xref: /linux/tools/power/pm-graph/README (revision 7340c6df49df1b261892d287444c255d0a378063)
1                                                _
2    _ __  _ __ ___         __ _ _ __ __ _ _ __ | |__
3   | '_ \| '_ ` _ \ _____ / _` | '__/ _` | '_ \| '_ \
4   | |_) | | | | | |_____| (_| | | | (_| | |_) | | | |
5   | .__/|_| |_| |_|      \__, |_|  \__,_| .__/|_| |_|
6   |_|                    |___/          |_|
7
8   pm-graph: suspend/resume/boot timing analysis tools
9    Version: 5.11
10     Author: Todd Brandt <todd.e.brandt@intel.com>
11  Home Page: https://www.intel.com/content/www/us/en/developer/topic-technology/open/pm-graph/overview.html
12
13 Report bugs/issues at bugzilla.kernel.org Tools/pm-graph
14	- https://bugzilla.kernel.org/buglist.cgi?component=pm-graph&product=Tools
15
16 Full documentation available online & in man pages
17	- Getting Started:
18	  https://www.intel.com/content/www/us/en/developer/articles/technical/usage.html
19
20	- Feature Summary:
21	  https://www.intel.com/content/www/us/en/developer/topic-technology/open/pm-graph/features.html
22
23	- upstream version in git:
24	  git clone https://github.com/intel/pm-graph/
25
26 Table of Contents
27	- Overview
28	- Setup
29	- Usage
30		- Basic Usage
31		- Dev Mode Usage
32		- Proc Mode Usage
33	- Endurance Testing
34		- Usage Examples
35	- Configuration Files
36		- Usage Examples
37		- Config File Options
38	- Custom Timeline Entries
39		- Adding/Editing Timeline Functions
40		- Adding/Editing Dev Timeline Source Functions
41		- Verifying your Custom Functions
42	- Testing on consumer linux Operating Systems
43		- Android
44
45------------------------------------------------------------------
46|                          OVERVIEW                              |
47------------------------------------------------------------------
48
49 This tool suite is designed to assist kernel and OS developers in optimizing
50 their linux stack's suspend/resume & boot time. Using a kernel image built
51 with a few extra options enabled, the tools will execute a suspend or boot,
52 and will capture dmesg and ftrace data. This data is transformed into a set of
53 timelines and a callgraph to give a quick and detailed view of which devices
54 and kernel processes are taking the most time in suspend/resume & boot.
55
56------------------------------------------------------------------
57|                            SETUP                               |
58------------------------------------------------------------------
59
60    Package Requirements
61       - runs with python2 or python3, choice is made by /usr/bin/python link
62       - python
63       - python-configparser (for python2 sleepgraph)
64       - python-requests (for stresstester.py)
65       - linux-tools-common (for turbostat usage in sleepgraph)
66
67       Ubuntu:
68          sudo apt-get install python python-configparser python-requests linux-tools-common
69
70       Fedora:
71          sudo dnf install python python-configparser python-requests linux-tools-common
72
73    The tools can most easily be installed via git clone and make install
74
75    $> git clone http://github.com/intel/pm-graph.git
76    $> cd pm-graph
77    $> sudo make install
78    $> man sleepgraph ; man bootgraph
79
80    Setup involves some minor kernel configuration
81
82    The following kernel build options are required for all kernels:
83        CONFIG_DEVMEM=y
84        CONFIG_PM_DEBUG=y
85        CONFIG_PM_SLEEP_DEBUG=y
86        CONFIG_FTRACE=y
87        CONFIG_FUNCTION_TRACER=y
88        CONFIG_FUNCTION_GRAPH_TRACER=y
89        CONFIG_KPROBES=y
90        CONFIG_KPROBES_ON_FTRACE=y
91
92	In kernel 3.15.0, two patches were upstreamed which enable the
93        v3.0 behavior. These patches allow the tool to read all the
94        data from trace events instead of from dmesg. You can enable
95        this behavior on earlier kernels with these patches:
96
97        (kernel/pre-3.15/enable_trace_events_suspend_resume.patch)
98        (kernel/pre-3.15/enable_trace_events_device_pm_callback.patch)
99
100	If you're using bootgraph, or sleepgraph with a kernel older than 3.15.0,
101		the following additional kernel parameters are required:
102        (e.g. in file /etc/default/grub)
103        GRUB_CMDLINE_LINUX_DEFAULT="... initcall_debug log_buf_len=32M ..."
104
105	If you're using a kernel older than 3.11-rc2, the following simple
106		patch must be applied to enable ftrace data:
107        in file: kernel/power/suspend.c
108        in function: int suspend_devices_and_enter(suspend_state_t state)
109        remove call to "ftrace_stop();"
110        remove call to "ftrace_start();"
111
112        There is a patch which does this for kernel v3.8.0:
113        (kernel/pre-3.11-rc2/enable_ftrace_in_suspendresume.patch)
114
115
116
117------------------------------------------------------------------
118|                            USAGE                               |
119------------------------------------------------------------------
120
121Basic Usage
122___________
123
124 1) First configure a kernel using the instructions from the previous sections.
125    Then build, install, and boot with it.
126 2) Open up a terminal window and execute the mode list command:
127
128	%> sudo ./sleepgraph.py -modes
129		['freeze', 'mem', 'disk']
130
131 Execute a test using one of the available power modes, e.g. mem (S3):
132
133	%> sudo ./sleepgraph.py -m mem -rtcwake 15
134
135		or with a config file
136
137	%> sudo ./sleepgraph.py -config config/suspend.cfg
138
139 When the system comes back you'll see the script finishing up and
140 creating the output files in the test subdir. It generates output
141 files in subdirectory: suspend-mmddyy-HHMMSS. The ftrace file can
142 be used to regenerate the html timeline with different options
143
144     HTML output:                    <hostname>_<mode>.html
145     raw dmesg output:               <hostname>_<mode>_dmesg.txt
146     raw ftrace output:              <hostname>_<mode>_ftrace.txt
147
148 View the html in firefox or chrome.
149
150
151Dev Mode Usage
152______________
153
154 Developer mode adds information on low level source calls to the timeline.
155 The tool sets kprobes on all delay and mutex calls to see which devices
156 are waiting for something and when. It also sets a suite of kprobes on
157 subsystem dependent calls to better fill out the timeline.
158
159 The tool will also expose kernel threads that don't normally show up in the
160 timeline. This is useful in discovering dependent threads to get a better
161 idea of what each device is waiting for. For instance, the scsi_eh thread,
162 a.k.a. scsi resume error handler, is what each SATA disk device waits for
163 before it can continue resume.
164
165 The timeline will be much larger if run with dev mode, so it can be useful
166 to set the -mindev option to clip out any device blocks that are too small
167 to see easily. The following command will give a nice dev mode run:
168
169 %> sudo ./sleepgraph.py -m mem -rtcwake 15 -mindev 1 -dev
170
171	or with a config file
172
173 %> sudo ./sleepgraph.py -config config/suspend-dev.cfg
174
175
176Proc Mode Usage
177_______________
178
179 Proc mode adds user process info to the timeline. This is done in a manner
180 similar to the bootchart utility, which graphs init processes and their
181 execution as the system boots. This tool option does the same thing but for
182 the period before and after suspend/resume.
183
184 In order to see any process info, there needs to be some delay before or
185 after resume since processes are frozen in suspend_prepare and thawed in
186 resume_complete. The predelay and postdelay args allow you to do this. It
187 can also be useful to run in x2 mode with an x2 delay, this way you can
188 see process activity before and after resume, and in between two
189 successive suspend/resumes.
190
191 The command can be run like this:
192
193 %> sudo ./sleepgraph.py -m mem -rtcwake 15 -x2 -x2delay 1000 -predelay 1000 -postdelay 1000 -proc
194
195	or with a config file
196
197 %> sudo ./sleepgraph.py -config config/suspend-proc.cfg
198
199------------------------------------------------------------------
200|                     ENDURANCE TESTING                          |
201------------------------------------------------------------------
202
203 The best way to gauge the health of a system is to run a series of
204 suspend/resumes over an extended period and analyze the behavior. This can be
205 accomplished with sleepgraph's -multi argument. You specify two numbers: the
206 number of tests to run OR the duration in days, hours, or minutes, and the
207 delay in seconds between them. For instance, -multi 20 5: execute 20 tests with
208 a 5 second delay between each, or -multi 24h 0: execute tests over a 24 hour
209 period with no delay between tests. You can include any other options you like
210 to generate the data you want. It's most useful to collect dev mode timelines
211 as the kprobes don't alter the performance much and you get more insight.
212
213 On completion, the output folder contains a series of folders for the
214 individual test data and a set of summary pages in the root. The summary.html
215 file is a tabular list of the tests with relevant info and links. The
216 summary-issue.html and summary-devices.html files include data taken from
217 all tests on kernel issues and device performance. The folder looks like this:
218
219  suspend-xN-{date}-{time}:
220	summary.html
221	summary-issues.html
222	summary-devices.html
223	suspend-{date}-{time} (1)
224	suspend-{date}-{time} (2)
225	...
226
227 These are the relevant arguments to use for testing:
228
229  -m mode
230	Mode to initiate for suspend e.g. mem, freeze, standby (default: mem).
231
232  -rtcwake t
233	Use rtcwake to autoresume after t seconds (default: 15).
234
235  -gzip (optional)
236	Gzip the trace and dmesg logs to save space. The tool can also read in
237	gzipped logs for processing. This reduces the multitest folder size.
238
239  -dev (optional)
240	Add kernel source calls and threads to the timeline (default: disabled).
241
242  -multi n d
243	Execute n consecutive tests at d seconds intervals. The outputs will be
244	created in a new subdirectory: suspend-xN-{date}-{time}. When the multitest
245	run is done, the -summary command is called automatically to create summary
246	html files for all the data (unless you use -skiphtml). -skiphtml will
247	speed up the testing by not creating timelines or summary html files. You
248	can then run the tool again at a later time with -summary and -genhtml to
249	create the timelines.
250
251  -skiphtml (optional)
252	Run the test and capture the trace logs, but skip the timeline and summary
253	html generation. This can greatly speed up overall testing. You can then
254	copy the data to a faster host machine and run -summary -genhtml to
255	generate the timelines and summary.
256
257 These are the relevant commands to use after testing is complete:
258
259  -summary indir
260	Generate or regenerate the summary for a -multi test run. Creates three
261	files: summary.html, summary-issues.html, and summary-devices.html in the
262	current folder. summary.html is a table of tests with relevant info sorted
263	by kernel/host/mode, and links to the test html files. summary-issues.html
264	is a list of kernel issues found in dmesg from all the tests.
265	summary-devices.html is a list of devices and times from all the tests.
266
267  -genhtml
268	Used  with -summary to regenerate any missing html timelines from their
269	dmesg and ftrace logs. This will require a significant amount of time if
270	there are thousands of tests.
271
272Usage Examples
273_______________
274
275 A multitest is initiated like this:
276
277  %> sudo ./sleepgraph.py -m mem -rtcwake 10 -dev -gzip -multi 2000 0
278
279	or you can skip timeline generation in order to speed things up
280
281  %> sudo ./sleepgraph.py -m mem -rtcwake 10 -dev -gzip -multi 2000 0 -skiphtml
282
283 The tool will produce an output folder with all the test subfolders inside.
284 Each test subfolder contains the dmesg/ftrace logs and/or the html timeline
285 depending on whether you used the -skiphtml option. The root folder contains
286 the summary.html files.
287
288 The summary for an existing multitest is generated like this:
289
290  %> cd suspend-x2000-{date}-{time}
291  %> sleepgraph.py -summary .
292
293	or if you need to generate the html timelines you can use -genhtml
294
295  %> cd suspend-xN-{date}-{time}
296  %> sleepgraph.py -summary . -genhtml
297
298------------------------------------------------------------------
299|                    CONFIGURATION FILES                         |
300------------------------------------------------------------------
301
302 Since 4.0 we've moved to using config files in lieu of command line options.
303 The config folder contains a collection of typical use cases.
304 There are corresponding configs for other power modes:
305
306	Simple suspend/resume with basic timeline (mem/freeze/standby)
307		config/suspend.cfg
308		config/freeze.cfg
309		config/standby.cfg
310
311	Dev mode suspend/resume with dev timeline (mem/freeze/standby)
312		config/suspend-dev.cfg
313		config/freeze-dev.cfg
314		config/standby-dev.cfg
315
316	Simple suspend/resume with timeline and callgraph (mem/freeze/standby)
317		config/suspend-callgraph.cfg
318		config/freeze-callgraph.cfg
319		config/standby-callgraph.cfg
320
321	Sample proc mode x2 run using mem suspend
322		config/suspend-x2-proc.cfg
323
324	Sample for editing timeline funcs (moves internal functions into config)
325		config/custom-timeline-functions.cfg
326
327	Sample debug config for serio subsystem
328		config/debug-serio-suspend.cfg
329
330
331Usage Examples
332______________
333
334 Run a simple mem suspend:
335 %> sudo ./sleepgraph.py -config config/suspend.cfg
336
337 Run a mem suspend with callgraph data:
338 %> sudo ./sleepgraph.py -config config/suspend-callgraph.cfg
339
340 Run a mem suspend with dev mode detail:
341 %> sudo ./sleepgraph.py -config config/suspend-dev.cfg
342
343
344Config File Options
345___________________
346
347 [Settings]
348
349 # Verbosity: print verbose messages (def: false)
350 verbose: false
351
352 # Suspend Mode: e.g. standby, mem, freeze, disk (def: mem)
353 mode: mem
354
355 # Output Directory Format: {hostname}, {date}, {time} give current values
356 output-dir: suspend-{hostname}-{date}-{time}
357
358 # Automatic Wakeup: use rtcwake to wakeup after X seconds (def: infinity)
359 rtcwake: 15
360
361 # Add Logs: add the dmesg and ftrace log to the html output (def: false)
362 addlogs: false
363
364 # Sus/Res Gap: insert a gap between sus & res in the timeline (def: false)
365 srgap: false
366
367 # Custom Command: Command to execute in lieu of suspend (def: "")
368 command: echo mem > /sys/power/state
369
370 # Proc mode: graph user processes and cpu usage in the timeline (def: false)
371 proc: false
372
373 # Dev mode: graph source functions in the timeline (def: false)
374 dev: false
375
376 # Suspend/Resume x2: run 2 suspend/resumes back to back (def: false)
377 x2: false
378
379 # x2 Suspend Delay: time delay between the two test runs in ms (def: 0 ms)
380 x2delay: 0
381
382 # Pre Suspend Delay: nclude an N ms delay before (1st) suspend (def: 0 ms)
383 predelay: 0
384
385 # Post Resume Delay: include an N ms delay after (last) resume (def: 0 ms)
386 postdelay: 0
387
388 # Min Device Length: graph only dev callbacks longer than min (def: 0.001 ms)
389 mindev: 0.001
390
391 # Callgraph: gather ftrace callgraph data on all timeline events (def: false)
392 callgraph: false
393
394 # Expand Callgraph: pre-expand the callgraph treeviews in html (def: false)
395 expandcg: false
396
397 # Min Callgraph Length: show callgraphs only if longer than min (def: 1 ms)
398 mincg: 1
399
400 # Timestamp Precision: number of sig digits in timestamps (0:S, [3:ms], 6:us)
401 timeprec: 3
402
403 # Device Filter: show only devs whose name/driver includes one of these strings
404 devicefilter: _cpu_up,_cpu_down,i915,usb
405
406 # Override default timeline entries:
407 # Do not use the internal default functions for timeline entries (def: false)
408 # Set this to true if you intend to only use the ones defined in the config
409 override-timeline-functions: true
410
411 # Override default dev timeline entries:
412 # Do not use the internal default functions for dev timeline entries (def: false)
413 # Set this to true if you intend to only use the ones defined in the config
414 override-dev-timeline-functions: true
415
416 # Call Loop Max Gap (dev mode only)
417 # merge loops of the same call if each is less than maxgap apart (def: 100us)
418 callloop-maxgap: 0.0001
419
420 # Call Loop Max Length (dev mode only)
421 # merge loops of the same call if each is less than maxlen in length (def: 5ms)
422 callloop-maxlen: 0.005
423
424------------------------------------------------------------------
425|                   CUSTOM TIMELINE ENTRIES                      |
426------------------------------------------------------------------
427
428Adding or Editing Timeline Functions
429____________________________________
430
431 The tool uses an array of function names to fill out empty spaces in the
432 timeline where device callbacks don't appear. For instance, in suspend_prepare
433 the tool adds the sys_sync and freeze_processes calls as virtual device blocks
434 in the timeline to show you where the time is going. These calls should fill
435 the timeline with contiguous data so that most kernel execution is covered.
436
437 It is possible to add new function calls to the timeline by adding them to
438 the config. It's also possible to copy the internal timeline functions into
439 the config so that you can override and edit them. Place them in the
440 timeline_functions_ARCH section with the name of your architecture appended.
441 i.e. for x86_64: [timeline_functions_x86_64]
442
443 Use the override-timeline-functions option if you only want to use your
444 custom calls, or leave it false to append them to the internal ones.
445
446 This section includes a list of functions (set using kprobes) which use both
447 symbol data and function arg data. The args are pulled directly from the
448 stack using this architecture's registers and stack formatting. Each entry
449 can include up to four pieces of info: The function name, a format string,
450 an argument list, and a color. But only a function name is required.
451
452 For a full example config, see config/custom-timeline-functions.cfg. It pulls
453 all the internal timeline functions into the config and allows you to edit
454 them.
455
456  Entry format:
457
458    function: format{fn_arg1}_{fn_arg2} fn_arg1 fn_arg2 ... [color=purple]
459
460  Required Arguments:
461
462    function: The symbol name for the function you want probed, this is the
463              minimum required for an entry, it will show up as the function
464              name with no arguments.
465
466        example: _cpu_up:
467
468  Optional Arguments:
469
470    format: The format to display the data on the timeline in. Use braces to
471            enclose the arg names.
472
473        example: CPU_ON[{cpu}]
474
475    color: The color of the entry block in the timeline. The default color is
476           transparent, so the entry shares the phase color. The color is an
477           html color string, either a word, or an RGB.
478
479        example: [color=#CC00CC]
480
481    arglist: A list of arguments from registers/stack addresses. See URL:
482             https://www.kernel.org/doc/Documentation/trace/kprobetrace.txt
483
484        example: cpu=%di:s32
485
486 Here is a full example entry. It displays cpu resume calls in the timeline
487 in orange. They will appear as CPU_ON[0], CPU_ON[1], etc.
488
489  [timeline_functions_x86_64]
490  _cpu_up: CPU_ON[{cpu}] cpu=%di:s32 [color=orange]
491
492
493Adding or Editing Dev Mode Timeline Source Functions
494____________________________________________________
495
496 In dev mode, the tool uses an array of function names to monitor source
497 execution within the timeline entries.
498
499 The function calls are displayed inside the main device/call blocks in the
500 timeline. However, if a function call is not within a main timeline event,
501 it will spawn an entirely new event named after the caller's kernel thread.
502 These asynchronous kernel threads will populate in a separate section
503 beneath the main device/call section.
504
505 The tool has a set of hard coded calls which focus on the most common use
506 cases: msleep, udelay, schedule_timeout, mutex_lock_slowpath, etc. These are
507 the functions that add a hardcoded time delay to the suspend/resume path.
508 The tool also includes some common functions native to important
509 subsystems: ata, i915, and ACPI, etc.
510
511 It is possible to add new function calls to the dev timeline by adding them
512 to the config. It's also possible to copy the internal dev timeline
513 functions into the config so that you can override and edit them. Place them
514 in the dev_timeline_functions_ARCH section with the name of your architecture
515 appended. i.e. for x86_64: [dev_timeline_functions_x86_64]
516
517 Use the override-dev-timeline-functions option if you only want to use your
518 custom calls, or leave it false to append them to the internal ones.
519
520 The format is the same as the timeline_functions_x86_64 section. It's a
521 list of functions (set using kprobes) which use both symbol data and function
522 arg data. The args are pulled directly from the stack using this
523 architecture's registers and stack formatting. Each entry can include up
524 to four pieces of info: The function name, a format string, an argument list,
525 and a color. But only the function name is required.
526
527 For a full example config, see config/custom-timeline-functions.cfg. It pulls
528 all the internal dev timeline functions into the config and allows you to edit
529 them.
530
531 Here is a full example entry. It displays the ATA port reset calls as
532 ataN_port_reset in the timeline. This is where most of the SATA disk resume
533 time goes, so it can be helpful to see the low level call.
534
535  [dev_timeline_functions_x86_64]
536  ata_eh_recover: ata{port}_port_reset port=+36(%di):s32 [color=#CC00CC]
537
538
539Verifying your custom functions
540_______________________________
541
542 Once you have a set of functions (kprobes) defined, it can be useful to
543 perform a quick check to see if you formatted them correctly and if the system
544 actually supports them. To do this, run the tool with your config file
545 and the -status option. The tool will go through all the kprobes (both
546 custom and internal if you haven't overridden them) and actually attempts
547 to set them in ftrace. It will then print out success or fail for you.
548
549 Note that kprobes which don't actually exist in the kernel won't stop the
550 tool, they just wont show up.
551
552 For example:
553
554 sudo ./sleepgraph.py -config config/custom-timeline-functions.cfg -status
555 Checking this system (myhostname)...
556    have root access: YES
557    is sysfs mounted: YES
558    is "mem" a valid power mode: YES
559    is ftrace supported: YES
560    are kprobes supported: YES
561    timeline data source: FTRACE (all trace events found)
562    is rtcwake supported: YES
563    verifying timeline kprobes work:
564         _cpu_down: YES
565         _cpu_up: YES
566         acpi_pm_finish: YES
567         acpi_pm_prepare: YES
568         freeze_kernel_threads: YES
569         freeze_processes: YES
570         sys_sync: YES
571         thaw_processes: YES
572    verifying dev kprobes work:
573         __const_udelay: YES
574         __mutex_lock_slowpath: YES
575         acpi_os_stall: YES
576         acpi_ps_parse_aml: YES
577         intel_opregion_init: NO
578         intel_opregion_register: NO
579         intel_opregion_setup: NO
580         msleep: YES
581         schedule_timeout: YES
582         schedule_timeout_uninterruptible: YES
583         usleep_range: YES
584
585
586------------------------------------------------------------------
587|           TESTING ON CONSUMER LINUX OPERATING SYSTEMS          |
588------------------------------------------------------------------
589
590Android
591_______
592
593 The easiest way to execute on an android device is to run the android.sh
594 script on the device, then pull the ftrace log back to the host and run
595 sleepgraph.py on it.
596
597 Here are the steps:
598
599 [download and install the tool on the device]
600
601	host%> wget https://raw.githubusercontent.com/intel/pm-graph/master/tools/android.sh
602	host%> adb connect 192.168.1.6
603	host%> adb root
604	# push the script to a writeable location
605	host%> adb push android.sh /sdcard/
606
607 [check whether the tool will run on your device]
608
609	host%> adb shell
610	dev%> cd /sdcard
611	dev%> sh android.sh status
612		host    : asus_t100
613		kernel  : 3.14.0-i386-dirty
614		modes   : freeze mem
615		rtcwake : supported
616		ftrace  : supported
617		trace events {
618		    suspend_resume: found
619		    device_pm_callback_end: found
620		    device_pm_callback_start: found
621		}
622	# the above is what you see on a system that's properly patched
623
624 [execute the suspend]
625
626	# NOTE: The suspend will only work if the screen isn't timed out,
627	# so you have to press some keys first to wake it up b4 suspend)
628	dev%> sh android.sh suspend mem
629	------------------------------------
630	Suspend/Resume timing test initiated
631	------------------------------------
632	hostname   : asus_t100
633	kernel     : 3.14.0-i386-dirty
634	mode       : mem
635	ftrace out : /mnt/shell/emulated/0/ftrace.txt
636	dmesg out  : /mnt/shell/emulated/0/dmesg.txt
637	log file   : /mnt/shell/emulated/0/log.txt
638	------------------------------------
639	INITIALIZING FTRACE........DONE
640	STARTING FTRACE
641	SUSPEND START @ 21:24:02 (rtcwake in 10 seconds)
642	<adb connection will now terminate>
643
644 [retrieve the data from the device]
645
646	# I find that you have to actually kill the adb process and
647	# reconnect sometimes in order for the connection to work post-suspend
648	host%> adb connect 192.168.1.6
649	# (required) get the ftrace data, this is the most important piece
650	host%> adb pull /sdcard/ftrace.txt
651	# (optional) get the dmesg data, this is for debugging
652	host%> adb pull /sdcard/dmesg.txt
653	# (optional) get the log, which just lists some test times for comparison
654	host%> adb pull /sdcard/log.txt
655
656 [create an output html file using sleepgraph.py]
657
658	host%> sleepgraph.py -ftrace ftrace.txt
659
660 You should now have an output.html with the android data, enjoy!
661