1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "compress.h" 11 #include "dso.h" 12 #include "map.h" 13 #include "maps.h" 14 #include "symbol.h" 15 #include "symsrc.h" 16 #include "machine.h" 17 #include "vdso.h" 18 #include "debug.h" 19 #include "util/copyfile.h" 20 #include <linux/ctype.h> 21 #include <linux/kernel.h> 22 #include <linux/zalloc.h> 23 #include <linux/string.h> 24 #include <symbol/kallsyms.h> 25 #include <internal/lib.h> 26 27 #ifdef HAVE_LIBBFD_SUPPORT 28 #define PACKAGE 'perf' 29 #include <bfd.h> 30 #endif 31 32 #if defined(HAVE_LIBBFD_SUPPORT) || defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 33 #ifndef DMGL_PARAMS 34 #define DMGL_PARAMS (1 << 0) /* Include function args */ 35 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */ 36 #endif 37 #endif 38 39 #ifndef EM_AARCH64 40 #define EM_AARCH64 183 /* ARM 64 bit */ 41 #endif 42 43 #ifndef EM_LOONGARCH 44 #define EM_LOONGARCH 258 45 #endif 46 47 #ifndef ELF32_ST_VISIBILITY 48 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 49 #endif 50 51 /* For ELF64 the definitions are the same. */ 52 #ifndef ELF64_ST_VISIBILITY 53 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 54 #endif 55 56 /* How to extract information held in the st_other field. */ 57 #ifndef GELF_ST_VISIBILITY 58 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 59 #endif 60 61 typedef Elf64_Nhdr GElf_Nhdr; 62 63 64 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 65 static int elf_getphdrnum(Elf *elf, size_t *dst) 66 { 67 GElf_Ehdr gehdr; 68 GElf_Ehdr *ehdr; 69 70 ehdr = gelf_getehdr(elf, &gehdr); 71 if (!ehdr) 72 return -1; 73 74 *dst = ehdr->e_phnum; 75 76 return 0; 77 } 78 #endif 79 80 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 81 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 82 { 83 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 84 return -1; 85 } 86 #endif 87 88 #ifndef NT_GNU_BUILD_ID 89 #define NT_GNU_BUILD_ID 3 90 #endif 91 92 /** 93 * elf_symtab__for_each_symbol - iterate thru all the symbols 94 * 95 * @syms: struct elf_symtab instance to iterate 96 * @idx: uint32_t idx 97 * @sym: GElf_Sym iterator 98 */ 99 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 100 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 101 idx < nr_syms; \ 102 idx++, gelf_getsym(syms, idx, &sym)) 103 104 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 105 { 106 return GELF_ST_TYPE(sym->st_info); 107 } 108 109 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 110 { 111 return GELF_ST_VISIBILITY(sym->st_other); 112 } 113 114 #ifndef STT_GNU_IFUNC 115 #define STT_GNU_IFUNC 10 116 #endif 117 118 static inline int elf_sym__is_function(const GElf_Sym *sym) 119 { 120 return (elf_sym__type(sym) == STT_FUNC || 121 elf_sym__type(sym) == STT_GNU_IFUNC) && 122 sym->st_name != 0 && 123 sym->st_shndx != SHN_UNDEF; 124 } 125 126 static inline bool elf_sym__is_object(const GElf_Sym *sym) 127 { 128 return elf_sym__type(sym) == STT_OBJECT && 129 sym->st_name != 0 && 130 sym->st_shndx != SHN_UNDEF; 131 } 132 133 static inline int elf_sym__is_label(const GElf_Sym *sym) 134 { 135 return elf_sym__type(sym) == STT_NOTYPE && 136 sym->st_name != 0 && 137 sym->st_shndx != SHN_UNDEF && 138 sym->st_shndx != SHN_ABS && 139 elf_sym__visibility(sym) != STV_HIDDEN && 140 elf_sym__visibility(sym) != STV_INTERNAL; 141 } 142 143 static bool elf_sym__filter(GElf_Sym *sym) 144 { 145 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 146 } 147 148 static inline const char *elf_sym__name(const GElf_Sym *sym, 149 const Elf_Data *symstrs) 150 { 151 return symstrs->d_buf + sym->st_name; 152 } 153 154 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 155 const Elf_Data *secstrs) 156 { 157 return secstrs->d_buf + shdr->sh_name; 158 } 159 160 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 161 const Elf_Data *secstrs) 162 { 163 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 164 } 165 166 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 167 const Elf_Data *secstrs) 168 { 169 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 170 } 171 172 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 173 { 174 return elf_sec__is_text(shdr, secstrs) || 175 elf_sec__is_data(shdr, secstrs); 176 } 177 178 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 179 { 180 Elf_Scn *sec = NULL; 181 GElf_Shdr shdr; 182 size_t cnt = 1; 183 184 while ((sec = elf_nextscn(elf, sec)) != NULL) { 185 gelf_getshdr(sec, &shdr); 186 187 if ((addr >= shdr.sh_addr) && 188 (addr < (shdr.sh_addr + shdr.sh_size))) 189 return cnt; 190 191 ++cnt; 192 } 193 194 return -1; 195 } 196 197 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 198 GElf_Shdr *shp, const char *name, size_t *idx) 199 { 200 Elf_Scn *sec = NULL; 201 size_t cnt = 1; 202 203 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 204 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 205 return NULL; 206 207 while ((sec = elf_nextscn(elf, sec)) != NULL) { 208 char *str; 209 210 gelf_getshdr(sec, shp); 211 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 212 if (str && !strcmp(name, str)) { 213 if (idx) 214 *idx = cnt; 215 return sec; 216 } 217 ++cnt; 218 } 219 220 return NULL; 221 } 222 223 bool filename__has_section(const char *filename, const char *sec) 224 { 225 int fd; 226 Elf *elf; 227 GElf_Ehdr ehdr; 228 GElf_Shdr shdr; 229 bool found = false; 230 231 fd = open(filename, O_RDONLY); 232 if (fd < 0) 233 return false; 234 235 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 236 if (elf == NULL) 237 goto out; 238 239 if (gelf_getehdr(elf, &ehdr) == NULL) 240 goto elf_out; 241 242 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL); 243 244 elf_out: 245 elf_end(elf); 246 out: 247 close(fd); 248 return found; 249 } 250 251 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr) 252 { 253 size_t i, phdrnum; 254 u64 sz; 255 256 if (elf_getphdrnum(elf, &phdrnum)) 257 return -1; 258 259 for (i = 0; i < phdrnum; i++) { 260 if (gelf_getphdr(elf, i, phdr) == NULL) 261 return -1; 262 263 if (phdr->p_type != PT_LOAD) 264 continue; 265 266 sz = max(phdr->p_memsz, phdr->p_filesz); 267 if (!sz) 268 continue; 269 270 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz)) 271 return 0; 272 } 273 274 /* Not found any valid program header */ 275 return -1; 276 } 277 278 struct rel_info { 279 u32 nr_entries; 280 u32 *sorted; 281 bool is_rela; 282 Elf_Data *reldata; 283 GElf_Rela rela; 284 GElf_Rel rel; 285 }; 286 287 static u32 get_rel_symidx(struct rel_info *ri, u32 idx) 288 { 289 idx = ri->sorted ? ri->sorted[idx] : idx; 290 if (ri->is_rela) { 291 gelf_getrela(ri->reldata, idx, &ri->rela); 292 return GELF_R_SYM(ri->rela.r_info); 293 } 294 gelf_getrel(ri->reldata, idx, &ri->rel); 295 return GELF_R_SYM(ri->rel.r_info); 296 } 297 298 static u64 get_rel_offset(struct rel_info *ri, u32 x) 299 { 300 if (ri->is_rela) { 301 GElf_Rela rela; 302 303 gelf_getrela(ri->reldata, x, &rela); 304 return rela.r_offset; 305 } else { 306 GElf_Rel rel; 307 308 gelf_getrel(ri->reldata, x, &rel); 309 return rel.r_offset; 310 } 311 } 312 313 static int rel_cmp(const void *a, const void *b, void *r) 314 { 315 struct rel_info *ri = r; 316 u64 a_offset = get_rel_offset(ri, *(const u32 *)a); 317 u64 b_offset = get_rel_offset(ri, *(const u32 *)b); 318 319 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0); 320 } 321 322 static int sort_rel(struct rel_info *ri) 323 { 324 size_t sz = sizeof(ri->sorted[0]); 325 u32 i; 326 327 ri->sorted = calloc(ri->nr_entries, sz); 328 if (!ri->sorted) 329 return -1; 330 for (i = 0; i < ri->nr_entries; i++) 331 ri->sorted[i] = i; 332 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri); 333 return 0; 334 } 335 336 /* 337 * For x86_64, the GNU linker is putting IFUNC information in the relocation 338 * addend. 339 */ 340 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri) 341 { 342 return ehdr->e_machine == EM_X86_64 && ri->is_rela && 343 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE; 344 } 345 346 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr, 347 struct rel_info *ri, char *buf, size_t buf_sz) 348 { 349 u64 addr = ri->rela.r_addend; 350 struct symbol *sym; 351 GElf_Phdr phdr; 352 353 if (!addend_may_be_ifunc(ehdr, ri)) 354 return false; 355 356 if (elf_read_program_header(elf, addr, &phdr)) 357 return false; 358 359 addr -= phdr.p_vaddr - phdr.p_offset; 360 361 sym = dso__find_symbol_nocache(dso, addr); 362 363 /* Expecting the address to be an IFUNC or IFUNC alias */ 364 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias)) 365 return false; 366 367 snprintf(buf, buf_sz, "%s@plt", sym->name); 368 369 return true; 370 } 371 372 static void exit_rel(struct rel_info *ri) 373 { 374 zfree(&ri->sorted); 375 } 376 377 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt, 378 u64 *plt_header_size, u64 *plt_entry_size) 379 { 380 switch (ehdr->e_machine) { 381 case EM_ARM: 382 *plt_header_size = 20; 383 *plt_entry_size = 12; 384 return true; 385 case EM_AARCH64: 386 *plt_header_size = 32; 387 *plt_entry_size = 16; 388 return true; 389 case EM_LOONGARCH: 390 *plt_header_size = 32; 391 *plt_entry_size = 16; 392 return true; 393 case EM_SPARC: 394 *plt_header_size = 48; 395 *plt_entry_size = 12; 396 return true; 397 case EM_SPARCV9: 398 *plt_header_size = 128; 399 *plt_entry_size = 32; 400 return true; 401 case EM_386: 402 case EM_X86_64: 403 *plt_entry_size = shdr_plt->sh_entsize; 404 /* Size is 8 or 16, if not, assume alignment indicates size */ 405 if (*plt_entry_size != 8 && *plt_entry_size != 16) 406 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16; 407 *plt_header_size = *plt_entry_size; 408 break; 409 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 410 *plt_header_size = shdr_plt->sh_entsize; 411 *plt_entry_size = shdr_plt->sh_entsize; 412 break; 413 } 414 if (*plt_entry_size) 415 return true; 416 pr_debug("Missing PLT entry size for %s\n", dso__long_name(dso)); 417 return false; 418 } 419 420 static bool machine_is_x86(GElf_Half e_machine) 421 { 422 return e_machine == EM_386 || e_machine == EM_X86_64; 423 } 424 425 struct rela_dyn { 426 GElf_Addr offset; 427 u32 sym_idx; 428 }; 429 430 struct rela_dyn_info { 431 struct dso *dso; 432 Elf_Data *plt_got_data; 433 u32 nr_entries; 434 struct rela_dyn *sorted; 435 Elf_Data *dynsym_data; 436 Elf_Data *dynstr_data; 437 Elf_Data *rela_dyn_data; 438 }; 439 440 static void exit_rela_dyn(struct rela_dyn_info *di) 441 { 442 zfree(&di->sorted); 443 } 444 445 static int cmp_offset(const void *a, const void *b) 446 { 447 const struct rela_dyn *va = a; 448 const struct rela_dyn *vb = b; 449 450 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0); 451 } 452 453 static int sort_rela_dyn(struct rela_dyn_info *di) 454 { 455 u32 i, n; 456 457 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0])); 458 if (!di->sorted) 459 return -1; 460 461 /* Get data for sorting: the offset and symbol index */ 462 for (i = 0, n = 0; i < di->nr_entries; i++) { 463 GElf_Rela rela; 464 u32 sym_idx; 465 466 gelf_getrela(di->rela_dyn_data, i, &rela); 467 sym_idx = GELF_R_SYM(rela.r_info); 468 if (sym_idx) { 469 di->sorted[n].sym_idx = sym_idx; 470 di->sorted[n].offset = rela.r_offset; 471 n += 1; 472 } 473 } 474 475 /* Sort by offset */ 476 di->nr_entries = n; 477 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset); 478 479 return 0; 480 } 481 482 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn) 483 { 484 GElf_Shdr rela_dyn_shdr; 485 GElf_Shdr shdr; 486 487 di->plt_got_data = elf_getdata(scn, NULL); 488 489 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL); 490 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize) 491 return; 492 493 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize; 494 di->rela_dyn_data = elf_getdata(scn, NULL); 495 496 scn = elf_getscn(elf, rela_dyn_shdr.sh_link); 497 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link) 498 return; 499 500 di->dynsym_data = elf_getdata(scn, NULL); 501 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL); 502 503 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data) 504 return; 505 506 /* Sort into offset order */ 507 sort_rela_dyn(di); 508 } 509 510 /* Get instruction displacement from a plt entry for x86_64 */ 511 static u32 get_x86_64_plt_disp(const u8 *p) 512 { 513 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa}; 514 int n = 0; 515 516 /* Skip endbr64 */ 517 if (!memcmp(p, endbr64, sizeof(endbr64))) 518 n += sizeof(endbr64); 519 /* Skip bnd prefix */ 520 if (p[n] == 0xf2) 521 n += 1; 522 /* jmp with 4-byte displacement */ 523 if (p[n] == 0xff && p[n + 1] == 0x25) { 524 u32 disp; 525 526 n += 2; 527 /* Also add offset from start of entry to end of instruction */ 528 memcpy(&disp, p + n, sizeof(disp)); 529 return n + 4 + le32toh(disp); 530 } 531 return 0; 532 } 533 534 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i, 535 struct rela_dyn_info *di, 536 char *buf, size_t buf_sz) 537 { 538 struct rela_dyn vi, *vr; 539 const char *sym_name; 540 char *demangled; 541 GElf_Sym sym; 542 bool result; 543 u32 disp; 544 545 if (!di->sorted) 546 return false; 547 548 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i); 549 if (!disp) 550 return false; 551 552 /* Compute target offset of the .plt.got entry */ 553 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp; 554 555 /* Find that offset in .rela.dyn (sorted by offset) */ 556 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset); 557 if (!vr) 558 return false; 559 560 /* Get the associated symbol */ 561 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym); 562 sym_name = elf_sym__name(&sym, di->dynstr_data); 563 demangled = dso__demangle_sym(di->dso, /*kmodule=*/0, sym_name); 564 if (demangled != NULL) 565 sym_name = demangled; 566 567 snprintf(buf, buf_sz, "%s@plt", sym_name); 568 569 result = *sym_name; 570 571 free(demangled); 572 573 return result; 574 } 575 576 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf, 577 GElf_Ehdr *ehdr, 578 char *buf, size_t buf_sz) 579 { 580 struct rela_dyn_info di = { .dso = dso }; 581 struct symbol *sym; 582 GElf_Shdr shdr; 583 Elf_Scn *scn; 584 int err = -1; 585 size_t i; 586 587 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL); 588 if (!scn || !shdr.sh_entsize) 589 return 0; 590 591 if (ehdr->e_machine == EM_X86_64) 592 get_rela_dyn_info(elf, ehdr, &di, scn); 593 594 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) { 595 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz)) 596 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i); 597 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf); 598 if (!sym) 599 goto out; 600 symbols__insert(dso__symbols(dso), sym); 601 } 602 err = 0; 603 out: 604 exit_rela_dyn(&di); 605 return err; 606 } 607 608 /* 609 * We need to check if we have a .dynsym, so that we can handle the 610 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 611 * .dynsym or .symtab). 612 * And always look at the original dso, not at debuginfo packages, that 613 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 614 */ 615 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 616 { 617 uint32_t idx; 618 GElf_Sym sym; 619 u64 plt_offset, plt_header_size, plt_entry_size; 620 GElf_Shdr shdr_plt, plt_sec_shdr; 621 struct symbol *f, *plt_sym; 622 GElf_Shdr shdr_rel_plt, shdr_dynsym; 623 Elf_Data *syms, *symstrs; 624 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 625 GElf_Ehdr ehdr; 626 char sympltname[1024]; 627 Elf *elf; 628 int nr = 0, err = -1; 629 struct rel_info ri = { .is_rela = false }; 630 bool lazy_plt; 631 632 elf = ss->elf; 633 ehdr = ss->ehdr; 634 635 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL)) 636 return 0; 637 638 /* 639 * A symbol from a previous section (e.g. .init) can have been expanded 640 * by symbols__fixup_end() to overlap .plt. Truncate it before adding 641 * a symbol for .plt header. 642 */ 643 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset); 644 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset) 645 f->end = shdr_plt.sh_offset; 646 647 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size)) 648 return 0; 649 650 /* Add a symbol for .plt header */ 651 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt"); 652 if (!plt_sym) 653 goto out_elf_end; 654 symbols__insert(dso__symbols(dso), plt_sym); 655 656 /* Only x86 has .plt.got */ 657 if (machine_is_x86(ehdr.e_machine) && 658 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname))) 659 goto out_elf_end; 660 661 /* Only x86 has .plt.sec */ 662 if (machine_is_x86(ehdr.e_machine) && 663 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) { 664 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size)) 665 return 0; 666 /* Extend .plt symbol to entire .plt */ 667 plt_sym->end = plt_sym->start + shdr_plt.sh_size; 668 /* Use .plt.sec offset */ 669 plt_offset = plt_sec_shdr.sh_offset; 670 lazy_plt = false; 671 } else { 672 plt_offset = shdr_plt.sh_offset; 673 lazy_plt = true; 674 } 675 676 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 677 ".rela.plt", NULL); 678 if (scn_plt_rel == NULL) { 679 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 680 ".rel.plt", NULL); 681 if (scn_plt_rel == NULL) 682 return 0; 683 } 684 685 if (shdr_rel_plt.sh_type != SHT_RELA && 686 shdr_rel_plt.sh_type != SHT_REL) 687 return 0; 688 689 if (!shdr_rel_plt.sh_link) 690 return 0; 691 692 if (shdr_rel_plt.sh_link == ss->dynsym_idx) { 693 scn_dynsym = ss->dynsym; 694 shdr_dynsym = ss->dynshdr; 695 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) { 696 /* 697 * A static executable can have a .plt due to IFUNCs, in which 698 * case .symtab is used not .dynsym. 699 */ 700 scn_dynsym = ss->symtab; 701 shdr_dynsym = ss->symshdr; 702 } else { 703 goto out_elf_end; 704 } 705 706 if (!scn_dynsym) 707 return 0; 708 709 /* 710 * Fetch the relocation section to find the idxes to the GOT 711 * and the symbols in the .dynsym they refer to. 712 */ 713 ri.reldata = elf_getdata(scn_plt_rel, NULL); 714 if (!ri.reldata) 715 goto out_elf_end; 716 717 syms = elf_getdata(scn_dynsym, NULL); 718 if (syms == NULL) 719 goto out_elf_end; 720 721 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 722 if (scn_symstrs == NULL) 723 goto out_elf_end; 724 725 symstrs = elf_getdata(scn_symstrs, NULL); 726 if (symstrs == NULL) 727 goto out_elf_end; 728 729 if (symstrs->d_size == 0) 730 goto out_elf_end; 731 732 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 733 734 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA; 735 736 if (lazy_plt) { 737 /* 738 * Assume a .plt with the same number of entries as the number 739 * of relocation entries is not lazy and does not have a header. 740 */ 741 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size) 742 dso__delete_symbol(dso, plt_sym); 743 else 744 plt_offset += plt_header_size; 745 } 746 747 /* 748 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get 749 * back in order. 750 */ 751 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri)) 752 goto out_elf_end; 753 754 for (idx = 0; idx < ri.nr_entries; idx++) { 755 const char *elf_name = NULL; 756 char *demangled = NULL; 757 758 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym); 759 760 elf_name = elf_sym__name(&sym, symstrs); 761 demangled = dso__demangle_sym(dso, /*kmodule=*/0, elf_name); 762 if (demangled) 763 elf_name = demangled; 764 if (*elf_name) 765 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name); 766 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname))) 767 snprintf(sympltname, sizeof(sympltname), 768 "offset_%#" PRIx64 "@plt", plt_offset); 769 free(demangled); 770 771 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname); 772 if (!f) 773 goto out_elf_end; 774 775 plt_offset += plt_entry_size; 776 symbols__insert(dso__symbols(dso), f); 777 ++nr; 778 } 779 780 err = 0; 781 out_elf_end: 782 exit_rel(&ri); 783 if (err == 0) 784 return nr; 785 pr_debug("%s: problems reading %s PLT info.\n", 786 __func__, dso__long_name(dso)); 787 return 0; 788 } 789 790 /* 791 * Align offset to 4 bytes as needed for note name and descriptor data. 792 */ 793 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 794 795 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 796 { 797 int err = -1; 798 GElf_Ehdr ehdr; 799 GElf_Shdr shdr; 800 Elf_Data *data; 801 Elf_Scn *sec; 802 Elf_Kind ek; 803 void *ptr; 804 805 if (size < BUILD_ID_SIZE) 806 goto out; 807 808 ek = elf_kind(elf); 809 if (ek != ELF_K_ELF) 810 goto out; 811 812 if (gelf_getehdr(elf, &ehdr) == NULL) { 813 pr_err("%s: cannot get elf header.\n", __func__); 814 goto out; 815 } 816 817 /* 818 * Check following sections for notes: 819 * '.note.gnu.build-id' 820 * '.notes' 821 * '.note' (VDSO specific) 822 */ 823 do { 824 sec = elf_section_by_name(elf, &ehdr, &shdr, 825 ".note.gnu.build-id", NULL); 826 if (sec) 827 break; 828 829 sec = elf_section_by_name(elf, &ehdr, &shdr, 830 ".notes", NULL); 831 if (sec) 832 break; 833 834 sec = elf_section_by_name(elf, &ehdr, &shdr, 835 ".note", NULL); 836 if (sec) 837 break; 838 839 return err; 840 841 } while (0); 842 843 data = elf_getdata(sec, NULL); 844 if (data == NULL) 845 goto out; 846 847 ptr = data->d_buf; 848 while (ptr < (data->d_buf + data->d_size)) { 849 GElf_Nhdr *nhdr = ptr; 850 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 851 descsz = NOTE_ALIGN(nhdr->n_descsz); 852 const char *name; 853 854 ptr += sizeof(*nhdr); 855 name = ptr; 856 ptr += namesz; 857 if (nhdr->n_type == NT_GNU_BUILD_ID && 858 nhdr->n_namesz == sizeof("GNU")) { 859 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 860 size_t sz = min(size, descsz); 861 memcpy(bf, ptr, sz); 862 memset(bf + sz, 0, size - sz); 863 err = sz; 864 break; 865 } 866 } 867 ptr += descsz; 868 } 869 870 out: 871 return err; 872 } 873 874 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT 875 876 static int read_build_id(const char *filename, struct build_id *bid) 877 { 878 size_t size = sizeof(bid->data); 879 int err = -1; 880 bfd *abfd; 881 882 abfd = bfd_openr(filename, NULL); 883 if (!abfd) 884 return -1; 885 886 if (!bfd_check_format(abfd, bfd_object)) { 887 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 888 goto out_close; 889 } 890 891 if (!abfd->build_id || abfd->build_id->size > size) 892 goto out_close; 893 894 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size); 895 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size); 896 err = bid->size = abfd->build_id->size; 897 898 out_close: 899 bfd_close(abfd); 900 return err; 901 } 902 903 #else // HAVE_LIBBFD_BUILDID_SUPPORT 904 905 static int read_build_id(const char *filename, struct build_id *bid, bool block) 906 { 907 size_t size = sizeof(bid->data); 908 int fd, err = -1; 909 Elf *elf; 910 911 if (size < BUILD_ID_SIZE) 912 goto out; 913 914 fd = open(filename, block ? O_RDONLY : (O_RDONLY | O_NONBLOCK)); 915 if (fd < 0) 916 goto out; 917 918 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 919 if (elf == NULL) { 920 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 921 goto out_close; 922 } 923 924 err = elf_read_build_id(elf, bid->data, size); 925 if (err > 0) 926 bid->size = err; 927 928 elf_end(elf); 929 out_close: 930 close(fd); 931 out: 932 return err; 933 } 934 935 #endif // HAVE_LIBBFD_BUILDID_SUPPORT 936 937 int filename__read_build_id(const char *filename, struct build_id *bid, bool block) 938 { 939 struct kmod_path m = { .name = NULL, }; 940 char path[PATH_MAX]; 941 int err; 942 943 if (!filename) 944 return -EFAULT; 945 946 err = kmod_path__parse(&m, filename); 947 if (err) 948 return -1; 949 950 if (m.comp) { 951 int error = 0, fd; 952 953 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error); 954 if (fd < 0) { 955 pr_debug("Failed to decompress (error %d) %s\n", 956 error, filename); 957 return -1; 958 } 959 close(fd); 960 filename = path; 961 block = true; 962 } 963 964 err = read_build_id(filename, bid, block); 965 966 if (m.comp) 967 unlink(filename); 968 return err; 969 } 970 971 int sysfs__read_build_id(const char *filename, struct build_id *bid) 972 { 973 size_t size = sizeof(bid->data); 974 int fd, err = -1; 975 976 fd = open(filename, O_RDONLY); 977 if (fd < 0) 978 goto out; 979 980 while (1) { 981 char bf[BUFSIZ]; 982 GElf_Nhdr nhdr; 983 size_t namesz, descsz; 984 985 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 986 break; 987 988 namesz = NOTE_ALIGN(nhdr.n_namesz); 989 descsz = NOTE_ALIGN(nhdr.n_descsz); 990 if (nhdr.n_type == NT_GNU_BUILD_ID && 991 nhdr.n_namesz == sizeof("GNU")) { 992 if (read(fd, bf, namesz) != (ssize_t)namesz) 993 break; 994 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 995 size_t sz = min(descsz, size); 996 if (read(fd, bid->data, sz) == (ssize_t)sz) { 997 memset(bid->data + sz, 0, size - sz); 998 bid->size = sz; 999 err = 0; 1000 break; 1001 } 1002 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 1003 break; 1004 } else { 1005 int n = namesz + descsz; 1006 1007 if (n > (int)sizeof(bf)) { 1008 n = sizeof(bf); 1009 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 1010 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 1011 } 1012 if (read(fd, bf, n) != n) 1013 break; 1014 } 1015 } 1016 close(fd); 1017 out: 1018 return err; 1019 } 1020 1021 #ifdef HAVE_LIBBFD_SUPPORT 1022 1023 int filename__read_debuglink(const char *filename, char *debuglink, 1024 size_t size) 1025 { 1026 int err = -1; 1027 asection *section; 1028 bfd *abfd; 1029 1030 abfd = bfd_openr(filename, NULL); 1031 if (!abfd) 1032 return -1; 1033 1034 if (!bfd_check_format(abfd, bfd_object)) { 1035 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 1036 goto out_close; 1037 } 1038 1039 section = bfd_get_section_by_name(abfd, ".gnu_debuglink"); 1040 if (!section) 1041 goto out_close; 1042 1043 if (section->size > size) 1044 goto out_close; 1045 1046 if (!bfd_get_section_contents(abfd, section, debuglink, 0, 1047 section->size)) 1048 goto out_close; 1049 1050 err = 0; 1051 1052 out_close: 1053 bfd_close(abfd); 1054 return err; 1055 } 1056 1057 #else 1058 1059 int filename__read_debuglink(const char *filename, char *debuglink, 1060 size_t size) 1061 { 1062 int fd, err = -1; 1063 Elf *elf; 1064 GElf_Ehdr ehdr; 1065 GElf_Shdr shdr; 1066 Elf_Data *data; 1067 Elf_Scn *sec; 1068 Elf_Kind ek; 1069 1070 fd = open(filename, O_RDONLY); 1071 if (fd < 0) 1072 goto out; 1073 1074 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1075 if (elf == NULL) { 1076 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 1077 goto out_close; 1078 } 1079 1080 ek = elf_kind(elf); 1081 if (ek != ELF_K_ELF) 1082 goto out_elf_end; 1083 1084 if (gelf_getehdr(elf, &ehdr) == NULL) { 1085 pr_err("%s: cannot get elf header.\n", __func__); 1086 goto out_elf_end; 1087 } 1088 1089 sec = elf_section_by_name(elf, &ehdr, &shdr, 1090 ".gnu_debuglink", NULL); 1091 if (sec == NULL) 1092 goto out_elf_end; 1093 1094 data = elf_getdata(sec, NULL); 1095 if (data == NULL) 1096 goto out_elf_end; 1097 1098 /* the start of this section is a zero-terminated string */ 1099 strncpy(debuglink, data->d_buf, size); 1100 1101 err = 0; 1102 1103 out_elf_end: 1104 elf_end(elf); 1105 out_close: 1106 close(fd); 1107 out: 1108 return err; 1109 } 1110 1111 #endif 1112 1113 bool symsrc__possibly_runtime(struct symsrc *ss) 1114 { 1115 return ss->dynsym || ss->opdsec; 1116 } 1117 1118 bool symsrc__has_symtab(struct symsrc *ss) 1119 { 1120 return ss->symtab != NULL; 1121 } 1122 1123 void symsrc__destroy(struct symsrc *ss) 1124 { 1125 zfree(&ss->name); 1126 elf_end(ss->elf); 1127 close(ss->fd); 1128 } 1129 1130 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 1131 { 1132 /* 1133 * Usually vmlinux is an ELF file with type ET_EXEC for most 1134 * architectures; except Arm64 kernel is linked with option 1135 * '-share', so need to check type ET_DYN. 1136 */ 1137 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 1138 ehdr.e_type == ET_DYN; 1139 } 1140 1141 static Elf *read_gnu_debugdata(struct dso *dso, Elf *elf, const char *name, int *fd_ret) 1142 { 1143 Elf *elf_embedded; 1144 GElf_Ehdr ehdr; 1145 GElf_Shdr shdr; 1146 Elf_Scn *scn; 1147 Elf_Data *scn_data; 1148 FILE *wrapped; 1149 size_t shndx; 1150 char temp_filename[] = "/tmp/perf.gnu_debugdata.elf.XXXXXX"; 1151 int ret, temp_fd; 1152 1153 if (gelf_getehdr(elf, &ehdr) == NULL) { 1154 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 1155 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1156 return NULL; 1157 } 1158 1159 scn = elf_section_by_name(elf, &ehdr, &shdr, ".gnu_debugdata", &shndx); 1160 if (!scn) { 1161 *dso__load_errno(dso) = -ENOENT; 1162 return NULL; 1163 } 1164 1165 if (shdr.sh_type == SHT_NOBITS) { 1166 pr_debug("%s: .gnu_debugdata of ELF file %s has no data.\n", __func__, name); 1167 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1168 return NULL; 1169 } 1170 1171 scn_data = elf_rawdata(scn, NULL); 1172 if (!scn_data) { 1173 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__, 1174 name, elf_errmsg(-1)); 1175 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1176 return NULL; 1177 } 1178 1179 wrapped = fmemopen(scn_data->d_buf, scn_data->d_size, "r"); 1180 if (!wrapped) { 1181 pr_debug("%s: fmemopen: %s\n", __func__, strerror(errno)); 1182 *dso__load_errno(dso) = -errno; 1183 return NULL; 1184 } 1185 1186 temp_fd = mkstemp(temp_filename); 1187 if (temp_fd < 0) { 1188 pr_debug("%s: mkstemp: %s\n", __func__, strerror(errno)); 1189 *dso__load_errno(dso) = -errno; 1190 fclose(wrapped); 1191 return NULL; 1192 } 1193 unlink(temp_filename); 1194 1195 ret = lzma_decompress_stream_to_file(wrapped, temp_fd); 1196 fclose(wrapped); 1197 if (ret < 0) { 1198 *dso__load_errno(dso) = -errno; 1199 close(temp_fd); 1200 return NULL; 1201 } 1202 1203 elf_embedded = elf_begin(temp_fd, PERF_ELF_C_READ_MMAP, NULL); 1204 if (!elf_embedded) { 1205 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__, 1206 name, elf_errmsg(-1)); 1207 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1208 close(temp_fd); 1209 return NULL; 1210 } 1211 pr_debug("%s: using .gnu_debugdata of %s\n", __func__, name); 1212 *fd_ret = temp_fd; 1213 return elf_embedded; 1214 } 1215 1216 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 1217 enum dso_binary_type type) 1218 { 1219 GElf_Ehdr ehdr; 1220 Elf *elf; 1221 int fd; 1222 1223 if (dso__needs_decompress(dso)) { 1224 fd = dso__decompress_kmodule_fd(dso, name); 1225 if (fd < 0) 1226 return -1; 1227 1228 type = dso__symtab_type(dso); 1229 } else { 1230 fd = open(name, O_RDONLY); 1231 if (fd < 0) { 1232 *dso__load_errno(dso) = errno; 1233 return -1; 1234 } 1235 } 1236 1237 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1238 if (elf == NULL) { 1239 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 1240 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1241 goto out_close; 1242 } 1243 1244 if (type == DSO_BINARY_TYPE__GNU_DEBUGDATA) { 1245 int new_fd; 1246 Elf *embedded = read_gnu_debugdata(dso, elf, name, &new_fd); 1247 1248 if (!embedded) 1249 goto out_close; 1250 1251 elf_end(elf); 1252 close(fd); 1253 fd = new_fd; 1254 elf = embedded; 1255 } 1256 1257 if (gelf_getehdr(elf, &ehdr) == NULL) { 1258 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1259 pr_debug("%s: cannot get elf header.\n", __func__); 1260 goto out_elf_end; 1261 } 1262 1263 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 1264 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INTERNAL_ERROR; 1265 goto out_elf_end; 1266 } 1267 1268 /* Always reject images with a mismatched build-id: */ 1269 if (dso__has_build_id(dso) && !symbol_conf.ignore_vmlinux_buildid) { 1270 u8 build_id[BUILD_ID_SIZE]; 1271 struct build_id bid; 1272 int size; 1273 1274 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE); 1275 if (size <= 0) { 1276 *dso__load_errno(dso) = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 1277 goto out_elf_end; 1278 } 1279 1280 build_id__init(&bid, build_id, size); 1281 if (!dso__build_id_equal(dso, &bid)) { 1282 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 1283 *dso__load_errno(dso) = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 1284 goto out_elf_end; 1285 } 1286 } 1287 1288 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1289 1290 ss->symtab_idx = 0; 1291 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 1292 &ss->symtab_idx); 1293 if (ss->symshdr.sh_type != SHT_SYMTAB) 1294 ss->symtab = NULL; 1295 1296 ss->dynsym_idx = 0; 1297 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 1298 &ss->dynsym_idx); 1299 if (ss->dynshdr.sh_type != SHT_DYNSYM) 1300 ss->dynsym = NULL; 1301 1302 ss->opdidx = 0; 1303 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 1304 &ss->opdidx); 1305 if (ss->opdshdr.sh_type != SHT_PROGBITS) 1306 ss->opdsec = NULL; 1307 1308 if (dso__kernel(dso) == DSO_SPACE__USER) 1309 ss->adjust_symbols = true; 1310 else 1311 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 1312 1313 ss->name = strdup(name); 1314 if (!ss->name) { 1315 *dso__load_errno(dso) = errno; 1316 goto out_elf_end; 1317 } 1318 1319 ss->elf = elf; 1320 ss->fd = fd; 1321 ss->ehdr = ehdr; 1322 ss->type = type; 1323 1324 return 0; 1325 1326 out_elf_end: 1327 elf_end(elf); 1328 out_close: 1329 close(fd); 1330 return -1; 1331 } 1332 1333 static bool is_exe_text(int flags) 1334 { 1335 return (flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR); 1336 } 1337 1338 /* 1339 * Some executable module sections like .noinstr.text might be laid out with 1340 * .text so they can use the same mapping (memory address to file offset). 1341 * Check if that is the case. Refer to kernel layout_sections(). Return the 1342 * maximum offset. 1343 */ 1344 static u64 max_text_section(Elf *elf, GElf_Ehdr *ehdr) 1345 { 1346 Elf_Scn *sec = NULL; 1347 GElf_Shdr shdr; 1348 u64 offs = 0; 1349 1350 /* Doesn't work for some arch */ 1351 if (ehdr->e_machine == EM_PARISC || 1352 ehdr->e_machine == EM_ALPHA) 1353 return 0; 1354 1355 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1356 if (!elf_rawdata(elf_getscn(elf, ehdr->e_shstrndx), NULL)) 1357 return 0; 1358 1359 while ((sec = elf_nextscn(elf, sec)) != NULL) { 1360 char *sec_name; 1361 1362 if (!gelf_getshdr(sec, &shdr)) 1363 break; 1364 1365 if (!is_exe_text(shdr.sh_flags)) 1366 continue; 1367 1368 /* .init and .exit sections are not placed with .text */ 1369 sec_name = elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name); 1370 if (!sec_name || 1371 strstarts(sec_name, ".init") || 1372 strstarts(sec_name, ".exit")) 1373 break; 1374 1375 /* Must be next to previous, assumes .text is first */ 1376 if (offs && PERF_ALIGN(offs, shdr.sh_addralign ?: 1) != shdr.sh_offset) 1377 break; 1378 1379 offs = shdr.sh_offset + shdr.sh_size; 1380 } 1381 1382 return offs; 1383 } 1384 1385 /** 1386 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 1387 * @kmap: kernel maps and relocation reference symbol 1388 * 1389 * This function returns %true if we are dealing with the kernel maps and the 1390 * relocation reference symbol has not yet been found. Otherwise %false is 1391 * returned. 1392 */ 1393 static bool ref_reloc_sym_not_found(struct kmap *kmap) 1394 { 1395 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 1396 !kmap->ref_reloc_sym->unrelocated_addr; 1397 } 1398 1399 /** 1400 * ref_reloc - kernel relocation offset. 1401 * @kmap: kernel maps and relocation reference symbol 1402 * 1403 * This function returns the offset of kernel addresses as determined by using 1404 * the relocation reference symbol i.e. if the kernel has not been relocated 1405 * then the return value is zero. 1406 */ 1407 static u64 ref_reloc(struct kmap *kmap) 1408 { 1409 if (kmap && kmap->ref_reloc_sym && 1410 kmap->ref_reloc_sym->unrelocated_addr) 1411 return kmap->ref_reloc_sym->addr - 1412 kmap->ref_reloc_sym->unrelocated_addr; 1413 return 0; 1414 } 1415 1416 void __weak arch__sym_update(struct symbol *s __maybe_unused, 1417 GElf_Sym *sym __maybe_unused) { } 1418 1419 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 1420 GElf_Sym *sym, GElf_Shdr *shdr, 1421 struct maps *kmaps, struct kmap *kmap, 1422 struct dso **curr_dsop, 1423 const char *section_name, 1424 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel, 1425 u64 max_text_sh_offset) 1426 { 1427 struct dso *curr_dso = *curr_dsop; 1428 struct map *curr_map; 1429 char dso_name[PATH_MAX]; 1430 1431 /* Adjust symbol to map to file offset */ 1432 if (adjust_kernel_syms) 1433 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 1434 1435 if (strcmp(section_name, (dso__short_name(curr_dso) + dso__short_name_len(dso))) == 0) 1436 return 0; 1437 1438 if (strcmp(section_name, ".text") == 0) { 1439 /* 1440 * The initial kernel mapping is based on 1441 * kallsyms and identity maps. Overwrite it to 1442 * map to the kernel dso. 1443 */ 1444 if (*remap_kernel && dso__kernel(dso) && !kmodule) { 1445 *remap_kernel = false; 1446 map__set_start(map, shdr->sh_addr + ref_reloc(kmap)); 1447 map__set_end(map, map__start(map) + shdr->sh_size); 1448 map__set_pgoff(map, shdr->sh_offset); 1449 map__set_mapping_type(map, MAPPING_TYPE__DSO); 1450 /* Ensure maps are correctly ordered */ 1451 if (kmaps) { 1452 int err; 1453 struct map *tmp = map__get(map); 1454 1455 maps__remove(kmaps, map); 1456 err = maps__insert(kmaps, map); 1457 map__put(tmp); 1458 if (err) 1459 return err; 1460 } 1461 } 1462 1463 /* 1464 * The initial module mapping is based on 1465 * /proc/modules mapped to offset zero. 1466 * Overwrite it to map to the module dso. 1467 */ 1468 if (*remap_kernel && kmodule) { 1469 *remap_kernel = false; 1470 map__set_pgoff(map, shdr->sh_offset); 1471 } 1472 1473 dso__put(*curr_dsop); 1474 *curr_dsop = dso__get(dso); 1475 return 0; 1476 } 1477 1478 if (!kmap) 1479 return 0; 1480 1481 /* 1482 * perf does not record module section addresses except for .text, but 1483 * some sections can use the same mapping as .text. 1484 */ 1485 if (kmodule && adjust_kernel_syms && is_exe_text(shdr->sh_flags) && 1486 shdr->sh_offset <= max_text_sh_offset) { 1487 dso__put(*curr_dsop); 1488 *curr_dsop = dso__get(dso); 1489 return 0; 1490 } 1491 1492 snprintf(dso_name, sizeof(dso_name), "%s%s", dso__short_name(dso), section_name); 1493 1494 curr_map = maps__find_by_name(kmaps, dso_name); 1495 if (curr_map == NULL) { 1496 u64 start = sym->st_value; 1497 1498 if (kmodule) 1499 start += map__start(map) + shdr->sh_offset; 1500 1501 curr_dso = dso__new(dso_name); 1502 if (curr_dso == NULL) 1503 return -1; 1504 dso__set_kernel(curr_dso, dso__kernel(dso)); 1505 RC_CHK_ACCESS(curr_dso)->long_name = dso__long_name(dso); 1506 RC_CHK_ACCESS(curr_dso)->long_name_len = dso__long_name_len(dso); 1507 dso__set_binary_type(curr_dso, dso__binary_type(dso)); 1508 dso__set_adjust_symbols(curr_dso, dso__adjust_symbols(dso)); 1509 curr_map = map__new2(start, curr_dso); 1510 if (curr_map == NULL) { 1511 dso__put(curr_dso); 1512 return -1; 1513 } 1514 if (dso__kernel(curr_dso)) 1515 map__kmap(curr_map)->kmaps = kmaps; 1516 1517 if (adjust_kernel_syms) { 1518 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap)); 1519 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size); 1520 map__set_pgoff(curr_map, shdr->sh_offset); 1521 } else { 1522 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY); 1523 } 1524 dso__set_symtab_type(curr_dso, dso__symtab_type(dso)); 1525 if (maps__insert(kmaps, curr_map)) 1526 return -1; 1527 dsos__add(&maps__machine(kmaps)->dsos, curr_dso); 1528 dso__set_loaded(curr_dso); 1529 dso__put(*curr_dsop); 1530 *curr_dsop = curr_dso; 1531 } else { 1532 dso__put(*curr_dsop); 1533 *curr_dsop = dso__get(map__dso(curr_map)); 1534 } 1535 map__put(curr_map); 1536 1537 return 0; 1538 } 1539 1540 static int 1541 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1542 struct symsrc *runtime_ss, int kmodule, int dynsym) 1543 { 1544 struct kmap *kmap = dso__kernel(dso) ? map__kmap(map) : NULL; 1545 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 1546 struct dso *curr_dso = NULL; 1547 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym; 1548 uint32_t nr_syms; 1549 uint32_t idx; 1550 GElf_Ehdr ehdr; 1551 GElf_Shdr shdr; 1552 GElf_Shdr tshdr; 1553 Elf_Data *syms, *opddata = NULL; 1554 GElf_Sym sym; 1555 Elf_Scn *sec, *sec_strndx; 1556 Elf *elf; 1557 int nr = 0; 1558 bool remap_kernel = false, adjust_kernel_syms = false; 1559 u64 max_text_sh_offset = 0; 1560 1561 if (kmap && !kmaps) 1562 return -1; 1563 1564 elf = syms_ss->elf; 1565 ehdr = syms_ss->ehdr; 1566 if (dynsym) { 1567 sec = syms_ss->dynsym; 1568 shdr = syms_ss->dynshdr; 1569 } else { 1570 sec = syms_ss->symtab; 1571 shdr = syms_ss->symshdr; 1572 } 1573 1574 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1575 ".text", NULL)) { 1576 dso__set_text_offset(dso, tshdr.sh_addr - tshdr.sh_offset); 1577 dso__set_text_end(dso, tshdr.sh_offset + tshdr.sh_size); 1578 } 1579 1580 if (runtime_ss->opdsec) 1581 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1582 1583 syms = elf_getdata(sec, NULL); 1584 if (syms == NULL) 1585 goto out_elf_end; 1586 1587 sec = elf_getscn(elf, shdr.sh_link); 1588 if (sec == NULL) 1589 goto out_elf_end; 1590 1591 symstrs = elf_getdata(sec, NULL); 1592 if (symstrs == NULL) 1593 goto out_elf_end; 1594 1595 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1596 if (sec_strndx == NULL) 1597 goto out_elf_end; 1598 1599 secstrs_run = elf_getdata(sec_strndx, NULL); 1600 if (secstrs_run == NULL) 1601 goto out_elf_end; 1602 1603 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx); 1604 if (sec_strndx == NULL) 1605 goto out_elf_end; 1606 1607 secstrs_sym = elf_getdata(sec_strndx, NULL); 1608 if (secstrs_sym == NULL) 1609 goto out_elf_end; 1610 1611 nr_syms = shdr.sh_size / shdr.sh_entsize; 1612 1613 memset(&sym, 0, sizeof(sym)); 1614 1615 /* 1616 * The kernel relocation symbol is needed in advance in order to adjust 1617 * kernel maps correctly. 1618 */ 1619 if (ref_reloc_sym_not_found(kmap)) { 1620 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1621 const char *elf_name = elf_sym__name(&sym, symstrs); 1622 1623 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1624 continue; 1625 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1626 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr); 1627 break; 1628 } 1629 } 1630 1631 /* 1632 * Handle any relocation of vdso necessary because older kernels 1633 * attempted to prelink vdso to its virtual address. 1634 */ 1635 if (dso__is_vdso(dso)) 1636 map__set_reloc(map, map__start(map) - dso__text_offset(dso)); 1637 1638 dso__set_adjust_symbols(dso, runtime_ss->adjust_symbols || ref_reloc(kmap)); 1639 /* 1640 * Initial kernel and module mappings do not map to the dso. 1641 * Flag the fixups. 1642 */ 1643 if (dso__kernel(dso)) { 1644 remap_kernel = true; 1645 adjust_kernel_syms = dso__adjust_symbols(dso); 1646 } 1647 1648 if (kmodule && adjust_kernel_syms) 1649 max_text_sh_offset = max_text_section(runtime_ss->elf, &runtime_ss->ehdr); 1650 1651 curr_dso = dso__get(dso); 1652 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1653 struct symbol *f; 1654 const char *elf_name = elf_sym__name(&sym, symstrs); 1655 char *demangled = NULL; 1656 int is_label = elf_sym__is_label(&sym); 1657 const char *section_name; 1658 bool used_opd = false; 1659 1660 if (!is_label && !elf_sym__filter(&sym)) 1661 continue; 1662 1663 /* Reject ARM ELF "mapping symbols": these aren't unique and 1664 * don't identify functions, so will confuse the profile 1665 * output: */ 1666 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1667 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1668 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1669 continue; 1670 } 1671 1672 /* Reject RISCV ELF "mapping symbols" */ 1673 if (ehdr.e_machine == EM_RISCV) { 1674 if (elf_name[0] == '$' && strchr("dx", elf_name[1])) 1675 continue; 1676 } 1677 1678 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1679 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1680 u64 *opd = opddata->d_buf + offset; 1681 sym.st_value = DSO__SWAP(dso, u64, *opd); 1682 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1683 sym.st_value); 1684 used_opd = true; 1685 } 1686 1687 /* 1688 * When loading symbols in a data mapping, ABS symbols (which 1689 * has a value of SHN_ABS in its st_shndx) failed at 1690 * elf_getscn(). And it marks the loading as a failure so 1691 * already loaded symbols cannot be fixed up. 1692 * 1693 * I'm not sure what should be done. Just ignore them for now. 1694 * - Namhyung Kim 1695 */ 1696 if (sym.st_shndx == SHN_ABS) 1697 continue; 1698 1699 sec = elf_getscn(syms_ss->elf, sym.st_shndx); 1700 if (!sec) 1701 goto out_elf_end; 1702 1703 gelf_getshdr(sec, &shdr); 1704 1705 /* 1706 * If the attribute bit SHF_ALLOC is not set, the section 1707 * doesn't occupy memory during process execution. 1708 * E.g. ".gnu.warning.*" section is used by linker to generate 1709 * warnings when calling deprecated functions, the symbols in 1710 * the section aren't loaded to memory during process execution, 1711 * so skip them. 1712 */ 1713 if (!(shdr.sh_flags & SHF_ALLOC)) 1714 continue; 1715 1716 secstrs = secstrs_sym; 1717 1718 /* 1719 * We have to fallback to runtime when syms' section header has 1720 * NOBITS set. NOBITS results in file offset (sh_offset) not 1721 * being incremented. So sh_offset used below has different 1722 * values for syms (invalid) and runtime (valid). 1723 */ 1724 if (shdr.sh_type == SHT_NOBITS) { 1725 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1726 if (!sec) 1727 goto out_elf_end; 1728 1729 gelf_getshdr(sec, &shdr); 1730 secstrs = secstrs_run; 1731 } 1732 1733 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1734 continue; 1735 1736 section_name = elf_sec__name(&shdr, secstrs); 1737 1738 /* On ARM, symbols for thumb functions have 1 added to 1739 * the symbol address as a flag - remove it */ 1740 if ((ehdr.e_machine == EM_ARM) && 1741 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1742 (sym.st_value & 1)) 1743 --sym.st_value; 1744 1745 if (dso__kernel(dso)) { 1746 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, 1747 kmaps, kmap, &curr_dso, 1748 section_name, 1749 adjust_kernel_syms, 1750 kmodule, 1751 &remap_kernel, 1752 max_text_sh_offset)) 1753 goto out_elf_end; 1754 } else if ((used_opd && runtime_ss->adjust_symbols) || 1755 (!used_opd && syms_ss->adjust_symbols)) { 1756 GElf_Phdr phdr; 1757 1758 if (elf_read_program_header(runtime_ss->elf, 1759 (u64)sym.st_value, &phdr)) { 1760 pr_debug4("%s: failed to find program header for " 1761 "symbol: %s st_value: %#" PRIx64 "\n", 1762 __func__, elf_name, (u64)sym.st_value); 1763 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1764 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", 1765 __func__, (u64)sym.st_value, (u64)shdr.sh_addr, 1766 (u64)shdr.sh_offset); 1767 /* 1768 * Fail to find program header, let's rollback 1769 * to use shdr.sh_addr and shdr.sh_offset to 1770 * calibrate symbol's file address, though this 1771 * is not necessary for normal C ELF file, we 1772 * still need to handle java JIT symbols in this 1773 * case. 1774 */ 1775 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1776 } else { 1777 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1778 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n", 1779 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr, 1780 (u64)phdr.p_offset); 1781 sym.st_value -= phdr.p_vaddr - phdr.p_offset; 1782 } 1783 } 1784 1785 demangled = dso__demangle_sym(dso, kmodule, elf_name); 1786 if (demangled != NULL) 1787 elf_name = demangled; 1788 1789 f = symbol__new(sym.st_value, sym.st_size, 1790 GELF_ST_BIND(sym.st_info), 1791 GELF_ST_TYPE(sym.st_info), elf_name); 1792 free(demangled); 1793 if (!f) 1794 goto out_elf_end; 1795 1796 arch__sym_update(f, &sym); 1797 1798 __symbols__insert(dso__symbols(curr_dso), f, dso__kernel(dso)); 1799 nr++; 1800 } 1801 dso__put(curr_dso); 1802 1803 /* 1804 * For misannotated, zeroed, ASM function sizes. 1805 */ 1806 if (nr > 0) { 1807 symbols__fixup_end(dso__symbols(dso), false); 1808 symbols__fixup_duplicate(dso__symbols(dso)); 1809 if (kmap) { 1810 /* 1811 * We need to fixup this here too because we create new 1812 * maps here, for things like vsyscall sections. 1813 */ 1814 maps__fixup_end(kmaps); 1815 } 1816 } 1817 return nr; 1818 out_elf_end: 1819 dso__put(curr_dso); 1820 return -1; 1821 } 1822 1823 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1824 struct symsrc *runtime_ss, int kmodule) 1825 { 1826 int nr = 0; 1827 int err = -1; 1828 1829 dso__set_symtab_type(dso, syms_ss->type); 1830 dso__set_is_64_bit(dso, syms_ss->is_64_bit); 1831 dso__set_rel(dso, syms_ss->ehdr.e_type == ET_REL); 1832 1833 /* 1834 * Modules may already have symbols from kallsyms, but those symbols 1835 * have the wrong values for the dso maps, so remove them. 1836 */ 1837 if (kmodule && syms_ss->symtab) 1838 symbols__delete(dso__symbols(dso)); 1839 1840 if (!syms_ss->symtab) { 1841 /* 1842 * If the vmlinux is stripped, fail so we will fall back 1843 * to using kallsyms. The vmlinux runtime symbols aren't 1844 * of much use. 1845 */ 1846 if (dso__kernel(dso)) 1847 return err; 1848 } else { 1849 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1850 kmodule, 0); 1851 if (err < 0) 1852 return err; 1853 nr = err; 1854 } 1855 1856 if (syms_ss->dynsym) { 1857 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1858 kmodule, 1); 1859 if (err < 0) 1860 return err; 1861 nr += err; 1862 } 1863 1864 /* 1865 * The .gnu_debugdata is a special situation: it contains a symbol 1866 * table, but the runtime file may also contain dynsym entries which are 1867 * not present there. We need to load both. 1868 */ 1869 if (syms_ss->type == DSO_BINARY_TYPE__GNU_DEBUGDATA && runtime_ss->dynsym) { 1870 err = dso__load_sym_internal(dso, map, runtime_ss, runtime_ss, 1871 kmodule, 1); 1872 if (err < 0) 1873 return err; 1874 nr += err; 1875 } 1876 1877 return nr; 1878 } 1879 1880 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1881 { 1882 GElf_Phdr phdr; 1883 size_t i, phdrnum; 1884 int err; 1885 u64 sz; 1886 1887 if (elf_getphdrnum(elf, &phdrnum)) 1888 return -1; 1889 1890 for (i = 0; i < phdrnum; i++) { 1891 if (gelf_getphdr(elf, i, &phdr) == NULL) 1892 return -1; 1893 if (phdr.p_type != PT_LOAD) 1894 continue; 1895 if (exe) { 1896 if (!(phdr.p_flags & PF_X)) 1897 continue; 1898 } else { 1899 if (!(phdr.p_flags & PF_R)) 1900 continue; 1901 } 1902 sz = min(phdr.p_memsz, phdr.p_filesz); 1903 if (!sz) 1904 continue; 1905 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1906 if (err) 1907 return err; 1908 } 1909 return 0; 1910 } 1911 1912 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1913 bool *is_64_bit) 1914 { 1915 int err; 1916 Elf *elf; 1917 1918 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1919 if (elf == NULL) 1920 return -1; 1921 1922 if (is_64_bit) 1923 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1924 1925 err = elf_read_maps(elf, exe, mapfn, data); 1926 1927 elf_end(elf); 1928 return err; 1929 } 1930 1931 enum dso_type dso__type_fd(int fd) 1932 { 1933 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1934 GElf_Ehdr ehdr; 1935 Elf_Kind ek; 1936 Elf *elf; 1937 1938 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1939 if (elf == NULL) 1940 goto out; 1941 1942 ek = elf_kind(elf); 1943 if (ek != ELF_K_ELF) 1944 goto out_end; 1945 1946 if (gelf_getclass(elf) == ELFCLASS64) { 1947 dso_type = DSO__TYPE_64BIT; 1948 goto out_end; 1949 } 1950 1951 if (gelf_getehdr(elf, &ehdr) == NULL) 1952 goto out_end; 1953 1954 if (ehdr.e_machine == EM_X86_64) 1955 dso_type = DSO__TYPE_X32BIT; 1956 else 1957 dso_type = DSO__TYPE_32BIT; 1958 out_end: 1959 elf_end(elf); 1960 out: 1961 return dso_type; 1962 } 1963 1964 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1965 { 1966 ssize_t r; 1967 size_t n; 1968 int err = -1; 1969 char *buf = malloc(page_size); 1970 1971 if (buf == NULL) 1972 return -1; 1973 1974 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1975 goto out; 1976 1977 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1978 goto out; 1979 1980 while (len) { 1981 n = page_size; 1982 if (len < n) 1983 n = len; 1984 /* Use read because mmap won't work on proc files */ 1985 r = read(from, buf, n); 1986 if (r < 0) 1987 goto out; 1988 if (!r) 1989 break; 1990 n = r; 1991 r = write(to, buf, n); 1992 if (r < 0) 1993 goto out; 1994 if ((size_t)r != n) 1995 goto out; 1996 len -= n; 1997 } 1998 1999 err = 0; 2000 out: 2001 free(buf); 2002 return err; 2003 } 2004 2005 struct kcore { 2006 int fd; 2007 int elfclass; 2008 Elf *elf; 2009 GElf_Ehdr ehdr; 2010 }; 2011 2012 static int kcore__open(struct kcore *kcore, const char *filename) 2013 { 2014 GElf_Ehdr *ehdr; 2015 2016 kcore->fd = open(filename, O_RDONLY); 2017 if (kcore->fd == -1) 2018 return -1; 2019 2020 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 2021 if (!kcore->elf) 2022 goto out_close; 2023 2024 kcore->elfclass = gelf_getclass(kcore->elf); 2025 if (kcore->elfclass == ELFCLASSNONE) 2026 goto out_end; 2027 2028 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 2029 if (!ehdr) 2030 goto out_end; 2031 2032 return 0; 2033 2034 out_end: 2035 elf_end(kcore->elf); 2036 out_close: 2037 close(kcore->fd); 2038 return -1; 2039 } 2040 2041 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 2042 bool temp) 2043 { 2044 kcore->elfclass = elfclass; 2045 2046 if (temp) 2047 kcore->fd = mkstemp(filename); 2048 else 2049 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 2050 if (kcore->fd == -1) 2051 return -1; 2052 2053 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 2054 if (!kcore->elf) 2055 goto out_close; 2056 2057 if (!gelf_newehdr(kcore->elf, elfclass)) 2058 goto out_end; 2059 2060 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 2061 2062 return 0; 2063 2064 out_end: 2065 elf_end(kcore->elf); 2066 out_close: 2067 close(kcore->fd); 2068 unlink(filename); 2069 return -1; 2070 } 2071 2072 static void kcore__close(struct kcore *kcore) 2073 { 2074 elf_end(kcore->elf); 2075 close(kcore->fd); 2076 } 2077 2078 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 2079 { 2080 GElf_Ehdr *ehdr = &to->ehdr; 2081 GElf_Ehdr *kehdr = &from->ehdr; 2082 2083 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 2084 ehdr->e_type = kehdr->e_type; 2085 ehdr->e_machine = kehdr->e_machine; 2086 ehdr->e_version = kehdr->e_version; 2087 ehdr->e_entry = 0; 2088 ehdr->e_shoff = 0; 2089 ehdr->e_flags = kehdr->e_flags; 2090 ehdr->e_phnum = count; 2091 ehdr->e_shentsize = 0; 2092 ehdr->e_shnum = 0; 2093 ehdr->e_shstrndx = 0; 2094 2095 if (from->elfclass == ELFCLASS32) { 2096 ehdr->e_phoff = sizeof(Elf32_Ehdr); 2097 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 2098 ehdr->e_phentsize = sizeof(Elf32_Phdr); 2099 } else { 2100 ehdr->e_phoff = sizeof(Elf64_Ehdr); 2101 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 2102 ehdr->e_phentsize = sizeof(Elf64_Phdr); 2103 } 2104 2105 if (!gelf_update_ehdr(to->elf, ehdr)) 2106 return -1; 2107 2108 if (!gelf_newphdr(to->elf, count)) 2109 return -1; 2110 2111 return 0; 2112 } 2113 2114 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 2115 u64 addr, u64 len) 2116 { 2117 GElf_Phdr phdr = { 2118 .p_type = PT_LOAD, 2119 .p_flags = PF_R | PF_W | PF_X, 2120 .p_offset = offset, 2121 .p_vaddr = addr, 2122 .p_paddr = 0, 2123 .p_filesz = len, 2124 .p_memsz = len, 2125 .p_align = page_size, 2126 }; 2127 2128 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 2129 return -1; 2130 2131 return 0; 2132 } 2133 2134 static off_t kcore__write(struct kcore *kcore) 2135 { 2136 return elf_update(kcore->elf, ELF_C_WRITE); 2137 } 2138 2139 struct phdr_data { 2140 off_t offset; 2141 off_t rel; 2142 u64 addr; 2143 u64 len; 2144 struct list_head node; 2145 struct phdr_data *remaps; 2146 }; 2147 2148 struct sym_data { 2149 u64 addr; 2150 struct list_head node; 2151 }; 2152 2153 struct kcore_copy_info { 2154 u64 stext; 2155 u64 etext; 2156 u64 first_symbol; 2157 u64 last_symbol; 2158 u64 first_module; 2159 u64 first_module_symbol; 2160 u64 last_module_symbol; 2161 size_t phnum; 2162 struct list_head phdrs; 2163 struct list_head syms; 2164 }; 2165 2166 #define kcore_copy__for_each_phdr(k, p) \ 2167 list_for_each_entry((p), &(k)->phdrs, node) 2168 2169 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 2170 { 2171 struct phdr_data *p = zalloc(sizeof(*p)); 2172 2173 if (p) { 2174 p->addr = addr; 2175 p->len = len; 2176 p->offset = offset; 2177 } 2178 2179 return p; 2180 } 2181 2182 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 2183 u64 addr, u64 len, 2184 off_t offset) 2185 { 2186 struct phdr_data *p = phdr_data__new(addr, len, offset); 2187 2188 if (p) 2189 list_add_tail(&p->node, &kci->phdrs); 2190 2191 return p; 2192 } 2193 2194 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 2195 { 2196 struct phdr_data *p, *tmp; 2197 2198 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 2199 list_del_init(&p->node); 2200 free(p); 2201 } 2202 } 2203 2204 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 2205 u64 addr) 2206 { 2207 struct sym_data *s = zalloc(sizeof(*s)); 2208 2209 if (s) { 2210 s->addr = addr; 2211 list_add_tail(&s->node, &kci->syms); 2212 } 2213 2214 return s; 2215 } 2216 2217 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 2218 { 2219 struct sym_data *s, *tmp; 2220 2221 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 2222 list_del_init(&s->node); 2223 free(s); 2224 } 2225 } 2226 2227 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 2228 u64 start) 2229 { 2230 struct kcore_copy_info *kci = arg; 2231 2232 if (!kallsyms__is_function(type)) 2233 return 0; 2234 2235 if (strchr(name, '[')) { 2236 if (!kci->first_module_symbol || start < kci->first_module_symbol) 2237 kci->first_module_symbol = start; 2238 if (start > kci->last_module_symbol) 2239 kci->last_module_symbol = start; 2240 return 0; 2241 } 2242 2243 if (!kci->first_symbol || start < kci->first_symbol) 2244 kci->first_symbol = start; 2245 2246 if (!kci->last_symbol || start > kci->last_symbol) 2247 kci->last_symbol = start; 2248 2249 if (!strcmp(name, "_stext")) { 2250 kci->stext = start; 2251 return 0; 2252 } 2253 2254 if (!strcmp(name, "_etext")) { 2255 kci->etext = start; 2256 return 0; 2257 } 2258 2259 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 2260 return -1; 2261 2262 return 0; 2263 } 2264 2265 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 2266 const char *dir) 2267 { 2268 char kallsyms_filename[PATH_MAX]; 2269 2270 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 2271 2272 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 2273 return -1; 2274 2275 if (kallsyms__parse(kallsyms_filename, kci, 2276 kcore_copy__process_kallsyms) < 0) 2277 return -1; 2278 2279 return 0; 2280 } 2281 2282 static int kcore_copy__process_modules(void *arg, 2283 const char *name __maybe_unused, 2284 u64 start, u64 size __maybe_unused) 2285 { 2286 struct kcore_copy_info *kci = arg; 2287 2288 if (!kci->first_module || start < kci->first_module) 2289 kci->first_module = start; 2290 2291 return 0; 2292 } 2293 2294 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 2295 const char *dir) 2296 { 2297 char modules_filename[PATH_MAX]; 2298 2299 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 2300 2301 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 2302 return -1; 2303 2304 if (modules__parse(modules_filename, kci, 2305 kcore_copy__process_modules) < 0) 2306 return -1; 2307 2308 return 0; 2309 } 2310 2311 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 2312 u64 pgoff, u64 s, u64 e) 2313 { 2314 u64 len, offset; 2315 2316 if (s < start || s >= end) 2317 return 0; 2318 2319 offset = (s - start) + pgoff; 2320 len = e < end ? e - s : end - s; 2321 2322 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 2323 } 2324 2325 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 2326 { 2327 struct kcore_copy_info *kci = data; 2328 u64 end = start + len; 2329 struct sym_data *sdat; 2330 2331 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 2332 return -1; 2333 2334 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 2335 kci->last_module_symbol)) 2336 return -1; 2337 2338 list_for_each_entry(sdat, &kci->syms, node) { 2339 u64 s = round_down(sdat->addr, page_size); 2340 2341 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 2342 return -1; 2343 } 2344 2345 return 0; 2346 } 2347 2348 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 2349 { 2350 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 2351 return -1; 2352 2353 return 0; 2354 } 2355 2356 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 2357 { 2358 struct phdr_data *p, *k = NULL; 2359 u64 kend; 2360 2361 if (!kci->stext) 2362 return; 2363 2364 /* Find phdr that corresponds to the kernel map (contains stext) */ 2365 kcore_copy__for_each_phdr(kci, p) { 2366 u64 pend = p->addr + p->len - 1; 2367 2368 if (p->addr <= kci->stext && pend >= kci->stext) { 2369 k = p; 2370 break; 2371 } 2372 } 2373 2374 if (!k) 2375 return; 2376 2377 kend = k->offset + k->len; 2378 2379 /* Find phdrs that remap the kernel */ 2380 kcore_copy__for_each_phdr(kci, p) { 2381 u64 pend = p->offset + p->len; 2382 2383 if (p == k) 2384 continue; 2385 2386 if (p->offset >= k->offset && pend <= kend) 2387 p->remaps = k; 2388 } 2389 } 2390 2391 static void kcore_copy__layout(struct kcore_copy_info *kci) 2392 { 2393 struct phdr_data *p; 2394 off_t rel = 0; 2395 2396 kcore_copy__find_remaps(kci); 2397 2398 kcore_copy__for_each_phdr(kci, p) { 2399 if (!p->remaps) { 2400 p->rel = rel; 2401 rel += p->len; 2402 } 2403 kci->phnum += 1; 2404 } 2405 2406 kcore_copy__for_each_phdr(kci, p) { 2407 struct phdr_data *k = p->remaps; 2408 2409 if (k) 2410 p->rel = p->offset - k->offset + k->rel; 2411 } 2412 } 2413 2414 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 2415 Elf *elf) 2416 { 2417 if (kcore_copy__parse_kallsyms(kci, dir)) 2418 return -1; 2419 2420 if (kcore_copy__parse_modules(kci, dir)) 2421 return -1; 2422 2423 if (kci->stext) 2424 kci->stext = round_down(kci->stext, page_size); 2425 else 2426 kci->stext = round_down(kci->first_symbol, page_size); 2427 2428 if (kci->etext) { 2429 kci->etext = round_up(kci->etext, page_size); 2430 } else if (kci->last_symbol) { 2431 kci->etext = round_up(kci->last_symbol, page_size); 2432 kci->etext += page_size; 2433 } 2434 2435 if (kci->first_module_symbol && 2436 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 2437 kci->first_module = kci->first_module_symbol; 2438 2439 kci->first_module = round_down(kci->first_module, page_size); 2440 2441 if (kci->last_module_symbol) { 2442 kci->last_module_symbol = round_up(kci->last_module_symbol, 2443 page_size); 2444 kci->last_module_symbol += page_size; 2445 } 2446 2447 if (!kci->stext || !kci->etext) 2448 return -1; 2449 2450 if (kci->first_module && !kci->last_module_symbol) 2451 return -1; 2452 2453 if (kcore_copy__read_maps(kci, elf)) 2454 return -1; 2455 2456 kcore_copy__layout(kci); 2457 2458 return 0; 2459 } 2460 2461 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 2462 const char *name) 2463 { 2464 char from_filename[PATH_MAX]; 2465 char to_filename[PATH_MAX]; 2466 2467 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2468 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2469 2470 return copyfile_mode(from_filename, to_filename, 0400); 2471 } 2472 2473 static int kcore_copy__unlink(const char *dir, const char *name) 2474 { 2475 char filename[PATH_MAX]; 2476 2477 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 2478 2479 return unlink(filename); 2480 } 2481 2482 static int kcore_copy__compare_fds(int from, int to) 2483 { 2484 char *buf_from; 2485 char *buf_to; 2486 ssize_t ret; 2487 size_t len; 2488 int err = -1; 2489 2490 buf_from = malloc(page_size); 2491 buf_to = malloc(page_size); 2492 if (!buf_from || !buf_to) 2493 goto out; 2494 2495 while (1) { 2496 /* Use read because mmap won't work on proc files */ 2497 ret = read(from, buf_from, page_size); 2498 if (ret < 0) 2499 goto out; 2500 2501 if (!ret) 2502 break; 2503 2504 len = ret; 2505 2506 if (readn(to, buf_to, len) != (int)len) 2507 goto out; 2508 2509 if (memcmp(buf_from, buf_to, len)) 2510 goto out; 2511 } 2512 2513 err = 0; 2514 out: 2515 free(buf_to); 2516 free(buf_from); 2517 return err; 2518 } 2519 2520 static int kcore_copy__compare_files(const char *from_filename, 2521 const char *to_filename) 2522 { 2523 int from, to, err = -1; 2524 2525 from = open(from_filename, O_RDONLY); 2526 if (from < 0) 2527 return -1; 2528 2529 to = open(to_filename, O_RDONLY); 2530 if (to < 0) 2531 goto out_close_from; 2532 2533 err = kcore_copy__compare_fds(from, to); 2534 2535 close(to); 2536 out_close_from: 2537 close(from); 2538 return err; 2539 } 2540 2541 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 2542 const char *name) 2543 { 2544 char from_filename[PATH_MAX]; 2545 char to_filename[PATH_MAX]; 2546 2547 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2548 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2549 2550 return kcore_copy__compare_files(from_filename, to_filename); 2551 } 2552 2553 /** 2554 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 2555 * @from_dir: from directory 2556 * @to_dir: to directory 2557 * 2558 * This function copies kallsyms, modules and kcore files from one directory to 2559 * another. kallsyms and modules are copied entirely. Only code segments are 2560 * copied from kcore. It is assumed that two segments suffice: one for the 2561 * kernel proper and one for all the modules. The code segments are determined 2562 * from kallsyms and modules files. The kernel map starts at _stext or the 2563 * lowest function symbol, and ends at _etext or the highest function symbol. 2564 * The module map starts at the lowest module address and ends at the highest 2565 * module symbol. Start addresses are rounded down to the nearest page. End 2566 * addresses are rounded up to the nearest page. An extra page is added to the 2567 * highest kernel symbol and highest module symbol to, hopefully, encompass that 2568 * symbol too. Because it contains only code sections, the resulting kcore is 2569 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 2570 * is not the same for the kernel map and the modules map. That happens because 2571 * the data is copied adjacently whereas the original kcore has gaps. Finally, 2572 * kallsyms file is compared with its copy to check that modules have not been 2573 * loaded or unloaded while the copies were taking place. 2574 * 2575 * Return: %0 on success, %-1 on failure. 2576 */ 2577 int kcore_copy(const char *from_dir, const char *to_dir) 2578 { 2579 struct kcore kcore; 2580 struct kcore extract; 2581 int idx = 0, err = -1; 2582 off_t offset, sz; 2583 struct kcore_copy_info kci = { .stext = 0, }; 2584 char kcore_filename[PATH_MAX]; 2585 char extract_filename[PATH_MAX]; 2586 struct phdr_data *p; 2587 2588 INIT_LIST_HEAD(&kci.phdrs); 2589 INIT_LIST_HEAD(&kci.syms); 2590 2591 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 2592 return -1; 2593 2594 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 2595 goto out_unlink_kallsyms; 2596 2597 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 2598 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 2599 2600 if (kcore__open(&kcore, kcore_filename)) 2601 goto out_unlink_modules; 2602 2603 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 2604 goto out_kcore_close; 2605 2606 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 2607 goto out_kcore_close; 2608 2609 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 2610 goto out_extract_close; 2611 2612 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 2613 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 2614 offset = round_up(offset, page_size); 2615 2616 kcore_copy__for_each_phdr(&kci, p) { 2617 off_t offs = p->rel + offset; 2618 2619 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 2620 goto out_extract_close; 2621 } 2622 2623 sz = kcore__write(&extract); 2624 if (sz < 0 || sz > offset) 2625 goto out_extract_close; 2626 2627 kcore_copy__for_each_phdr(&kci, p) { 2628 off_t offs = p->rel + offset; 2629 2630 if (p->remaps) 2631 continue; 2632 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 2633 goto out_extract_close; 2634 } 2635 2636 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 2637 goto out_extract_close; 2638 2639 err = 0; 2640 2641 out_extract_close: 2642 kcore__close(&extract); 2643 if (err) 2644 unlink(extract_filename); 2645 out_kcore_close: 2646 kcore__close(&kcore); 2647 out_unlink_modules: 2648 if (err) 2649 kcore_copy__unlink(to_dir, "modules"); 2650 out_unlink_kallsyms: 2651 if (err) 2652 kcore_copy__unlink(to_dir, "kallsyms"); 2653 2654 kcore_copy__free_phdrs(&kci); 2655 kcore_copy__free_syms(&kci); 2656 2657 return err; 2658 } 2659 2660 int kcore_extract__create(struct kcore_extract *kce) 2661 { 2662 struct kcore kcore; 2663 struct kcore extract; 2664 size_t count = 1; 2665 int idx = 0, err = -1; 2666 off_t offset = page_size, sz; 2667 2668 if (kcore__open(&kcore, kce->kcore_filename)) 2669 return -1; 2670 2671 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 2672 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 2673 goto out_kcore_close; 2674 2675 if (kcore__copy_hdr(&kcore, &extract, count)) 2676 goto out_extract_close; 2677 2678 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 2679 goto out_extract_close; 2680 2681 sz = kcore__write(&extract); 2682 if (sz < 0 || sz > offset) 2683 goto out_extract_close; 2684 2685 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 2686 goto out_extract_close; 2687 2688 err = 0; 2689 2690 out_extract_close: 2691 kcore__close(&extract); 2692 if (err) 2693 unlink(kce->extract_filename); 2694 out_kcore_close: 2695 kcore__close(&kcore); 2696 2697 return err; 2698 } 2699 2700 void kcore_extract__delete(struct kcore_extract *kce) 2701 { 2702 unlink(kce->extract_filename); 2703 } 2704 2705 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2706 2707 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2708 { 2709 if (!base_off) 2710 return; 2711 2712 if (tmp->bit32) 2713 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2714 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2715 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2716 else 2717 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2718 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2719 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2720 } 2721 2722 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2723 GElf_Addr base_off) 2724 { 2725 if (!base_off) 2726 return; 2727 2728 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2729 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2730 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2731 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2732 } 2733 2734 /** 2735 * populate_sdt_note : Parse raw data and identify SDT note 2736 * @elf: elf of the opened file 2737 * @data: raw data of a section with description offset applied 2738 * @len: note description size 2739 * @type: type of the note 2740 * @sdt_notes: List to add the SDT note 2741 * 2742 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2743 * if its an SDT note, it appends to @sdt_notes list. 2744 */ 2745 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2746 struct list_head *sdt_notes) 2747 { 2748 const char *provider, *name, *args; 2749 struct sdt_note *tmp = NULL; 2750 GElf_Ehdr ehdr; 2751 GElf_Shdr shdr; 2752 int ret = -EINVAL; 2753 2754 union { 2755 Elf64_Addr a64[NR_ADDR]; 2756 Elf32_Addr a32[NR_ADDR]; 2757 } buf; 2758 2759 Elf_Data dst = { 2760 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2761 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2762 .d_off = 0, .d_align = 0 2763 }; 2764 Elf_Data src = { 2765 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2766 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2767 .d_align = 0 2768 }; 2769 2770 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2771 if (!tmp) { 2772 ret = -ENOMEM; 2773 goto out_err; 2774 } 2775 2776 INIT_LIST_HEAD(&tmp->note_list); 2777 2778 if (len < dst.d_size + 3) 2779 goto out_free_note; 2780 2781 /* Translation from file representation to memory representation */ 2782 if (gelf_xlatetom(*elf, &dst, &src, 2783 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2784 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2785 goto out_free_note; 2786 } 2787 2788 /* Populate the fields of sdt_note */ 2789 provider = data + dst.d_size; 2790 2791 name = (const char *)memchr(provider, '\0', data + len - provider); 2792 if (name++ == NULL) 2793 goto out_free_note; 2794 2795 tmp->provider = strdup(provider); 2796 if (!tmp->provider) { 2797 ret = -ENOMEM; 2798 goto out_free_note; 2799 } 2800 tmp->name = strdup(name); 2801 if (!tmp->name) { 2802 ret = -ENOMEM; 2803 goto out_free_prov; 2804 } 2805 2806 args = memchr(name, '\0', data + len - name); 2807 2808 /* 2809 * There is no argument if: 2810 * - We reached the end of the note; 2811 * - There is not enough room to hold a potential string; 2812 * - The argument string is empty or just contains ':'. 2813 */ 2814 if (args == NULL || data + len - args < 2 || 2815 args[1] == ':' || args[1] == '\0') 2816 tmp->args = NULL; 2817 else { 2818 tmp->args = strdup(++args); 2819 if (!tmp->args) { 2820 ret = -ENOMEM; 2821 goto out_free_name; 2822 } 2823 } 2824 2825 if (gelf_getclass(*elf) == ELFCLASS32) { 2826 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2827 tmp->bit32 = true; 2828 } else { 2829 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2830 tmp->bit32 = false; 2831 } 2832 2833 if (!gelf_getehdr(*elf, &ehdr)) { 2834 pr_debug("%s : cannot get elf header.\n", __func__); 2835 ret = -EBADF; 2836 goto out_free_args; 2837 } 2838 2839 /* Adjust the prelink effect : 2840 * Find out the .stapsdt.base section. 2841 * This scn will help us to handle prelinking (if present). 2842 * Compare the retrieved file offset of the base section with the 2843 * base address in the description of the SDT note. If its different, 2844 * then accordingly, adjust the note location. 2845 */ 2846 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2847 sdt_adjust_loc(tmp, shdr.sh_offset); 2848 2849 /* Adjust reference counter offset */ 2850 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2851 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2852 2853 list_add_tail(&tmp->note_list, sdt_notes); 2854 return 0; 2855 2856 out_free_args: 2857 zfree(&tmp->args); 2858 out_free_name: 2859 zfree(&tmp->name); 2860 out_free_prov: 2861 zfree(&tmp->provider); 2862 out_free_note: 2863 free(tmp); 2864 out_err: 2865 return ret; 2866 } 2867 2868 /** 2869 * construct_sdt_notes_list : constructs a list of SDT notes 2870 * @elf : elf to look into 2871 * @sdt_notes : empty list_head 2872 * 2873 * Scans the sections in 'elf' for the section 2874 * .note.stapsdt. It, then calls populate_sdt_note to find 2875 * out the SDT events and populates the 'sdt_notes'. 2876 */ 2877 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2878 { 2879 GElf_Ehdr ehdr; 2880 Elf_Scn *scn = NULL; 2881 Elf_Data *data; 2882 GElf_Shdr shdr; 2883 size_t shstrndx, next; 2884 GElf_Nhdr nhdr; 2885 size_t name_off, desc_off, offset; 2886 int ret = 0; 2887 2888 if (gelf_getehdr(elf, &ehdr) == NULL) { 2889 ret = -EBADF; 2890 goto out_ret; 2891 } 2892 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2893 ret = -EBADF; 2894 goto out_ret; 2895 } 2896 2897 /* Look for the required section */ 2898 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2899 if (!scn) { 2900 ret = -ENOENT; 2901 goto out_ret; 2902 } 2903 2904 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2905 ret = -ENOENT; 2906 goto out_ret; 2907 } 2908 2909 data = elf_getdata(scn, NULL); 2910 2911 /* Get the SDT notes */ 2912 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2913 &desc_off)) > 0; offset = next) { 2914 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2915 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2916 sizeof(SDT_NOTE_NAME))) { 2917 /* Check the type of the note */ 2918 if (nhdr.n_type != SDT_NOTE_TYPE) 2919 goto out_ret; 2920 2921 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2922 nhdr.n_descsz, sdt_notes); 2923 if (ret < 0) 2924 goto out_ret; 2925 } 2926 } 2927 if (list_empty(sdt_notes)) 2928 ret = -ENOENT; 2929 2930 out_ret: 2931 return ret; 2932 } 2933 2934 /** 2935 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2936 * @head : empty list_head 2937 * @target : file to find SDT notes from 2938 * 2939 * This opens the file, initializes 2940 * the ELF and then calls construct_sdt_notes_list. 2941 */ 2942 int get_sdt_note_list(struct list_head *head, const char *target) 2943 { 2944 Elf *elf; 2945 int fd, ret; 2946 2947 fd = open(target, O_RDONLY); 2948 if (fd < 0) 2949 return -EBADF; 2950 2951 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2952 if (!elf) { 2953 ret = -EBADF; 2954 goto out_close; 2955 } 2956 ret = construct_sdt_notes_list(elf, head); 2957 elf_end(elf); 2958 out_close: 2959 close(fd); 2960 return ret; 2961 } 2962 2963 /** 2964 * cleanup_sdt_note_list : free the sdt notes' list 2965 * @sdt_notes: sdt notes' list 2966 * 2967 * Free up the SDT notes in @sdt_notes. 2968 * Returns the number of SDT notes free'd. 2969 */ 2970 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2971 { 2972 struct sdt_note *tmp, *pos; 2973 int nr_free = 0; 2974 2975 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2976 list_del_init(&pos->note_list); 2977 zfree(&pos->args); 2978 zfree(&pos->name); 2979 zfree(&pos->provider); 2980 free(pos); 2981 nr_free++; 2982 } 2983 return nr_free; 2984 } 2985 2986 /** 2987 * sdt_notes__get_count: Counts the number of sdt events 2988 * @start: list_head to sdt_notes list 2989 * 2990 * Returns the number of SDT notes in a list 2991 */ 2992 int sdt_notes__get_count(struct list_head *start) 2993 { 2994 struct sdt_note *sdt_ptr; 2995 int count = 0; 2996 2997 list_for_each_entry(sdt_ptr, start, note_list) 2998 count++; 2999 return count; 3000 } 3001 #endif 3002 3003 void symbol__elf_init(void) 3004 { 3005 elf_version(EV_CURRENT); 3006 } 3007