 97 bool scx_bpf_task_running(const struct task_struct *p) __ksym; 98 s32 scx_bpf_task_cpu(const struct task_struct *p) __ksym; 99 struct rq *scx_bpf_cpu_rq(s32 cpu) __ksym; 100 struct rq *scx_bpf_locked_rq(void) __ksym; 101 struct task_struct *scx_bpf_cpu_curr(s32 cpu) __ksym __weak; 102 u64 scx_bpf_now(void) __ksym __weak; 103 void scx_bpf_events(struct scx_event_stats *events, size_t events__sz) __ksym __weak; 104 105 /* 106 * Use the following as @it__iter when calling scx_bpf_dsq_move[_vtime]() from 107 * within bpf_for_each() loops. 108 */ 109 #define BPF_FOR_EACH_ITER (&___it) 110 111 #define scx_read_event(e, name) \ 112 (bpf_core_field_exists((e)->name) ? (e)->name : 0) 113 114 static inline __attribute__((format(printf, 1, 2))) 115 void ___scx_bpf_bstr_format_checker(const char *fmt, ...) {} 116 117 #define SCX_STRINGIFY(x) #x 118 #define SCX_TOSTRING(x) SCX_STRINGIFY(x) 119 120 /* 121 * Helper macro for initializing the fmt and variadic argument inputs to both 122 * bstr exit kfuncs. Callers to this function should use ___fmt and ___param to 123 * refer to the initialized list of inputs to the bstr kfunc. 124 */ 125 #define scx_bpf_bstr_preamble(fmt, args...) \ 126 static char ___fmt[] = fmt; \ 127 /* \ 128 * Note that __param[] must have at least one \ 129 * element to keep the verifier happy. \ 130 */ \ 131 unsigned long long ___param[___bpf_narg(args) ?: 1] = {}; \ 132 \ 133 _Pragma("GCC diagnostic push") \ 134 _Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \ 135 ___bpf_fill(___param, args); \ 136 _Pragma("GCC diagnostic pop") 137 138 /* 139 * scx_bpf_exit() wraps the scx_bpf_exit_bstr() kfunc with variadic arguments 140 * instead of an array of u64. Using this macro will cause the scheduler to 141 * exit cleanly with the specified exit code being passed to user space. 142 */ 143 #define scx_bpf_exit(code, fmt, args...) \ 144 ({ \ 145 scx_bpf_bstr_preamble(fmt, args) \ 146 scx_bpf_exit_bstr(code, ___fmt, ___param, sizeof(___param)); \ 147 ___scx_bpf_bstr_format_checker(fmt, ##args); \ 148 }) 149 150 /* 151 * scx_bpf_error() wraps the scx_bpf_error_bstr() kfunc with variadic arguments 152 * instead of an array of u64. Invoking this macro will cause the scheduler to 153 * exit in an erroneous state, with diagnostic information being passed to the 154 * user. It appends the file and line number to aid debugging. 155 */ 156 #define scx_bpf_error(fmt, args...) \ 157 ({ \ 158 scx_bpf_bstr_preamble( \ 159 __FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args) \ 160 scx_bpf_error_bstr(___fmt, ___param, sizeof(___param)); \ 161 ___scx_bpf_bstr_format_checker( \ 162 __FILE__ ":" SCX_TOSTRING(__LINE__) ": " fmt, ##args); \ 163 }) 164 165 /* 166 * scx_bpf_dump() wraps the scx_bpf_dump_bstr() kfunc with variadic arguments 167 * instead of an array of u64. To be used from ops.dump() and friends. 168 */ 169 #define scx_bpf_dump(fmt, args...) \ 170 ({ \ 171 scx_bpf_bstr_preamble(fmt, args) \ 172 scx_bpf_dump_bstr(___fmt, ___param, sizeof(___param)); \ 173 ___scx_bpf_bstr_format_checker(fmt, ##args); \ 174 }) 175 176 /* 177 * scx_bpf_dump_header() is a wrapper around scx_bpf_dump that adds a header 178 * of system information for debugging. 179 */ 180 #define scx_bpf_dump_header() \ 181 ({ \ 182 scx_bpf_dump("kernel: %d.%d.%d %s\ncc: %s\n", \ 183 LINUX_KERNEL_VERSION >> 16, \ 184 LINUX_KERNEL_VERSION >> 8 & 0xFF, \ 185 LINUX_KERNEL_VERSION & 0xFF, \ 186 CONFIG_LOCALVERSION, \ 187 CONFIG_CC_VERSION_TEXT); \ 188 }) 189 190 #define BPF_STRUCT_OPS(name, args...) \ 191 SEC("struct_ops/"#name) \ 192 BPF_PROG(name, ##args) 193 194 #define BPF_STRUCT_OPS_SLEEPABLE(name, args...) \ 195 SEC("struct_ops.s/"#name) \ 196 BPF_PROG(name, ##args) 197 198 /** 199 * RESIZABLE_ARRAY - Generates annotations for an array that may be resized 200 * @elfsec: the data section of the BPF program in which to place the array 201 * @arr: the name of the array 202 * 203 * libbpf has an API for setting map value sizes. Since data sections (i.e. 204 * bss, data, rodata) themselves are maps, a data section can be resized. If 205 * a data section has an array as its last element, the BTF info for that 206 * array will be adjusted so that length of the array is extended to meet the 207 * new length of the data section. This macro annotates an array to have an 208 * element count of one with the assumption that this array can be resized 209 * within the userspace program. It also annotates the section specifier so 210 * this array exists in a custom sub data section which can be resized 211 * independently. 212 * 213 * See RESIZE_ARRAY() for the userspace convenience macro for resizing an 214 * array declared with RESIZABLE_ARRAY(). 215 */ 216 #define RESIZABLE_ARRAY(elfsec, arr) arr[1] SEC("."#elfsec"."#arr) 217 218 /** 219 * MEMBER_VPTR - Obtain the verified pointer to a struct or array member 220 * @base: struct or array to index 221 * @member: dereferenced member (e.g. .field, [idx0][idx1], .field[idx0] ...) 222 * 223 * The verifier often gets confused by the instruction sequence the compiler 224 * generates for indexing struct fields or arrays. This macro forces the 225 * compiler to generate a code sequence which first calculates the byte offset, 226 * checks it against the struct or array size and add that byte offset to 227 * generate the pointer to the member to help the verifier. 228 * 229 * Ideally, we want to abort if the calculated offset is out-of-bounds. However, 230 * BPF currently doesn't support abort, so evaluate to %NULL instead. The caller 231 * must check for %NULL and take appropriate action to appease the verifier. To 232 * avoid confusing the verifier, it's best to check for %NULL and dereference 233 * immediately. 234 * 235 * vptr = MEMBER_VPTR(my_array, [i][j]); 236 * if (!vptr) 237 * return error; 238 * *vptr = new_value; 239 * 240 * sizeof(@base) should encompass the memory area to be accessed and thus can't 241 * be a pointer to the area. Use `MEMBER_VPTR(*ptr, .member)` instead of 242 * `MEMBER_VPTR(ptr, ->member)`. 243 */ 244 #ifndef MEMBER_VPTR 245 #define MEMBER_VPTR(base, member) (typeof((base) member) *) \ 246 ({ \ 247 u64 __base = (u64)&(base); \ 248 u64 __addr = (u64)&((base) member) - __base; \ 249 _Static_assert(sizeof(base) >= sizeof((base) member), \ 250 "@base is smaller than @member, is @base a pointer?"); \ 251 asm volatile ( \ 252 "if %0 <= %[max] goto +2\n" \ 253 "%0 = 0\n" \ 254 "goto +1\n" \ 255 "%0 += %1\n" \ 256 : "+r"(__addr) \ 257 : "r"(__base), \ 258 [max]"i"(sizeof(base) - sizeof((base) member))); \ 259 __addr; \ 260 }) 261 #endif /* MEMBER_VPTR */ 262 263 /** 264 * ARRAY_ELEM_PTR - Obtain the verified pointer to an array element 265 * @arr: array to index into 266 * @i: array index 267 * @n: number of elements in array 268 * 269 * Similar to MEMBER_VPTR() but is intended for use with arrays where the 270 * element count needs to be explicit. 271 * It can be used in cases where a global array is defined with an initial 272 * size but is intended to be be resized before loading the BPF program. 273 * Without this version of the macro, MEMBER_VPTR() will use the compile time 274 * size of the array to compute the max, which will result in rejection by 275 * the verifier. 276 */ 277 #ifndef ARRAY_ELEM_PTR 278 #define ARRAY_ELEM_PTR(arr, i, n) (typeof(arr[i]) *) \ 279 ({ \ 280 u64 __base = (u64)arr; \ 281 u64 __addr = (u64)&(arr[i]) - __base; \ 282 asm volatile ( \ 283 "if %0 <= %[max] goto +2\n" \ 284 "%0 = 0\n" \ 285 "goto +1\n" \ 286 "%0 += %1\n" \ 287 : "+r"(__addr) \ 288 : "r"(__base), \ 289 [max]"r"(sizeof(arr[0]) * ((n) - 1))); \ 290 __addr; \ 291 }) 292 #endif /* ARRAY_ELEM_PTR */ 293 294 /* 295 * BPF declarations and helpers 296 */ 297 298 /* list and rbtree */ 299 #define __contains(name, node) __attribute__((btf_decl_tag("contains:" #name ":" #node))) 300 #define private(name) SEC(".data." #name) __hidden __attribute__((aligned(8))) 301 302 void *bpf_obj_new_impl(__u64 local_type_id, void *meta) __ksym; 303 void bpf_obj_drop_impl(void *kptr, void *meta) __ksym; 304 305 #define bpf_obj_new(type) ((type *)bpf_obj_new_impl(bpf_core_type_id_local(type), NULL)) 306 #define bpf_obj_drop(kptr) bpf_obj_drop_impl(kptr, NULL) 307 308 int bpf_list_push_front_impl(struct bpf_list_head *head, 309 struct bpf_list_node *node, 310 void *meta, __u64 off) __ksym; 311 #define bpf_list_push_front(head, node) bpf_list_push_front_impl(head, node, NULL, 0) 312 313 int bpf_list_push_back_impl(struct bpf_list_head *head, 314 struct bpf_list_node *node, 315 void *meta, __u64 off) __ksym; 316 #define bpf_list_push_back(head, node) bpf_list_push_back_impl(head, node, NULL, 0) 317 318 struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) __ksym; 319 struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) __ksym; 320 struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 321 struct bpf_rb_node *node) __ksym; 322 int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 323 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 324 void *meta, __u64 off) __ksym; 325 #define bpf_rbtree_add(head, node, less) bpf_rbtree_add_impl(head, node, less, NULL, 0) 326 327 struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) __ksym; 328 329 void *bpf_refcount_acquire_impl(void *kptr, void *meta) __ksym; 330 #define bpf_refcount_acquire(kptr) bpf_refcount_acquire_impl(kptr, NULL) 331 332 /* task */ 333 struct task_struct *bpf_task_from_pid(s32 pid) __ksym; 334 struct task_struct *bpf_task_acquire(struct task_struct *p) __ksym; 335 void bpf_task_release(struct task_struct *p) __ksym; 336 337 /* cgroup */ 338 struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) __ksym; 339 void bpf_cgroup_release(struct cgroup *cgrp) __ksym; 340 struct cgroup *bpf_cgroup_from_id(u64 cgid) __ksym; 341 342 /* css iteration */ 343 struct bpf_iter_css; 344 struct cgroup_subsys_state; 345 extern int bpf_iter_css_new(struct bpf_iter_css *it, 346 struct cgroup_subsys_state *start, 347 unsigned int flags) __weak __ksym; 348 extern struct cgroup_subsys_state * 349 bpf_iter_css_next(struct bpf_iter_css *it) __weak __ksym; 350 extern void bpf_iter_css_destroy(struct bpf_iter_css *it) __weak __ksym; 351 352 /* cpumask */ 353 struct bpf_cpumask *bpf_cpumask_create(void) __ksym; 354 struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) __ksym; 355 void bpf_cpumask_release(struct bpf_cpumask *cpumask) __ksym; 356 u32 bpf_cpumask_first(const struct cpumask *cpumask) __ksym; 357 u32 bpf_cpumask_first_zero(const struct cpumask *cpumask) __ksym; 358 void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; 359 void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; 360 bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask) __ksym; 361 bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; 362 bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; 363 void bpf_cpumask_setall(struct bpf_cpumask *cpumask) __ksym; 364 void bpf_cpumask_clear(struct bpf_cpumask *cpumask) __ksym; 365 bool bpf_cpumask_and(struct bpf_cpumask *dst, const struct cpumask *src1, 366 const struct cpumask *src2) __ksym; 367 void bpf_cpumask_or(struct bpf_cpumask *dst, const struct cpumask *src1, 368 const struct cpumask *src2) __ksym; 369 void bpf_cpumask_xor(struct bpf_cpumask *dst, const struct cpumask *src1, 370 const struct cpumask *src2) __ksym; 371 bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2) __ksym; 372 bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2) __ksym; 373 bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2) __ksym; 374 bool bpf_cpumask_empty(const struct cpumask *cpumask) __ksym; 375 bool bpf_cpumask_full(const struct cpumask *cpumask) __ksym; 376 void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src) __ksym; 377 u32 bpf_cpumask_any_distribute(const struct cpumask *cpumask) __ksym; 378 u32 bpf_cpumask_any_and_distribute(const struct cpumask *src1, 379 const struct cpumask *src2) __ksym; 380 u32 bpf_cpumask_weight(const struct cpumask *cpumask) __ksym; 381 382 int bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) __ksym; 383 int *bpf_iter_bits_next(struct bpf_iter_bits *it) __ksym; 384 void bpf_iter_bits_destroy(struct bpf_iter_bits *it) __ksym; 385 386 #define def_iter_struct(name) \ 387 struct bpf_iter_##name { \ 388 struct bpf_iter_bits it; \ 389 const struct cpumask *bitmap; \ 390 }; 391 392 #define def_iter_new(name) \ 393 static inline int bpf_iter_##name##_new( \ 394 struct bpf_iter_##name *it, const u64 *unsafe_ptr__ign, u32 nr_words) \ 395 { \ 396 it->bitmap = scx_bpf_get_##name##_cpumask(); \ 397 return bpf_iter_bits_new(&it->it, (const u64 *)it->bitmap, \ 398 sizeof(struct cpumask) / 8); \ 399 } 400 401 #define def_iter_next(name) \ 402 static inline int *bpf_iter_##name##_next(struct bpf_iter_##name *it) { \ 403 return bpf_iter_bits_next(&it->it); \ 404 } 405 406 #define def_iter_destroy(name) \ 407 static inline void bpf_iter_##name##_destroy(struct bpf_iter_##name *it) { \ 408 scx_bpf_put_cpumask(it->bitmap); \ 409 bpf_iter_bits_destroy(&it->it); \ 410 } 411 #define def_for_each_cpu(cpu, name) for_each_##name##_cpu(cpu) 412 413 /// Provides iterator for possible and online cpus. 414 /// 415 /// # Example 416 /// 417 /// ``` 418 /// static inline void example_use() { 419 /// int *cpu; 420 /// 421 /// for_each_possible_cpu(cpu){ 422 /// bpf_printk("CPU %d is possible", *cpu); 423 /// } 424 /// 425 /// for_each_online_cpu(cpu){ 426 /// bpf_printk("CPU %d is online", *cpu); 427 /// } 428 /// } 429 /// ``` 430 def_iter_struct(possible); 431 def_iter_new(possible); 432 def_iter_next(possible); 433 def_iter_destroy(possible); 434 #define for_each_possible_cpu(cpu) bpf_for_each(possible, cpu, NULL, 0) 435 436 def_iter_struct(online); 437 def_iter_new(online); 438 def_iter_next(online); 439 def_iter_destroy(online); 440 #define for_each_online_cpu(cpu) bpf_for_each(online, cpu, NULL, 0) 441 442 /* 443 * Access a cpumask in read-only mode (typically to check bits). 444 */ 445 static __always_inline const struct cpumask *cast_mask(struct bpf_cpumask *mask) 446 { 447 return (const struct cpumask *)mask; 448 } 449 450 /* 451 * Return true if task @p cannot migrate to a different CPU, false 452 * otherwise. 453 */ 454 static inline bool is_migration_disabled(const struct task_struct *p) 455 { 456 /* 457 * Testing p->migration_disabled in a BPF code is tricky because the 458 * migration is _always_ disabled while running the BPF code. 459 * The prolog (__bpf_prog_enter) and epilog (__bpf_prog_exit) for BPF 460 * code execution disable and re-enable the migration of the current 461 * task, respectively. So, the _current_ task of the sched_ext ops is 462 * always migration-disabled. Moreover, p->migration_disabled could be 463 * two or greater when a sched_ext ops BPF code (e.g., ops.tick) is 464 * executed in the middle of the other BPF code execution. 465 * 466 * Therefore, we should decide that the _current_ task is 467 * migration-disabled only when its migration_disabled count is greater 468 * than one. In other words, when p->migration_disabled == 1, there is 469 * an ambiguity, so we should check if @p is the current task or not. 470 */ 471 if (bpf_core_field_exists(p->migration_disabled)) { 472 if (p->migration_disabled == 1) 473 return bpf_get_current_task_btf() != p; 474 else 475 return p->migration_disabled; 476 } 477 return false; 478 } 479 480 /* rcu */ 481 void bpf_rcu_read_lock(void) __ksym; 482 void bpf_rcu_read_unlock(void) __ksym; 483 484 /* 485 * Time helpers, most of which are from jiffies.h. 486 */ 487 488 /** 489 * time_delta - Calculate the delta between new and old time stamp 490 * @after: first comparable as u64 491 * @before: second comparable as u64 492 * 493 * Return: the time difference, which is >= 0 494 */ 495 static inline s64 time_delta(u64 after, u64 before) 496 { 497 return (s64)(after - before) > 0 ? (s64)(after - before) : 0; 498 } 499 500 /** 501 * time_after - returns true if the time a is after time b. 502 * @a: first comparable as u64 503 * @b: second comparable as u64 504 * 505 * Do this with "<0" and ">=0" to only test the sign of the result. A 506 * good compiler would generate better code (and a really good compiler 507 * wouldn't care). Gcc is currently neither. 508 * 509 * Return: %true is time a is after time b, otherwise %false. 510 */ 511 static inline bool time_after(u64 a, u64 b) 512 { 513 return (s64)(b - a) < 0; 514 } 515 516 /** 517 * time_before - returns true if the time a is before time b. 518 * @a: first comparable as u64 519 * @b: second comparable as u64 520 * 521 * Return: %true is time a is before time b, otherwise %false. 522 */ 523 static inline bool time_before(u64 a, u64 b) 524 { 525 return time_after(b, a); 526 } 527 528 /** 529 * time_after_eq - returns true if the time a is after or the same as time b. 530 * @a: first comparable as u64 531 * @b: second comparable as u64 532 * 533 * Return: %true is time a is after or the same as time b, otherwise %false. 534 */ 535 static inline bool time_after_eq(u64 a, u64 b) 536 { 537 return (s64)(a - b) >= 0; 538 } 539 540 /** 541 * time_before_eq - returns true if the time a is before or the same as time b. 542 * @a: first comparable as u64 543 * @b: second comparable as u64 544 * 545 * Return: %true is time a is before or the same as time b, otherwise %false. 546 */ 547 static inline bool time_before_eq(u64 a, u64 b) 548 { 549 return time_after_eq(b, a); 550 } 551 552 /** 553 * time_in_range - Calculate whether a is in the range of [b, c]. 554 * @a: time to test 555 * @b: beginning of the range 556 * @c: end of the range 557 * 558 * Return: %true is time a is in the range [b, c], otherwise %false. 559 */ 560 static inline bool time_in_range(u64 a, u64 b, u64 c) 561 { 562 return time_after_eq(a, b) && time_before_eq(a, c); 563 } 564 565 /** 566 * time_in_range_open - Calculate whether a is in the range of [b, c). 567 * @a: time to test 568 * @b: beginning of the range 569 * @c: end of the range 570 * 571 * Return: %true is time a is in the range [b, c), otherwise %false. 572 */ 573 static inline bool time_in_range_open(u64 a, u64 b, u64 c) 574 { 575 return time_after_eq(a, b) && time_before(a, c); 576 } 577 578 579 /* 580 * Other helpers 581 */ 582 583 /* useful compiler attributes */ 584 #ifndef likely 585 #define likely(x) __builtin_expect(!!(x), 1) 586 #endif 587 #ifndef unlikely 588 #define unlikely(x) __builtin_expect(!!(x), 0) 589 #endif 590 #ifndef __maybe_unused 591 #define __maybe_unused __attribute__((__unused__)) 592 #endif 593 594 /* 595 * READ/WRITE_ONCE() are from kernel (include/asm-generic/rwonce.h). They 596 * prevent compiler from caching, redoing or reordering reads or writes. 597 */ 598 typedef __u8 __attribute__((__may_alias__)) __u8_alias_t; 599 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t; 600 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t; 601 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t; 602 603 static __always_inline void __read_once_size(const volatile void *p, void *res, int size) 604 { 605 switch (size) { 606 case 1: *(__u8_alias_t *) res = *(volatile __u8_alias_t *) p; break; 607 case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break; 608 case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break; 609 case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break; 610 default: 611 barrier(); 612 __builtin_memcpy((void *)res, (const void *)p, size); 613 barrier(); 614 } 615 } 616 617 static __always_inline void __write_once_size(volatile void *p, void *res, int size) 618 { 619 switch (size) { 620 case 1: *(volatile __u8_alias_t *) p = *(__u8_alias_t *) res; break; 621 case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break; 622 case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break; 623 case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break; 624 default: 625 barrier(); 626 __builtin_memcpy((void *)p, (const void *)res, size); 627 barrier(); 628 } 629 } 630 631 /* 632 * __unqual_typeof(x) - Declare an unqualified scalar type, leaving 633 * non-scalar types unchanged, 634 * 635 * Prefer C11 _Generic for better compile-times and simpler code. Note: 'char' 636 * is not type-compatible with 'signed char', and we define a separate case. 637 * 638 * This is copied verbatim from kernel's include/linux/compiler_types.h, but 639 * with default expression (for pointers) changed from (x) to (typeof(x)0). 640 * 641 * This is because LLVM has a bug where for lvalue (x), it does not get rid of 642 * an extra address_space qualifier, but does in case of rvalue (typeof(x)0). 643 * Hence, for pointers, we need to create an rvalue expression to get the 644 * desired type. See https://github.com/llvm/llvm-project/issues/53400. 645 */ 646 #define __scalar_type_to_expr_cases(type) \ 647 unsigned type : (unsigned type)0, signed type : (signed type)0 648 649 #define __unqual_typeof(x) \ 650 typeof(_Generic((x), \ 651 char: (char)0, \ 652 __scalar_type_to_expr_cases(char), \ 653 __scalar_type_to_expr_cases(short), \ 654 __scalar_type_to_expr_cases(int), \ 655 __scalar_type_to_expr_cases(long), \ 656 __scalar_type_to_expr_cases(long long), \ 657 default: (typeof(x))0)) 658 659 #define READ_ONCE(x) \ 660 ({ \ 661 union { __unqual_typeof(x) __val; char __c[1]; } __u = \ 662 { .__c = { 0 } }; \ 663 __read_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x)); \ 664 __u.__val; \ 665 }) 666 667 #define WRITE_ONCE(x, val) \ 668 ({ \ 669 union { __unqual_typeof(x) __val; char __c[1]; } __u = \ 670 { .__val = (val) }; \ 671 __write_once_size((__unqual_typeof(x) *)&(x), __u.__c, sizeof(x)); \ 672 __u.__val; \ 673 }) 674 675 /* 676 * __calc_avg - Calculate exponential weighted moving average (EWMA) with 677 * @old and @new values. @decay represents how large the @old value remains. 678 * With a larger @decay value, the moving average changes slowly, exhibiting 679 * fewer fluctuations. 680 */ 681 #define __calc_avg(old, new, decay) ({ \ 682 typeof(decay) thr = 1 << (decay); \ 683 typeof(old) ret; \ 684 if (((old) < thr) || ((new) < thr)) { \ 685 if (((old) == 1) && ((new) == 0)) \ 686 ret = 0; \ 687 else \ 688 ret = ((old) - ((old) >> 1)) + ((new) >> 1); \ 689 } else { \ 690 ret = ((old) - ((old) >> (decay))) + ((new) >> (decay)); \ 691 } \ 692 ret; \ 693 }) 694 695 /* 696 * log2_u32 - Compute the base 2 logarithm of a 32-bit exponential value. 697 * @v: The value for which we're computing the base 2 logarithm. 698 */ 699 static inline u32 log2_u32(u32 v) 700 { 701 u32 r; 702 u32 shift; 703 704 r = (v > 0xFFFF) << 4; v >>= r; 705 shift = (v > 0xFF) << 3; v >>= shift; r |= shift; 706 shift = (v > 0xF) << 2; v >>= shift; r |= shift; 707 shift = (v > 0x3) << 1; v >>= shift; r |= shift; 708 r |= (v >> 1); 709 return r; 710 } 711 712 /* 713 * log2_u64 - Compute the base 2 logarithm of a 64-bit exponential value. 714 * @v: The value for which we're computing the base 2 logarithm. 715 */ 716 static inline u32 log2_u64(u64 v) 717 { 718 u32 hi = v >> 32; 719 if (hi) 720 return log2_u32(hi) + 32 + 1; 721 else 722 return log2_u32(v) + 1; 723 } 724 725 /* 726 * sqrt_u64 - Calculate the square root of value @x using Newton's method. 727 */ 728 static inline u64 __sqrt_u64(u64 x) 729 { 730 if (x == 0 || x == 1) 731 return x; 732 733 u64 r = ((1ULL << 32) > x) ? x : (1ULL << 32); 734 735 for (int i = 0; i < 8; ++i) { 736 u64 q = x / r; 737 if (r <= q) 738 break; 739 r = (r + q) >> 1; 740 } 741 return r; 742 } 743 744 /* 745 * Return a value proportionally scaled to the task's weight. 746 */ 747 static inline u64 scale_by_task_weight(const struct task_struct *p, u64 value) 748 { 749 return (value * p->scx.weight) / 100; 750 } 751 752 /* 753 * Return a value inversely proportional to the task's weight. 754 */ 755 static inline u64 scale_by_task_weight_inverse(const struct task_struct *p, u64 value) 756 { 757 return value * 100 / p->scx.weight; 758 } 759 760 761 #include "compat.bpf.h" 762 #include "enums.bpf.h" 763 764 #endif /* __SCX_COMMON_BPF_H */ 765