xref: /linux/tools/perf/util/symbol-elf.c (revision fb71c86cc804b8f490fce1b9140014043ec41858)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9 
10 #include "map.h"
11 #include "map_groups.h"
12 #include "symbol.h"
13 #include "symsrc.h"
14 #include "demangle-java.h"
15 #include "demangle-rust.h"
16 #include "machine.h"
17 #include "vdso.h"
18 #include "debug.h"
19 #include "util.h"
20 #include <linux/ctype.h>
21 #include <linux/kernel.h>
22 #include <linux/zalloc.h>
23 #include <symbol/kallsyms.h>
24 #include <internal/lib.h>
25 
26 #ifndef EM_AARCH64
27 #define EM_AARCH64	183  /* ARM 64 bit */
28 #endif
29 
30 #ifndef ELF32_ST_VISIBILITY
31 #define ELF32_ST_VISIBILITY(o)	((o) & 0x03)
32 #endif
33 
34 /* For ELF64 the definitions are the same.  */
35 #ifndef ELF64_ST_VISIBILITY
36 #define ELF64_ST_VISIBILITY(o)	ELF32_ST_VISIBILITY (o)
37 #endif
38 
39 /* How to extract information held in the st_other field.  */
40 #ifndef GELF_ST_VISIBILITY
41 #define GELF_ST_VISIBILITY(val)	ELF64_ST_VISIBILITY (val)
42 #endif
43 
44 typedef Elf64_Nhdr GElf_Nhdr;
45 
46 #ifndef DMGL_PARAMS
47 #define DMGL_NO_OPTS     0              /* For readability... */
48 #define DMGL_PARAMS      (1 << 0)       /* Include function args */
49 #define DMGL_ANSI        (1 << 1)       /* Include const, volatile, etc */
50 #endif
51 
52 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
53 extern char *cplus_demangle(const char *, int);
54 
55 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
56 {
57 	return cplus_demangle(c, i);
58 }
59 #else
60 #ifdef NO_DEMANGLE
61 static inline char *bfd_demangle(void __maybe_unused *v,
62 				 const char __maybe_unused *c,
63 				 int __maybe_unused i)
64 {
65 	return NULL;
66 }
67 #else
68 #define PACKAGE 'perf'
69 #include <bfd.h>
70 #endif
71 #endif
72 
73 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
74 static int elf_getphdrnum(Elf *elf, size_t *dst)
75 {
76 	GElf_Ehdr gehdr;
77 	GElf_Ehdr *ehdr;
78 
79 	ehdr = gelf_getehdr(elf, &gehdr);
80 	if (!ehdr)
81 		return -1;
82 
83 	*dst = ehdr->e_phnum;
84 
85 	return 0;
86 }
87 #endif
88 
89 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
90 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
91 {
92 	pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
93 	return -1;
94 }
95 #endif
96 
97 #ifndef NT_GNU_BUILD_ID
98 #define NT_GNU_BUILD_ID 3
99 #endif
100 
101 /**
102  * elf_symtab__for_each_symbol - iterate thru all the symbols
103  *
104  * @syms: struct elf_symtab instance to iterate
105  * @idx: uint32_t idx
106  * @sym: GElf_Sym iterator
107  */
108 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
109 	for (idx = 0, gelf_getsym(syms, idx, &sym);\
110 	     idx < nr_syms; \
111 	     idx++, gelf_getsym(syms, idx, &sym))
112 
113 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
114 {
115 	return GELF_ST_TYPE(sym->st_info);
116 }
117 
118 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
119 {
120 	return GELF_ST_VISIBILITY(sym->st_other);
121 }
122 
123 #ifndef STT_GNU_IFUNC
124 #define STT_GNU_IFUNC 10
125 #endif
126 
127 static inline int elf_sym__is_function(const GElf_Sym *sym)
128 {
129 	return (elf_sym__type(sym) == STT_FUNC ||
130 		elf_sym__type(sym) == STT_GNU_IFUNC) &&
131 	       sym->st_name != 0 &&
132 	       sym->st_shndx != SHN_UNDEF;
133 }
134 
135 static inline bool elf_sym__is_object(const GElf_Sym *sym)
136 {
137 	return elf_sym__type(sym) == STT_OBJECT &&
138 		sym->st_name != 0 &&
139 		sym->st_shndx != SHN_UNDEF;
140 }
141 
142 static inline int elf_sym__is_label(const GElf_Sym *sym)
143 {
144 	return elf_sym__type(sym) == STT_NOTYPE &&
145 		sym->st_name != 0 &&
146 		sym->st_shndx != SHN_UNDEF &&
147 		sym->st_shndx != SHN_ABS &&
148 		elf_sym__visibility(sym) != STV_HIDDEN &&
149 		elf_sym__visibility(sym) != STV_INTERNAL;
150 }
151 
152 static bool elf_sym__filter(GElf_Sym *sym)
153 {
154 	return elf_sym__is_function(sym) || elf_sym__is_object(sym);
155 }
156 
157 static inline const char *elf_sym__name(const GElf_Sym *sym,
158 					const Elf_Data *symstrs)
159 {
160 	return symstrs->d_buf + sym->st_name;
161 }
162 
163 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
164 					const Elf_Data *secstrs)
165 {
166 	return secstrs->d_buf + shdr->sh_name;
167 }
168 
169 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
170 					const Elf_Data *secstrs)
171 {
172 	return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
173 }
174 
175 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
176 				    const Elf_Data *secstrs)
177 {
178 	return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
179 }
180 
181 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
182 {
183 	return elf_sec__is_text(shdr, secstrs) ||
184 	       elf_sec__is_data(shdr, secstrs);
185 }
186 
187 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
188 {
189 	Elf_Scn *sec = NULL;
190 	GElf_Shdr shdr;
191 	size_t cnt = 1;
192 
193 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
194 		gelf_getshdr(sec, &shdr);
195 
196 		if ((addr >= shdr.sh_addr) &&
197 		    (addr < (shdr.sh_addr + shdr.sh_size)))
198 			return cnt;
199 
200 		++cnt;
201 	}
202 
203 	return -1;
204 }
205 
206 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
207 			     GElf_Shdr *shp, const char *name, size_t *idx)
208 {
209 	Elf_Scn *sec = NULL;
210 	size_t cnt = 1;
211 
212 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
213 	if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
214 		return NULL;
215 
216 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
217 		char *str;
218 
219 		gelf_getshdr(sec, shp);
220 		str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
221 		if (str && !strcmp(name, str)) {
222 			if (idx)
223 				*idx = cnt;
224 			return sec;
225 		}
226 		++cnt;
227 	}
228 
229 	return NULL;
230 }
231 
232 static bool want_demangle(bool is_kernel_sym)
233 {
234 	return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
235 }
236 
237 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
238 {
239 	int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
240 	char *demangled = NULL;
241 
242 	/*
243 	 * We need to figure out if the object was created from C++ sources
244 	 * DWARF DW_compile_unit has this, but we don't always have access
245 	 * to it...
246 	 */
247 	if (!want_demangle(dso->kernel || kmodule))
248 	    return demangled;
249 
250 	demangled = bfd_demangle(NULL, elf_name, demangle_flags);
251 	if (demangled == NULL)
252 		demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
253 	else if (rust_is_mangled(demangled))
254 		/*
255 		    * Input to Rust demangling is the BFD-demangled
256 		    * name which it Rust-demangles in place.
257 		    */
258 		rust_demangle_sym(demangled);
259 
260 	return demangled;
261 }
262 
263 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
264 	for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
265 	     idx < nr_entries; \
266 	     ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
267 
268 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
269 	for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
270 	     idx < nr_entries; \
271 	     ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
272 
273 /*
274  * We need to check if we have a .dynsym, so that we can handle the
275  * .plt, synthesizing its symbols, that aren't on the symtabs (be it
276  * .dynsym or .symtab).
277  * And always look at the original dso, not at debuginfo packages, that
278  * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
279  */
280 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
281 {
282 	uint32_t nr_rel_entries, idx;
283 	GElf_Sym sym;
284 	u64 plt_offset, plt_header_size, plt_entry_size;
285 	GElf_Shdr shdr_plt;
286 	struct symbol *f;
287 	GElf_Shdr shdr_rel_plt, shdr_dynsym;
288 	Elf_Data *reldata, *syms, *symstrs;
289 	Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
290 	size_t dynsym_idx;
291 	GElf_Ehdr ehdr;
292 	char sympltname[1024];
293 	Elf *elf;
294 	int nr = 0, symidx, err = 0;
295 
296 	if (!ss->dynsym)
297 		return 0;
298 
299 	elf = ss->elf;
300 	ehdr = ss->ehdr;
301 
302 	scn_dynsym = ss->dynsym;
303 	shdr_dynsym = ss->dynshdr;
304 	dynsym_idx = ss->dynsym_idx;
305 
306 	if (scn_dynsym == NULL)
307 		goto out_elf_end;
308 
309 	scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
310 					  ".rela.plt", NULL);
311 	if (scn_plt_rel == NULL) {
312 		scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
313 						  ".rel.plt", NULL);
314 		if (scn_plt_rel == NULL)
315 			goto out_elf_end;
316 	}
317 
318 	err = -1;
319 
320 	if (shdr_rel_plt.sh_link != dynsym_idx)
321 		goto out_elf_end;
322 
323 	if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
324 		goto out_elf_end;
325 
326 	/*
327 	 * Fetch the relocation section to find the idxes to the GOT
328 	 * and the symbols in the .dynsym they refer to.
329 	 */
330 	reldata = elf_getdata(scn_plt_rel, NULL);
331 	if (reldata == NULL)
332 		goto out_elf_end;
333 
334 	syms = elf_getdata(scn_dynsym, NULL);
335 	if (syms == NULL)
336 		goto out_elf_end;
337 
338 	scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
339 	if (scn_symstrs == NULL)
340 		goto out_elf_end;
341 
342 	symstrs = elf_getdata(scn_symstrs, NULL);
343 	if (symstrs == NULL)
344 		goto out_elf_end;
345 
346 	if (symstrs->d_size == 0)
347 		goto out_elf_end;
348 
349 	nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
350 	plt_offset = shdr_plt.sh_offset;
351 	switch (ehdr.e_machine) {
352 		case EM_ARM:
353 			plt_header_size = 20;
354 			plt_entry_size = 12;
355 			break;
356 
357 		case EM_AARCH64:
358 			plt_header_size = 32;
359 			plt_entry_size = 16;
360 			break;
361 
362 		case EM_SPARC:
363 			plt_header_size = 48;
364 			plt_entry_size = 12;
365 			break;
366 
367 		case EM_SPARCV9:
368 			plt_header_size = 128;
369 			plt_entry_size = 32;
370 			break;
371 
372 		default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
373 			plt_header_size = shdr_plt.sh_entsize;
374 			plt_entry_size = shdr_plt.sh_entsize;
375 			break;
376 	}
377 	plt_offset += plt_header_size;
378 
379 	if (shdr_rel_plt.sh_type == SHT_RELA) {
380 		GElf_Rela pos_mem, *pos;
381 
382 		elf_section__for_each_rela(reldata, pos, pos_mem, idx,
383 					   nr_rel_entries) {
384 			const char *elf_name = NULL;
385 			char *demangled = NULL;
386 			symidx = GELF_R_SYM(pos->r_info);
387 			gelf_getsym(syms, symidx, &sym);
388 
389 			elf_name = elf_sym__name(&sym, symstrs);
390 			demangled = demangle_sym(dso, 0, elf_name);
391 			if (demangled != NULL)
392 				elf_name = demangled;
393 			snprintf(sympltname, sizeof(sympltname),
394 				 "%s@plt", elf_name);
395 			free(demangled);
396 
397 			f = symbol__new(plt_offset, plt_entry_size,
398 					STB_GLOBAL, STT_FUNC, sympltname);
399 			if (!f)
400 				goto out_elf_end;
401 
402 			plt_offset += plt_entry_size;
403 			symbols__insert(&dso->symbols, f);
404 			++nr;
405 		}
406 	} else if (shdr_rel_plt.sh_type == SHT_REL) {
407 		GElf_Rel pos_mem, *pos;
408 		elf_section__for_each_rel(reldata, pos, pos_mem, idx,
409 					  nr_rel_entries) {
410 			const char *elf_name = NULL;
411 			char *demangled = NULL;
412 			symidx = GELF_R_SYM(pos->r_info);
413 			gelf_getsym(syms, symidx, &sym);
414 
415 			elf_name = elf_sym__name(&sym, symstrs);
416 			demangled = demangle_sym(dso, 0, elf_name);
417 			if (demangled != NULL)
418 				elf_name = demangled;
419 			snprintf(sympltname, sizeof(sympltname),
420 				 "%s@plt", elf_name);
421 			free(demangled);
422 
423 			f = symbol__new(plt_offset, plt_entry_size,
424 					STB_GLOBAL, STT_FUNC, sympltname);
425 			if (!f)
426 				goto out_elf_end;
427 
428 			plt_offset += plt_entry_size;
429 			symbols__insert(&dso->symbols, f);
430 			++nr;
431 		}
432 	}
433 
434 	err = 0;
435 out_elf_end:
436 	if (err == 0)
437 		return nr;
438 	pr_debug("%s: problems reading %s PLT info.\n",
439 		 __func__, dso->long_name);
440 	return 0;
441 }
442 
443 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
444 {
445 	return demangle_sym(dso, kmodule, elf_name);
446 }
447 
448 /*
449  * Align offset to 4 bytes as needed for note name and descriptor data.
450  */
451 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
452 
453 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
454 {
455 	int err = -1;
456 	GElf_Ehdr ehdr;
457 	GElf_Shdr shdr;
458 	Elf_Data *data;
459 	Elf_Scn *sec;
460 	Elf_Kind ek;
461 	void *ptr;
462 
463 	if (size < BUILD_ID_SIZE)
464 		goto out;
465 
466 	ek = elf_kind(elf);
467 	if (ek != ELF_K_ELF)
468 		goto out;
469 
470 	if (gelf_getehdr(elf, &ehdr) == NULL) {
471 		pr_err("%s: cannot get elf header.\n", __func__);
472 		goto out;
473 	}
474 
475 	/*
476 	 * Check following sections for notes:
477 	 *   '.note.gnu.build-id'
478 	 *   '.notes'
479 	 *   '.note' (VDSO specific)
480 	 */
481 	do {
482 		sec = elf_section_by_name(elf, &ehdr, &shdr,
483 					  ".note.gnu.build-id", NULL);
484 		if (sec)
485 			break;
486 
487 		sec = elf_section_by_name(elf, &ehdr, &shdr,
488 					  ".notes", NULL);
489 		if (sec)
490 			break;
491 
492 		sec = elf_section_by_name(elf, &ehdr, &shdr,
493 					  ".note", NULL);
494 		if (sec)
495 			break;
496 
497 		return err;
498 
499 	} while (0);
500 
501 	data = elf_getdata(sec, NULL);
502 	if (data == NULL)
503 		goto out;
504 
505 	ptr = data->d_buf;
506 	while (ptr < (data->d_buf + data->d_size)) {
507 		GElf_Nhdr *nhdr = ptr;
508 		size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
509 		       descsz = NOTE_ALIGN(nhdr->n_descsz);
510 		const char *name;
511 
512 		ptr += sizeof(*nhdr);
513 		name = ptr;
514 		ptr += namesz;
515 		if (nhdr->n_type == NT_GNU_BUILD_ID &&
516 		    nhdr->n_namesz == sizeof("GNU")) {
517 			if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
518 				size_t sz = min(size, descsz);
519 				memcpy(bf, ptr, sz);
520 				memset(bf + sz, 0, size - sz);
521 				err = descsz;
522 				break;
523 			}
524 		}
525 		ptr += descsz;
526 	}
527 
528 out:
529 	return err;
530 }
531 
532 int filename__read_build_id(const char *filename, void *bf, size_t size)
533 {
534 	int fd, err = -1;
535 	Elf *elf;
536 
537 	if (size < BUILD_ID_SIZE)
538 		goto out;
539 
540 	fd = open(filename, O_RDONLY);
541 	if (fd < 0)
542 		goto out;
543 
544 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
545 	if (elf == NULL) {
546 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
547 		goto out_close;
548 	}
549 
550 	err = elf_read_build_id(elf, bf, size);
551 
552 	elf_end(elf);
553 out_close:
554 	close(fd);
555 out:
556 	return err;
557 }
558 
559 int sysfs__read_build_id(const char *filename, void *build_id, size_t size)
560 {
561 	int fd, err = -1;
562 
563 	if (size < BUILD_ID_SIZE)
564 		goto out;
565 
566 	fd = open(filename, O_RDONLY);
567 	if (fd < 0)
568 		goto out;
569 
570 	while (1) {
571 		char bf[BUFSIZ];
572 		GElf_Nhdr nhdr;
573 		size_t namesz, descsz;
574 
575 		if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
576 			break;
577 
578 		namesz = NOTE_ALIGN(nhdr.n_namesz);
579 		descsz = NOTE_ALIGN(nhdr.n_descsz);
580 		if (nhdr.n_type == NT_GNU_BUILD_ID &&
581 		    nhdr.n_namesz == sizeof("GNU")) {
582 			if (read(fd, bf, namesz) != (ssize_t)namesz)
583 				break;
584 			if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
585 				size_t sz = min(descsz, size);
586 				if (read(fd, build_id, sz) == (ssize_t)sz) {
587 					memset(build_id + sz, 0, size - sz);
588 					err = 0;
589 					break;
590 				}
591 			} else if (read(fd, bf, descsz) != (ssize_t)descsz)
592 				break;
593 		} else {
594 			int n = namesz + descsz;
595 
596 			if (n > (int)sizeof(bf)) {
597 				n = sizeof(bf);
598 				pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
599 					 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
600 			}
601 			if (read(fd, bf, n) != n)
602 				break;
603 		}
604 	}
605 	close(fd);
606 out:
607 	return err;
608 }
609 
610 int filename__read_debuglink(const char *filename, char *debuglink,
611 			     size_t size)
612 {
613 	int fd, err = -1;
614 	Elf *elf;
615 	GElf_Ehdr ehdr;
616 	GElf_Shdr shdr;
617 	Elf_Data *data;
618 	Elf_Scn *sec;
619 	Elf_Kind ek;
620 
621 	fd = open(filename, O_RDONLY);
622 	if (fd < 0)
623 		goto out;
624 
625 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
626 	if (elf == NULL) {
627 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
628 		goto out_close;
629 	}
630 
631 	ek = elf_kind(elf);
632 	if (ek != ELF_K_ELF)
633 		goto out_elf_end;
634 
635 	if (gelf_getehdr(elf, &ehdr) == NULL) {
636 		pr_err("%s: cannot get elf header.\n", __func__);
637 		goto out_elf_end;
638 	}
639 
640 	sec = elf_section_by_name(elf, &ehdr, &shdr,
641 				  ".gnu_debuglink", NULL);
642 	if (sec == NULL)
643 		goto out_elf_end;
644 
645 	data = elf_getdata(sec, NULL);
646 	if (data == NULL)
647 		goto out_elf_end;
648 
649 	/* the start of this section is a zero-terminated string */
650 	strncpy(debuglink, data->d_buf, size);
651 
652 	err = 0;
653 
654 out_elf_end:
655 	elf_end(elf);
656 out_close:
657 	close(fd);
658 out:
659 	return err;
660 }
661 
662 static int dso__swap_init(struct dso *dso, unsigned char eidata)
663 {
664 	static unsigned int const endian = 1;
665 
666 	dso->needs_swap = DSO_SWAP__NO;
667 
668 	switch (eidata) {
669 	case ELFDATA2LSB:
670 		/* We are big endian, DSO is little endian. */
671 		if (*(unsigned char const *)&endian != 1)
672 			dso->needs_swap = DSO_SWAP__YES;
673 		break;
674 
675 	case ELFDATA2MSB:
676 		/* We are little endian, DSO is big endian. */
677 		if (*(unsigned char const *)&endian != 0)
678 			dso->needs_swap = DSO_SWAP__YES;
679 		break;
680 
681 	default:
682 		pr_err("unrecognized DSO data encoding %d\n", eidata);
683 		return -EINVAL;
684 	}
685 
686 	return 0;
687 }
688 
689 bool symsrc__possibly_runtime(struct symsrc *ss)
690 {
691 	return ss->dynsym || ss->opdsec;
692 }
693 
694 bool symsrc__has_symtab(struct symsrc *ss)
695 {
696 	return ss->symtab != NULL;
697 }
698 
699 void symsrc__destroy(struct symsrc *ss)
700 {
701 	zfree(&ss->name);
702 	elf_end(ss->elf);
703 	close(ss->fd);
704 }
705 
706 bool __weak elf__needs_adjust_symbols(GElf_Ehdr ehdr)
707 {
708 	return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL;
709 }
710 
711 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
712 		 enum dso_binary_type type)
713 {
714 	GElf_Ehdr ehdr;
715 	Elf *elf;
716 	int fd;
717 
718 	if (dso__needs_decompress(dso)) {
719 		fd = dso__decompress_kmodule_fd(dso, name);
720 		if (fd < 0)
721 			return -1;
722 
723 		type = dso->symtab_type;
724 	} else {
725 		fd = open(name, O_RDONLY);
726 		if (fd < 0) {
727 			dso->load_errno = errno;
728 			return -1;
729 		}
730 	}
731 
732 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
733 	if (elf == NULL) {
734 		pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
735 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
736 		goto out_close;
737 	}
738 
739 	if (gelf_getehdr(elf, &ehdr) == NULL) {
740 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
741 		pr_debug("%s: cannot get elf header.\n", __func__);
742 		goto out_elf_end;
743 	}
744 
745 	if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
746 		dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
747 		goto out_elf_end;
748 	}
749 
750 	/* Always reject images with a mismatched build-id: */
751 	if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
752 		u8 build_id[BUILD_ID_SIZE];
753 
754 		if (elf_read_build_id(elf, build_id, BUILD_ID_SIZE) < 0) {
755 			dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
756 			goto out_elf_end;
757 		}
758 
759 		if (!dso__build_id_equal(dso, build_id)) {
760 			pr_debug("%s: build id mismatch for %s.\n", __func__, name);
761 			dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
762 			goto out_elf_end;
763 		}
764 	}
765 
766 	ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
767 
768 	ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
769 			NULL);
770 	if (ss->symshdr.sh_type != SHT_SYMTAB)
771 		ss->symtab = NULL;
772 
773 	ss->dynsym_idx = 0;
774 	ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
775 			&ss->dynsym_idx);
776 	if (ss->dynshdr.sh_type != SHT_DYNSYM)
777 		ss->dynsym = NULL;
778 
779 	ss->opdidx = 0;
780 	ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
781 			&ss->opdidx);
782 	if (ss->opdshdr.sh_type != SHT_PROGBITS)
783 		ss->opdsec = NULL;
784 
785 	if (dso->kernel == DSO_TYPE_USER)
786 		ss->adjust_symbols = true;
787 	else
788 		ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
789 
790 	ss->name   = strdup(name);
791 	if (!ss->name) {
792 		dso->load_errno = errno;
793 		goto out_elf_end;
794 	}
795 
796 	ss->elf    = elf;
797 	ss->fd     = fd;
798 	ss->ehdr   = ehdr;
799 	ss->type   = type;
800 
801 	return 0;
802 
803 out_elf_end:
804 	elf_end(elf);
805 out_close:
806 	close(fd);
807 	return -1;
808 }
809 
810 /**
811  * ref_reloc_sym_not_found - has kernel relocation symbol been found.
812  * @kmap: kernel maps and relocation reference symbol
813  *
814  * This function returns %true if we are dealing with the kernel maps and the
815  * relocation reference symbol has not yet been found.  Otherwise %false is
816  * returned.
817  */
818 static bool ref_reloc_sym_not_found(struct kmap *kmap)
819 {
820 	return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
821 	       !kmap->ref_reloc_sym->unrelocated_addr;
822 }
823 
824 /**
825  * ref_reloc - kernel relocation offset.
826  * @kmap: kernel maps and relocation reference symbol
827  *
828  * This function returns the offset of kernel addresses as determined by using
829  * the relocation reference symbol i.e. if the kernel has not been relocated
830  * then the return value is zero.
831  */
832 static u64 ref_reloc(struct kmap *kmap)
833 {
834 	if (kmap && kmap->ref_reloc_sym &&
835 	    kmap->ref_reloc_sym->unrelocated_addr)
836 		return kmap->ref_reloc_sym->addr -
837 		       kmap->ref_reloc_sym->unrelocated_addr;
838 	return 0;
839 }
840 
841 void __weak arch__sym_update(struct symbol *s __maybe_unused,
842 		GElf_Sym *sym __maybe_unused) { }
843 
844 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
845 				      GElf_Sym *sym, GElf_Shdr *shdr,
846 				      struct map_groups *kmaps, struct kmap *kmap,
847 				      struct dso **curr_dsop, struct map **curr_mapp,
848 				      const char *section_name,
849 				      bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
850 {
851 	struct dso *curr_dso = *curr_dsop;
852 	struct map *curr_map;
853 	char dso_name[PATH_MAX];
854 
855 	/* Adjust symbol to map to file offset */
856 	if (adjust_kernel_syms)
857 		sym->st_value -= shdr->sh_addr - shdr->sh_offset;
858 
859 	if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
860 		return 0;
861 
862 	if (strcmp(section_name, ".text") == 0) {
863 		/*
864 		 * The initial kernel mapping is based on
865 		 * kallsyms and identity maps.  Overwrite it to
866 		 * map to the kernel dso.
867 		 */
868 		if (*remap_kernel && dso->kernel) {
869 			*remap_kernel = false;
870 			map->start = shdr->sh_addr + ref_reloc(kmap);
871 			map->end = map->start + shdr->sh_size;
872 			map->pgoff = shdr->sh_offset;
873 			map->map_ip = map__map_ip;
874 			map->unmap_ip = map__unmap_ip;
875 			/* Ensure maps are correctly ordered */
876 			if (kmaps) {
877 				map__get(map);
878 				map_groups__remove(kmaps, map);
879 				map_groups__insert(kmaps, map);
880 				map__put(map);
881 			}
882 		}
883 
884 		/*
885 		 * The initial module mapping is based on
886 		 * /proc/modules mapped to offset zero.
887 		 * Overwrite it to map to the module dso.
888 		 */
889 		if (*remap_kernel && kmodule) {
890 			*remap_kernel = false;
891 			map->pgoff = shdr->sh_offset;
892 		}
893 
894 		*curr_mapp = map;
895 		*curr_dsop = dso;
896 		return 0;
897 	}
898 
899 	if (!kmap)
900 		return 0;
901 
902 	snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
903 
904 	curr_map = map_groups__find_by_name(kmaps, dso_name);
905 	if (curr_map == NULL) {
906 		u64 start = sym->st_value;
907 
908 		if (kmodule)
909 			start += map->start + shdr->sh_offset;
910 
911 		curr_dso = dso__new(dso_name);
912 		if (curr_dso == NULL)
913 			return -1;
914 		curr_dso->kernel = dso->kernel;
915 		curr_dso->long_name = dso->long_name;
916 		curr_dso->long_name_len = dso->long_name_len;
917 		curr_map = map__new2(start, curr_dso);
918 		dso__put(curr_dso);
919 		if (curr_map == NULL)
920 			return -1;
921 
922 		if (adjust_kernel_syms) {
923 			curr_map->start  = shdr->sh_addr + ref_reloc(kmap);
924 			curr_map->end	 = curr_map->start + shdr->sh_size;
925 			curr_map->pgoff	 = shdr->sh_offset;
926 		} else {
927 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
928 		}
929 		curr_dso->symtab_type = dso->symtab_type;
930 		map_groups__insert(kmaps, curr_map);
931 		/*
932 		 * Add it before we drop the referece to curr_map, i.e. while
933 		 * we still are sure to have a reference to this DSO via
934 		 * *curr_map->dso.
935 		 */
936 		dsos__add(&map->groups->machine->dsos, curr_dso);
937 		/* kmaps already got it */
938 		map__put(curr_map);
939 		dso__set_loaded(curr_dso);
940 		*curr_mapp = curr_map;
941 		*curr_dsop = curr_dso;
942 	} else
943 		*curr_dsop = curr_map->dso;
944 
945 	return 0;
946 }
947 
948 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
949 		  struct symsrc *runtime_ss, int kmodule)
950 {
951 	struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
952 	struct map_groups *kmaps = kmap ? map__kmaps(map) : NULL;
953 	struct map *curr_map = map;
954 	struct dso *curr_dso = dso;
955 	Elf_Data *symstrs, *secstrs;
956 	uint32_t nr_syms;
957 	int err = -1;
958 	uint32_t idx;
959 	GElf_Ehdr ehdr;
960 	GElf_Shdr shdr;
961 	GElf_Shdr tshdr;
962 	Elf_Data *syms, *opddata = NULL;
963 	GElf_Sym sym;
964 	Elf_Scn *sec, *sec_strndx;
965 	Elf *elf;
966 	int nr = 0;
967 	bool remap_kernel = false, adjust_kernel_syms = false;
968 
969 	if (kmap && !kmaps)
970 		return -1;
971 
972 	dso->symtab_type = syms_ss->type;
973 	dso->is_64_bit = syms_ss->is_64_bit;
974 	dso->rel = syms_ss->ehdr.e_type == ET_REL;
975 
976 	/*
977 	 * Modules may already have symbols from kallsyms, but those symbols
978 	 * have the wrong values for the dso maps, so remove them.
979 	 */
980 	if (kmodule && syms_ss->symtab)
981 		symbols__delete(&dso->symbols);
982 
983 	if (!syms_ss->symtab) {
984 		/*
985 		 * If the vmlinux is stripped, fail so we will fall back
986 		 * to using kallsyms. The vmlinux runtime symbols aren't
987 		 * of much use.
988 		 */
989 		if (dso->kernel)
990 			goto out_elf_end;
991 
992 		syms_ss->symtab  = syms_ss->dynsym;
993 		syms_ss->symshdr = syms_ss->dynshdr;
994 	}
995 
996 	elf = syms_ss->elf;
997 	ehdr = syms_ss->ehdr;
998 	sec = syms_ss->symtab;
999 	shdr = syms_ss->symshdr;
1000 
1001 	if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1002 				".text", NULL))
1003 		dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1004 
1005 	if (runtime_ss->opdsec)
1006 		opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1007 
1008 	syms = elf_getdata(sec, NULL);
1009 	if (syms == NULL)
1010 		goto out_elf_end;
1011 
1012 	sec = elf_getscn(elf, shdr.sh_link);
1013 	if (sec == NULL)
1014 		goto out_elf_end;
1015 
1016 	symstrs = elf_getdata(sec, NULL);
1017 	if (symstrs == NULL)
1018 		goto out_elf_end;
1019 
1020 	sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1021 	if (sec_strndx == NULL)
1022 		goto out_elf_end;
1023 
1024 	secstrs = elf_getdata(sec_strndx, NULL);
1025 	if (secstrs == NULL)
1026 		goto out_elf_end;
1027 
1028 	nr_syms = shdr.sh_size / shdr.sh_entsize;
1029 
1030 	memset(&sym, 0, sizeof(sym));
1031 
1032 	/*
1033 	 * The kernel relocation symbol is needed in advance in order to adjust
1034 	 * kernel maps correctly.
1035 	 */
1036 	if (ref_reloc_sym_not_found(kmap)) {
1037 		elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1038 			const char *elf_name = elf_sym__name(&sym, symstrs);
1039 
1040 			if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1041 				continue;
1042 			kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1043 			map->reloc = kmap->ref_reloc_sym->addr -
1044 				     kmap->ref_reloc_sym->unrelocated_addr;
1045 			break;
1046 		}
1047 	}
1048 
1049 	/*
1050 	 * Handle any relocation of vdso necessary because older kernels
1051 	 * attempted to prelink vdso to its virtual address.
1052 	 */
1053 	if (dso__is_vdso(dso))
1054 		map->reloc = map->start - dso->text_offset;
1055 
1056 	dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1057 	/*
1058 	 * Initial kernel and module mappings do not map to the dso.
1059 	 * Flag the fixups.
1060 	 */
1061 	if (dso->kernel || kmodule) {
1062 		remap_kernel = true;
1063 		adjust_kernel_syms = dso->adjust_symbols;
1064 	}
1065 	elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1066 		struct symbol *f;
1067 		const char *elf_name = elf_sym__name(&sym, symstrs);
1068 		char *demangled = NULL;
1069 		int is_label = elf_sym__is_label(&sym);
1070 		const char *section_name;
1071 		bool used_opd = false;
1072 
1073 		if (!is_label && !elf_sym__filter(&sym))
1074 			continue;
1075 
1076 		/* Reject ARM ELF "mapping symbols": these aren't unique and
1077 		 * don't identify functions, so will confuse the profile
1078 		 * output: */
1079 		if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1080 			if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1081 			    && (elf_name[2] == '\0' || elf_name[2] == '.'))
1082 				continue;
1083 		}
1084 
1085 		if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1086 			u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1087 			u64 *opd = opddata->d_buf + offset;
1088 			sym.st_value = DSO__SWAP(dso, u64, *opd);
1089 			sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1090 					sym.st_value);
1091 			used_opd = true;
1092 		}
1093 		/*
1094 		 * When loading symbols in a data mapping, ABS symbols (which
1095 		 * has a value of SHN_ABS in its st_shndx) failed at
1096 		 * elf_getscn().  And it marks the loading as a failure so
1097 		 * already loaded symbols cannot be fixed up.
1098 		 *
1099 		 * I'm not sure what should be done. Just ignore them for now.
1100 		 * - Namhyung Kim
1101 		 */
1102 		if (sym.st_shndx == SHN_ABS)
1103 			continue;
1104 
1105 		sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1106 		if (!sec)
1107 			goto out_elf_end;
1108 
1109 		gelf_getshdr(sec, &shdr);
1110 
1111 		if (is_label && !elf_sec__filter(&shdr, secstrs))
1112 			continue;
1113 
1114 		section_name = elf_sec__name(&shdr, secstrs);
1115 
1116 		/* On ARM, symbols for thumb functions have 1 added to
1117 		 * the symbol address as a flag - remove it */
1118 		if ((ehdr.e_machine == EM_ARM) &&
1119 		    (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1120 		    (sym.st_value & 1))
1121 			--sym.st_value;
1122 
1123 		if (dso->kernel || kmodule) {
1124 			if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1125 						       section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1126 				goto out_elf_end;
1127 		} else if ((used_opd && runtime_ss->adjust_symbols) ||
1128 			   (!used_opd && syms_ss->adjust_symbols)) {
1129 			pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1130 				  "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", __func__,
1131 				  (u64)sym.st_value, (u64)shdr.sh_addr,
1132 				  (u64)shdr.sh_offset);
1133 			sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1134 		}
1135 
1136 		demangled = demangle_sym(dso, kmodule, elf_name);
1137 		if (demangled != NULL)
1138 			elf_name = demangled;
1139 
1140 		f = symbol__new(sym.st_value, sym.st_size,
1141 				GELF_ST_BIND(sym.st_info),
1142 				GELF_ST_TYPE(sym.st_info), elf_name);
1143 		free(demangled);
1144 		if (!f)
1145 			goto out_elf_end;
1146 
1147 		arch__sym_update(f, &sym);
1148 
1149 		__symbols__insert(&curr_dso->symbols, f, dso->kernel);
1150 		nr++;
1151 	}
1152 
1153 	/*
1154 	 * For misannotated, zeroed, ASM function sizes.
1155 	 */
1156 	if (nr > 0) {
1157 		symbols__fixup_end(&dso->symbols);
1158 		symbols__fixup_duplicate(&dso->symbols);
1159 		if (kmap) {
1160 			/*
1161 			 * We need to fixup this here too because we create new
1162 			 * maps here, for things like vsyscall sections.
1163 			 */
1164 			map_groups__fixup_end(kmaps);
1165 		}
1166 	}
1167 	err = nr;
1168 out_elf_end:
1169 	return err;
1170 }
1171 
1172 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1173 {
1174 	GElf_Phdr phdr;
1175 	size_t i, phdrnum;
1176 	int err;
1177 	u64 sz;
1178 
1179 	if (elf_getphdrnum(elf, &phdrnum))
1180 		return -1;
1181 
1182 	for (i = 0; i < phdrnum; i++) {
1183 		if (gelf_getphdr(elf, i, &phdr) == NULL)
1184 			return -1;
1185 		if (phdr.p_type != PT_LOAD)
1186 			continue;
1187 		if (exe) {
1188 			if (!(phdr.p_flags & PF_X))
1189 				continue;
1190 		} else {
1191 			if (!(phdr.p_flags & PF_R))
1192 				continue;
1193 		}
1194 		sz = min(phdr.p_memsz, phdr.p_filesz);
1195 		if (!sz)
1196 			continue;
1197 		err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1198 		if (err)
1199 			return err;
1200 	}
1201 	return 0;
1202 }
1203 
1204 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1205 		    bool *is_64_bit)
1206 {
1207 	int err;
1208 	Elf *elf;
1209 
1210 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1211 	if (elf == NULL)
1212 		return -1;
1213 
1214 	if (is_64_bit)
1215 		*is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1216 
1217 	err = elf_read_maps(elf, exe, mapfn, data);
1218 
1219 	elf_end(elf);
1220 	return err;
1221 }
1222 
1223 enum dso_type dso__type_fd(int fd)
1224 {
1225 	enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1226 	GElf_Ehdr ehdr;
1227 	Elf_Kind ek;
1228 	Elf *elf;
1229 
1230 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1231 	if (elf == NULL)
1232 		goto out;
1233 
1234 	ek = elf_kind(elf);
1235 	if (ek != ELF_K_ELF)
1236 		goto out_end;
1237 
1238 	if (gelf_getclass(elf) == ELFCLASS64) {
1239 		dso_type = DSO__TYPE_64BIT;
1240 		goto out_end;
1241 	}
1242 
1243 	if (gelf_getehdr(elf, &ehdr) == NULL)
1244 		goto out_end;
1245 
1246 	if (ehdr.e_machine == EM_X86_64)
1247 		dso_type = DSO__TYPE_X32BIT;
1248 	else
1249 		dso_type = DSO__TYPE_32BIT;
1250 out_end:
1251 	elf_end(elf);
1252 out:
1253 	return dso_type;
1254 }
1255 
1256 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1257 {
1258 	ssize_t r;
1259 	size_t n;
1260 	int err = -1;
1261 	char *buf = malloc(page_size);
1262 
1263 	if (buf == NULL)
1264 		return -1;
1265 
1266 	if (lseek(to, to_offs, SEEK_SET) != to_offs)
1267 		goto out;
1268 
1269 	if (lseek(from, from_offs, SEEK_SET) != from_offs)
1270 		goto out;
1271 
1272 	while (len) {
1273 		n = page_size;
1274 		if (len < n)
1275 			n = len;
1276 		/* Use read because mmap won't work on proc files */
1277 		r = read(from, buf, n);
1278 		if (r < 0)
1279 			goto out;
1280 		if (!r)
1281 			break;
1282 		n = r;
1283 		r = write(to, buf, n);
1284 		if (r < 0)
1285 			goto out;
1286 		if ((size_t)r != n)
1287 			goto out;
1288 		len -= n;
1289 	}
1290 
1291 	err = 0;
1292 out:
1293 	free(buf);
1294 	return err;
1295 }
1296 
1297 struct kcore {
1298 	int fd;
1299 	int elfclass;
1300 	Elf *elf;
1301 	GElf_Ehdr ehdr;
1302 };
1303 
1304 static int kcore__open(struct kcore *kcore, const char *filename)
1305 {
1306 	GElf_Ehdr *ehdr;
1307 
1308 	kcore->fd = open(filename, O_RDONLY);
1309 	if (kcore->fd == -1)
1310 		return -1;
1311 
1312 	kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1313 	if (!kcore->elf)
1314 		goto out_close;
1315 
1316 	kcore->elfclass = gelf_getclass(kcore->elf);
1317 	if (kcore->elfclass == ELFCLASSNONE)
1318 		goto out_end;
1319 
1320 	ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1321 	if (!ehdr)
1322 		goto out_end;
1323 
1324 	return 0;
1325 
1326 out_end:
1327 	elf_end(kcore->elf);
1328 out_close:
1329 	close(kcore->fd);
1330 	return -1;
1331 }
1332 
1333 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1334 		       bool temp)
1335 {
1336 	kcore->elfclass = elfclass;
1337 
1338 	if (temp)
1339 		kcore->fd = mkstemp(filename);
1340 	else
1341 		kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1342 	if (kcore->fd == -1)
1343 		return -1;
1344 
1345 	kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1346 	if (!kcore->elf)
1347 		goto out_close;
1348 
1349 	if (!gelf_newehdr(kcore->elf, elfclass))
1350 		goto out_end;
1351 
1352 	memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1353 
1354 	return 0;
1355 
1356 out_end:
1357 	elf_end(kcore->elf);
1358 out_close:
1359 	close(kcore->fd);
1360 	unlink(filename);
1361 	return -1;
1362 }
1363 
1364 static void kcore__close(struct kcore *kcore)
1365 {
1366 	elf_end(kcore->elf);
1367 	close(kcore->fd);
1368 }
1369 
1370 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1371 {
1372 	GElf_Ehdr *ehdr = &to->ehdr;
1373 	GElf_Ehdr *kehdr = &from->ehdr;
1374 
1375 	memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1376 	ehdr->e_type      = kehdr->e_type;
1377 	ehdr->e_machine   = kehdr->e_machine;
1378 	ehdr->e_version   = kehdr->e_version;
1379 	ehdr->e_entry     = 0;
1380 	ehdr->e_shoff     = 0;
1381 	ehdr->e_flags     = kehdr->e_flags;
1382 	ehdr->e_phnum     = count;
1383 	ehdr->e_shentsize = 0;
1384 	ehdr->e_shnum     = 0;
1385 	ehdr->e_shstrndx  = 0;
1386 
1387 	if (from->elfclass == ELFCLASS32) {
1388 		ehdr->e_phoff     = sizeof(Elf32_Ehdr);
1389 		ehdr->e_ehsize    = sizeof(Elf32_Ehdr);
1390 		ehdr->e_phentsize = sizeof(Elf32_Phdr);
1391 	} else {
1392 		ehdr->e_phoff     = sizeof(Elf64_Ehdr);
1393 		ehdr->e_ehsize    = sizeof(Elf64_Ehdr);
1394 		ehdr->e_phentsize = sizeof(Elf64_Phdr);
1395 	}
1396 
1397 	if (!gelf_update_ehdr(to->elf, ehdr))
1398 		return -1;
1399 
1400 	if (!gelf_newphdr(to->elf, count))
1401 		return -1;
1402 
1403 	return 0;
1404 }
1405 
1406 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1407 			   u64 addr, u64 len)
1408 {
1409 	GElf_Phdr phdr = {
1410 		.p_type		= PT_LOAD,
1411 		.p_flags	= PF_R | PF_W | PF_X,
1412 		.p_offset	= offset,
1413 		.p_vaddr	= addr,
1414 		.p_paddr	= 0,
1415 		.p_filesz	= len,
1416 		.p_memsz	= len,
1417 		.p_align	= page_size,
1418 	};
1419 
1420 	if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1421 		return -1;
1422 
1423 	return 0;
1424 }
1425 
1426 static off_t kcore__write(struct kcore *kcore)
1427 {
1428 	return elf_update(kcore->elf, ELF_C_WRITE);
1429 }
1430 
1431 struct phdr_data {
1432 	off_t offset;
1433 	off_t rel;
1434 	u64 addr;
1435 	u64 len;
1436 	struct list_head node;
1437 	struct phdr_data *remaps;
1438 };
1439 
1440 struct sym_data {
1441 	u64 addr;
1442 	struct list_head node;
1443 };
1444 
1445 struct kcore_copy_info {
1446 	u64 stext;
1447 	u64 etext;
1448 	u64 first_symbol;
1449 	u64 last_symbol;
1450 	u64 first_module;
1451 	u64 last_module_symbol;
1452 	size_t phnum;
1453 	struct list_head phdrs;
1454 	struct list_head syms;
1455 };
1456 
1457 #define kcore_copy__for_each_phdr(k, p) \
1458 	list_for_each_entry((p), &(k)->phdrs, node)
1459 
1460 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1461 {
1462 	struct phdr_data *p = zalloc(sizeof(*p));
1463 
1464 	if (p) {
1465 		p->addr   = addr;
1466 		p->len    = len;
1467 		p->offset = offset;
1468 	}
1469 
1470 	return p;
1471 }
1472 
1473 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1474 						 u64 addr, u64 len,
1475 						 off_t offset)
1476 {
1477 	struct phdr_data *p = phdr_data__new(addr, len, offset);
1478 
1479 	if (p)
1480 		list_add_tail(&p->node, &kci->phdrs);
1481 
1482 	return p;
1483 }
1484 
1485 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1486 {
1487 	struct phdr_data *p, *tmp;
1488 
1489 	list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1490 		list_del_init(&p->node);
1491 		free(p);
1492 	}
1493 }
1494 
1495 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1496 					    u64 addr)
1497 {
1498 	struct sym_data *s = zalloc(sizeof(*s));
1499 
1500 	if (s) {
1501 		s->addr = addr;
1502 		list_add_tail(&s->node, &kci->syms);
1503 	}
1504 
1505 	return s;
1506 }
1507 
1508 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1509 {
1510 	struct sym_data *s, *tmp;
1511 
1512 	list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1513 		list_del_init(&s->node);
1514 		free(s);
1515 	}
1516 }
1517 
1518 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1519 					u64 start)
1520 {
1521 	struct kcore_copy_info *kci = arg;
1522 
1523 	if (!kallsyms__is_function(type))
1524 		return 0;
1525 
1526 	if (strchr(name, '[')) {
1527 		if (start > kci->last_module_symbol)
1528 			kci->last_module_symbol = start;
1529 		return 0;
1530 	}
1531 
1532 	if (!kci->first_symbol || start < kci->first_symbol)
1533 		kci->first_symbol = start;
1534 
1535 	if (!kci->last_symbol || start > kci->last_symbol)
1536 		kci->last_symbol = start;
1537 
1538 	if (!strcmp(name, "_stext")) {
1539 		kci->stext = start;
1540 		return 0;
1541 	}
1542 
1543 	if (!strcmp(name, "_etext")) {
1544 		kci->etext = start;
1545 		return 0;
1546 	}
1547 
1548 	if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1549 		return -1;
1550 
1551 	return 0;
1552 }
1553 
1554 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1555 				      const char *dir)
1556 {
1557 	char kallsyms_filename[PATH_MAX];
1558 
1559 	scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1560 
1561 	if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1562 		return -1;
1563 
1564 	if (kallsyms__parse(kallsyms_filename, kci,
1565 			    kcore_copy__process_kallsyms) < 0)
1566 		return -1;
1567 
1568 	return 0;
1569 }
1570 
1571 static int kcore_copy__process_modules(void *arg,
1572 				       const char *name __maybe_unused,
1573 				       u64 start, u64 size __maybe_unused)
1574 {
1575 	struct kcore_copy_info *kci = arg;
1576 
1577 	if (!kci->first_module || start < kci->first_module)
1578 		kci->first_module = start;
1579 
1580 	return 0;
1581 }
1582 
1583 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1584 				     const char *dir)
1585 {
1586 	char modules_filename[PATH_MAX];
1587 
1588 	scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1589 
1590 	if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1591 		return -1;
1592 
1593 	if (modules__parse(modules_filename, kci,
1594 			   kcore_copy__process_modules) < 0)
1595 		return -1;
1596 
1597 	return 0;
1598 }
1599 
1600 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1601 			   u64 pgoff, u64 s, u64 e)
1602 {
1603 	u64 len, offset;
1604 
1605 	if (s < start || s >= end)
1606 		return 0;
1607 
1608 	offset = (s - start) + pgoff;
1609 	len = e < end ? e - s : end - s;
1610 
1611 	return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1612 }
1613 
1614 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1615 {
1616 	struct kcore_copy_info *kci = data;
1617 	u64 end = start + len;
1618 	struct sym_data *sdat;
1619 
1620 	if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1621 		return -1;
1622 
1623 	if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1624 			    kci->last_module_symbol))
1625 		return -1;
1626 
1627 	list_for_each_entry(sdat, &kci->syms, node) {
1628 		u64 s = round_down(sdat->addr, page_size);
1629 
1630 		if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1631 			return -1;
1632 	}
1633 
1634 	return 0;
1635 }
1636 
1637 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1638 {
1639 	if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1640 		return -1;
1641 
1642 	return 0;
1643 }
1644 
1645 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1646 {
1647 	struct phdr_data *p, *k = NULL;
1648 	u64 kend;
1649 
1650 	if (!kci->stext)
1651 		return;
1652 
1653 	/* Find phdr that corresponds to the kernel map (contains stext) */
1654 	kcore_copy__for_each_phdr(kci, p) {
1655 		u64 pend = p->addr + p->len - 1;
1656 
1657 		if (p->addr <= kci->stext && pend >= kci->stext) {
1658 			k = p;
1659 			break;
1660 		}
1661 	}
1662 
1663 	if (!k)
1664 		return;
1665 
1666 	kend = k->offset + k->len;
1667 
1668 	/* Find phdrs that remap the kernel */
1669 	kcore_copy__for_each_phdr(kci, p) {
1670 		u64 pend = p->offset + p->len;
1671 
1672 		if (p == k)
1673 			continue;
1674 
1675 		if (p->offset >= k->offset && pend <= kend)
1676 			p->remaps = k;
1677 	}
1678 }
1679 
1680 static void kcore_copy__layout(struct kcore_copy_info *kci)
1681 {
1682 	struct phdr_data *p;
1683 	off_t rel = 0;
1684 
1685 	kcore_copy__find_remaps(kci);
1686 
1687 	kcore_copy__for_each_phdr(kci, p) {
1688 		if (!p->remaps) {
1689 			p->rel = rel;
1690 			rel += p->len;
1691 		}
1692 		kci->phnum += 1;
1693 	}
1694 
1695 	kcore_copy__for_each_phdr(kci, p) {
1696 		struct phdr_data *k = p->remaps;
1697 
1698 		if (k)
1699 			p->rel = p->offset - k->offset + k->rel;
1700 	}
1701 }
1702 
1703 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1704 				 Elf *elf)
1705 {
1706 	if (kcore_copy__parse_kallsyms(kci, dir))
1707 		return -1;
1708 
1709 	if (kcore_copy__parse_modules(kci, dir))
1710 		return -1;
1711 
1712 	if (kci->stext)
1713 		kci->stext = round_down(kci->stext, page_size);
1714 	else
1715 		kci->stext = round_down(kci->first_symbol, page_size);
1716 
1717 	if (kci->etext) {
1718 		kci->etext = round_up(kci->etext, page_size);
1719 	} else if (kci->last_symbol) {
1720 		kci->etext = round_up(kci->last_symbol, page_size);
1721 		kci->etext += page_size;
1722 	}
1723 
1724 	kci->first_module = round_down(kci->first_module, page_size);
1725 
1726 	if (kci->last_module_symbol) {
1727 		kci->last_module_symbol = round_up(kci->last_module_symbol,
1728 						   page_size);
1729 		kci->last_module_symbol += page_size;
1730 	}
1731 
1732 	if (!kci->stext || !kci->etext)
1733 		return -1;
1734 
1735 	if (kci->first_module && !kci->last_module_symbol)
1736 		return -1;
1737 
1738 	if (kcore_copy__read_maps(kci, elf))
1739 		return -1;
1740 
1741 	kcore_copy__layout(kci);
1742 
1743 	return 0;
1744 }
1745 
1746 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
1747 				 const char *name)
1748 {
1749 	char from_filename[PATH_MAX];
1750 	char to_filename[PATH_MAX];
1751 
1752 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1753 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1754 
1755 	return copyfile_mode(from_filename, to_filename, 0400);
1756 }
1757 
1758 static int kcore_copy__unlink(const char *dir, const char *name)
1759 {
1760 	char filename[PATH_MAX];
1761 
1762 	scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
1763 
1764 	return unlink(filename);
1765 }
1766 
1767 static int kcore_copy__compare_fds(int from, int to)
1768 {
1769 	char *buf_from;
1770 	char *buf_to;
1771 	ssize_t ret;
1772 	size_t len;
1773 	int err = -1;
1774 
1775 	buf_from = malloc(page_size);
1776 	buf_to = malloc(page_size);
1777 	if (!buf_from || !buf_to)
1778 		goto out;
1779 
1780 	while (1) {
1781 		/* Use read because mmap won't work on proc files */
1782 		ret = read(from, buf_from, page_size);
1783 		if (ret < 0)
1784 			goto out;
1785 
1786 		if (!ret)
1787 			break;
1788 
1789 		len = ret;
1790 
1791 		if (readn(to, buf_to, len) != (int)len)
1792 			goto out;
1793 
1794 		if (memcmp(buf_from, buf_to, len))
1795 			goto out;
1796 	}
1797 
1798 	err = 0;
1799 out:
1800 	free(buf_to);
1801 	free(buf_from);
1802 	return err;
1803 }
1804 
1805 static int kcore_copy__compare_files(const char *from_filename,
1806 				     const char *to_filename)
1807 {
1808 	int from, to, err = -1;
1809 
1810 	from = open(from_filename, O_RDONLY);
1811 	if (from < 0)
1812 		return -1;
1813 
1814 	to = open(to_filename, O_RDONLY);
1815 	if (to < 0)
1816 		goto out_close_from;
1817 
1818 	err = kcore_copy__compare_fds(from, to);
1819 
1820 	close(to);
1821 out_close_from:
1822 	close(from);
1823 	return err;
1824 }
1825 
1826 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
1827 				    const char *name)
1828 {
1829 	char from_filename[PATH_MAX];
1830 	char to_filename[PATH_MAX];
1831 
1832 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1833 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1834 
1835 	return kcore_copy__compare_files(from_filename, to_filename);
1836 }
1837 
1838 /**
1839  * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
1840  * @from_dir: from directory
1841  * @to_dir: to directory
1842  *
1843  * This function copies kallsyms, modules and kcore files from one directory to
1844  * another.  kallsyms and modules are copied entirely.  Only code segments are
1845  * copied from kcore.  It is assumed that two segments suffice: one for the
1846  * kernel proper and one for all the modules.  The code segments are determined
1847  * from kallsyms and modules files.  The kernel map starts at _stext or the
1848  * lowest function symbol, and ends at _etext or the highest function symbol.
1849  * The module map starts at the lowest module address and ends at the highest
1850  * module symbol.  Start addresses are rounded down to the nearest page.  End
1851  * addresses are rounded up to the nearest page.  An extra page is added to the
1852  * highest kernel symbol and highest module symbol to, hopefully, encompass that
1853  * symbol too.  Because it contains only code sections, the resulting kcore is
1854  * unusual.  One significant peculiarity is that the mapping (start -> pgoff)
1855  * is not the same for the kernel map and the modules map.  That happens because
1856  * the data is copied adjacently whereas the original kcore has gaps.  Finally,
1857  * kallsyms and modules files are compared with their copies to check that
1858  * modules have not been loaded or unloaded while the copies were taking place.
1859  *
1860  * Return: %0 on success, %-1 on failure.
1861  */
1862 int kcore_copy(const char *from_dir, const char *to_dir)
1863 {
1864 	struct kcore kcore;
1865 	struct kcore extract;
1866 	int idx = 0, err = -1;
1867 	off_t offset, sz;
1868 	struct kcore_copy_info kci = { .stext = 0, };
1869 	char kcore_filename[PATH_MAX];
1870 	char extract_filename[PATH_MAX];
1871 	struct phdr_data *p;
1872 
1873 	INIT_LIST_HEAD(&kci.phdrs);
1874 	INIT_LIST_HEAD(&kci.syms);
1875 
1876 	if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
1877 		return -1;
1878 
1879 	if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
1880 		goto out_unlink_kallsyms;
1881 
1882 	scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
1883 	scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
1884 
1885 	if (kcore__open(&kcore, kcore_filename))
1886 		goto out_unlink_modules;
1887 
1888 	if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
1889 		goto out_kcore_close;
1890 
1891 	if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
1892 		goto out_kcore_close;
1893 
1894 	if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
1895 		goto out_extract_close;
1896 
1897 	offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
1898 		 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
1899 	offset = round_up(offset, page_size);
1900 
1901 	kcore_copy__for_each_phdr(&kci, p) {
1902 		off_t offs = p->rel + offset;
1903 
1904 		if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
1905 			goto out_extract_close;
1906 	}
1907 
1908 	sz = kcore__write(&extract);
1909 	if (sz < 0 || sz > offset)
1910 		goto out_extract_close;
1911 
1912 	kcore_copy__for_each_phdr(&kci, p) {
1913 		off_t offs = p->rel + offset;
1914 
1915 		if (p->remaps)
1916 			continue;
1917 		if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
1918 			goto out_extract_close;
1919 	}
1920 
1921 	if (kcore_copy__compare_file(from_dir, to_dir, "modules"))
1922 		goto out_extract_close;
1923 
1924 	if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
1925 		goto out_extract_close;
1926 
1927 	err = 0;
1928 
1929 out_extract_close:
1930 	kcore__close(&extract);
1931 	if (err)
1932 		unlink(extract_filename);
1933 out_kcore_close:
1934 	kcore__close(&kcore);
1935 out_unlink_modules:
1936 	if (err)
1937 		kcore_copy__unlink(to_dir, "modules");
1938 out_unlink_kallsyms:
1939 	if (err)
1940 		kcore_copy__unlink(to_dir, "kallsyms");
1941 
1942 	kcore_copy__free_phdrs(&kci);
1943 	kcore_copy__free_syms(&kci);
1944 
1945 	return err;
1946 }
1947 
1948 int kcore_extract__create(struct kcore_extract *kce)
1949 {
1950 	struct kcore kcore;
1951 	struct kcore extract;
1952 	size_t count = 1;
1953 	int idx = 0, err = -1;
1954 	off_t offset = page_size, sz;
1955 
1956 	if (kcore__open(&kcore, kce->kcore_filename))
1957 		return -1;
1958 
1959 	strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
1960 	if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
1961 		goto out_kcore_close;
1962 
1963 	if (kcore__copy_hdr(&kcore, &extract, count))
1964 		goto out_extract_close;
1965 
1966 	if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
1967 		goto out_extract_close;
1968 
1969 	sz = kcore__write(&extract);
1970 	if (sz < 0 || sz > offset)
1971 		goto out_extract_close;
1972 
1973 	if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
1974 		goto out_extract_close;
1975 
1976 	err = 0;
1977 
1978 out_extract_close:
1979 	kcore__close(&extract);
1980 	if (err)
1981 		unlink(kce->extract_filename);
1982 out_kcore_close:
1983 	kcore__close(&kcore);
1984 
1985 	return err;
1986 }
1987 
1988 void kcore_extract__delete(struct kcore_extract *kce)
1989 {
1990 	unlink(kce->extract_filename);
1991 }
1992 
1993 #ifdef HAVE_GELF_GETNOTE_SUPPORT
1994 
1995 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
1996 {
1997 	if (!base_off)
1998 		return;
1999 
2000 	if (tmp->bit32)
2001 		tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2002 			tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2003 			tmp->addr.a32[SDT_NOTE_IDX_BASE];
2004 	else
2005 		tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2006 			tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2007 			tmp->addr.a64[SDT_NOTE_IDX_BASE];
2008 }
2009 
2010 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2011 			      GElf_Addr base_off)
2012 {
2013 	if (!base_off)
2014 		return;
2015 
2016 	if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2017 		tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2018 	else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2019 		tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2020 }
2021 
2022 /**
2023  * populate_sdt_note : Parse raw data and identify SDT note
2024  * @elf: elf of the opened file
2025  * @data: raw data of a section with description offset applied
2026  * @len: note description size
2027  * @type: type of the note
2028  * @sdt_notes: List to add the SDT note
2029  *
2030  * Responsible for parsing the @data in section .note.stapsdt in @elf and
2031  * if its an SDT note, it appends to @sdt_notes list.
2032  */
2033 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2034 			     struct list_head *sdt_notes)
2035 {
2036 	const char *provider, *name, *args;
2037 	struct sdt_note *tmp = NULL;
2038 	GElf_Ehdr ehdr;
2039 	GElf_Shdr shdr;
2040 	int ret = -EINVAL;
2041 
2042 	union {
2043 		Elf64_Addr a64[NR_ADDR];
2044 		Elf32_Addr a32[NR_ADDR];
2045 	} buf;
2046 
2047 	Elf_Data dst = {
2048 		.d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2049 		.d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2050 		.d_off = 0, .d_align = 0
2051 	};
2052 	Elf_Data src = {
2053 		.d_buf = (void *) data, .d_type = ELF_T_ADDR,
2054 		.d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2055 		.d_align = 0
2056 	};
2057 
2058 	tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2059 	if (!tmp) {
2060 		ret = -ENOMEM;
2061 		goto out_err;
2062 	}
2063 
2064 	INIT_LIST_HEAD(&tmp->note_list);
2065 
2066 	if (len < dst.d_size + 3)
2067 		goto out_free_note;
2068 
2069 	/* Translation from file representation to memory representation */
2070 	if (gelf_xlatetom(*elf, &dst, &src,
2071 			  elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2072 		pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2073 		goto out_free_note;
2074 	}
2075 
2076 	/* Populate the fields of sdt_note */
2077 	provider = data + dst.d_size;
2078 
2079 	name = (const char *)memchr(provider, '\0', data + len - provider);
2080 	if (name++ == NULL)
2081 		goto out_free_note;
2082 
2083 	tmp->provider = strdup(provider);
2084 	if (!tmp->provider) {
2085 		ret = -ENOMEM;
2086 		goto out_free_note;
2087 	}
2088 	tmp->name = strdup(name);
2089 	if (!tmp->name) {
2090 		ret = -ENOMEM;
2091 		goto out_free_prov;
2092 	}
2093 
2094 	args = memchr(name, '\0', data + len - name);
2095 
2096 	/*
2097 	 * There is no argument if:
2098 	 * - We reached the end of the note;
2099 	 * - There is not enough room to hold a potential string;
2100 	 * - The argument string is empty or just contains ':'.
2101 	 */
2102 	if (args == NULL || data + len - args < 2 ||
2103 		args[1] == ':' || args[1] == '\0')
2104 		tmp->args = NULL;
2105 	else {
2106 		tmp->args = strdup(++args);
2107 		if (!tmp->args) {
2108 			ret = -ENOMEM;
2109 			goto out_free_name;
2110 		}
2111 	}
2112 
2113 	if (gelf_getclass(*elf) == ELFCLASS32) {
2114 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2115 		tmp->bit32 = true;
2116 	} else {
2117 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2118 		tmp->bit32 = false;
2119 	}
2120 
2121 	if (!gelf_getehdr(*elf, &ehdr)) {
2122 		pr_debug("%s : cannot get elf header.\n", __func__);
2123 		ret = -EBADF;
2124 		goto out_free_args;
2125 	}
2126 
2127 	/* Adjust the prelink effect :
2128 	 * Find out the .stapsdt.base section.
2129 	 * This scn will help us to handle prelinking (if present).
2130 	 * Compare the retrieved file offset of the base section with the
2131 	 * base address in the description of the SDT note. If its different,
2132 	 * then accordingly, adjust the note location.
2133 	 */
2134 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2135 		sdt_adjust_loc(tmp, shdr.sh_offset);
2136 
2137 	/* Adjust reference counter offset */
2138 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2139 		sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2140 
2141 	list_add_tail(&tmp->note_list, sdt_notes);
2142 	return 0;
2143 
2144 out_free_args:
2145 	zfree(&tmp->args);
2146 out_free_name:
2147 	zfree(&tmp->name);
2148 out_free_prov:
2149 	zfree(&tmp->provider);
2150 out_free_note:
2151 	free(tmp);
2152 out_err:
2153 	return ret;
2154 }
2155 
2156 /**
2157  * construct_sdt_notes_list : constructs a list of SDT notes
2158  * @elf : elf to look into
2159  * @sdt_notes : empty list_head
2160  *
2161  * Scans the sections in 'elf' for the section
2162  * .note.stapsdt. It, then calls populate_sdt_note to find
2163  * out the SDT events and populates the 'sdt_notes'.
2164  */
2165 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2166 {
2167 	GElf_Ehdr ehdr;
2168 	Elf_Scn *scn = NULL;
2169 	Elf_Data *data;
2170 	GElf_Shdr shdr;
2171 	size_t shstrndx, next;
2172 	GElf_Nhdr nhdr;
2173 	size_t name_off, desc_off, offset;
2174 	int ret = 0;
2175 
2176 	if (gelf_getehdr(elf, &ehdr) == NULL) {
2177 		ret = -EBADF;
2178 		goto out_ret;
2179 	}
2180 	if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2181 		ret = -EBADF;
2182 		goto out_ret;
2183 	}
2184 
2185 	/* Look for the required section */
2186 	scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2187 	if (!scn) {
2188 		ret = -ENOENT;
2189 		goto out_ret;
2190 	}
2191 
2192 	if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2193 		ret = -ENOENT;
2194 		goto out_ret;
2195 	}
2196 
2197 	data = elf_getdata(scn, NULL);
2198 
2199 	/* Get the SDT notes */
2200 	for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2201 					      &desc_off)) > 0; offset = next) {
2202 		if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2203 		    !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2204 			    sizeof(SDT_NOTE_NAME))) {
2205 			/* Check the type of the note */
2206 			if (nhdr.n_type != SDT_NOTE_TYPE)
2207 				goto out_ret;
2208 
2209 			ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2210 						nhdr.n_descsz, sdt_notes);
2211 			if (ret < 0)
2212 				goto out_ret;
2213 		}
2214 	}
2215 	if (list_empty(sdt_notes))
2216 		ret = -ENOENT;
2217 
2218 out_ret:
2219 	return ret;
2220 }
2221 
2222 /**
2223  * get_sdt_note_list : Wrapper to construct a list of sdt notes
2224  * @head : empty list_head
2225  * @target : file to find SDT notes from
2226  *
2227  * This opens the file, initializes
2228  * the ELF and then calls construct_sdt_notes_list.
2229  */
2230 int get_sdt_note_list(struct list_head *head, const char *target)
2231 {
2232 	Elf *elf;
2233 	int fd, ret;
2234 
2235 	fd = open(target, O_RDONLY);
2236 	if (fd < 0)
2237 		return -EBADF;
2238 
2239 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2240 	if (!elf) {
2241 		ret = -EBADF;
2242 		goto out_close;
2243 	}
2244 	ret = construct_sdt_notes_list(elf, head);
2245 	elf_end(elf);
2246 out_close:
2247 	close(fd);
2248 	return ret;
2249 }
2250 
2251 /**
2252  * cleanup_sdt_note_list : free the sdt notes' list
2253  * @sdt_notes: sdt notes' list
2254  *
2255  * Free up the SDT notes in @sdt_notes.
2256  * Returns the number of SDT notes free'd.
2257  */
2258 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2259 {
2260 	struct sdt_note *tmp, *pos;
2261 	int nr_free = 0;
2262 
2263 	list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2264 		list_del_init(&pos->note_list);
2265 		zfree(&pos->name);
2266 		zfree(&pos->provider);
2267 		free(pos);
2268 		nr_free++;
2269 	}
2270 	return nr_free;
2271 }
2272 
2273 /**
2274  * sdt_notes__get_count: Counts the number of sdt events
2275  * @start: list_head to sdt_notes list
2276  *
2277  * Returns the number of SDT notes in a list
2278  */
2279 int sdt_notes__get_count(struct list_head *start)
2280 {
2281 	struct sdt_note *sdt_ptr;
2282 	int count = 0;
2283 
2284 	list_for_each_entry(sdt_ptr, start, note_list)
2285 		count++;
2286 	return count;
2287 }
2288 #endif
2289 
2290 void symbol__elf_init(void)
2291 {
2292 	elf_version(EV_CURRENT);
2293 }
2294