1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <stdlib.h> 5 #include <stdio.h> 6 #include <string.h> 7 #include <linux/capability.h> 8 #include <linux/kernel.h> 9 #include <linux/mman.h> 10 #include <linux/string.h> 11 #include <linux/time64.h> 12 #include <sys/types.h> 13 #include <sys/stat.h> 14 #include <sys/param.h> 15 #include <fcntl.h> 16 #include <unistd.h> 17 #include <inttypes.h> 18 #include "annotate.h" 19 #include "build-id.h" 20 #include "cap.h" 21 #include "dso.h" 22 #include "util.h" // lsdir() 23 #include "debug.h" 24 #include "event.h" 25 #include "machine.h" 26 #include "map.h" 27 #include "symbol.h" 28 #include "map_symbol.h" 29 #include "mem-events.h" 30 #include "mem-info.h" 31 #include "symsrc.h" 32 #include "strlist.h" 33 #include "intlist.h" 34 #include "namespaces.h" 35 #include "header.h" 36 #include "path.h" 37 #include <linux/ctype.h> 38 #include <linux/zalloc.h> 39 40 #include <elf.h> 41 #include <limits.h> 42 #include <symbol/kallsyms.h> 43 #include <sys/utsname.h> 44 45 static int dso__load_kernel_sym(struct dso *dso, struct map *map); 46 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map); 47 static bool symbol__is_idle(const char *name); 48 49 int vmlinux_path__nr_entries; 50 char **vmlinux_path; 51 52 struct symbol_conf symbol_conf = { 53 .nanosecs = false, 54 .use_modules = true, 55 .try_vmlinux_path = true, 56 .demangle = true, 57 .demangle_kernel = false, 58 .cumulate_callchain = true, 59 .time_quantum = 100 * NSEC_PER_MSEC, /* 100ms */ 60 .show_hist_headers = true, 61 .symfs = "", 62 .event_group = true, 63 .inline_name = true, 64 .res_sample = 0, 65 }; 66 67 struct map_list_node { 68 struct list_head node; 69 struct map *map; 70 }; 71 72 static struct map_list_node *map_list_node__new(void) 73 { 74 return malloc(sizeof(struct map_list_node)); 75 } 76 77 static enum dso_binary_type binary_type_symtab[] = { 78 DSO_BINARY_TYPE__KALLSYMS, 79 DSO_BINARY_TYPE__GUEST_KALLSYMS, 80 DSO_BINARY_TYPE__JAVA_JIT, 81 DSO_BINARY_TYPE__DEBUGLINK, 82 DSO_BINARY_TYPE__BUILD_ID_CACHE, 83 DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO, 84 DSO_BINARY_TYPE__FEDORA_DEBUGINFO, 85 DSO_BINARY_TYPE__UBUNTU_DEBUGINFO, 86 DSO_BINARY_TYPE__BUILDID_DEBUGINFO, 87 DSO_BINARY_TYPE__SYSTEM_PATH_DSO, 88 DSO_BINARY_TYPE__GUEST_KMODULE, 89 DSO_BINARY_TYPE__GUEST_KMODULE_COMP, 90 DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE, 91 DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP, 92 DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO, 93 DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO, 94 DSO_BINARY_TYPE__NOT_FOUND, 95 }; 96 97 #define DSO_BINARY_TYPE__SYMTAB_CNT ARRAY_SIZE(binary_type_symtab) 98 99 static bool symbol_type__filter(char symbol_type) 100 { 101 symbol_type = toupper(symbol_type); 102 return symbol_type == 'T' || symbol_type == 'W' || symbol_type == 'D' || symbol_type == 'B'; 103 } 104 105 static int prefix_underscores_count(const char *str) 106 { 107 const char *tail = str; 108 109 while (*tail == '_') 110 tail++; 111 112 return tail - str; 113 } 114 115 const char * __weak arch__normalize_symbol_name(const char *name) 116 { 117 return name; 118 } 119 120 int __weak arch__compare_symbol_names(const char *namea, const char *nameb) 121 { 122 return strcmp(namea, nameb); 123 } 124 125 int __weak arch__compare_symbol_names_n(const char *namea, const char *nameb, 126 unsigned int n) 127 { 128 return strncmp(namea, nameb, n); 129 } 130 131 int __weak arch__choose_best_symbol(struct symbol *syma, 132 struct symbol *symb __maybe_unused) 133 { 134 /* Avoid "SyS" kernel syscall aliases */ 135 if (strlen(syma->name) >= 3 && !strncmp(syma->name, "SyS", 3)) 136 return SYMBOL_B; 137 if (strlen(syma->name) >= 10 && !strncmp(syma->name, "compat_SyS", 10)) 138 return SYMBOL_B; 139 140 return SYMBOL_A; 141 } 142 143 static int choose_best_symbol(struct symbol *syma, struct symbol *symb) 144 { 145 s64 a; 146 s64 b; 147 size_t na, nb; 148 149 /* Prefer a symbol with non zero length */ 150 a = syma->end - syma->start; 151 b = symb->end - symb->start; 152 if ((b == 0) && (a > 0)) 153 return SYMBOL_A; 154 else if ((a == 0) && (b > 0)) 155 return SYMBOL_B; 156 157 /* Prefer a non weak symbol over a weak one */ 158 a = syma->binding == STB_WEAK; 159 b = symb->binding == STB_WEAK; 160 if (b && !a) 161 return SYMBOL_A; 162 if (a && !b) 163 return SYMBOL_B; 164 165 /* Prefer a global symbol over a non global one */ 166 a = syma->binding == STB_GLOBAL; 167 b = symb->binding == STB_GLOBAL; 168 if (a && !b) 169 return SYMBOL_A; 170 if (b && !a) 171 return SYMBOL_B; 172 173 /* Prefer a symbol with less underscores */ 174 a = prefix_underscores_count(syma->name); 175 b = prefix_underscores_count(symb->name); 176 if (b > a) 177 return SYMBOL_A; 178 else if (a > b) 179 return SYMBOL_B; 180 181 /* Choose the symbol with the longest name */ 182 na = strlen(syma->name); 183 nb = strlen(symb->name); 184 if (na > nb) 185 return SYMBOL_A; 186 else if (na < nb) 187 return SYMBOL_B; 188 189 return arch__choose_best_symbol(syma, symb); 190 } 191 192 void symbols__fixup_duplicate(struct rb_root_cached *symbols) 193 { 194 struct rb_node *nd; 195 struct symbol *curr, *next; 196 197 if (symbol_conf.allow_aliases) 198 return; 199 200 nd = rb_first_cached(symbols); 201 202 while (nd) { 203 curr = rb_entry(nd, struct symbol, rb_node); 204 again: 205 nd = rb_next(&curr->rb_node); 206 if (!nd) 207 break; 208 209 next = rb_entry(nd, struct symbol, rb_node); 210 if (curr->start != next->start) 211 continue; 212 213 if (choose_best_symbol(curr, next) == SYMBOL_A) { 214 if (next->type == STT_GNU_IFUNC) 215 curr->ifunc_alias = true; 216 rb_erase_cached(&next->rb_node, symbols); 217 symbol__delete(next); 218 goto again; 219 } else { 220 if (curr->type == STT_GNU_IFUNC) 221 next->ifunc_alias = true; 222 nd = rb_next(&curr->rb_node); 223 rb_erase_cached(&curr->rb_node, symbols); 224 symbol__delete(curr); 225 } 226 } 227 } 228 229 /* Update zero-sized symbols using the address of the next symbol */ 230 void symbols__fixup_end(struct rb_root_cached *symbols, bool is_kallsyms) 231 { 232 struct rb_node *nd, *prevnd = rb_first_cached(symbols); 233 struct symbol *curr, *prev; 234 235 if (prevnd == NULL) 236 return; 237 238 curr = rb_entry(prevnd, struct symbol, rb_node); 239 240 for (nd = rb_next(prevnd); nd; nd = rb_next(nd)) { 241 prev = curr; 242 curr = rb_entry(nd, struct symbol, rb_node); 243 244 /* 245 * On some architecture kernel text segment start is located at 246 * some low memory address, while modules are located at high 247 * memory addresses (or vice versa). The gap between end of 248 * kernel text segment and beginning of first module's text 249 * segment is very big. Therefore do not fill this gap and do 250 * not assign it to the kernel dso map (kallsyms). 251 * 252 * Also BPF code can be allocated separately from text segments 253 * and modules. So the last entry in a module should not fill 254 * the gap too. 255 * 256 * In kallsyms, it determines module symbols using '[' character 257 * like in: 258 * ffffffffc1937000 T hdmi_driver_init [snd_hda_codec_hdmi] 259 */ 260 if (prev->end == prev->start && prev->type != STT_NOTYPE) { 261 const char *prev_mod; 262 const char *curr_mod; 263 264 if (!is_kallsyms) { 265 prev->end = curr->start; 266 continue; 267 } 268 269 prev_mod = strchr(prev->name, '['); 270 curr_mod = strchr(curr->name, '['); 271 272 /* Last kernel/module symbol mapped to end of page */ 273 if (!prev_mod != !curr_mod) 274 prev->end = roundup(prev->end + 4096, 4096); 275 /* Last symbol in the previous module */ 276 else if (prev_mod && strcmp(prev_mod, curr_mod)) 277 prev->end = roundup(prev->end + 4096, 4096); 278 else 279 prev->end = curr->start; 280 281 pr_debug4("%s sym:%s end:%#" PRIx64 "\n", 282 __func__, prev->name, prev->end); 283 } 284 } 285 286 /* Last entry */ 287 if (curr->end == curr->start) 288 curr->end = roundup(curr->start, 4096) + 4096; 289 } 290 291 struct symbol *symbol__new(u64 start, u64 len, u8 binding, u8 type, const char *name) 292 { 293 size_t namelen = strlen(name) + 1; 294 struct symbol *sym = calloc(1, (symbol_conf.priv_size + 295 sizeof(*sym) + namelen)); 296 if (sym == NULL) 297 return NULL; 298 299 if (symbol_conf.priv_size) { 300 if (symbol_conf.init_annotation) { 301 struct annotation *notes = (void *)sym; 302 annotation__init(notes); 303 } 304 sym = ((void *)sym) + symbol_conf.priv_size; 305 } 306 307 sym->start = start; 308 sym->end = len ? start + len : start; 309 sym->type = type; 310 sym->binding = binding; 311 sym->namelen = namelen - 1; 312 313 pr_debug4("%s: %s %#" PRIx64 "-%#" PRIx64 "\n", 314 __func__, name, start, sym->end); 315 memcpy(sym->name, name, namelen); 316 317 return sym; 318 } 319 320 void symbol__delete(struct symbol *sym) 321 { 322 if (symbol_conf.priv_size) { 323 if (symbol_conf.init_annotation) { 324 struct annotation *notes = symbol__annotation(sym); 325 326 annotation__exit(notes); 327 } 328 } 329 free(((void *)sym) - symbol_conf.priv_size); 330 } 331 332 void symbols__delete(struct rb_root_cached *symbols) 333 { 334 struct symbol *pos; 335 struct rb_node *next = rb_first_cached(symbols); 336 337 while (next) { 338 pos = rb_entry(next, struct symbol, rb_node); 339 next = rb_next(&pos->rb_node); 340 rb_erase_cached(&pos->rb_node, symbols); 341 symbol__delete(pos); 342 } 343 } 344 345 void __symbols__insert(struct rb_root_cached *symbols, 346 struct symbol *sym, bool kernel) 347 { 348 struct rb_node **p = &symbols->rb_root.rb_node; 349 struct rb_node *parent = NULL; 350 const u64 ip = sym->start; 351 struct symbol *s; 352 bool leftmost = true; 353 354 if (kernel) { 355 const char *name = sym->name; 356 /* 357 * ppc64 uses function descriptors and appends a '.' to the 358 * start of every instruction address. Remove it. 359 */ 360 if (name[0] == '.') 361 name++; 362 sym->idle = symbol__is_idle(name); 363 } 364 365 while (*p != NULL) { 366 parent = *p; 367 s = rb_entry(parent, struct symbol, rb_node); 368 if (ip < s->start) 369 p = &(*p)->rb_left; 370 else { 371 p = &(*p)->rb_right; 372 leftmost = false; 373 } 374 } 375 rb_link_node(&sym->rb_node, parent, p); 376 rb_insert_color_cached(&sym->rb_node, symbols, leftmost); 377 } 378 379 void symbols__insert(struct rb_root_cached *symbols, struct symbol *sym) 380 { 381 __symbols__insert(symbols, sym, false); 382 } 383 384 static struct symbol *symbols__find(struct rb_root_cached *symbols, u64 ip) 385 { 386 struct rb_node *n; 387 388 if (symbols == NULL) 389 return NULL; 390 391 n = symbols->rb_root.rb_node; 392 393 while (n) { 394 struct symbol *s = rb_entry(n, struct symbol, rb_node); 395 396 if (ip < s->start) 397 n = n->rb_left; 398 else if (ip > s->end || (ip == s->end && ip != s->start)) 399 n = n->rb_right; 400 else 401 return s; 402 } 403 404 return NULL; 405 } 406 407 static struct symbol *symbols__first(struct rb_root_cached *symbols) 408 { 409 struct rb_node *n = rb_first_cached(symbols); 410 411 if (n) 412 return rb_entry(n, struct symbol, rb_node); 413 414 return NULL; 415 } 416 417 static struct symbol *symbols__last(struct rb_root_cached *symbols) 418 { 419 struct rb_node *n = rb_last(&symbols->rb_root); 420 421 if (n) 422 return rb_entry(n, struct symbol, rb_node); 423 424 return NULL; 425 } 426 427 static struct symbol *symbols__next(struct symbol *sym) 428 { 429 struct rb_node *n = rb_next(&sym->rb_node); 430 431 if (n) 432 return rb_entry(n, struct symbol, rb_node); 433 434 return NULL; 435 } 436 437 static int symbols__sort_name_cmp(const void *vlhs, const void *vrhs) 438 { 439 const struct symbol *lhs = *((const struct symbol **)vlhs); 440 const struct symbol *rhs = *((const struct symbol **)vrhs); 441 442 return strcmp(lhs->name, rhs->name); 443 } 444 445 static struct symbol **symbols__sort_by_name(struct rb_root_cached *source, size_t *len) 446 { 447 struct rb_node *nd; 448 struct symbol **result; 449 size_t i = 0, size = 0; 450 451 for (nd = rb_first_cached(source); nd; nd = rb_next(nd)) 452 size++; 453 454 result = malloc(sizeof(*result) * size); 455 if (!result) 456 return NULL; 457 458 for (nd = rb_first_cached(source); nd; nd = rb_next(nd)) { 459 struct symbol *pos = rb_entry(nd, struct symbol, rb_node); 460 461 result[i++] = pos; 462 } 463 qsort(result, size, sizeof(*result), symbols__sort_name_cmp); 464 *len = size; 465 return result; 466 } 467 468 int symbol__match_symbol_name(const char *name, const char *str, 469 enum symbol_tag_include includes) 470 { 471 const char *versioning; 472 473 if (includes == SYMBOL_TAG_INCLUDE__DEFAULT_ONLY && 474 (versioning = strstr(name, "@@"))) { 475 int len = strlen(str); 476 477 if (len < versioning - name) 478 len = versioning - name; 479 480 return arch__compare_symbol_names_n(name, str, len); 481 } else 482 return arch__compare_symbol_names(name, str); 483 } 484 485 static struct symbol *symbols__find_by_name(struct symbol *symbols[], 486 size_t symbols_len, 487 const char *name, 488 enum symbol_tag_include includes, 489 size_t *found_idx) 490 { 491 size_t i, lower = 0, upper = symbols_len; 492 struct symbol *s = NULL; 493 494 if (found_idx) 495 *found_idx = SIZE_MAX; 496 497 if (!symbols_len) 498 return NULL; 499 500 while (lower < upper) { 501 int cmp; 502 503 i = (lower + upper) / 2; 504 cmp = symbol__match_symbol_name(symbols[i]->name, name, includes); 505 506 if (cmp > 0) 507 upper = i; 508 else if (cmp < 0) 509 lower = i + 1; 510 else { 511 if (found_idx) 512 *found_idx = i; 513 s = symbols[i]; 514 break; 515 } 516 } 517 if (s && includes != SYMBOL_TAG_INCLUDE__DEFAULT_ONLY) { 518 /* return first symbol that has same name (if any) */ 519 for (; i > 0; i--) { 520 struct symbol *tmp = symbols[i - 1]; 521 522 if (!arch__compare_symbol_names(tmp->name, s->name)) { 523 if (found_idx) 524 *found_idx = i - 1; 525 s = tmp; 526 } else 527 break; 528 } 529 } 530 assert(!found_idx || !s || s == symbols[*found_idx]); 531 return s; 532 } 533 534 void dso__reset_find_symbol_cache(struct dso *dso) 535 { 536 dso__set_last_find_result_addr(dso, 0); 537 dso__set_last_find_result_symbol(dso, NULL); 538 } 539 540 void dso__insert_symbol(struct dso *dso, struct symbol *sym) 541 { 542 __symbols__insert(dso__symbols(dso), sym, dso__kernel(dso)); 543 544 /* update the symbol cache if necessary */ 545 if (dso__last_find_result_addr(dso) >= sym->start && 546 (dso__last_find_result_addr(dso) < sym->end || 547 sym->start == sym->end)) { 548 dso__set_last_find_result_symbol(dso, sym); 549 } 550 } 551 552 void dso__delete_symbol(struct dso *dso, struct symbol *sym) 553 { 554 rb_erase_cached(&sym->rb_node, dso__symbols(dso)); 555 symbol__delete(sym); 556 dso__reset_find_symbol_cache(dso); 557 } 558 559 struct symbol *dso__find_symbol(struct dso *dso, u64 addr) 560 { 561 if (dso__last_find_result_addr(dso) != addr || dso__last_find_result_symbol(dso) == NULL) { 562 dso__set_last_find_result_addr(dso, addr); 563 dso__set_last_find_result_symbol(dso, symbols__find(dso__symbols(dso), addr)); 564 } 565 566 return dso__last_find_result_symbol(dso); 567 } 568 569 struct symbol *dso__find_symbol_nocache(struct dso *dso, u64 addr) 570 { 571 return symbols__find(dso__symbols(dso), addr); 572 } 573 574 struct symbol *dso__first_symbol(struct dso *dso) 575 { 576 return symbols__first(dso__symbols(dso)); 577 } 578 579 struct symbol *dso__last_symbol(struct dso *dso) 580 { 581 return symbols__last(dso__symbols(dso)); 582 } 583 584 struct symbol *dso__next_symbol(struct symbol *sym) 585 { 586 return symbols__next(sym); 587 } 588 589 struct symbol *dso__next_symbol_by_name(struct dso *dso, size_t *idx) 590 { 591 if (*idx + 1 >= dso__symbol_names_len(dso)) 592 return NULL; 593 594 ++*idx; 595 return dso__symbol_names(dso)[*idx]; 596 } 597 598 /* 599 * Returns first symbol that matched with @name. 600 */ 601 struct symbol *dso__find_symbol_by_name(struct dso *dso, const char *name, size_t *idx) 602 { 603 struct symbol *s = symbols__find_by_name(dso__symbol_names(dso), 604 dso__symbol_names_len(dso), 605 name, SYMBOL_TAG_INCLUDE__NONE, idx); 606 if (!s) { 607 s = symbols__find_by_name(dso__symbol_names(dso), dso__symbol_names_len(dso), 608 name, SYMBOL_TAG_INCLUDE__DEFAULT_ONLY, idx); 609 } 610 return s; 611 } 612 613 void dso__sort_by_name(struct dso *dso) 614 { 615 mutex_lock(dso__lock(dso)); 616 if (!dso__sorted_by_name(dso)) { 617 size_t len; 618 619 dso__set_symbol_names(dso, symbols__sort_by_name(dso__symbols(dso), &len)); 620 if (dso__symbol_names(dso)) { 621 dso__set_symbol_names_len(dso, len); 622 dso__set_sorted_by_name(dso); 623 } 624 } 625 mutex_unlock(dso__lock(dso)); 626 } 627 628 /* 629 * While we find nice hex chars, build a long_val. 630 * Return number of chars processed. 631 */ 632 static int hex2u64(const char *ptr, u64 *long_val) 633 { 634 char *p; 635 636 *long_val = strtoull(ptr, &p, 16); 637 638 return p - ptr; 639 } 640 641 642 int modules__parse(const char *filename, void *arg, 643 int (*process_module)(void *arg, const char *name, 644 u64 start, u64 size)) 645 { 646 char *line = NULL; 647 size_t n; 648 FILE *file; 649 int err = 0; 650 651 file = fopen(filename, "r"); 652 if (file == NULL) 653 return -1; 654 655 while (1) { 656 char name[PATH_MAX]; 657 u64 start, size; 658 char *sep, *endptr; 659 ssize_t line_len; 660 661 line_len = getline(&line, &n, file); 662 if (line_len < 0) { 663 if (feof(file)) 664 break; 665 err = -1; 666 goto out; 667 } 668 669 if (!line) { 670 err = -1; 671 goto out; 672 } 673 674 line[--line_len] = '\0'; /* \n */ 675 676 sep = strrchr(line, 'x'); 677 if (sep == NULL) 678 continue; 679 680 hex2u64(sep + 1, &start); 681 682 sep = strchr(line, ' '); 683 if (sep == NULL) 684 continue; 685 686 *sep = '\0'; 687 688 scnprintf(name, sizeof(name), "[%s]", line); 689 690 size = strtoul(sep + 1, &endptr, 0); 691 if (*endptr != ' ' && *endptr != '\t') 692 continue; 693 694 err = process_module(arg, name, start, size); 695 if (err) 696 break; 697 } 698 out: 699 free(line); 700 fclose(file); 701 return err; 702 } 703 704 /* 705 * These are symbols in the kernel image, so make sure that 706 * sym is from a kernel DSO. 707 */ 708 static bool symbol__is_idle(const char *name) 709 { 710 const char * const idle_symbols[] = { 711 "acpi_idle_do_entry", 712 "acpi_processor_ffh_cstate_enter", 713 "arch_cpu_idle", 714 "cpu_idle", 715 "cpu_startup_entry", 716 "idle_cpu", 717 "intel_idle", 718 "intel_idle_ibrs", 719 "default_idle", 720 "native_safe_halt", 721 "enter_idle", 722 "exit_idle", 723 "mwait_idle", 724 "mwait_idle_with_hints", 725 "mwait_idle_with_hints.constprop.0", 726 "poll_idle", 727 "ppc64_runlatch_off", 728 "pseries_dedicated_idle_sleep", 729 "psw_idle", 730 "psw_idle_exit", 731 NULL 732 }; 733 int i; 734 static struct strlist *idle_symbols_list; 735 736 if (idle_symbols_list) 737 return strlist__has_entry(idle_symbols_list, name); 738 739 idle_symbols_list = strlist__new(NULL, NULL); 740 741 for (i = 0; idle_symbols[i]; i++) 742 strlist__add(idle_symbols_list, idle_symbols[i]); 743 744 return strlist__has_entry(idle_symbols_list, name); 745 } 746 747 static int map__process_kallsym_symbol(void *arg, const char *name, 748 char type, u64 start) 749 { 750 struct symbol *sym; 751 struct dso *dso = arg; 752 struct rb_root_cached *root = dso__symbols(dso); 753 754 if (!symbol_type__filter(type)) 755 return 0; 756 757 /* Ignore local symbols for ARM modules */ 758 if (name[0] == '$') 759 return 0; 760 761 /* 762 * module symbols are not sorted so we add all 763 * symbols, setting length to 0, and rely on 764 * symbols__fixup_end() to fix it up. 765 */ 766 sym = symbol__new(start, 0, kallsyms2elf_binding(type), kallsyms2elf_type(type), name); 767 if (sym == NULL) 768 return -ENOMEM; 769 /* 770 * We will pass the symbols to the filter later, in 771 * map__split_kallsyms, when we have split the maps per module 772 */ 773 __symbols__insert(root, sym, !strchr(name, '[')); 774 775 return 0; 776 } 777 778 /* 779 * Loads the function entries in /proc/kallsyms into kernel_map->dso, 780 * so that we can in the next step set the symbol ->end address and then 781 * call kernel_maps__split_kallsyms. 782 */ 783 static int dso__load_all_kallsyms(struct dso *dso, const char *filename) 784 { 785 return kallsyms__parse(filename, dso, map__process_kallsym_symbol); 786 } 787 788 static int maps__split_kallsyms_for_kcore(struct maps *kmaps, struct dso *dso) 789 { 790 struct symbol *pos; 791 int count = 0; 792 struct rb_root_cached *root = dso__symbols(dso); 793 struct rb_root_cached old_root = *root; 794 struct rb_node *next = rb_first_cached(root); 795 796 if (!kmaps) 797 return -1; 798 799 *root = RB_ROOT_CACHED; 800 801 while (next) { 802 struct map *curr_map; 803 struct dso *curr_map_dso; 804 char *module; 805 806 pos = rb_entry(next, struct symbol, rb_node); 807 next = rb_next(&pos->rb_node); 808 809 rb_erase_cached(&pos->rb_node, &old_root); 810 RB_CLEAR_NODE(&pos->rb_node); 811 module = strchr(pos->name, '\t'); 812 if (module) 813 *module = '\0'; 814 815 curr_map = maps__find(kmaps, pos->start); 816 817 if (!curr_map) { 818 symbol__delete(pos); 819 continue; 820 } 821 curr_map_dso = map__dso(curr_map); 822 pos->start -= map__start(curr_map) - map__pgoff(curr_map); 823 if (pos->end > map__end(curr_map)) 824 pos->end = map__end(curr_map); 825 if (pos->end) 826 pos->end -= map__start(curr_map) - map__pgoff(curr_map); 827 symbols__insert(dso__symbols(curr_map_dso), pos); 828 ++count; 829 map__put(curr_map); 830 } 831 832 /* Symbols have been adjusted */ 833 dso__set_adjust_symbols(dso, true); 834 835 return count; 836 } 837 838 /* 839 * Split the symbols into maps, making sure there are no overlaps, i.e. the 840 * kernel range is broken in several maps, named [kernel].N, as we don't have 841 * the original ELF section names vmlinux have. 842 */ 843 static int maps__split_kallsyms(struct maps *kmaps, struct dso *dso, u64 delta, 844 struct map *initial_map) 845 { 846 struct machine *machine; 847 struct map *curr_map = map__get(initial_map); 848 struct symbol *pos; 849 int count = 0, moved = 0; 850 struct rb_root_cached *root = dso__symbols(dso); 851 struct rb_node *next = rb_first_cached(root); 852 int kernel_range = 0; 853 bool x86_64; 854 855 if (!kmaps) 856 return -1; 857 858 machine = maps__machine(kmaps); 859 860 x86_64 = machine__is(machine, "x86_64"); 861 862 while (next) { 863 char *module; 864 865 pos = rb_entry(next, struct symbol, rb_node); 866 next = rb_next(&pos->rb_node); 867 868 module = strchr(pos->name, '\t'); 869 if (module) { 870 struct dso *curr_map_dso; 871 872 if (!symbol_conf.use_modules) 873 goto discard_symbol; 874 875 *module++ = '\0'; 876 curr_map_dso = map__dso(curr_map); 877 if (strcmp(dso__short_name(curr_map_dso), module)) { 878 if (!RC_CHK_EQUAL(curr_map, initial_map) && 879 dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST && 880 machine__is_default_guest(machine)) { 881 /* 882 * We assume all symbols of a module are 883 * continuous in * kallsyms, so curr_map 884 * points to a module and all its 885 * symbols are in its kmap. Mark it as 886 * loaded. 887 */ 888 dso__set_loaded(curr_map_dso); 889 } 890 891 map__zput(curr_map); 892 curr_map = maps__find_by_name(kmaps, module); 893 if (curr_map == NULL) { 894 pr_debug("%s/proc/{kallsyms,modules} " 895 "inconsistency while looking " 896 "for \"%s\" module!\n", 897 machine->root_dir, module); 898 curr_map = map__get(initial_map); 899 goto discard_symbol; 900 } 901 curr_map_dso = map__dso(curr_map); 902 if (dso__loaded(curr_map_dso) && 903 !machine__is_default_guest(machine)) 904 goto discard_symbol; 905 } 906 /* 907 * So that we look just like we get from .ko files, 908 * i.e. not prelinked, relative to initial_map->start. 909 */ 910 pos->start = map__map_ip(curr_map, pos->start); 911 pos->end = map__map_ip(curr_map, pos->end); 912 } else if (x86_64 && is_entry_trampoline(pos->name)) { 913 /* 914 * These symbols are not needed anymore since the 915 * trampoline maps refer to the text section and it's 916 * symbols instead. Avoid having to deal with 917 * relocations, and the assumption that the first symbol 918 * is the start of kernel text, by simply removing the 919 * symbols at this point. 920 */ 921 goto discard_symbol; 922 } else if (!RC_CHK_EQUAL(curr_map, initial_map)) { 923 char dso_name[PATH_MAX]; 924 struct dso *ndso; 925 926 if (delta) { 927 /* Kernel was relocated at boot time */ 928 pos->start -= delta; 929 pos->end -= delta; 930 } 931 932 if (count == 0) { 933 map__zput(curr_map); 934 curr_map = map__get(initial_map); 935 goto add_symbol; 936 } 937 938 if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST) 939 snprintf(dso_name, sizeof(dso_name), 940 "[guest.kernel].%d", 941 kernel_range++); 942 else 943 snprintf(dso_name, sizeof(dso_name), 944 "[kernel].%d", 945 kernel_range++); 946 947 ndso = dso__new(dso_name); 948 map__zput(curr_map); 949 if (ndso == NULL) 950 return -1; 951 952 dso__set_kernel(ndso, dso__kernel(dso)); 953 954 curr_map = map__new2(pos->start, ndso); 955 if (curr_map == NULL) { 956 dso__put(ndso); 957 return -1; 958 } 959 960 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY); 961 if (maps__insert(kmaps, curr_map)) { 962 map__zput(curr_map); 963 dso__put(ndso); 964 return -1; 965 } 966 ++kernel_range; 967 } else if (delta) { 968 /* Kernel was relocated at boot time */ 969 pos->start -= delta; 970 pos->end -= delta; 971 } 972 add_symbol: 973 if (!RC_CHK_EQUAL(curr_map, initial_map)) { 974 struct dso *curr_map_dso = map__dso(curr_map); 975 976 rb_erase_cached(&pos->rb_node, root); 977 symbols__insert(dso__symbols(curr_map_dso), pos); 978 ++moved; 979 } else 980 ++count; 981 982 continue; 983 discard_symbol: 984 rb_erase_cached(&pos->rb_node, root); 985 symbol__delete(pos); 986 } 987 988 if (!RC_CHK_EQUAL(curr_map, initial_map) && 989 dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST && 990 machine__is_default_guest(maps__machine(kmaps))) { 991 dso__set_loaded(map__dso(curr_map)); 992 } 993 map__put(curr_map); 994 return count + moved; 995 } 996 997 bool symbol__restricted_filename(const char *filename, 998 const char *restricted_filename) 999 { 1000 bool restricted = false; 1001 1002 if (symbol_conf.kptr_restrict) { 1003 char *r = realpath(filename, NULL); 1004 1005 if (r != NULL) { 1006 restricted = strcmp(r, restricted_filename) == 0; 1007 free(r); 1008 return restricted; 1009 } 1010 } 1011 1012 return restricted; 1013 } 1014 1015 struct module_info { 1016 struct rb_node rb_node; 1017 char *name; 1018 u64 start; 1019 }; 1020 1021 static void add_module(struct module_info *mi, struct rb_root *modules) 1022 { 1023 struct rb_node **p = &modules->rb_node; 1024 struct rb_node *parent = NULL; 1025 struct module_info *m; 1026 1027 while (*p != NULL) { 1028 parent = *p; 1029 m = rb_entry(parent, struct module_info, rb_node); 1030 if (strcmp(mi->name, m->name) < 0) 1031 p = &(*p)->rb_left; 1032 else 1033 p = &(*p)->rb_right; 1034 } 1035 rb_link_node(&mi->rb_node, parent, p); 1036 rb_insert_color(&mi->rb_node, modules); 1037 } 1038 1039 static void delete_modules(struct rb_root *modules) 1040 { 1041 struct module_info *mi; 1042 struct rb_node *next = rb_first(modules); 1043 1044 while (next) { 1045 mi = rb_entry(next, struct module_info, rb_node); 1046 next = rb_next(&mi->rb_node); 1047 rb_erase(&mi->rb_node, modules); 1048 zfree(&mi->name); 1049 free(mi); 1050 } 1051 } 1052 1053 static struct module_info *find_module(const char *name, 1054 struct rb_root *modules) 1055 { 1056 struct rb_node *n = modules->rb_node; 1057 1058 while (n) { 1059 struct module_info *m; 1060 int cmp; 1061 1062 m = rb_entry(n, struct module_info, rb_node); 1063 cmp = strcmp(name, m->name); 1064 if (cmp < 0) 1065 n = n->rb_left; 1066 else if (cmp > 0) 1067 n = n->rb_right; 1068 else 1069 return m; 1070 } 1071 1072 return NULL; 1073 } 1074 1075 static int __read_proc_modules(void *arg, const char *name, u64 start, 1076 u64 size __maybe_unused) 1077 { 1078 struct rb_root *modules = arg; 1079 struct module_info *mi; 1080 1081 mi = zalloc(sizeof(struct module_info)); 1082 if (!mi) 1083 return -ENOMEM; 1084 1085 mi->name = strdup(name); 1086 mi->start = start; 1087 1088 if (!mi->name) { 1089 free(mi); 1090 return -ENOMEM; 1091 } 1092 1093 add_module(mi, modules); 1094 1095 return 0; 1096 } 1097 1098 static int read_proc_modules(const char *filename, struct rb_root *modules) 1099 { 1100 if (symbol__restricted_filename(filename, "/proc/modules")) 1101 return -1; 1102 1103 if (modules__parse(filename, modules, __read_proc_modules)) { 1104 delete_modules(modules); 1105 return -1; 1106 } 1107 1108 return 0; 1109 } 1110 1111 int compare_proc_modules(const char *from, const char *to) 1112 { 1113 struct rb_root from_modules = RB_ROOT; 1114 struct rb_root to_modules = RB_ROOT; 1115 struct rb_node *from_node, *to_node; 1116 struct module_info *from_m, *to_m; 1117 int ret = -1; 1118 1119 if (read_proc_modules(from, &from_modules)) 1120 return -1; 1121 1122 if (read_proc_modules(to, &to_modules)) 1123 goto out_delete_from; 1124 1125 from_node = rb_first(&from_modules); 1126 to_node = rb_first(&to_modules); 1127 while (from_node) { 1128 if (!to_node) 1129 break; 1130 1131 from_m = rb_entry(from_node, struct module_info, rb_node); 1132 to_m = rb_entry(to_node, struct module_info, rb_node); 1133 1134 if (from_m->start != to_m->start || 1135 strcmp(from_m->name, to_m->name)) 1136 break; 1137 1138 from_node = rb_next(from_node); 1139 to_node = rb_next(to_node); 1140 } 1141 1142 if (!from_node && !to_node) 1143 ret = 0; 1144 1145 delete_modules(&to_modules); 1146 out_delete_from: 1147 delete_modules(&from_modules); 1148 1149 return ret; 1150 } 1151 1152 static int do_validate_kcore_modules_cb(struct map *old_map, void *data) 1153 { 1154 struct rb_root *modules = data; 1155 struct module_info *mi; 1156 struct dso *dso; 1157 1158 if (!__map__is_kmodule(old_map)) 1159 return 0; 1160 1161 dso = map__dso(old_map); 1162 /* Module must be in memory at the same address */ 1163 mi = find_module(dso__short_name(dso), modules); 1164 if (!mi || mi->start != map__start(old_map)) 1165 return -EINVAL; 1166 1167 return 0; 1168 } 1169 1170 static int do_validate_kcore_modules(const char *filename, struct maps *kmaps) 1171 { 1172 struct rb_root modules = RB_ROOT; 1173 int err; 1174 1175 err = read_proc_modules(filename, &modules); 1176 if (err) 1177 return err; 1178 1179 err = maps__for_each_map(kmaps, do_validate_kcore_modules_cb, &modules); 1180 1181 delete_modules(&modules); 1182 return err; 1183 } 1184 1185 /* 1186 * If kallsyms is referenced by name then we look for filename in the same 1187 * directory. 1188 */ 1189 static bool filename_from_kallsyms_filename(char *filename, 1190 const char *base_name, 1191 const char *kallsyms_filename) 1192 { 1193 char *name; 1194 1195 strcpy(filename, kallsyms_filename); 1196 name = strrchr(filename, '/'); 1197 if (!name) 1198 return false; 1199 1200 name += 1; 1201 1202 if (!strcmp(name, "kallsyms")) { 1203 strcpy(name, base_name); 1204 return true; 1205 } 1206 1207 return false; 1208 } 1209 1210 static int validate_kcore_modules(const char *kallsyms_filename, 1211 struct map *map) 1212 { 1213 struct maps *kmaps = map__kmaps(map); 1214 char modules_filename[PATH_MAX]; 1215 1216 if (!kmaps) 1217 return -EINVAL; 1218 1219 if (!filename_from_kallsyms_filename(modules_filename, "modules", 1220 kallsyms_filename)) 1221 return -EINVAL; 1222 1223 if (do_validate_kcore_modules(modules_filename, kmaps)) 1224 return -EINVAL; 1225 1226 return 0; 1227 } 1228 1229 static int validate_kcore_addresses(const char *kallsyms_filename, 1230 struct map *map) 1231 { 1232 struct kmap *kmap = map__kmap(map); 1233 1234 if (!kmap) 1235 return -EINVAL; 1236 1237 if (kmap->ref_reloc_sym && kmap->ref_reloc_sym->name) { 1238 u64 start; 1239 1240 if (kallsyms__get_function_start(kallsyms_filename, 1241 kmap->ref_reloc_sym->name, &start)) 1242 return -ENOENT; 1243 if (start != kmap->ref_reloc_sym->addr) 1244 return -EINVAL; 1245 } 1246 1247 return validate_kcore_modules(kallsyms_filename, map); 1248 } 1249 1250 struct kcore_mapfn_data { 1251 struct dso *dso; 1252 struct list_head maps; 1253 }; 1254 1255 static int kcore_mapfn(u64 start, u64 len, u64 pgoff, void *data) 1256 { 1257 struct kcore_mapfn_data *md = data; 1258 struct map_list_node *list_node = map_list_node__new(); 1259 1260 if (!list_node) 1261 return -ENOMEM; 1262 1263 list_node->map = map__new2(start, md->dso); 1264 if (!list_node->map) { 1265 free(list_node); 1266 return -ENOMEM; 1267 } 1268 1269 map__set_end(list_node->map, map__start(list_node->map) + len); 1270 map__set_pgoff(list_node->map, pgoff); 1271 1272 list_add(&list_node->node, &md->maps); 1273 1274 return 0; 1275 } 1276 1277 static bool remove_old_maps(struct map *map, void *data) 1278 { 1279 const struct map *map_to_save = data; 1280 1281 /* 1282 * We need to preserve eBPF maps even if they are covered by kcore, 1283 * because we need to access eBPF dso for source data. 1284 */ 1285 return !RC_CHK_EQUAL(map, map_to_save) && !__map__is_bpf_prog(map); 1286 } 1287 1288 static int dso__load_kcore(struct dso *dso, struct map *map, 1289 const char *kallsyms_filename) 1290 { 1291 struct maps *kmaps = map__kmaps(map); 1292 struct kcore_mapfn_data md; 1293 struct map *map_ref, *replacement_map = NULL; 1294 struct machine *machine; 1295 bool is_64_bit; 1296 int err, fd; 1297 char kcore_filename[PATH_MAX]; 1298 u64 stext; 1299 1300 if (!kmaps) 1301 return -EINVAL; 1302 1303 machine = maps__machine(kmaps); 1304 1305 /* This function requires that the map is the kernel map */ 1306 if (!__map__is_kernel(map)) 1307 return -EINVAL; 1308 1309 if (!filename_from_kallsyms_filename(kcore_filename, "kcore", 1310 kallsyms_filename)) 1311 return -EINVAL; 1312 1313 /* Modules and kernel must be present at their original addresses */ 1314 if (validate_kcore_addresses(kallsyms_filename, map)) 1315 return -EINVAL; 1316 1317 md.dso = dso; 1318 INIT_LIST_HEAD(&md.maps); 1319 1320 fd = open(kcore_filename, O_RDONLY); 1321 if (fd < 0) { 1322 pr_debug("Failed to open %s. Note /proc/kcore requires CAP_SYS_RAWIO capability to access.\n", 1323 kcore_filename); 1324 return -EINVAL; 1325 } 1326 1327 /* Read new maps into temporary lists */ 1328 err = file__read_maps(fd, map__prot(map) & PROT_EXEC, kcore_mapfn, &md, 1329 &is_64_bit); 1330 if (err) 1331 goto out_err; 1332 dso__set_is_64_bit(dso, is_64_bit); 1333 1334 if (list_empty(&md.maps)) { 1335 err = -EINVAL; 1336 goto out_err; 1337 } 1338 1339 /* Remove old maps */ 1340 maps__remove_maps(kmaps, remove_old_maps, map); 1341 machine->trampolines_mapped = false; 1342 1343 /* Find the kernel map using the '_stext' symbol */ 1344 if (!kallsyms__get_function_start(kallsyms_filename, "_stext", &stext)) { 1345 u64 replacement_size = 0; 1346 struct map_list_node *new_node; 1347 1348 list_for_each_entry(new_node, &md.maps, node) { 1349 struct map *new_map = new_node->map; 1350 u64 new_size = map__size(new_map); 1351 1352 if (!(stext >= map__start(new_map) && stext < map__end(new_map))) 1353 continue; 1354 1355 /* 1356 * On some architectures, ARM64 for example, the kernel 1357 * text can get allocated inside of the vmalloc segment. 1358 * Select the smallest matching segment, in case stext 1359 * falls within more than one in the list. 1360 */ 1361 if (!replacement_map || new_size < replacement_size) { 1362 replacement_map = new_map; 1363 replacement_size = new_size; 1364 } 1365 } 1366 } 1367 1368 if (!replacement_map) 1369 replacement_map = list_entry(md.maps.next, struct map_list_node, node)->map; 1370 1371 /* 1372 * Update addresses of vmlinux map. Re-insert it to ensure maps are 1373 * correctly ordered. Do this before using maps__merge_in() for the 1374 * remaining maps so vmlinux gets split if necessary. 1375 */ 1376 map_ref = map__get(map); 1377 maps__remove(kmaps, map_ref); 1378 1379 map__set_start(map_ref, map__start(replacement_map)); 1380 map__set_end(map_ref, map__end(replacement_map)); 1381 map__set_pgoff(map_ref, map__pgoff(replacement_map)); 1382 map__set_mapping_type(map_ref, map__mapping_type(replacement_map)); 1383 1384 err = maps__insert(kmaps, map_ref); 1385 map__put(map_ref); 1386 if (err) 1387 goto out_err; 1388 1389 /* Add new maps */ 1390 while (!list_empty(&md.maps)) { 1391 struct map_list_node *new_node = list_entry(md.maps.next, struct map_list_node, node); 1392 struct map *new_map = new_node->map; 1393 1394 list_del_init(&new_node->node); 1395 1396 /* skip if replacement_map, already inserted above */ 1397 if (!RC_CHK_EQUAL(new_map, replacement_map)) { 1398 /* 1399 * Merge kcore map into existing maps, 1400 * and ensure that current maps (eBPF) 1401 * stay intact. 1402 */ 1403 if (maps__merge_in(kmaps, new_map)) { 1404 err = -EINVAL; 1405 goto out_err; 1406 } 1407 } 1408 free(new_node); 1409 } 1410 1411 if (machine__is(machine, "x86_64")) { 1412 u64 addr; 1413 1414 /* 1415 * If one of the corresponding symbols is there, assume the 1416 * entry trampoline maps are too. 1417 */ 1418 if (!kallsyms__get_function_start(kallsyms_filename, 1419 ENTRY_TRAMPOLINE_NAME, 1420 &addr)) 1421 machine->trampolines_mapped = true; 1422 } 1423 1424 /* 1425 * Set the data type and long name so that kcore can be read via 1426 * dso__data_read_addr(). 1427 */ 1428 if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST) 1429 dso__set_binary_type(dso, DSO_BINARY_TYPE__GUEST_KCORE); 1430 else 1431 dso__set_binary_type(dso, DSO_BINARY_TYPE__KCORE); 1432 dso__set_long_name(dso, strdup(kcore_filename), true); 1433 1434 close(fd); 1435 1436 if (map__prot(map) & PROT_EXEC) 1437 pr_debug("Using %s for kernel object code\n", kcore_filename); 1438 else 1439 pr_debug("Using %s for kernel data\n", kcore_filename); 1440 1441 return 0; 1442 1443 out_err: 1444 while (!list_empty(&md.maps)) { 1445 struct map_list_node *list_node; 1446 1447 list_node = list_entry(md.maps.next, struct map_list_node, node); 1448 list_del_init(&list_node->node); 1449 map__zput(list_node->map); 1450 free(list_node); 1451 } 1452 close(fd); 1453 return err; 1454 } 1455 1456 /* 1457 * If the kernel is relocated at boot time, kallsyms won't match. Compute the 1458 * delta based on the relocation reference symbol. 1459 */ 1460 static int kallsyms__delta(struct kmap *kmap, const char *filename, u64 *delta) 1461 { 1462 u64 addr; 1463 1464 if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->name) 1465 return 0; 1466 1467 if (kallsyms__get_function_start(filename, kmap->ref_reloc_sym->name, &addr)) 1468 return -1; 1469 1470 *delta = addr - kmap->ref_reloc_sym->addr; 1471 return 0; 1472 } 1473 1474 int __dso__load_kallsyms(struct dso *dso, const char *filename, 1475 struct map *map, bool no_kcore) 1476 { 1477 struct kmap *kmap = map__kmap(map); 1478 u64 delta = 0; 1479 1480 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1481 return -1; 1482 1483 if (!kmap || !kmap->kmaps) 1484 return -1; 1485 1486 if (dso__load_all_kallsyms(dso, filename) < 0) 1487 return -1; 1488 1489 if (kallsyms__delta(kmap, filename, &delta)) 1490 return -1; 1491 1492 symbols__fixup_end(dso__symbols(dso), true); 1493 symbols__fixup_duplicate(dso__symbols(dso)); 1494 1495 if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST) 1496 dso__set_symtab_type(dso, DSO_BINARY_TYPE__GUEST_KALLSYMS); 1497 else 1498 dso__set_symtab_type(dso, DSO_BINARY_TYPE__KALLSYMS); 1499 1500 if (!no_kcore && !dso__load_kcore(dso, map, filename)) 1501 return maps__split_kallsyms_for_kcore(kmap->kmaps, dso); 1502 else 1503 return maps__split_kallsyms(kmap->kmaps, dso, delta, map); 1504 } 1505 1506 int dso__load_kallsyms(struct dso *dso, const char *filename, 1507 struct map *map) 1508 { 1509 return __dso__load_kallsyms(dso, filename, map, false); 1510 } 1511 1512 static int dso__load_perf_map(const char *map_path, struct dso *dso) 1513 { 1514 char *line = NULL; 1515 size_t n; 1516 FILE *file; 1517 int nr_syms = 0; 1518 1519 file = fopen(map_path, "r"); 1520 if (file == NULL) 1521 goto out_failure; 1522 1523 while (!feof(file)) { 1524 u64 start, size; 1525 struct symbol *sym; 1526 int line_len, len; 1527 1528 line_len = getline(&line, &n, file); 1529 if (line_len < 0) 1530 break; 1531 1532 if (!line) 1533 goto out_failure; 1534 1535 line[--line_len] = '\0'; /* \n */ 1536 1537 len = hex2u64(line, &start); 1538 1539 len++; 1540 if (len + 2 >= line_len) 1541 continue; 1542 1543 len += hex2u64(line + len, &size); 1544 1545 len++; 1546 if (len + 2 >= line_len) 1547 continue; 1548 1549 sym = symbol__new(start, size, STB_GLOBAL, STT_FUNC, line + len); 1550 1551 if (sym == NULL) 1552 goto out_delete_line; 1553 1554 symbols__insert(dso__symbols(dso), sym); 1555 nr_syms++; 1556 } 1557 1558 free(line); 1559 fclose(file); 1560 1561 return nr_syms; 1562 1563 out_delete_line: 1564 free(line); 1565 out_failure: 1566 return -1; 1567 } 1568 1569 #ifdef HAVE_LIBBFD_SUPPORT 1570 #define PACKAGE 'perf' 1571 #include <bfd.h> 1572 1573 static int bfd_symbols__cmpvalue(const void *a, const void *b) 1574 { 1575 const asymbol *as = *(const asymbol **)a, *bs = *(const asymbol **)b; 1576 1577 if (bfd_asymbol_value(as) != bfd_asymbol_value(bs)) 1578 return bfd_asymbol_value(as) - bfd_asymbol_value(bs); 1579 1580 return bfd_asymbol_name(as)[0] - bfd_asymbol_name(bs)[0]; 1581 } 1582 1583 static int bfd2elf_binding(asymbol *symbol) 1584 { 1585 if (symbol->flags & BSF_WEAK) 1586 return STB_WEAK; 1587 if (symbol->flags & BSF_GLOBAL) 1588 return STB_GLOBAL; 1589 if (symbol->flags & BSF_LOCAL) 1590 return STB_LOCAL; 1591 return -1; 1592 } 1593 1594 int dso__load_bfd_symbols(struct dso *dso, const char *debugfile) 1595 { 1596 int err = -1; 1597 long symbols_size, symbols_count, i; 1598 asection *section; 1599 asymbol **symbols, *sym; 1600 struct symbol *symbol; 1601 bfd *abfd; 1602 u64 start, len; 1603 1604 abfd = bfd_openr(debugfile, NULL); 1605 if (!abfd) 1606 return -1; 1607 1608 if (!bfd_check_format(abfd, bfd_object)) { 1609 pr_debug2("%s: cannot read %s bfd file.\n", __func__, 1610 dso__long_name(dso)); 1611 goto out_close; 1612 } 1613 1614 if (bfd_get_flavour(abfd) == bfd_target_elf_flavour) 1615 goto out_close; 1616 1617 symbols_size = bfd_get_symtab_upper_bound(abfd); 1618 if (symbols_size == 0) { 1619 bfd_close(abfd); 1620 return 0; 1621 } 1622 1623 if (symbols_size < 0) 1624 goto out_close; 1625 1626 symbols = malloc(symbols_size); 1627 if (!symbols) 1628 goto out_close; 1629 1630 symbols_count = bfd_canonicalize_symtab(abfd, symbols); 1631 if (symbols_count < 0) 1632 goto out_free; 1633 1634 section = bfd_get_section_by_name(abfd, ".text"); 1635 if (section) { 1636 for (i = 0; i < symbols_count; ++i) { 1637 if (!strcmp(bfd_asymbol_name(symbols[i]), "__ImageBase") || 1638 !strcmp(bfd_asymbol_name(symbols[i]), "__image_base__")) 1639 break; 1640 } 1641 if (i < symbols_count) { 1642 /* PE symbols can only have 4 bytes, so use .text high bits */ 1643 u64 text_offset = (section->vma - (u32)section->vma) 1644 + (u32)bfd_asymbol_value(symbols[i]); 1645 dso__set_text_offset(dso, text_offset); 1646 dso__set_text_end(dso, (section->vma - text_offset) + section->size); 1647 } else { 1648 dso__set_text_offset(dso, section->vma - section->filepos); 1649 dso__set_text_end(dso, section->filepos + section->size); 1650 } 1651 } 1652 1653 qsort(symbols, symbols_count, sizeof(asymbol *), bfd_symbols__cmpvalue); 1654 1655 #ifdef bfd_get_section 1656 #define bfd_asymbol_section bfd_get_section 1657 #endif 1658 for (i = 0; i < symbols_count; ++i) { 1659 sym = symbols[i]; 1660 section = bfd_asymbol_section(sym); 1661 if (bfd2elf_binding(sym) < 0) 1662 continue; 1663 1664 while (i + 1 < symbols_count && 1665 bfd_asymbol_section(symbols[i + 1]) == section && 1666 bfd2elf_binding(symbols[i + 1]) < 0) 1667 i++; 1668 1669 if (i + 1 < symbols_count && 1670 bfd_asymbol_section(symbols[i + 1]) == section) 1671 len = symbols[i + 1]->value - sym->value; 1672 else 1673 len = section->size - sym->value; 1674 1675 start = bfd_asymbol_value(sym) - dso__text_offset(dso); 1676 symbol = symbol__new(start, len, bfd2elf_binding(sym), STT_FUNC, 1677 bfd_asymbol_name(sym)); 1678 if (!symbol) 1679 goto out_free; 1680 1681 symbols__insert(dso__symbols(dso), symbol); 1682 } 1683 #ifdef bfd_get_section 1684 #undef bfd_asymbol_section 1685 #endif 1686 1687 symbols__fixup_end(dso__symbols(dso), false); 1688 symbols__fixup_duplicate(dso__symbols(dso)); 1689 dso__set_adjust_symbols(dso, true); 1690 1691 err = 0; 1692 out_free: 1693 free(symbols); 1694 out_close: 1695 bfd_close(abfd); 1696 return err; 1697 } 1698 #endif 1699 1700 static bool dso__is_compatible_symtab_type(struct dso *dso, bool kmod, 1701 enum dso_binary_type type) 1702 { 1703 switch (type) { 1704 case DSO_BINARY_TYPE__JAVA_JIT: 1705 case DSO_BINARY_TYPE__DEBUGLINK: 1706 case DSO_BINARY_TYPE__SYSTEM_PATH_DSO: 1707 case DSO_BINARY_TYPE__FEDORA_DEBUGINFO: 1708 case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO: 1709 case DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO: 1710 case DSO_BINARY_TYPE__BUILDID_DEBUGINFO: 1711 case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO: 1712 return !kmod && dso__kernel(dso) == DSO_SPACE__USER; 1713 1714 case DSO_BINARY_TYPE__KALLSYMS: 1715 case DSO_BINARY_TYPE__VMLINUX: 1716 case DSO_BINARY_TYPE__KCORE: 1717 return dso__kernel(dso) == DSO_SPACE__KERNEL; 1718 1719 case DSO_BINARY_TYPE__GUEST_KALLSYMS: 1720 case DSO_BINARY_TYPE__GUEST_VMLINUX: 1721 case DSO_BINARY_TYPE__GUEST_KCORE: 1722 return dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST; 1723 1724 case DSO_BINARY_TYPE__GUEST_KMODULE: 1725 case DSO_BINARY_TYPE__GUEST_KMODULE_COMP: 1726 case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE: 1727 case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP: 1728 /* 1729 * kernel modules know their symtab type - it's set when 1730 * creating a module dso in machine__addnew_module_map(). 1731 */ 1732 return kmod && dso__symtab_type(dso) == type; 1733 1734 case DSO_BINARY_TYPE__BUILD_ID_CACHE: 1735 case DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO: 1736 return true; 1737 1738 case DSO_BINARY_TYPE__BPF_PROG_INFO: 1739 case DSO_BINARY_TYPE__BPF_IMAGE: 1740 case DSO_BINARY_TYPE__OOL: 1741 case DSO_BINARY_TYPE__NOT_FOUND: 1742 default: 1743 return false; 1744 } 1745 } 1746 1747 /* Checks for the existence of the perf-<pid>.map file in two different 1748 * locations. First, if the process is a separate mount namespace, check in 1749 * that namespace using the pid of the innermost pid namespace. If's not in a 1750 * namespace, or the file can't be found there, try in the mount namespace of 1751 * the tracing process using our view of its pid. 1752 */ 1753 static int dso__find_perf_map(char *filebuf, size_t bufsz, 1754 struct nsinfo **nsip) 1755 { 1756 struct nscookie nsc; 1757 struct nsinfo *nsi; 1758 struct nsinfo *nnsi; 1759 int rc = -1; 1760 1761 nsi = *nsip; 1762 1763 if (nsinfo__need_setns(nsi)) { 1764 snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsinfo__nstgid(nsi)); 1765 nsinfo__mountns_enter(nsi, &nsc); 1766 rc = access(filebuf, R_OK); 1767 nsinfo__mountns_exit(&nsc); 1768 if (rc == 0) 1769 return rc; 1770 } 1771 1772 nnsi = nsinfo__copy(nsi); 1773 if (nnsi) { 1774 nsinfo__put(nsi); 1775 1776 nsinfo__clear_need_setns(nnsi); 1777 snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsinfo__tgid(nnsi)); 1778 *nsip = nnsi; 1779 rc = 0; 1780 } 1781 1782 return rc; 1783 } 1784 1785 int dso__load(struct dso *dso, struct map *map) 1786 { 1787 char *name; 1788 int ret = -1; 1789 u_int i; 1790 struct machine *machine = NULL; 1791 char *root_dir = (char *) ""; 1792 int ss_pos = 0; 1793 struct symsrc ss_[2]; 1794 struct symsrc *syms_ss = NULL, *runtime_ss = NULL; 1795 bool kmod; 1796 bool perfmap; 1797 struct build_id bid; 1798 struct nscookie nsc; 1799 char newmapname[PATH_MAX]; 1800 const char *map_path = dso__long_name(dso); 1801 1802 mutex_lock(dso__lock(dso)); 1803 perfmap = is_perf_pid_map_name(map_path); 1804 1805 if (perfmap) { 1806 if (dso__nsinfo(dso) && 1807 (dso__find_perf_map(newmapname, sizeof(newmapname), 1808 dso__nsinfo_ptr(dso)) == 0)) { 1809 map_path = newmapname; 1810 } 1811 } 1812 1813 nsinfo__mountns_enter(dso__nsinfo(dso), &nsc); 1814 1815 /* check again under the dso->lock */ 1816 if (dso__loaded(dso)) { 1817 ret = 1; 1818 goto out; 1819 } 1820 1821 kmod = dso__is_kmod(dso); 1822 1823 if (dso__kernel(dso) && !kmod) { 1824 if (dso__kernel(dso) == DSO_SPACE__KERNEL) 1825 ret = dso__load_kernel_sym(dso, map); 1826 else if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST) 1827 ret = dso__load_guest_kernel_sym(dso, map); 1828 1829 machine = maps__machine(map__kmaps(map)); 1830 if (machine__is(machine, "x86_64")) 1831 machine__map_x86_64_entry_trampolines(machine, dso); 1832 goto out; 1833 } 1834 1835 dso__set_adjust_symbols(dso, false); 1836 1837 if (perfmap) { 1838 ret = dso__load_perf_map(map_path, dso); 1839 dso__set_symtab_type(dso, ret > 0 1840 ? DSO_BINARY_TYPE__JAVA_JIT 1841 : DSO_BINARY_TYPE__NOT_FOUND); 1842 goto out; 1843 } 1844 1845 if (machine) 1846 root_dir = machine->root_dir; 1847 1848 name = malloc(PATH_MAX); 1849 if (!name) 1850 goto out; 1851 1852 /* 1853 * Read the build id if possible. This is required for 1854 * DSO_BINARY_TYPE__BUILDID_DEBUGINFO to work 1855 */ 1856 if (!dso__has_build_id(dso) && 1857 is_regular_file(dso__long_name(dso))) { 1858 __symbol__join_symfs(name, PATH_MAX, dso__long_name(dso)); 1859 if (filename__read_build_id(name, &bid) > 0) 1860 dso__set_build_id(dso, &bid); 1861 } 1862 1863 /* 1864 * Iterate over candidate debug images. 1865 * Keep track of "interesting" ones (those which have a symtab, dynsym, 1866 * and/or opd section) for processing. 1867 */ 1868 for (i = 0; i < DSO_BINARY_TYPE__SYMTAB_CNT; i++) { 1869 struct symsrc *ss = &ss_[ss_pos]; 1870 bool next_slot = false; 1871 bool is_reg; 1872 bool nsexit; 1873 int bfdrc = -1; 1874 int sirc = -1; 1875 1876 enum dso_binary_type symtab_type = binary_type_symtab[i]; 1877 1878 nsexit = (symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE || 1879 symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO); 1880 1881 if (!dso__is_compatible_symtab_type(dso, kmod, symtab_type)) 1882 continue; 1883 1884 if (dso__read_binary_type_filename(dso, symtab_type, 1885 root_dir, name, PATH_MAX)) 1886 continue; 1887 1888 if (nsexit) 1889 nsinfo__mountns_exit(&nsc); 1890 1891 is_reg = is_regular_file(name); 1892 if (!is_reg && errno == ENOENT && dso__nsinfo(dso)) { 1893 char *new_name = dso__filename_with_chroot(dso, name); 1894 if (new_name) { 1895 is_reg = is_regular_file(new_name); 1896 strlcpy(name, new_name, PATH_MAX); 1897 free(new_name); 1898 } 1899 } 1900 1901 #ifdef HAVE_LIBBFD_SUPPORT 1902 if (is_reg) 1903 bfdrc = dso__load_bfd_symbols(dso, name); 1904 #endif 1905 if (is_reg && bfdrc < 0) 1906 sirc = symsrc__init(ss, dso, name, symtab_type); 1907 1908 if (nsexit) 1909 nsinfo__mountns_enter(dso__nsinfo(dso), &nsc); 1910 1911 if (bfdrc == 0) { 1912 ret = 0; 1913 break; 1914 } 1915 1916 if (!is_reg || sirc < 0) 1917 continue; 1918 1919 if (!syms_ss && symsrc__has_symtab(ss)) { 1920 syms_ss = ss; 1921 next_slot = true; 1922 if (!dso__symsrc_filename(dso)) 1923 dso__set_symsrc_filename(dso, strdup(name)); 1924 } 1925 1926 if (!runtime_ss && symsrc__possibly_runtime(ss)) { 1927 runtime_ss = ss; 1928 next_slot = true; 1929 } 1930 1931 if (next_slot) { 1932 ss_pos++; 1933 1934 if (dso__binary_type(dso) == DSO_BINARY_TYPE__NOT_FOUND) 1935 dso__set_binary_type(dso, symtab_type); 1936 1937 if (syms_ss && runtime_ss) 1938 break; 1939 } else { 1940 symsrc__destroy(ss); 1941 } 1942 1943 } 1944 1945 if (!runtime_ss && !syms_ss) 1946 goto out_free; 1947 1948 if (runtime_ss && !syms_ss) { 1949 syms_ss = runtime_ss; 1950 } 1951 1952 /* We'll have to hope for the best */ 1953 if (!runtime_ss && syms_ss) 1954 runtime_ss = syms_ss; 1955 1956 if (syms_ss) 1957 ret = dso__load_sym(dso, map, syms_ss, runtime_ss, kmod); 1958 else 1959 ret = -1; 1960 1961 if (ret > 0) { 1962 int nr_plt; 1963 1964 nr_plt = dso__synthesize_plt_symbols(dso, runtime_ss); 1965 if (nr_plt > 0) 1966 ret += nr_plt; 1967 } 1968 1969 for (; ss_pos > 0; ss_pos--) 1970 symsrc__destroy(&ss_[ss_pos - 1]); 1971 out_free: 1972 free(name); 1973 if (ret < 0 && strstr(dso__name(dso), " (deleted)") != NULL) 1974 ret = 0; 1975 out: 1976 dso__set_loaded(dso); 1977 mutex_unlock(dso__lock(dso)); 1978 nsinfo__mountns_exit(&nsc); 1979 1980 return ret; 1981 } 1982 1983 /* 1984 * Always takes ownership of vmlinux when vmlinux_allocated == true, even if 1985 * it returns an error. 1986 */ 1987 int dso__load_vmlinux(struct dso *dso, struct map *map, 1988 const char *vmlinux, bool vmlinux_allocated) 1989 { 1990 int err = -1; 1991 struct symsrc ss; 1992 char symfs_vmlinux[PATH_MAX]; 1993 enum dso_binary_type symtab_type; 1994 1995 if (vmlinux[0] == '/') 1996 snprintf(symfs_vmlinux, sizeof(symfs_vmlinux), "%s", vmlinux); 1997 else 1998 symbol__join_symfs(symfs_vmlinux, vmlinux); 1999 2000 if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST) 2001 symtab_type = DSO_BINARY_TYPE__GUEST_VMLINUX; 2002 else 2003 symtab_type = DSO_BINARY_TYPE__VMLINUX; 2004 2005 if (symsrc__init(&ss, dso, symfs_vmlinux, symtab_type)) { 2006 if (vmlinux_allocated) 2007 free((char *) vmlinux); 2008 return -1; 2009 } 2010 2011 /* 2012 * dso__load_sym() may copy 'dso' which will result in the copies having 2013 * an incorrect long name unless we set it here first. 2014 */ 2015 dso__set_long_name(dso, vmlinux, vmlinux_allocated); 2016 if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST) 2017 dso__set_binary_type(dso, DSO_BINARY_TYPE__GUEST_VMLINUX); 2018 else 2019 dso__set_binary_type(dso, DSO_BINARY_TYPE__VMLINUX); 2020 2021 err = dso__load_sym(dso, map, &ss, &ss, 0); 2022 symsrc__destroy(&ss); 2023 2024 if (err > 0) { 2025 dso__set_loaded(dso); 2026 pr_debug("Using %s for symbols\n", symfs_vmlinux); 2027 } 2028 2029 return err; 2030 } 2031 2032 int dso__load_vmlinux_path(struct dso *dso, struct map *map) 2033 { 2034 int i, err = 0; 2035 char *filename = NULL; 2036 2037 pr_debug("Looking at the vmlinux_path (%d entries long)\n", 2038 vmlinux_path__nr_entries + 1); 2039 2040 for (i = 0; i < vmlinux_path__nr_entries; ++i) { 2041 err = dso__load_vmlinux(dso, map, vmlinux_path[i], false); 2042 if (err > 0) 2043 goto out; 2044 } 2045 2046 if (!symbol_conf.ignore_vmlinux_buildid) 2047 filename = dso__build_id_filename(dso, NULL, 0, false); 2048 if (filename != NULL) { 2049 err = dso__load_vmlinux(dso, map, filename, true); 2050 if (err > 0) 2051 goto out; 2052 } 2053 out: 2054 return err; 2055 } 2056 2057 static bool visible_dir_filter(const char *name, struct dirent *d) 2058 { 2059 if (d->d_type != DT_DIR) 2060 return false; 2061 return lsdir_no_dot_filter(name, d); 2062 } 2063 2064 static int find_matching_kcore(struct map *map, char *dir, size_t dir_sz) 2065 { 2066 char kallsyms_filename[PATH_MAX]; 2067 int ret = -1; 2068 struct strlist *dirs; 2069 struct str_node *nd; 2070 2071 dirs = lsdir(dir, visible_dir_filter); 2072 if (!dirs) 2073 return -1; 2074 2075 strlist__for_each_entry(nd, dirs) { 2076 scnprintf(kallsyms_filename, sizeof(kallsyms_filename), 2077 "%s/%s/kallsyms", dir, nd->s); 2078 if (!validate_kcore_addresses(kallsyms_filename, map)) { 2079 strlcpy(dir, kallsyms_filename, dir_sz); 2080 ret = 0; 2081 break; 2082 } 2083 } 2084 2085 strlist__delete(dirs); 2086 2087 return ret; 2088 } 2089 2090 /* 2091 * Use open(O_RDONLY) to check readability directly instead of access(R_OK) 2092 * since access(R_OK) only checks with real UID/GID but open() use effective 2093 * UID/GID and actual capabilities (e.g. /proc/kcore requires CAP_SYS_RAWIO). 2094 */ 2095 static bool filename__readable(const char *file) 2096 { 2097 int fd = open(file, O_RDONLY); 2098 if (fd < 0) 2099 return false; 2100 close(fd); 2101 return true; 2102 } 2103 2104 static char *dso__find_kallsyms(struct dso *dso, struct map *map) 2105 { 2106 struct build_id bid; 2107 char sbuild_id[SBUILD_ID_SIZE]; 2108 bool is_host = false; 2109 char path[PATH_MAX]; 2110 2111 if (!dso__has_build_id(dso)) { 2112 /* 2113 * Last resort, if we don't have a build-id and couldn't find 2114 * any vmlinux file, try the running kernel kallsyms table. 2115 */ 2116 goto proc_kallsyms; 2117 } 2118 2119 if (sysfs__read_build_id("/sys/kernel/notes", &bid) == 0) 2120 is_host = dso__build_id_equal(dso, &bid); 2121 2122 /* Try a fast path for /proc/kallsyms if possible */ 2123 if (is_host) { 2124 /* 2125 * Do not check the build-id cache, unless we know we cannot use 2126 * /proc/kcore or module maps don't match to /proc/kallsyms. 2127 * To check readability of /proc/kcore, do not use access(R_OK) 2128 * since /proc/kcore requires CAP_SYS_RAWIO to read and access 2129 * can't check it. 2130 */ 2131 if (filename__readable("/proc/kcore") && 2132 !validate_kcore_addresses("/proc/kallsyms", map)) 2133 goto proc_kallsyms; 2134 } 2135 2136 build_id__sprintf(dso__bid(dso), sbuild_id); 2137 2138 /* Find kallsyms in build-id cache with kcore */ 2139 scnprintf(path, sizeof(path), "%s/%s/%s", 2140 buildid_dir, DSO__NAME_KCORE, sbuild_id); 2141 2142 if (!find_matching_kcore(map, path, sizeof(path))) 2143 return strdup(path); 2144 2145 /* Use current /proc/kallsyms if possible */ 2146 if (is_host) { 2147 proc_kallsyms: 2148 return strdup("/proc/kallsyms"); 2149 } 2150 2151 /* Finally, find a cache of kallsyms */ 2152 if (!build_id_cache__kallsyms_path(sbuild_id, path, sizeof(path))) { 2153 pr_err("No kallsyms or vmlinux with build-id %s was found\n", 2154 sbuild_id); 2155 return NULL; 2156 } 2157 2158 return strdup(path); 2159 } 2160 2161 static int dso__load_kernel_sym(struct dso *dso, struct map *map) 2162 { 2163 int err; 2164 const char *kallsyms_filename = NULL; 2165 char *kallsyms_allocated_filename = NULL; 2166 char *filename = NULL; 2167 2168 /* 2169 * Step 1: if the user specified a kallsyms or vmlinux filename, use 2170 * it and only it, reporting errors to the user if it cannot be used. 2171 * 2172 * For instance, try to analyse an ARM perf.data file _without_ a 2173 * build-id, or if the user specifies the wrong path to the right 2174 * vmlinux file, obviously we can't fallback to another vmlinux (a 2175 * x86_86 one, on the machine where analysis is being performed, say), 2176 * or worse, /proc/kallsyms. 2177 * 2178 * If the specified file _has_ a build-id and there is a build-id 2179 * section in the perf.data file, we will still do the expected 2180 * validation in dso__load_vmlinux and will bail out if they don't 2181 * match. 2182 */ 2183 if (symbol_conf.kallsyms_name != NULL) { 2184 kallsyms_filename = symbol_conf.kallsyms_name; 2185 goto do_kallsyms; 2186 } 2187 2188 if (!symbol_conf.ignore_vmlinux && symbol_conf.vmlinux_name != NULL) { 2189 return dso__load_vmlinux(dso, map, symbol_conf.vmlinux_name, false); 2190 } 2191 2192 /* 2193 * Before checking on common vmlinux locations, check if it's 2194 * stored as standard build id binary (not kallsyms) under 2195 * .debug cache. 2196 */ 2197 if (!symbol_conf.ignore_vmlinux_buildid) 2198 filename = __dso__build_id_filename(dso, NULL, 0, false, false); 2199 if (filename != NULL) { 2200 err = dso__load_vmlinux(dso, map, filename, true); 2201 if (err > 0) 2202 return err; 2203 } 2204 2205 if (!symbol_conf.ignore_vmlinux && vmlinux_path != NULL) { 2206 err = dso__load_vmlinux_path(dso, map); 2207 if (err > 0) 2208 return err; 2209 } 2210 2211 /* do not try local files if a symfs was given */ 2212 if (symbol_conf.symfs[0] != 0) 2213 return -1; 2214 2215 kallsyms_allocated_filename = dso__find_kallsyms(dso, map); 2216 if (!kallsyms_allocated_filename) 2217 return -1; 2218 2219 kallsyms_filename = kallsyms_allocated_filename; 2220 2221 do_kallsyms: 2222 err = dso__load_kallsyms(dso, kallsyms_filename, map); 2223 if (err > 0) 2224 pr_debug("Using %s for symbols\n", kallsyms_filename); 2225 free(kallsyms_allocated_filename); 2226 2227 if (err > 0 && !dso__is_kcore(dso)) { 2228 dso__set_binary_type(dso, DSO_BINARY_TYPE__KALLSYMS); 2229 dso__set_long_name(dso, DSO__NAME_KALLSYMS, false); 2230 map__fixup_start(map); 2231 map__fixup_end(map); 2232 } 2233 2234 return err; 2235 } 2236 2237 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map) 2238 { 2239 int err; 2240 const char *kallsyms_filename; 2241 struct machine *machine = maps__machine(map__kmaps(map)); 2242 char path[PATH_MAX]; 2243 2244 if (machine->kallsyms_filename) { 2245 kallsyms_filename = machine->kallsyms_filename; 2246 } else if (machine__is_default_guest(machine)) { 2247 /* 2248 * if the user specified a vmlinux filename, use it and only 2249 * it, reporting errors to the user if it cannot be used. 2250 * Or use file guest_kallsyms inputted by user on commandline 2251 */ 2252 if (symbol_conf.default_guest_vmlinux_name != NULL) { 2253 err = dso__load_vmlinux(dso, map, 2254 symbol_conf.default_guest_vmlinux_name, 2255 false); 2256 return err; 2257 } 2258 2259 kallsyms_filename = symbol_conf.default_guest_kallsyms; 2260 if (!kallsyms_filename) 2261 return -1; 2262 } else { 2263 sprintf(path, "%s/proc/kallsyms", machine->root_dir); 2264 kallsyms_filename = path; 2265 } 2266 2267 err = dso__load_kallsyms(dso, kallsyms_filename, map); 2268 if (err > 0) 2269 pr_debug("Using %s for symbols\n", kallsyms_filename); 2270 if (err > 0 && !dso__is_kcore(dso)) { 2271 dso__set_binary_type(dso, DSO_BINARY_TYPE__GUEST_KALLSYMS); 2272 dso__set_long_name(dso, machine->mmap_name, false); 2273 map__fixup_start(map); 2274 map__fixup_end(map); 2275 } 2276 2277 return err; 2278 } 2279 2280 static void vmlinux_path__exit(void) 2281 { 2282 while (--vmlinux_path__nr_entries >= 0) 2283 zfree(&vmlinux_path[vmlinux_path__nr_entries]); 2284 vmlinux_path__nr_entries = 0; 2285 2286 zfree(&vmlinux_path); 2287 } 2288 2289 static const char * const vmlinux_paths[] = { 2290 "vmlinux", 2291 "/boot/vmlinux" 2292 }; 2293 2294 static const char * const vmlinux_paths_upd[] = { 2295 "/boot/vmlinux-%s", 2296 "/usr/lib/debug/boot/vmlinux-%s", 2297 "/lib/modules/%s/build/vmlinux", 2298 "/usr/lib/debug/lib/modules/%s/vmlinux", 2299 "/usr/lib/debug/boot/vmlinux-%s.debug" 2300 }; 2301 2302 static int vmlinux_path__add(const char *new_entry) 2303 { 2304 vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry); 2305 if (vmlinux_path[vmlinux_path__nr_entries] == NULL) 2306 return -1; 2307 ++vmlinux_path__nr_entries; 2308 2309 return 0; 2310 } 2311 2312 static int vmlinux_path__init(struct perf_env *env) 2313 { 2314 struct utsname uts; 2315 char bf[PATH_MAX]; 2316 char *kernel_version; 2317 unsigned int i; 2318 2319 vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) + 2320 ARRAY_SIZE(vmlinux_paths_upd))); 2321 if (vmlinux_path == NULL) 2322 return -1; 2323 2324 for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++) 2325 if (vmlinux_path__add(vmlinux_paths[i]) < 0) 2326 goto out_fail; 2327 2328 /* only try kernel version if no symfs was given */ 2329 if (symbol_conf.symfs[0] != 0) 2330 return 0; 2331 2332 if (env) { 2333 kernel_version = env->os_release; 2334 } else { 2335 if (uname(&uts) < 0) 2336 goto out_fail; 2337 2338 kernel_version = uts.release; 2339 } 2340 2341 for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) { 2342 snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version); 2343 if (vmlinux_path__add(bf) < 0) 2344 goto out_fail; 2345 } 2346 2347 return 0; 2348 2349 out_fail: 2350 vmlinux_path__exit(); 2351 return -1; 2352 } 2353 2354 int setup_list(struct strlist **list, const char *list_str, 2355 const char *list_name) 2356 { 2357 if (list_str == NULL) 2358 return 0; 2359 2360 *list = strlist__new(list_str, NULL); 2361 if (!*list) { 2362 pr_err("problems parsing %s list\n", list_name); 2363 return -1; 2364 } 2365 2366 symbol_conf.has_filter = true; 2367 return 0; 2368 } 2369 2370 int setup_intlist(struct intlist **list, const char *list_str, 2371 const char *list_name) 2372 { 2373 if (list_str == NULL) 2374 return 0; 2375 2376 *list = intlist__new(list_str); 2377 if (!*list) { 2378 pr_err("problems parsing %s list\n", list_name); 2379 return -1; 2380 } 2381 return 0; 2382 } 2383 2384 static int setup_addrlist(struct intlist **addr_list, struct strlist *sym_list) 2385 { 2386 struct str_node *pos, *tmp; 2387 unsigned long val; 2388 char *sep; 2389 const char *end; 2390 int i = 0, err; 2391 2392 *addr_list = intlist__new(NULL); 2393 if (!*addr_list) 2394 return -1; 2395 2396 strlist__for_each_entry_safe(pos, tmp, sym_list) { 2397 errno = 0; 2398 val = strtoul(pos->s, &sep, 16); 2399 if (errno || (sep == pos->s)) 2400 continue; 2401 2402 if (*sep != '\0') { 2403 end = pos->s + strlen(pos->s) - 1; 2404 while (end >= sep && isspace(*end)) 2405 end--; 2406 2407 if (end >= sep) 2408 continue; 2409 } 2410 2411 err = intlist__add(*addr_list, val); 2412 if (err) 2413 break; 2414 2415 strlist__remove(sym_list, pos); 2416 i++; 2417 } 2418 2419 if (i == 0) { 2420 intlist__delete(*addr_list); 2421 *addr_list = NULL; 2422 } 2423 2424 return 0; 2425 } 2426 2427 static bool symbol__read_kptr_restrict(void) 2428 { 2429 bool value = false; 2430 FILE *fp = fopen("/proc/sys/kernel/kptr_restrict", "r"); 2431 bool used_root; 2432 bool cap_syslog = perf_cap__capable(CAP_SYSLOG, &used_root); 2433 2434 if (fp != NULL) { 2435 char line[8]; 2436 2437 if (fgets(line, sizeof(line), fp) != NULL) 2438 value = cap_syslog ? (atoi(line) >= 2) : (atoi(line) != 0); 2439 2440 fclose(fp); 2441 } 2442 2443 /* Per kernel/kallsyms.c: 2444 * we also restrict when perf_event_paranoid > 1 w/o CAP_SYSLOG 2445 */ 2446 if (perf_event_paranoid() > 1 && !cap_syslog) 2447 value = true; 2448 2449 return value; 2450 } 2451 2452 int symbol__annotation_init(void) 2453 { 2454 if (symbol_conf.init_annotation) 2455 return 0; 2456 2457 if (symbol_conf.initialized) { 2458 pr_err("Annotation needs to be init before symbol__init()\n"); 2459 return -1; 2460 } 2461 2462 symbol_conf.priv_size += sizeof(struct annotation); 2463 symbol_conf.init_annotation = true; 2464 return 0; 2465 } 2466 2467 int symbol__init(struct perf_env *env) 2468 { 2469 const char *symfs; 2470 2471 if (symbol_conf.initialized) 2472 return 0; 2473 2474 symbol_conf.priv_size = PERF_ALIGN(symbol_conf.priv_size, sizeof(u64)); 2475 2476 symbol__elf_init(); 2477 2478 if (symbol_conf.try_vmlinux_path && vmlinux_path__init(env) < 0) 2479 return -1; 2480 2481 if (symbol_conf.field_sep && *symbol_conf.field_sep == '.') { 2482 pr_err("'.' is the only non valid --field-separator argument\n"); 2483 return -1; 2484 } 2485 2486 if (setup_list(&symbol_conf.dso_list, 2487 symbol_conf.dso_list_str, "dso") < 0) 2488 return -1; 2489 2490 if (setup_list(&symbol_conf.comm_list, 2491 symbol_conf.comm_list_str, "comm") < 0) 2492 goto out_free_dso_list; 2493 2494 if (setup_intlist(&symbol_conf.pid_list, 2495 symbol_conf.pid_list_str, "pid") < 0) 2496 goto out_free_comm_list; 2497 2498 if (setup_intlist(&symbol_conf.tid_list, 2499 symbol_conf.tid_list_str, "tid") < 0) 2500 goto out_free_pid_list; 2501 2502 if (setup_list(&symbol_conf.sym_list, 2503 symbol_conf.sym_list_str, "symbol") < 0) 2504 goto out_free_tid_list; 2505 2506 if (symbol_conf.sym_list && 2507 setup_addrlist(&symbol_conf.addr_list, symbol_conf.sym_list) < 0) 2508 goto out_free_sym_list; 2509 2510 if (setup_list(&symbol_conf.bt_stop_list, 2511 symbol_conf.bt_stop_list_str, "symbol") < 0) 2512 goto out_free_sym_list; 2513 2514 /* 2515 * A path to symbols of "/" is identical to "" 2516 * reset here for simplicity. 2517 */ 2518 symfs = realpath(symbol_conf.symfs, NULL); 2519 if (symfs == NULL) 2520 symfs = symbol_conf.symfs; 2521 if (strcmp(symfs, "/") == 0) 2522 symbol_conf.symfs = ""; 2523 if (symfs != symbol_conf.symfs) 2524 free((void *)symfs); 2525 2526 symbol_conf.kptr_restrict = symbol__read_kptr_restrict(); 2527 2528 symbol_conf.initialized = true; 2529 return 0; 2530 2531 out_free_sym_list: 2532 strlist__delete(symbol_conf.sym_list); 2533 intlist__delete(symbol_conf.addr_list); 2534 out_free_tid_list: 2535 intlist__delete(symbol_conf.tid_list); 2536 out_free_pid_list: 2537 intlist__delete(symbol_conf.pid_list); 2538 out_free_comm_list: 2539 strlist__delete(symbol_conf.comm_list); 2540 out_free_dso_list: 2541 strlist__delete(symbol_conf.dso_list); 2542 return -1; 2543 } 2544 2545 void symbol__exit(void) 2546 { 2547 if (!symbol_conf.initialized) 2548 return; 2549 strlist__delete(symbol_conf.bt_stop_list); 2550 strlist__delete(symbol_conf.sym_list); 2551 strlist__delete(symbol_conf.dso_list); 2552 strlist__delete(symbol_conf.comm_list); 2553 intlist__delete(symbol_conf.tid_list); 2554 intlist__delete(symbol_conf.pid_list); 2555 intlist__delete(symbol_conf.addr_list); 2556 vmlinux_path__exit(); 2557 symbol_conf.sym_list = symbol_conf.dso_list = symbol_conf.comm_list = NULL; 2558 symbol_conf.bt_stop_list = NULL; 2559 symbol_conf.initialized = false; 2560 } 2561 2562 int symbol__config_symfs(const struct option *opt __maybe_unused, 2563 const char *dir, int unset __maybe_unused) 2564 { 2565 char *bf = NULL; 2566 int ret; 2567 2568 symbol_conf.symfs = strdup(dir); 2569 if (symbol_conf.symfs == NULL) 2570 return -ENOMEM; 2571 2572 /* skip the locally configured cache if a symfs is given, and 2573 * config buildid dir to symfs/.debug 2574 */ 2575 ret = asprintf(&bf, "%s/%s", dir, ".debug"); 2576 if (ret < 0) 2577 return -ENOMEM; 2578 2579 set_buildid_dir(bf); 2580 2581 free(bf); 2582 return 0; 2583 } 2584 2585 /* 2586 * Checks that user supplied symbol kernel files are accessible because 2587 * the default mechanism for accessing elf files fails silently. i.e. if 2588 * debug syms for a build ID aren't found perf carries on normally. When 2589 * they are user supplied we should assume that the user doesn't want to 2590 * silently fail. 2591 */ 2592 int symbol__validate_sym_arguments(void) 2593 { 2594 if (symbol_conf.vmlinux_name && 2595 access(symbol_conf.vmlinux_name, R_OK)) { 2596 pr_err("Invalid file: %s\n", symbol_conf.vmlinux_name); 2597 return -EINVAL; 2598 } 2599 if (symbol_conf.kallsyms_name && 2600 access(symbol_conf.kallsyms_name, R_OK)) { 2601 pr_err("Invalid file: %s\n", symbol_conf.kallsyms_name); 2602 return -EINVAL; 2603 } 2604 return 0; 2605 } 2606