1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "compress.h" 11 #include "dso.h" 12 #include "map.h" 13 #include "maps.h" 14 #include "symbol.h" 15 #include "symsrc.h" 16 #include "demangle-cxx.h" 17 #include "demangle-ocaml.h" 18 #include "demangle-java.h" 19 #include "demangle-rust.h" 20 #include "machine.h" 21 #include "vdso.h" 22 #include "debug.h" 23 #include "util/copyfile.h" 24 #include <linux/ctype.h> 25 #include <linux/kernel.h> 26 #include <linux/zalloc.h> 27 #include <linux/string.h> 28 #include <symbol/kallsyms.h> 29 #include <internal/lib.h> 30 31 #ifdef HAVE_LIBBFD_SUPPORT 32 #define PACKAGE 'perf' 33 #include <bfd.h> 34 #endif 35 36 #if defined(HAVE_LIBBFD_SUPPORT) || defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 37 #ifndef DMGL_PARAMS 38 #define DMGL_PARAMS (1 << 0) /* Include function args */ 39 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */ 40 #endif 41 #endif 42 43 #ifndef EM_AARCH64 44 #define EM_AARCH64 183 /* ARM 64 bit */ 45 #endif 46 47 #ifndef EM_LOONGARCH 48 #define EM_LOONGARCH 258 49 #endif 50 51 #ifndef ELF32_ST_VISIBILITY 52 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 53 #endif 54 55 /* For ELF64 the definitions are the same. */ 56 #ifndef ELF64_ST_VISIBILITY 57 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 58 #endif 59 60 /* How to extract information held in the st_other field. */ 61 #ifndef GELF_ST_VISIBILITY 62 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 63 #endif 64 65 typedef Elf64_Nhdr GElf_Nhdr; 66 67 68 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 69 static int elf_getphdrnum(Elf *elf, size_t *dst) 70 { 71 GElf_Ehdr gehdr; 72 GElf_Ehdr *ehdr; 73 74 ehdr = gelf_getehdr(elf, &gehdr); 75 if (!ehdr) 76 return -1; 77 78 *dst = ehdr->e_phnum; 79 80 return 0; 81 } 82 #endif 83 84 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 85 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 86 { 87 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 88 return -1; 89 } 90 #endif 91 92 #ifndef NT_GNU_BUILD_ID 93 #define NT_GNU_BUILD_ID 3 94 #endif 95 96 /** 97 * elf_symtab__for_each_symbol - iterate thru all the symbols 98 * 99 * @syms: struct elf_symtab instance to iterate 100 * @idx: uint32_t idx 101 * @sym: GElf_Sym iterator 102 */ 103 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 104 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 105 idx < nr_syms; \ 106 idx++, gelf_getsym(syms, idx, &sym)) 107 108 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 109 { 110 return GELF_ST_TYPE(sym->st_info); 111 } 112 113 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 114 { 115 return GELF_ST_VISIBILITY(sym->st_other); 116 } 117 118 #ifndef STT_GNU_IFUNC 119 #define STT_GNU_IFUNC 10 120 #endif 121 122 static inline int elf_sym__is_function(const GElf_Sym *sym) 123 { 124 return (elf_sym__type(sym) == STT_FUNC || 125 elf_sym__type(sym) == STT_GNU_IFUNC) && 126 sym->st_name != 0 && 127 sym->st_shndx != SHN_UNDEF; 128 } 129 130 static inline bool elf_sym__is_object(const GElf_Sym *sym) 131 { 132 return elf_sym__type(sym) == STT_OBJECT && 133 sym->st_name != 0 && 134 sym->st_shndx != SHN_UNDEF; 135 } 136 137 static inline int elf_sym__is_label(const GElf_Sym *sym) 138 { 139 return elf_sym__type(sym) == STT_NOTYPE && 140 sym->st_name != 0 && 141 sym->st_shndx != SHN_UNDEF && 142 sym->st_shndx != SHN_ABS && 143 elf_sym__visibility(sym) != STV_HIDDEN && 144 elf_sym__visibility(sym) != STV_INTERNAL; 145 } 146 147 static bool elf_sym__filter(GElf_Sym *sym) 148 { 149 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 150 } 151 152 static inline const char *elf_sym__name(const GElf_Sym *sym, 153 const Elf_Data *symstrs) 154 { 155 return symstrs->d_buf + sym->st_name; 156 } 157 158 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 159 const Elf_Data *secstrs) 160 { 161 return secstrs->d_buf + shdr->sh_name; 162 } 163 164 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 165 const Elf_Data *secstrs) 166 { 167 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 168 } 169 170 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 171 const Elf_Data *secstrs) 172 { 173 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 174 } 175 176 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 177 { 178 return elf_sec__is_text(shdr, secstrs) || 179 elf_sec__is_data(shdr, secstrs); 180 } 181 182 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 183 { 184 Elf_Scn *sec = NULL; 185 GElf_Shdr shdr; 186 size_t cnt = 1; 187 188 while ((sec = elf_nextscn(elf, sec)) != NULL) { 189 gelf_getshdr(sec, &shdr); 190 191 if ((addr >= shdr.sh_addr) && 192 (addr < (shdr.sh_addr + shdr.sh_size))) 193 return cnt; 194 195 ++cnt; 196 } 197 198 return -1; 199 } 200 201 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 202 GElf_Shdr *shp, const char *name, size_t *idx) 203 { 204 Elf_Scn *sec = NULL; 205 size_t cnt = 1; 206 207 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 208 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 209 return NULL; 210 211 while ((sec = elf_nextscn(elf, sec)) != NULL) { 212 char *str; 213 214 gelf_getshdr(sec, shp); 215 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 216 if (str && !strcmp(name, str)) { 217 if (idx) 218 *idx = cnt; 219 return sec; 220 } 221 ++cnt; 222 } 223 224 return NULL; 225 } 226 227 bool filename__has_section(const char *filename, const char *sec) 228 { 229 int fd; 230 Elf *elf; 231 GElf_Ehdr ehdr; 232 GElf_Shdr shdr; 233 bool found = false; 234 235 fd = open(filename, O_RDONLY); 236 if (fd < 0) 237 return false; 238 239 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 240 if (elf == NULL) 241 goto out; 242 243 if (gelf_getehdr(elf, &ehdr) == NULL) 244 goto elf_out; 245 246 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL); 247 248 elf_out: 249 elf_end(elf); 250 out: 251 close(fd); 252 return found; 253 } 254 255 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr) 256 { 257 size_t i, phdrnum; 258 u64 sz; 259 260 if (elf_getphdrnum(elf, &phdrnum)) 261 return -1; 262 263 for (i = 0; i < phdrnum; i++) { 264 if (gelf_getphdr(elf, i, phdr) == NULL) 265 return -1; 266 267 if (phdr->p_type != PT_LOAD) 268 continue; 269 270 sz = max(phdr->p_memsz, phdr->p_filesz); 271 if (!sz) 272 continue; 273 274 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz)) 275 return 0; 276 } 277 278 /* Not found any valid program header */ 279 return -1; 280 } 281 282 static bool want_demangle(bool is_kernel_sym) 283 { 284 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 285 } 286 287 /* 288 * Demangle C++ function signature, typically replaced by demangle-cxx.cpp 289 * version. 290 */ 291 #ifndef HAVE_CXA_DEMANGLE_SUPPORT 292 char *cxx_demangle_sym(const char *str __maybe_unused, bool params __maybe_unused, 293 bool modifiers __maybe_unused) 294 { 295 #ifdef HAVE_LIBBFD_SUPPORT 296 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0); 297 298 return bfd_demangle(NULL, str, flags); 299 #elif defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 300 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0); 301 302 return cplus_demangle(str, flags); 303 #else 304 return NULL; 305 #endif 306 } 307 #endif /* !HAVE_CXA_DEMANGLE_SUPPORT */ 308 309 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 310 { 311 char *demangled = NULL; 312 313 /* 314 * We need to figure out if the object was created from C++ sources 315 * DWARF DW_compile_unit has this, but we don't always have access 316 * to it... 317 */ 318 if (!want_demangle(dso__kernel(dso) || kmodule)) 319 return demangled; 320 321 demangled = cxx_demangle_sym(elf_name, verbose > 0, verbose > 0); 322 if (demangled == NULL) { 323 demangled = ocaml_demangle_sym(elf_name); 324 if (demangled == NULL) { 325 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 326 } 327 } 328 else if (rust_is_mangled(demangled)) 329 /* 330 * Input to Rust demangling is the BFD-demangled 331 * name which it Rust-demangles in place. 332 */ 333 rust_demangle_sym(demangled); 334 335 return demangled; 336 } 337 338 struct rel_info { 339 u32 nr_entries; 340 u32 *sorted; 341 bool is_rela; 342 Elf_Data *reldata; 343 GElf_Rela rela; 344 GElf_Rel rel; 345 }; 346 347 static u32 get_rel_symidx(struct rel_info *ri, u32 idx) 348 { 349 idx = ri->sorted ? ri->sorted[idx] : idx; 350 if (ri->is_rela) { 351 gelf_getrela(ri->reldata, idx, &ri->rela); 352 return GELF_R_SYM(ri->rela.r_info); 353 } 354 gelf_getrel(ri->reldata, idx, &ri->rel); 355 return GELF_R_SYM(ri->rel.r_info); 356 } 357 358 static u64 get_rel_offset(struct rel_info *ri, u32 x) 359 { 360 if (ri->is_rela) { 361 GElf_Rela rela; 362 363 gelf_getrela(ri->reldata, x, &rela); 364 return rela.r_offset; 365 } else { 366 GElf_Rel rel; 367 368 gelf_getrel(ri->reldata, x, &rel); 369 return rel.r_offset; 370 } 371 } 372 373 static int rel_cmp(const void *a, const void *b, void *r) 374 { 375 struct rel_info *ri = r; 376 u64 a_offset = get_rel_offset(ri, *(const u32 *)a); 377 u64 b_offset = get_rel_offset(ri, *(const u32 *)b); 378 379 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0); 380 } 381 382 static int sort_rel(struct rel_info *ri) 383 { 384 size_t sz = sizeof(ri->sorted[0]); 385 u32 i; 386 387 ri->sorted = calloc(ri->nr_entries, sz); 388 if (!ri->sorted) 389 return -1; 390 for (i = 0; i < ri->nr_entries; i++) 391 ri->sorted[i] = i; 392 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri); 393 return 0; 394 } 395 396 /* 397 * For x86_64, the GNU linker is putting IFUNC information in the relocation 398 * addend. 399 */ 400 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri) 401 { 402 return ehdr->e_machine == EM_X86_64 && ri->is_rela && 403 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE; 404 } 405 406 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr, 407 struct rel_info *ri, char *buf, size_t buf_sz) 408 { 409 u64 addr = ri->rela.r_addend; 410 struct symbol *sym; 411 GElf_Phdr phdr; 412 413 if (!addend_may_be_ifunc(ehdr, ri)) 414 return false; 415 416 if (elf_read_program_header(elf, addr, &phdr)) 417 return false; 418 419 addr -= phdr.p_vaddr - phdr.p_offset; 420 421 sym = dso__find_symbol_nocache(dso, addr); 422 423 /* Expecting the address to be an IFUNC or IFUNC alias */ 424 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias)) 425 return false; 426 427 snprintf(buf, buf_sz, "%s@plt", sym->name); 428 429 return true; 430 } 431 432 static void exit_rel(struct rel_info *ri) 433 { 434 zfree(&ri->sorted); 435 } 436 437 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt, 438 u64 *plt_header_size, u64 *plt_entry_size) 439 { 440 switch (ehdr->e_machine) { 441 case EM_ARM: 442 *plt_header_size = 20; 443 *plt_entry_size = 12; 444 return true; 445 case EM_AARCH64: 446 *plt_header_size = 32; 447 *plt_entry_size = 16; 448 return true; 449 case EM_LOONGARCH: 450 *plt_header_size = 32; 451 *plt_entry_size = 16; 452 return true; 453 case EM_SPARC: 454 *plt_header_size = 48; 455 *plt_entry_size = 12; 456 return true; 457 case EM_SPARCV9: 458 *plt_header_size = 128; 459 *plt_entry_size = 32; 460 return true; 461 case EM_386: 462 case EM_X86_64: 463 *plt_entry_size = shdr_plt->sh_entsize; 464 /* Size is 8 or 16, if not, assume alignment indicates size */ 465 if (*plt_entry_size != 8 && *plt_entry_size != 16) 466 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16; 467 *plt_header_size = *plt_entry_size; 468 break; 469 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 470 *plt_header_size = shdr_plt->sh_entsize; 471 *plt_entry_size = shdr_plt->sh_entsize; 472 break; 473 } 474 if (*plt_entry_size) 475 return true; 476 pr_debug("Missing PLT entry size for %s\n", dso__long_name(dso)); 477 return false; 478 } 479 480 static bool machine_is_x86(GElf_Half e_machine) 481 { 482 return e_machine == EM_386 || e_machine == EM_X86_64; 483 } 484 485 struct rela_dyn { 486 GElf_Addr offset; 487 u32 sym_idx; 488 }; 489 490 struct rela_dyn_info { 491 struct dso *dso; 492 Elf_Data *plt_got_data; 493 u32 nr_entries; 494 struct rela_dyn *sorted; 495 Elf_Data *dynsym_data; 496 Elf_Data *dynstr_data; 497 Elf_Data *rela_dyn_data; 498 }; 499 500 static void exit_rela_dyn(struct rela_dyn_info *di) 501 { 502 zfree(&di->sorted); 503 } 504 505 static int cmp_offset(const void *a, const void *b) 506 { 507 const struct rela_dyn *va = a; 508 const struct rela_dyn *vb = b; 509 510 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0); 511 } 512 513 static int sort_rela_dyn(struct rela_dyn_info *di) 514 { 515 u32 i, n; 516 517 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0])); 518 if (!di->sorted) 519 return -1; 520 521 /* Get data for sorting: the offset and symbol index */ 522 for (i = 0, n = 0; i < di->nr_entries; i++) { 523 GElf_Rela rela; 524 u32 sym_idx; 525 526 gelf_getrela(di->rela_dyn_data, i, &rela); 527 sym_idx = GELF_R_SYM(rela.r_info); 528 if (sym_idx) { 529 di->sorted[n].sym_idx = sym_idx; 530 di->sorted[n].offset = rela.r_offset; 531 n += 1; 532 } 533 } 534 535 /* Sort by offset */ 536 di->nr_entries = n; 537 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset); 538 539 return 0; 540 } 541 542 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn) 543 { 544 GElf_Shdr rela_dyn_shdr; 545 GElf_Shdr shdr; 546 547 di->plt_got_data = elf_getdata(scn, NULL); 548 549 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL); 550 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize) 551 return; 552 553 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize; 554 di->rela_dyn_data = elf_getdata(scn, NULL); 555 556 scn = elf_getscn(elf, rela_dyn_shdr.sh_link); 557 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link) 558 return; 559 560 di->dynsym_data = elf_getdata(scn, NULL); 561 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL); 562 563 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data) 564 return; 565 566 /* Sort into offset order */ 567 sort_rela_dyn(di); 568 } 569 570 /* Get instruction displacement from a plt entry for x86_64 */ 571 static u32 get_x86_64_plt_disp(const u8 *p) 572 { 573 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa}; 574 int n = 0; 575 576 /* Skip endbr64 */ 577 if (!memcmp(p, endbr64, sizeof(endbr64))) 578 n += sizeof(endbr64); 579 /* Skip bnd prefix */ 580 if (p[n] == 0xf2) 581 n += 1; 582 /* jmp with 4-byte displacement */ 583 if (p[n] == 0xff && p[n + 1] == 0x25) { 584 u32 disp; 585 586 n += 2; 587 /* Also add offset from start of entry to end of instruction */ 588 memcpy(&disp, p + n, sizeof(disp)); 589 return n + 4 + le32toh(disp); 590 } 591 return 0; 592 } 593 594 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i, 595 struct rela_dyn_info *di, 596 char *buf, size_t buf_sz) 597 { 598 struct rela_dyn vi, *vr; 599 const char *sym_name; 600 char *demangled; 601 GElf_Sym sym; 602 bool result; 603 u32 disp; 604 605 if (!di->sorted) 606 return false; 607 608 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i); 609 if (!disp) 610 return false; 611 612 /* Compute target offset of the .plt.got entry */ 613 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp; 614 615 /* Find that offset in .rela.dyn (sorted by offset) */ 616 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset); 617 if (!vr) 618 return false; 619 620 /* Get the associated symbol */ 621 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym); 622 sym_name = elf_sym__name(&sym, di->dynstr_data); 623 demangled = demangle_sym(di->dso, 0, sym_name); 624 if (demangled != NULL) 625 sym_name = demangled; 626 627 snprintf(buf, buf_sz, "%s@plt", sym_name); 628 629 result = *sym_name; 630 631 free(demangled); 632 633 return result; 634 } 635 636 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf, 637 GElf_Ehdr *ehdr, 638 char *buf, size_t buf_sz) 639 { 640 struct rela_dyn_info di = { .dso = dso }; 641 struct symbol *sym; 642 GElf_Shdr shdr; 643 Elf_Scn *scn; 644 int err = -1; 645 size_t i; 646 647 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL); 648 if (!scn || !shdr.sh_entsize) 649 return 0; 650 651 if (ehdr->e_machine == EM_X86_64) 652 get_rela_dyn_info(elf, ehdr, &di, scn); 653 654 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) { 655 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz)) 656 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i); 657 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf); 658 if (!sym) 659 goto out; 660 symbols__insert(dso__symbols(dso), sym); 661 } 662 err = 0; 663 out: 664 exit_rela_dyn(&di); 665 return err; 666 } 667 668 /* 669 * We need to check if we have a .dynsym, so that we can handle the 670 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 671 * .dynsym or .symtab). 672 * And always look at the original dso, not at debuginfo packages, that 673 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 674 */ 675 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 676 { 677 uint32_t idx; 678 GElf_Sym sym; 679 u64 plt_offset, plt_header_size, plt_entry_size; 680 GElf_Shdr shdr_plt, plt_sec_shdr; 681 struct symbol *f, *plt_sym; 682 GElf_Shdr shdr_rel_plt, shdr_dynsym; 683 Elf_Data *syms, *symstrs; 684 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 685 GElf_Ehdr ehdr; 686 char sympltname[1024]; 687 Elf *elf; 688 int nr = 0, err = -1; 689 struct rel_info ri = { .is_rela = false }; 690 bool lazy_plt; 691 692 elf = ss->elf; 693 ehdr = ss->ehdr; 694 695 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL)) 696 return 0; 697 698 /* 699 * A symbol from a previous section (e.g. .init) can have been expanded 700 * by symbols__fixup_end() to overlap .plt. Truncate it before adding 701 * a symbol for .plt header. 702 */ 703 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset); 704 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset) 705 f->end = shdr_plt.sh_offset; 706 707 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size)) 708 return 0; 709 710 /* Add a symbol for .plt header */ 711 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt"); 712 if (!plt_sym) 713 goto out_elf_end; 714 symbols__insert(dso__symbols(dso), plt_sym); 715 716 /* Only x86 has .plt.got */ 717 if (machine_is_x86(ehdr.e_machine) && 718 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname))) 719 goto out_elf_end; 720 721 /* Only x86 has .plt.sec */ 722 if (machine_is_x86(ehdr.e_machine) && 723 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) { 724 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size)) 725 return 0; 726 /* Extend .plt symbol to entire .plt */ 727 plt_sym->end = plt_sym->start + shdr_plt.sh_size; 728 /* Use .plt.sec offset */ 729 plt_offset = plt_sec_shdr.sh_offset; 730 lazy_plt = false; 731 } else { 732 plt_offset = shdr_plt.sh_offset; 733 lazy_plt = true; 734 } 735 736 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 737 ".rela.plt", NULL); 738 if (scn_plt_rel == NULL) { 739 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 740 ".rel.plt", NULL); 741 if (scn_plt_rel == NULL) 742 return 0; 743 } 744 745 if (shdr_rel_plt.sh_type != SHT_RELA && 746 shdr_rel_plt.sh_type != SHT_REL) 747 return 0; 748 749 if (!shdr_rel_plt.sh_link) 750 return 0; 751 752 if (shdr_rel_plt.sh_link == ss->dynsym_idx) { 753 scn_dynsym = ss->dynsym; 754 shdr_dynsym = ss->dynshdr; 755 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) { 756 /* 757 * A static executable can have a .plt due to IFUNCs, in which 758 * case .symtab is used not .dynsym. 759 */ 760 scn_dynsym = ss->symtab; 761 shdr_dynsym = ss->symshdr; 762 } else { 763 goto out_elf_end; 764 } 765 766 if (!scn_dynsym) 767 return 0; 768 769 /* 770 * Fetch the relocation section to find the idxes to the GOT 771 * and the symbols in the .dynsym they refer to. 772 */ 773 ri.reldata = elf_getdata(scn_plt_rel, NULL); 774 if (!ri.reldata) 775 goto out_elf_end; 776 777 syms = elf_getdata(scn_dynsym, NULL); 778 if (syms == NULL) 779 goto out_elf_end; 780 781 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 782 if (scn_symstrs == NULL) 783 goto out_elf_end; 784 785 symstrs = elf_getdata(scn_symstrs, NULL); 786 if (symstrs == NULL) 787 goto out_elf_end; 788 789 if (symstrs->d_size == 0) 790 goto out_elf_end; 791 792 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 793 794 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA; 795 796 if (lazy_plt) { 797 /* 798 * Assume a .plt with the same number of entries as the number 799 * of relocation entries is not lazy and does not have a header. 800 */ 801 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size) 802 dso__delete_symbol(dso, plt_sym); 803 else 804 plt_offset += plt_header_size; 805 } 806 807 /* 808 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get 809 * back in order. 810 */ 811 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri)) 812 goto out_elf_end; 813 814 for (idx = 0; idx < ri.nr_entries; idx++) { 815 const char *elf_name = NULL; 816 char *demangled = NULL; 817 818 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym); 819 820 elf_name = elf_sym__name(&sym, symstrs); 821 demangled = demangle_sym(dso, 0, elf_name); 822 if (demangled) 823 elf_name = demangled; 824 if (*elf_name) 825 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name); 826 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname))) 827 snprintf(sympltname, sizeof(sympltname), 828 "offset_%#" PRIx64 "@plt", plt_offset); 829 free(demangled); 830 831 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname); 832 if (!f) 833 goto out_elf_end; 834 835 plt_offset += plt_entry_size; 836 symbols__insert(dso__symbols(dso), f); 837 ++nr; 838 } 839 840 err = 0; 841 out_elf_end: 842 exit_rel(&ri); 843 if (err == 0) 844 return nr; 845 pr_debug("%s: problems reading %s PLT info.\n", 846 __func__, dso__long_name(dso)); 847 return 0; 848 } 849 850 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 851 { 852 return demangle_sym(dso, kmodule, elf_name); 853 } 854 855 /* 856 * Align offset to 4 bytes as needed for note name and descriptor data. 857 */ 858 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 859 860 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 861 { 862 int err = -1; 863 GElf_Ehdr ehdr; 864 GElf_Shdr shdr; 865 Elf_Data *data; 866 Elf_Scn *sec; 867 Elf_Kind ek; 868 void *ptr; 869 870 if (size < BUILD_ID_SIZE) 871 goto out; 872 873 ek = elf_kind(elf); 874 if (ek != ELF_K_ELF) 875 goto out; 876 877 if (gelf_getehdr(elf, &ehdr) == NULL) { 878 pr_err("%s: cannot get elf header.\n", __func__); 879 goto out; 880 } 881 882 /* 883 * Check following sections for notes: 884 * '.note.gnu.build-id' 885 * '.notes' 886 * '.note' (VDSO specific) 887 */ 888 do { 889 sec = elf_section_by_name(elf, &ehdr, &shdr, 890 ".note.gnu.build-id", NULL); 891 if (sec) 892 break; 893 894 sec = elf_section_by_name(elf, &ehdr, &shdr, 895 ".notes", NULL); 896 if (sec) 897 break; 898 899 sec = elf_section_by_name(elf, &ehdr, &shdr, 900 ".note", NULL); 901 if (sec) 902 break; 903 904 return err; 905 906 } while (0); 907 908 data = elf_getdata(sec, NULL); 909 if (data == NULL) 910 goto out; 911 912 ptr = data->d_buf; 913 while (ptr < (data->d_buf + data->d_size)) { 914 GElf_Nhdr *nhdr = ptr; 915 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 916 descsz = NOTE_ALIGN(nhdr->n_descsz); 917 const char *name; 918 919 ptr += sizeof(*nhdr); 920 name = ptr; 921 ptr += namesz; 922 if (nhdr->n_type == NT_GNU_BUILD_ID && 923 nhdr->n_namesz == sizeof("GNU")) { 924 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 925 size_t sz = min(size, descsz); 926 memcpy(bf, ptr, sz); 927 memset(bf + sz, 0, size - sz); 928 err = sz; 929 break; 930 } 931 } 932 ptr += descsz; 933 } 934 935 out: 936 return err; 937 } 938 939 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT 940 941 static int read_build_id(const char *filename, struct build_id *bid) 942 { 943 size_t size = sizeof(bid->data); 944 int err = -1; 945 bfd *abfd; 946 947 abfd = bfd_openr(filename, NULL); 948 if (!abfd) 949 return -1; 950 951 if (!bfd_check_format(abfd, bfd_object)) { 952 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 953 goto out_close; 954 } 955 956 if (!abfd->build_id || abfd->build_id->size > size) 957 goto out_close; 958 959 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size); 960 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size); 961 err = bid->size = abfd->build_id->size; 962 963 out_close: 964 bfd_close(abfd); 965 return err; 966 } 967 968 #else // HAVE_LIBBFD_BUILDID_SUPPORT 969 970 static int read_build_id(const char *filename, struct build_id *bid) 971 { 972 size_t size = sizeof(bid->data); 973 int fd, err = -1; 974 Elf *elf; 975 976 if (size < BUILD_ID_SIZE) 977 goto out; 978 979 fd = open(filename, O_RDONLY); 980 if (fd < 0) 981 goto out; 982 983 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 984 if (elf == NULL) { 985 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 986 goto out_close; 987 } 988 989 err = elf_read_build_id(elf, bid->data, size); 990 if (err > 0) 991 bid->size = err; 992 993 elf_end(elf); 994 out_close: 995 close(fd); 996 out: 997 return err; 998 } 999 1000 #endif // HAVE_LIBBFD_BUILDID_SUPPORT 1001 1002 int filename__read_build_id(const char *filename, struct build_id *bid) 1003 { 1004 struct kmod_path m = { .name = NULL, }; 1005 char path[PATH_MAX]; 1006 int err; 1007 1008 if (!filename) 1009 return -EFAULT; 1010 1011 err = kmod_path__parse(&m, filename); 1012 if (err) 1013 return -1; 1014 1015 if (m.comp) { 1016 int error = 0, fd; 1017 1018 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error); 1019 if (fd < 0) { 1020 pr_debug("Failed to decompress (error %d) %s\n", 1021 error, filename); 1022 return -1; 1023 } 1024 close(fd); 1025 filename = path; 1026 } 1027 1028 err = read_build_id(filename, bid); 1029 1030 if (m.comp) 1031 unlink(filename); 1032 return err; 1033 } 1034 1035 int sysfs__read_build_id(const char *filename, struct build_id *bid) 1036 { 1037 size_t size = sizeof(bid->data); 1038 int fd, err = -1; 1039 1040 fd = open(filename, O_RDONLY); 1041 if (fd < 0) 1042 goto out; 1043 1044 while (1) { 1045 char bf[BUFSIZ]; 1046 GElf_Nhdr nhdr; 1047 size_t namesz, descsz; 1048 1049 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 1050 break; 1051 1052 namesz = NOTE_ALIGN(nhdr.n_namesz); 1053 descsz = NOTE_ALIGN(nhdr.n_descsz); 1054 if (nhdr.n_type == NT_GNU_BUILD_ID && 1055 nhdr.n_namesz == sizeof("GNU")) { 1056 if (read(fd, bf, namesz) != (ssize_t)namesz) 1057 break; 1058 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 1059 size_t sz = min(descsz, size); 1060 if (read(fd, bid->data, sz) == (ssize_t)sz) { 1061 memset(bid->data + sz, 0, size - sz); 1062 bid->size = sz; 1063 err = 0; 1064 break; 1065 } 1066 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 1067 break; 1068 } else { 1069 int n = namesz + descsz; 1070 1071 if (n > (int)sizeof(bf)) { 1072 n = sizeof(bf); 1073 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 1074 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 1075 } 1076 if (read(fd, bf, n) != n) 1077 break; 1078 } 1079 } 1080 close(fd); 1081 out: 1082 return err; 1083 } 1084 1085 #ifdef HAVE_LIBBFD_SUPPORT 1086 1087 int filename__read_debuglink(const char *filename, char *debuglink, 1088 size_t size) 1089 { 1090 int err = -1; 1091 asection *section; 1092 bfd *abfd; 1093 1094 abfd = bfd_openr(filename, NULL); 1095 if (!abfd) 1096 return -1; 1097 1098 if (!bfd_check_format(abfd, bfd_object)) { 1099 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 1100 goto out_close; 1101 } 1102 1103 section = bfd_get_section_by_name(abfd, ".gnu_debuglink"); 1104 if (!section) 1105 goto out_close; 1106 1107 if (section->size > size) 1108 goto out_close; 1109 1110 if (!bfd_get_section_contents(abfd, section, debuglink, 0, 1111 section->size)) 1112 goto out_close; 1113 1114 err = 0; 1115 1116 out_close: 1117 bfd_close(abfd); 1118 return err; 1119 } 1120 1121 #else 1122 1123 int filename__read_debuglink(const char *filename, char *debuglink, 1124 size_t size) 1125 { 1126 int fd, err = -1; 1127 Elf *elf; 1128 GElf_Ehdr ehdr; 1129 GElf_Shdr shdr; 1130 Elf_Data *data; 1131 Elf_Scn *sec; 1132 Elf_Kind ek; 1133 1134 fd = open(filename, O_RDONLY); 1135 if (fd < 0) 1136 goto out; 1137 1138 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1139 if (elf == NULL) { 1140 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 1141 goto out_close; 1142 } 1143 1144 ek = elf_kind(elf); 1145 if (ek != ELF_K_ELF) 1146 goto out_elf_end; 1147 1148 if (gelf_getehdr(elf, &ehdr) == NULL) { 1149 pr_err("%s: cannot get elf header.\n", __func__); 1150 goto out_elf_end; 1151 } 1152 1153 sec = elf_section_by_name(elf, &ehdr, &shdr, 1154 ".gnu_debuglink", NULL); 1155 if (sec == NULL) 1156 goto out_elf_end; 1157 1158 data = elf_getdata(sec, NULL); 1159 if (data == NULL) 1160 goto out_elf_end; 1161 1162 /* the start of this section is a zero-terminated string */ 1163 strncpy(debuglink, data->d_buf, size); 1164 1165 err = 0; 1166 1167 out_elf_end: 1168 elf_end(elf); 1169 out_close: 1170 close(fd); 1171 out: 1172 return err; 1173 } 1174 1175 #endif 1176 1177 bool symsrc__possibly_runtime(struct symsrc *ss) 1178 { 1179 return ss->dynsym || ss->opdsec; 1180 } 1181 1182 bool symsrc__has_symtab(struct symsrc *ss) 1183 { 1184 return ss->symtab != NULL; 1185 } 1186 1187 void symsrc__destroy(struct symsrc *ss) 1188 { 1189 zfree(&ss->name); 1190 elf_end(ss->elf); 1191 close(ss->fd); 1192 } 1193 1194 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 1195 { 1196 /* 1197 * Usually vmlinux is an ELF file with type ET_EXEC for most 1198 * architectures; except Arm64 kernel is linked with option 1199 * '-share', so need to check type ET_DYN. 1200 */ 1201 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 1202 ehdr.e_type == ET_DYN; 1203 } 1204 1205 static Elf *read_gnu_debugdata(struct dso *dso, Elf *elf, const char *name, int *fd_ret) 1206 { 1207 Elf *elf_embedded; 1208 GElf_Ehdr ehdr; 1209 GElf_Shdr shdr; 1210 Elf_Scn *scn; 1211 Elf_Data *scn_data; 1212 FILE *wrapped; 1213 size_t shndx; 1214 char temp_filename[] = "/tmp/perf.gnu_debugdata.elf.XXXXXX"; 1215 int ret, temp_fd; 1216 1217 if (gelf_getehdr(elf, &ehdr) == NULL) { 1218 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 1219 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1220 return NULL; 1221 } 1222 1223 scn = elf_section_by_name(elf, &ehdr, &shdr, ".gnu_debugdata", &shndx); 1224 if (!scn) { 1225 *dso__load_errno(dso) = -ENOENT; 1226 return NULL; 1227 } 1228 1229 if (shdr.sh_type == SHT_NOBITS) { 1230 pr_debug("%s: .gnu_debugdata of ELF file %s has no data.\n", __func__, name); 1231 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1232 return NULL; 1233 } 1234 1235 scn_data = elf_rawdata(scn, NULL); 1236 if (!scn_data) { 1237 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__, 1238 name, elf_errmsg(-1)); 1239 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1240 return NULL; 1241 } 1242 1243 wrapped = fmemopen(scn_data->d_buf, scn_data->d_size, "r"); 1244 if (!wrapped) { 1245 pr_debug("%s: fmemopen: %s\n", __func__, strerror(errno)); 1246 *dso__load_errno(dso) = -errno; 1247 return NULL; 1248 } 1249 1250 temp_fd = mkstemp(temp_filename); 1251 if (temp_fd < 0) { 1252 pr_debug("%s: mkstemp: %s\n", __func__, strerror(errno)); 1253 *dso__load_errno(dso) = -errno; 1254 fclose(wrapped); 1255 return NULL; 1256 } 1257 unlink(temp_filename); 1258 1259 ret = lzma_decompress_stream_to_file(wrapped, temp_fd); 1260 fclose(wrapped); 1261 if (ret < 0) { 1262 *dso__load_errno(dso) = -errno; 1263 close(temp_fd); 1264 return NULL; 1265 } 1266 1267 elf_embedded = elf_begin(temp_fd, PERF_ELF_C_READ_MMAP, NULL); 1268 if (!elf_embedded) { 1269 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__, 1270 name, elf_errmsg(-1)); 1271 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1272 close(temp_fd); 1273 return NULL; 1274 } 1275 pr_debug("%s: using .gnu_debugdata of %s\n", __func__, name); 1276 *fd_ret = temp_fd; 1277 return elf_embedded; 1278 } 1279 1280 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 1281 enum dso_binary_type type) 1282 { 1283 GElf_Ehdr ehdr; 1284 Elf *elf; 1285 int fd; 1286 1287 if (dso__needs_decompress(dso)) { 1288 fd = dso__decompress_kmodule_fd(dso, name); 1289 if (fd < 0) 1290 return -1; 1291 1292 type = dso__symtab_type(dso); 1293 } else { 1294 fd = open(name, O_RDONLY); 1295 if (fd < 0) { 1296 *dso__load_errno(dso) = errno; 1297 return -1; 1298 } 1299 } 1300 1301 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1302 if (elf == NULL) { 1303 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 1304 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1305 goto out_close; 1306 } 1307 1308 if (type == DSO_BINARY_TYPE__GNU_DEBUGDATA) { 1309 int new_fd; 1310 Elf *embedded = read_gnu_debugdata(dso, elf, name, &new_fd); 1311 1312 if (!embedded) 1313 goto out_close; 1314 1315 elf_end(elf); 1316 close(fd); 1317 fd = new_fd; 1318 elf = embedded; 1319 } 1320 1321 if (gelf_getehdr(elf, &ehdr) == NULL) { 1322 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1323 pr_debug("%s: cannot get elf header.\n", __func__); 1324 goto out_elf_end; 1325 } 1326 1327 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 1328 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INTERNAL_ERROR; 1329 goto out_elf_end; 1330 } 1331 1332 /* Always reject images with a mismatched build-id: */ 1333 if (dso__has_build_id(dso) && !symbol_conf.ignore_vmlinux_buildid) { 1334 u8 build_id[BUILD_ID_SIZE]; 1335 struct build_id bid; 1336 int size; 1337 1338 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE); 1339 if (size <= 0) { 1340 *dso__load_errno(dso) = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 1341 goto out_elf_end; 1342 } 1343 1344 build_id__init(&bid, build_id, size); 1345 if (!dso__build_id_equal(dso, &bid)) { 1346 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 1347 *dso__load_errno(dso) = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 1348 goto out_elf_end; 1349 } 1350 } 1351 1352 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1353 1354 ss->symtab_idx = 0; 1355 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 1356 &ss->symtab_idx); 1357 if (ss->symshdr.sh_type != SHT_SYMTAB) 1358 ss->symtab = NULL; 1359 1360 ss->dynsym_idx = 0; 1361 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 1362 &ss->dynsym_idx); 1363 if (ss->dynshdr.sh_type != SHT_DYNSYM) 1364 ss->dynsym = NULL; 1365 1366 ss->opdidx = 0; 1367 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 1368 &ss->opdidx); 1369 if (ss->opdshdr.sh_type != SHT_PROGBITS) 1370 ss->opdsec = NULL; 1371 1372 if (dso__kernel(dso) == DSO_SPACE__USER) 1373 ss->adjust_symbols = true; 1374 else 1375 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 1376 1377 ss->name = strdup(name); 1378 if (!ss->name) { 1379 *dso__load_errno(dso) = errno; 1380 goto out_elf_end; 1381 } 1382 1383 ss->elf = elf; 1384 ss->fd = fd; 1385 ss->ehdr = ehdr; 1386 ss->type = type; 1387 1388 return 0; 1389 1390 out_elf_end: 1391 elf_end(elf); 1392 out_close: 1393 close(fd); 1394 return -1; 1395 } 1396 1397 static bool is_exe_text(int flags) 1398 { 1399 return (flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR); 1400 } 1401 1402 /* 1403 * Some executable module sections like .noinstr.text might be laid out with 1404 * .text so they can use the same mapping (memory address to file offset). 1405 * Check if that is the case. Refer to kernel layout_sections(). Return the 1406 * maximum offset. 1407 */ 1408 static u64 max_text_section(Elf *elf, GElf_Ehdr *ehdr) 1409 { 1410 Elf_Scn *sec = NULL; 1411 GElf_Shdr shdr; 1412 u64 offs = 0; 1413 1414 /* Doesn't work for some arch */ 1415 if (ehdr->e_machine == EM_PARISC || 1416 ehdr->e_machine == EM_ALPHA) 1417 return 0; 1418 1419 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1420 if (!elf_rawdata(elf_getscn(elf, ehdr->e_shstrndx), NULL)) 1421 return 0; 1422 1423 while ((sec = elf_nextscn(elf, sec)) != NULL) { 1424 char *sec_name; 1425 1426 if (!gelf_getshdr(sec, &shdr)) 1427 break; 1428 1429 if (!is_exe_text(shdr.sh_flags)) 1430 continue; 1431 1432 /* .init and .exit sections are not placed with .text */ 1433 sec_name = elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name); 1434 if (!sec_name || 1435 strstarts(sec_name, ".init") || 1436 strstarts(sec_name, ".exit")) 1437 break; 1438 1439 /* Must be next to previous, assumes .text is first */ 1440 if (offs && PERF_ALIGN(offs, shdr.sh_addralign ?: 1) != shdr.sh_offset) 1441 break; 1442 1443 offs = shdr.sh_offset + shdr.sh_size; 1444 } 1445 1446 return offs; 1447 } 1448 1449 /** 1450 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 1451 * @kmap: kernel maps and relocation reference symbol 1452 * 1453 * This function returns %true if we are dealing with the kernel maps and the 1454 * relocation reference symbol has not yet been found. Otherwise %false is 1455 * returned. 1456 */ 1457 static bool ref_reloc_sym_not_found(struct kmap *kmap) 1458 { 1459 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 1460 !kmap->ref_reloc_sym->unrelocated_addr; 1461 } 1462 1463 /** 1464 * ref_reloc - kernel relocation offset. 1465 * @kmap: kernel maps and relocation reference symbol 1466 * 1467 * This function returns the offset of kernel addresses as determined by using 1468 * the relocation reference symbol i.e. if the kernel has not been relocated 1469 * then the return value is zero. 1470 */ 1471 static u64 ref_reloc(struct kmap *kmap) 1472 { 1473 if (kmap && kmap->ref_reloc_sym && 1474 kmap->ref_reloc_sym->unrelocated_addr) 1475 return kmap->ref_reloc_sym->addr - 1476 kmap->ref_reloc_sym->unrelocated_addr; 1477 return 0; 1478 } 1479 1480 void __weak arch__sym_update(struct symbol *s __maybe_unused, 1481 GElf_Sym *sym __maybe_unused) { } 1482 1483 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 1484 GElf_Sym *sym, GElf_Shdr *shdr, 1485 struct maps *kmaps, struct kmap *kmap, 1486 struct dso **curr_dsop, 1487 const char *section_name, 1488 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel, 1489 u64 max_text_sh_offset) 1490 { 1491 struct dso *curr_dso = *curr_dsop; 1492 struct map *curr_map; 1493 char dso_name[PATH_MAX]; 1494 1495 /* Adjust symbol to map to file offset */ 1496 if (adjust_kernel_syms) 1497 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 1498 1499 if (strcmp(section_name, (dso__short_name(curr_dso) + dso__short_name_len(dso))) == 0) 1500 return 0; 1501 1502 if (strcmp(section_name, ".text") == 0) { 1503 /* 1504 * The initial kernel mapping is based on 1505 * kallsyms and identity maps. Overwrite it to 1506 * map to the kernel dso. 1507 */ 1508 if (*remap_kernel && dso__kernel(dso) && !kmodule) { 1509 *remap_kernel = false; 1510 map__set_start(map, shdr->sh_addr + ref_reloc(kmap)); 1511 map__set_end(map, map__start(map) + shdr->sh_size); 1512 map__set_pgoff(map, shdr->sh_offset); 1513 map__set_mapping_type(map, MAPPING_TYPE__DSO); 1514 /* Ensure maps are correctly ordered */ 1515 if (kmaps) { 1516 int err; 1517 struct map *tmp = map__get(map); 1518 1519 maps__remove(kmaps, map); 1520 err = maps__insert(kmaps, map); 1521 map__put(tmp); 1522 if (err) 1523 return err; 1524 } 1525 } 1526 1527 /* 1528 * The initial module mapping is based on 1529 * /proc/modules mapped to offset zero. 1530 * Overwrite it to map to the module dso. 1531 */ 1532 if (*remap_kernel && kmodule) { 1533 *remap_kernel = false; 1534 map__set_pgoff(map, shdr->sh_offset); 1535 } 1536 1537 dso__put(*curr_dsop); 1538 *curr_dsop = dso__get(dso); 1539 return 0; 1540 } 1541 1542 if (!kmap) 1543 return 0; 1544 1545 /* 1546 * perf does not record module section addresses except for .text, but 1547 * some sections can use the same mapping as .text. 1548 */ 1549 if (kmodule && adjust_kernel_syms && is_exe_text(shdr->sh_flags) && 1550 shdr->sh_offset <= max_text_sh_offset) { 1551 dso__put(*curr_dsop); 1552 *curr_dsop = dso__get(dso); 1553 return 0; 1554 } 1555 1556 snprintf(dso_name, sizeof(dso_name), "%s%s", dso__short_name(dso), section_name); 1557 1558 curr_map = maps__find_by_name(kmaps, dso_name); 1559 if (curr_map == NULL) { 1560 u64 start = sym->st_value; 1561 1562 if (kmodule) 1563 start += map__start(map) + shdr->sh_offset; 1564 1565 curr_dso = dso__new(dso_name); 1566 if (curr_dso == NULL) 1567 return -1; 1568 dso__set_kernel(curr_dso, dso__kernel(dso)); 1569 RC_CHK_ACCESS(curr_dso)->long_name = dso__long_name(dso); 1570 RC_CHK_ACCESS(curr_dso)->long_name_len = dso__long_name_len(dso); 1571 dso__set_binary_type(curr_dso, dso__binary_type(dso)); 1572 dso__set_adjust_symbols(curr_dso, dso__adjust_symbols(dso)); 1573 curr_map = map__new2(start, curr_dso); 1574 if (curr_map == NULL) { 1575 dso__put(curr_dso); 1576 return -1; 1577 } 1578 if (dso__kernel(curr_dso)) 1579 map__kmap(curr_map)->kmaps = kmaps; 1580 1581 if (adjust_kernel_syms) { 1582 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap)); 1583 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size); 1584 map__set_pgoff(curr_map, shdr->sh_offset); 1585 } else { 1586 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY); 1587 } 1588 dso__set_symtab_type(curr_dso, dso__symtab_type(dso)); 1589 if (maps__insert(kmaps, curr_map)) 1590 return -1; 1591 dsos__add(&maps__machine(kmaps)->dsos, curr_dso); 1592 dso__set_loaded(curr_dso); 1593 dso__put(*curr_dsop); 1594 *curr_dsop = curr_dso; 1595 } else { 1596 dso__put(*curr_dsop); 1597 *curr_dsop = dso__get(map__dso(curr_map)); 1598 } 1599 map__put(curr_map); 1600 1601 return 0; 1602 } 1603 1604 static int 1605 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1606 struct symsrc *runtime_ss, int kmodule, int dynsym) 1607 { 1608 struct kmap *kmap = dso__kernel(dso) ? map__kmap(map) : NULL; 1609 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 1610 struct dso *curr_dso = NULL; 1611 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym; 1612 uint32_t nr_syms; 1613 uint32_t idx; 1614 GElf_Ehdr ehdr; 1615 GElf_Shdr shdr; 1616 GElf_Shdr tshdr; 1617 Elf_Data *syms, *opddata = NULL; 1618 GElf_Sym sym; 1619 Elf_Scn *sec, *sec_strndx; 1620 Elf *elf; 1621 int nr = 0; 1622 bool remap_kernel = false, adjust_kernel_syms = false; 1623 u64 max_text_sh_offset = 0; 1624 1625 if (kmap && !kmaps) 1626 return -1; 1627 1628 elf = syms_ss->elf; 1629 ehdr = syms_ss->ehdr; 1630 if (dynsym) { 1631 sec = syms_ss->dynsym; 1632 shdr = syms_ss->dynshdr; 1633 } else { 1634 sec = syms_ss->symtab; 1635 shdr = syms_ss->symshdr; 1636 } 1637 1638 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1639 ".text", NULL)) { 1640 dso__set_text_offset(dso, tshdr.sh_addr - tshdr.sh_offset); 1641 dso__set_text_end(dso, tshdr.sh_offset + tshdr.sh_size); 1642 } 1643 1644 if (runtime_ss->opdsec) 1645 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1646 1647 syms = elf_getdata(sec, NULL); 1648 if (syms == NULL) 1649 goto out_elf_end; 1650 1651 sec = elf_getscn(elf, shdr.sh_link); 1652 if (sec == NULL) 1653 goto out_elf_end; 1654 1655 symstrs = elf_getdata(sec, NULL); 1656 if (symstrs == NULL) 1657 goto out_elf_end; 1658 1659 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1660 if (sec_strndx == NULL) 1661 goto out_elf_end; 1662 1663 secstrs_run = elf_getdata(sec_strndx, NULL); 1664 if (secstrs_run == NULL) 1665 goto out_elf_end; 1666 1667 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx); 1668 if (sec_strndx == NULL) 1669 goto out_elf_end; 1670 1671 secstrs_sym = elf_getdata(sec_strndx, NULL); 1672 if (secstrs_sym == NULL) 1673 goto out_elf_end; 1674 1675 nr_syms = shdr.sh_size / shdr.sh_entsize; 1676 1677 memset(&sym, 0, sizeof(sym)); 1678 1679 /* 1680 * The kernel relocation symbol is needed in advance in order to adjust 1681 * kernel maps correctly. 1682 */ 1683 if (ref_reloc_sym_not_found(kmap)) { 1684 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1685 const char *elf_name = elf_sym__name(&sym, symstrs); 1686 1687 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1688 continue; 1689 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1690 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr); 1691 break; 1692 } 1693 } 1694 1695 /* 1696 * Handle any relocation of vdso necessary because older kernels 1697 * attempted to prelink vdso to its virtual address. 1698 */ 1699 if (dso__is_vdso(dso)) 1700 map__set_reloc(map, map__start(map) - dso__text_offset(dso)); 1701 1702 dso__set_adjust_symbols(dso, runtime_ss->adjust_symbols || ref_reloc(kmap)); 1703 /* 1704 * Initial kernel and module mappings do not map to the dso. 1705 * Flag the fixups. 1706 */ 1707 if (dso__kernel(dso)) { 1708 remap_kernel = true; 1709 adjust_kernel_syms = dso__adjust_symbols(dso); 1710 } 1711 1712 if (kmodule && adjust_kernel_syms) 1713 max_text_sh_offset = max_text_section(runtime_ss->elf, &runtime_ss->ehdr); 1714 1715 curr_dso = dso__get(dso); 1716 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1717 struct symbol *f; 1718 const char *elf_name = elf_sym__name(&sym, symstrs); 1719 char *demangled = NULL; 1720 int is_label = elf_sym__is_label(&sym); 1721 const char *section_name; 1722 bool used_opd = false; 1723 1724 if (!is_label && !elf_sym__filter(&sym)) 1725 continue; 1726 1727 /* Reject ARM ELF "mapping symbols": these aren't unique and 1728 * don't identify functions, so will confuse the profile 1729 * output: */ 1730 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1731 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1732 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1733 continue; 1734 } 1735 1736 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1737 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1738 u64 *opd = opddata->d_buf + offset; 1739 sym.st_value = DSO__SWAP(dso, u64, *opd); 1740 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1741 sym.st_value); 1742 used_opd = true; 1743 } 1744 1745 /* 1746 * When loading symbols in a data mapping, ABS symbols (which 1747 * has a value of SHN_ABS in its st_shndx) failed at 1748 * elf_getscn(). And it marks the loading as a failure so 1749 * already loaded symbols cannot be fixed up. 1750 * 1751 * I'm not sure what should be done. Just ignore them for now. 1752 * - Namhyung Kim 1753 */ 1754 if (sym.st_shndx == SHN_ABS) 1755 continue; 1756 1757 sec = elf_getscn(syms_ss->elf, sym.st_shndx); 1758 if (!sec) 1759 goto out_elf_end; 1760 1761 gelf_getshdr(sec, &shdr); 1762 1763 /* 1764 * If the attribute bit SHF_ALLOC is not set, the section 1765 * doesn't occupy memory during process execution. 1766 * E.g. ".gnu.warning.*" section is used by linker to generate 1767 * warnings when calling deprecated functions, the symbols in 1768 * the section aren't loaded to memory during process execution, 1769 * so skip them. 1770 */ 1771 if (!(shdr.sh_flags & SHF_ALLOC)) 1772 continue; 1773 1774 secstrs = secstrs_sym; 1775 1776 /* 1777 * We have to fallback to runtime when syms' section header has 1778 * NOBITS set. NOBITS results in file offset (sh_offset) not 1779 * being incremented. So sh_offset used below has different 1780 * values for syms (invalid) and runtime (valid). 1781 */ 1782 if (shdr.sh_type == SHT_NOBITS) { 1783 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1784 if (!sec) 1785 goto out_elf_end; 1786 1787 gelf_getshdr(sec, &shdr); 1788 secstrs = secstrs_run; 1789 } 1790 1791 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1792 continue; 1793 1794 section_name = elf_sec__name(&shdr, secstrs); 1795 1796 /* On ARM, symbols for thumb functions have 1 added to 1797 * the symbol address as a flag - remove it */ 1798 if ((ehdr.e_machine == EM_ARM) && 1799 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1800 (sym.st_value & 1)) 1801 --sym.st_value; 1802 1803 if (dso__kernel(dso)) { 1804 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, 1805 kmaps, kmap, &curr_dso, 1806 section_name, 1807 adjust_kernel_syms, 1808 kmodule, 1809 &remap_kernel, 1810 max_text_sh_offset)) 1811 goto out_elf_end; 1812 } else if ((used_opd && runtime_ss->adjust_symbols) || 1813 (!used_opd && syms_ss->adjust_symbols)) { 1814 GElf_Phdr phdr; 1815 1816 if (elf_read_program_header(runtime_ss->elf, 1817 (u64)sym.st_value, &phdr)) { 1818 pr_debug4("%s: failed to find program header for " 1819 "symbol: %s st_value: %#" PRIx64 "\n", 1820 __func__, elf_name, (u64)sym.st_value); 1821 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1822 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", 1823 __func__, (u64)sym.st_value, (u64)shdr.sh_addr, 1824 (u64)shdr.sh_offset); 1825 /* 1826 * Fail to find program header, let's rollback 1827 * to use shdr.sh_addr and shdr.sh_offset to 1828 * calibrate symbol's file address, though this 1829 * is not necessary for normal C ELF file, we 1830 * still need to handle java JIT symbols in this 1831 * case. 1832 */ 1833 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1834 } else { 1835 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1836 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n", 1837 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr, 1838 (u64)phdr.p_offset); 1839 sym.st_value -= phdr.p_vaddr - phdr.p_offset; 1840 } 1841 } 1842 1843 demangled = demangle_sym(dso, kmodule, elf_name); 1844 if (demangled != NULL) 1845 elf_name = demangled; 1846 1847 f = symbol__new(sym.st_value, sym.st_size, 1848 GELF_ST_BIND(sym.st_info), 1849 GELF_ST_TYPE(sym.st_info), elf_name); 1850 free(demangled); 1851 if (!f) 1852 goto out_elf_end; 1853 1854 arch__sym_update(f, &sym); 1855 1856 __symbols__insert(dso__symbols(curr_dso), f, dso__kernel(dso)); 1857 nr++; 1858 } 1859 dso__put(curr_dso); 1860 1861 /* 1862 * For misannotated, zeroed, ASM function sizes. 1863 */ 1864 if (nr > 0) { 1865 symbols__fixup_end(dso__symbols(dso), false); 1866 symbols__fixup_duplicate(dso__symbols(dso)); 1867 if (kmap) { 1868 /* 1869 * We need to fixup this here too because we create new 1870 * maps here, for things like vsyscall sections. 1871 */ 1872 maps__fixup_end(kmaps); 1873 } 1874 } 1875 return nr; 1876 out_elf_end: 1877 dso__put(curr_dso); 1878 return -1; 1879 } 1880 1881 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1882 struct symsrc *runtime_ss, int kmodule) 1883 { 1884 int nr = 0; 1885 int err = -1; 1886 1887 dso__set_symtab_type(dso, syms_ss->type); 1888 dso__set_is_64_bit(dso, syms_ss->is_64_bit); 1889 dso__set_rel(dso, syms_ss->ehdr.e_type == ET_REL); 1890 1891 /* 1892 * Modules may already have symbols from kallsyms, but those symbols 1893 * have the wrong values for the dso maps, so remove them. 1894 */ 1895 if (kmodule && syms_ss->symtab) 1896 symbols__delete(dso__symbols(dso)); 1897 1898 if (!syms_ss->symtab) { 1899 /* 1900 * If the vmlinux is stripped, fail so we will fall back 1901 * to using kallsyms. The vmlinux runtime symbols aren't 1902 * of much use. 1903 */ 1904 if (dso__kernel(dso)) 1905 return err; 1906 } else { 1907 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1908 kmodule, 0); 1909 if (err < 0) 1910 return err; 1911 nr = err; 1912 } 1913 1914 if (syms_ss->dynsym) { 1915 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1916 kmodule, 1); 1917 if (err < 0) 1918 return err; 1919 nr += err; 1920 } 1921 1922 /* 1923 * The .gnu_debugdata is a special situation: it contains a symbol 1924 * table, but the runtime file may also contain dynsym entries which are 1925 * not present there. We need to load both. 1926 */ 1927 if (syms_ss->type == DSO_BINARY_TYPE__GNU_DEBUGDATA && runtime_ss->dynsym) { 1928 err = dso__load_sym_internal(dso, map, runtime_ss, runtime_ss, 1929 kmodule, 1); 1930 if (err < 0) 1931 return err; 1932 nr += err; 1933 } 1934 1935 return nr; 1936 } 1937 1938 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1939 { 1940 GElf_Phdr phdr; 1941 size_t i, phdrnum; 1942 int err; 1943 u64 sz; 1944 1945 if (elf_getphdrnum(elf, &phdrnum)) 1946 return -1; 1947 1948 for (i = 0; i < phdrnum; i++) { 1949 if (gelf_getphdr(elf, i, &phdr) == NULL) 1950 return -1; 1951 if (phdr.p_type != PT_LOAD) 1952 continue; 1953 if (exe) { 1954 if (!(phdr.p_flags & PF_X)) 1955 continue; 1956 } else { 1957 if (!(phdr.p_flags & PF_R)) 1958 continue; 1959 } 1960 sz = min(phdr.p_memsz, phdr.p_filesz); 1961 if (!sz) 1962 continue; 1963 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1964 if (err) 1965 return err; 1966 } 1967 return 0; 1968 } 1969 1970 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1971 bool *is_64_bit) 1972 { 1973 int err; 1974 Elf *elf; 1975 1976 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1977 if (elf == NULL) 1978 return -1; 1979 1980 if (is_64_bit) 1981 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1982 1983 err = elf_read_maps(elf, exe, mapfn, data); 1984 1985 elf_end(elf); 1986 return err; 1987 } 1988 1989 enum dso_type dso__type_fd(int fd) 1990 { 1991 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1992 GElf_Ehdr ehdr; 1993 Elf_Kind ek; 1994 Elf *elf; 1995 1996 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1997 if (elf == NULL) 1998 goto out; 1999 2000 ek = elf_kind(elf); 2001 if (ek != ELF_K_ELF) 2002 goto out_end; 2003 2004 if (gelf_getclass(elf) == ELFCLASS64) { 2005 dso_type = DSO__TYPE_64BIT; 2006 goto out_end; 2007 } 2008 2009 if (gelf_getehdr(elf, &ehdr) == NULL) 2010 goto out_end; 2011 2012 if (ehdr.e_machine == EM_X86_64) 2013 dso_type = DSO__TYPE_X32BIT; 2014 else 2015 dso_type = DSO__TYPE_32BIT; 2016 out_end: 2017 elf_end(elf); 2018 out: 2019 return dso_type; 2020 } 2021 2022 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 2023 { 2024 ssize_t r; 2025 size_t n; 2026 int err = -1; 2027 char *buf = malloc(page_size); 2028 2029 if (buf == NULL) 2030 return -1; 2031 2032 if (lseek(to, to_offs, SEEK_SET) != to_offs) 2033 goto out; 2034 2035 if (lseek(from, from_offs, SEEK_SET) != from_offs) 2036 goto out; 2037 2038 while (len) { 2039 n = page_size; 2040 if (len < n) 2041 n = len; 2042 /* Use read because mmap won't work on proc files */ 2043 r = read(from, buf, n); 2044 if (r < 0) 2045 goto out; 2046 if (!r) 2047 break; 2048 n = r; 2049 r = write(to, buf, n); 2050 if (r < 0) 2051 goto out; 2052 if ((size_t)r != n) 2053 goto out; 2054 len -= n; 2055 } 2056 2057 err = 0; 2058 out: 2059 free(buf); 2060 return err; 2061 } 2062 2063 struct kcore { 2064 int fd; 2065 int elfclass; 2066 Elf *elf; 2067 GElf_Ehdr ehdr; 2068 }; 2069 2070 static int kcore__open(struct kcore *kcore, const char *filename) 2071 { 2072 GElf_Ehdr *ehdr; 2073 2074 kcore->fd = open(filename, O_RDONLY); 2075 if (kcore->fd == -1) 2076 return -1; 2077 2078 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 2079 if (!kcore->elf) 2080 goto out_close; 2081 2082 kcore->elfclass = gelf_getclass(kcore->elf); 2083 if (kcore->elfclass == ELFCLASSNONE) 2084 goto out_end; 2085 2086 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 2087 if (!ehdr) 2088 goto out_end; 2089 2090 return 0; 2091 2092 out_end: 2093 elf_end(kcore->elf); 2094 out_close: 2095 close(kcore->fd); 2096 return -1; 2097 } 2098 2099 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 2100 bool temp) 2101 { 2102 kcore->elfclass = elfclass; 2103 2104 if (temp) 2105 kcore->fd = mkstemp(filename); 2106 else 2107 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 2108 if (kcore->fd == -1) 2109 return -1; 2110 2111 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 2112 if (!kcore->elf) 2113 goto out_close; 2114 2115 if (!gelf_newehdr(kcore->elf, elfclass)) 2116 goto out_end; 2117 2118 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 2119 2120 return 0; 2121 2122 out_end: 2123 elf_end(kcore->elf); 2124 out_close: 2125 close(kcore->fd); 2126 unlink(filename); 2127 return -1; 2128 } 2129 2130 static void kcore__close(struct kcore *kcore) 2131 { 2132 elf_end(kcore->elf); 2133 close(kcore->fd); 2134 } 2135 2136 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 2137 { 2138 GElf_Ehdr *ehdr = &to->ehdr; 2139 GElf_Ehdr *kehdr = &from->ehdr; 2140 2141 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 2142 ehdr->e_type = kehdr->e_type; 2143 ehdr->e_machine = kehdr->e_machine; 2144 ehdr->e_version = kehdr->e_version; 2145 ehdr->e_entry = 0; 2146 ehdr->e_shoff = 0; 2147 ehdr->e_flags = kehdr->e_flags; 2148 ehdr->e_phnum = count; 2149 ehdr->e_shentsize = 0; 2150 ehdr->e_shnum = 0; 2151 ehdr->e_shstrndx = 0; 2152 2153 if (from->elfclass == ELFCLASS32) { 2154 ehdr->e_phoff = sizeof(Elf32_Ehdr); 2155 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 2156 ehdr->e_phentsize = sizeof(Elf32_Phdr); 2157 } else { 2158 ehdr->e_phoff = sizeof(Elf64_Ehdr); 2159 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 2160 ehdr->e_phentsize = sizeof(Elf64_Phdr); 2161 } 2162 2163 if (!gelf_update_ehdr(to->elf, ehdr)) 2164 return -1; 2165 2166 if (!gelf_newphdr(to->elf, count)) 2167 return -1; 2168 2169 return 0; 2170 } 2171 2172 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 2173 u64 addr, u64 len) 2174 { 2175 GElf_Phdr phdr = { 2176 .p_type = PT_LOAD, 2177 .p_flags = PF_R | PF_W | PF_X, 2178 .p_offset = offset, 2179 .p_vaddr = addr, 2180 .p_paddr = 0, 2181 .p_filesz = len, 2182 .p_memsz = len, 2183 .p_align = page_size, 2184 }; 2185 2186 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 2187 return -1; 2188 2189 return 0; 2190 } 2191 2192 static off_t kcore__write(struct kcore *kcore) 2193 { 2194 return elf_update(kcore->elf, ELF_C_WRITE); 2195 } 2196 2197 struct phdr_data { 2198 off_t offset; 2199 off_t rel; 2200 u64 addr; 2201 u64 len; 2202 struct list_head node; 2203 struct phdr_data *remaps; 2204 }; 2205 2206 struct sym_data { 2207 u64 addr; 2208 struct list_head node; 2209 }; 2210 2211 struct kcore_copy_info { 2212 u64 stext; 2213 u64 etext; 2214 u64 first_symbol; 2215 u64 last_symbol; 2216 u64 first_module; 2217 u64 first_module_symbol; 2218 u64 last_module_symbol; 2219 size_t phnum; 2220 struct list_head phdrs; 2221 struct list_head syms; 2222 }; 2223 2224 #define kcore_copy__for_each_phdr(k, p) \ 2225 list_for_each_entry((p), &(k)->phdrs, node) 2226 2227 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 2228 { 2229 struct phdr_data *p = zalloc(sizeof(*p)); 2230 2231 if (p) { 2232 p->addr = addr; 2233 p->len = len; 2234 p->offset = offset; 2235 } 2236 2237 return p; 2238 } 2239 2240 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 2241 u64 addr, u64 len, 2242 off_t offset) 2243 { 2244 struct phdr_data *p = phdr_data__new(addr, len, offset); 2245 2246 if (p) 2247 list_add_tail(&p->node, &kci->phdrs); 2248 2249 return p; 2250 } 2251 2252 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 2253 { 2254 struct phdr_data *p, *tmp; 2255 2256 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 2257 list_del_init(&p->node); 2258 free(p); 2259 } 2260 } 2261 2262 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 2263 u64 addr) 2264 { 2265 struct sym_data *s = zalloc(sizeof(*s)); 2266 2267 if (s) { 2268 s->addr = addr; 2269 list_add_tail(&s->node, &kci->syms); 2270 } 2271 2272 return s; 2273 } 2274 2275 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 2276 { 2277 struct sym_data *s, *tmp; 2278 2279 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 2280 list_del_init(&s->node); 2281 free(s); 2282 } 2283 } 2284 2285 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 2286 u64 start) 2287 { 2288 struct kcore_copy_info *kci = arg; 2289 2290 if (!kallsyms__is_function(type)) 2291 return 0; 2292 2293 if (strchr(name, '[')) { 2294 if (!kci->first_module_symbol || start < kci->first_module_symbol) 2295 kci->first_module_symbol = start; 2296 if (start > kci->last_module_symbol) 2297 kci->last_module_symbol = start; 2298 return 0; 2299 } 2300 2301 if (!kci->first_symbol || start < kci->first_symbol) 2302 kci->first_symbol = start; 2303 2304 if (!kci->last_symbol || start > kci->last_symbol) 2305 kci->last_symbol = start; 2306 2307 if (!strcmp(name, "_stext")) { 2308 kci->stext = start; 2309 return 0; 2310 } 2311 2312 if (!strcmp(name, "_etext")) { 2313 kci->etext = start; 2314 return 0; 2315 } 2316 2317 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 2318 return -1; 2319 2320 return 0; 2321 } 2322 2323 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 2324 const char *dir) 2325 { 2326 char kallsyms_filename[PATH_MAX]; 2327 2328 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 2329 2330 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 2331 return -1; 2332 2333 if (kallsyms__parse(kallsyms_filename, kci, 2334 kcore_copy__process_kallsyms) < 0) 2335 return -1; 2336 2337 return 0; 2338 } 2339 2340 static int kcore_copy__process_modules(void *arg, 2341 const char *name __maybe_unused, 2342 u64 start, u64 size __maybe_unused) 2343 { 2344 struct kcore_copy_info *kci = arg; 2345 2346 if (!kci->first_module || start < kci->first_module) 2347 kci->first_module = start; 2348 2349 return 0; 2350 } 2351 2352 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 2353 const char *dir) 2354 { 2355 char modules_filename[PATH_MAX]; 2356 2357 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 2358 2359 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 2360 return -1; 2361 2362 if (modules__parse(modules_filename, kci, 2363 kcore_copy__process_modules) < 0) 2364 return -1; 2365 2366 return 0; 2367 } 2368 2369 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 2370 u64 pgoff, u64 s, u64 e) 2371 { 2372 u64 len, offset; 2373 2374 if (s < start || s >= end) 2375 return 0; 2376 2377 offset = (s - start) + pgoff; 2378 len = e < end ? e - s : end - s; 2379 2380 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 2381 } 2382 2383 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 2384 { 2385 struct kcore_copy_info *kci = data; 2386 u64 end = start + len; 2387 struct sym_data *sdat; 2388 2389 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 2390 return -1; 2391 2392 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 2393 kci->last_module_symbol)) 2394 return -1; 2395 2396 list_for_each_entry(sdat, &kci->syms, node) { 2397 u64 s = round_down(sdat->addr, page_size); 2398 2399 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 2400 return -1; 2401 } 2402 2403 return 0; 2404 } 2405 2406 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 2407 { 2408 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 2409 return -1; 2410 2411 return 0; 2412 } 2413 2414 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 2415 { 2416 struct phdr_data *p, *k = NULL; 2417 u64 kend; 2418 2419 if (!kci->stext) 2420 return; 2421 2422 /* Find phdr that corresponds to the kernel map (contains stext) */ 2423 kcore_copy__for_each_phdr(kci, p) { 2424 u64 pend = p->addr + p->len - 1; 2425 2426 if (p->addr <= kci->stext && pend >= kci->stext) { 2427 k = p; 2428 break; 2429 } 2430 } 2431 2432 if (!k) 2433 return; 2434 2435 kend = k->offset + k->len; 2436 2437 /* Find phdrs that remap the kernel */ 2438 kcore_copy__for_each_phdr(kci, p) { 2439 u64 pend = p->offset + p->len; 2440 2441 if (p == k) 2442 continue; 2443 2444 if (p->offset >= k->offset && pend <= kend) 2445 p->remaps = k; 2446 } 2447 } 2448 2449 static void kcore_copy__layout(struct kcore_copy_info *kci) 2450 { 2451 struct phdr_data *p; 2452 off_t rel = 0; 2453 2454 kcore_copy__find_remaps(kci); 2455 2456 kcore_copy__for_each_phdr(kci, p) { 2457 if (!p->remaps) { 2458 p->rel = rel; 2459 rel += p->len; 2460 } 2461 kci->phnum += 1; 2462 } 2463 2464 kcore_copy__for_each_phdr(kci, p) { 2465 struct phdr_data *k = p->remaps; 2466 2467 if (k) 2468 p->rel = p->offset - k->offset + k->rel; 2469 } 2470 } 2471 2472 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 2473 Elf *elf) 2474 { 2475 if (kcore_copy__parse_kallsyms(kci, dir)) 2476 return -1; 2477 2478 if (kcore_copy__parse_modules(kci, dir)) 2479 return -1; 2480 2481 if (kci->stext) 2482 kci->stext = round_down(kci->stext, page_size); 2483 else 2484 kci->stext = round_down(kci->first_symbol, page_size); 2485 2486 if (kci->etext) { 2487 kci->etext = round_up(kci->etext, page_size); 2488 } else if (kci->last_symbol) { 2489 kci->etext = round_up(kci->last_symbol, page_size); 2490 kci->etext += page_size; 2491 } 2492 2493 if (kci->first_module_symbol && 2494 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 2495 kci->first_module = kci->first_module_symbol; 2496 2497 kci->first_module = round_down(kci->first_module, page_size); 2498 2499 if (kci->last_module_symbol) { 2500 kci->last_module_symbol = round_up(kci->last_module_symbol, 2501 page_size); 2502 kci->last_module_symbol += page_size; 2503 } 2504 2505 if (!kci->stext || !kci->etext) 2506 return -1; 2507 2508 if (kci->first_module && !kci->last_module_symbol) 2509 return -1; 2510 2511 if (kcore_copy__read_maps(kci, elf)) 2512 return -1; 2513 2514 kcore_copy__layout(kci); 2515 2516 return 0; 2517 } 2518 2519 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 2520 const char *name) 2521 { 2522 char from_filename[PATH_MAX]; 2523 char to_filename[PATH_MAX]; 2524 2525 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2526 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2527 2528 return copyfile_mode(from_filename, to_filename, 0400); 2529 } 2530 2531 static int kcore_copy__unlink(const char *dir, const char *name) 2532 { 2533 char filename[PATH_MAX]; 2534 2535 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 2536 2537 return unlink(filename); 2538 } 2539 2540 static int kcore_copy__compare_fds(int from, int to) 2541 { 2542 char *buf_from; 2543 char *buf_to; 2544 ssize_t ret; 2545 size_t len; 2546 int err = -1; 2547 2548 buf_from = malloc(page_size); 2549 buf_to = malloc(page_size); 2550 if (!buf_from || !buf_to) 2551 goto out; 2552 2553 while (1) { 2554 /* Use read because mmap won't work on proc files */ 2555 ret = read(from, buf_from, page_size); 2556 if (ret < 0) 2557 goto out; 2558 2559 if (!ret) 2560 break; 2561 2562 len = ret; 2563 2564 if (readn(to, buf_to, len) != (int)len) 2565 goto out; 2566 2567 if (memcmp(buf_from, buf_to, len)) 2568 goto out; 2569 } 2570 2571 err = 0; 2572 out: 2573 free(buf_to); 2574 free(buf_from); 2575 return err; 2576 } 2577 2578 static int kcore_copy__compare_files(const char *from_filename, 2579 const char *to_filename) 2580 { 2581 int from, to, err = -1; 2582 2583 from = open(from_filename, O_RDONLY); 2584 if (from < 0) 2585 return -1; 2586 2587 to = open(to_filename, O_RDONLY); 2588 if (to < 0) 2589 goto out_close_from; 2590 2591 err = kcore_copy__compare_fds(from, to); 2592 2593 close(to); 2594 out_close_from: 2595 close(from); 2596 return err; 2597 } 2598 2599 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 2600 const char *name) 2601 { 2602 char from_filename[PATH_MAX]; 2603 char to_filename[PATH_MAX]; 2604 2605 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2606 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2607 2608 return kcore_copy__compare_files(from_filename, to_filename); 2609 } 2610 2611 /** 2612 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 2613 * @from_dir: from directory 2614 * @to_dir: to directory 2615 * 2616 * This function copies kallsyms, modules and kcore files from one directory to 2617 * another. kallsyms and modules are copied entirely. Only code segments are 2618 * copied from kcore. It is assumed that two segments suffice: one for the 2619 * kernel proper and one for all the modules. The code segments are determined 2620 * from kallsyms and modules files. The kernel map starts at _stext or the 2621 * lowest function symbol, and ends at _etext or the highest function symbol. 2622 * The module map starts at the lowest module address and ends at the highest 2623 * module symbol. Start addresses are rounded down to the nearest page. End 2624 * addresses are rounded up to the nearest page. An extra page is added to the 2625 * highest kernel symbol and highest module symbol to, hopefully, encompass that 2626 * symbol too. Because it contains only code sections, the resulting kcore is 2627 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 2628 * is not the same for the kernel map and the modules map. That happens because 2629 * the data is copied adjacently whereas the original kcore has gaps. Finally, 2630 * kallsyms file is compared with its copy to check that modules have not been 2631 * loaded or unloaded while the copies were taking place. 2632 * 2633 * Return: %0 on success, %-1 on failure. 2634 */ 2635 int kcore_copy(const char *from_dir, const char *to_dir) 2636 { 2637 struct kcore kcore; 2638 struct kcore extract; 2639 int idx = 0, err = -1; 2640 off_t offset, sz; 2641 struct kcore_copy_info kci = { .stext = 0, }; 2642 char kcore_filename[PATH_MAX]; 2643 char extract_filename[PATH_MAX]; 2644 struct phdr_data *p; 2645 2646 INIT_LIST_HEAD(&kci.phdrs); 2647 INIT_LIST_HEAD(&kci.syms); 2648 2649 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 2650 return -1; 2651 2652 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 2653 goto out_unlink_kallsyms; 2654 2655 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 2656 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 2657 2658 if (kcore__open(&kcore, kcore_filename)) 2659 goto out_unlink_modules; 2660 2661 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 2662 goto out_kcore_close; 2663 2664 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 2665 goto out_kcore_close; 2666 2667 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 2668 goto out_extract_close; 2669 2670 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 2671 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 2672 offset = round_up(offset, page_size); 2673 2674 kcore_copy__for_each_phdr(&kci, p) { 2675 off_t offs = p->rel + offset; 2676 2677 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 2678 goto out_extract_close; 2679 } 2680 2681 sz = kcore__write(&extract); 2682 if (sz < 0 || sz > offset) 2683 goto out_extract_close; 2684 2685 kcore_copy__for_each_phdr(&kci, p) { 2686 off_t offs = p->rel + offset; 2687 2688 if (p->remaps) 2689 continue; 2690 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 2691 goto out_extract_close; 2692 } 2693 2694 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 2695 goto out_extract_close; 2696 2697 err = 0; 2698 2699 out_extract_close: 2700 kcore__close(&extract); 2701 if (err) 2702 unlink(extract_filename); 2703 out_kcore_close: 2704 kcore__close(&kcore); 2705 out_unlink_modules: 2706 if (err) 2707 kcore_copy__unlink(to_dir, "modules"); 2708 out_unlink_kallsyms: 2709 if (err) 2710 kcore_copy__unlink(to_dir, "kallsyms"); 2711 2712 kcore_copy__free_phdrs(&kci); 2713 kcore_copy__free_syms(&kci); 2714 2715 return err; 2716 } 2717 2718 int kcore_extract__create(struct kcore_extract *kce) 2719 { 2720 struct kcore kcore; 2721 struct kcore extract; 2722 size_t count = 1; 2723 int idx = 0, err = -1; 2724 off_t offset = page_size, sz; 2725 2726 if (kcore__open(&kcore, kce->kcore_filename)) 2727 return -1; 2728 2729 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 2730 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 2731 goto out_kcore_close; 2732 2733 if (kcore__copy_hdr(&kcore, &extract, count)) 2734 goto out_extract_close; 2735 2736 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 2737 goto out_extract_close; 2738 2739 sz = kcore__write(&extract); 2740 if (sz < 0 || sz > offset) 2741 goto out_extract_close; 2742 2743 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 2744 goto out_extract_close; 2745 2746 err = 0; 2747 2748 out_extract_close: 2749 kcore__close(&extract); 2750 if (err) 2751 unlink(kce->extract_filename); 2752 out_kcore_close: 2753 kcore__close(&kcore); 2754 2755 return err; 2756 } 2757 2758 void kcore_extract__delete(struct kcore_extract *kce) 2759 { 2760 unlink(kce->extract_filename); 2761 } 2762 2763 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2764 2765 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2766 { 2767 if (!base_off) 2768 return; 2769 2770 if (tmp->bit32) 2771 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2772 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2773 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2774 else 2775 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2776 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2777 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2778 } 2779 2780 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2781 GElf_Addr base_off) 2782 { 2783 if (!base_off) 2784 return; 2785 2786 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2787 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2788 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2789 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2790 } 2791 2792 /** 2793 * populate_sdt_note : Parse raw data and identify SDT note 2794 * @elf: elf of the opened file 2795 * @data: raw data of a section with description offset applied 2796 * @len: note description size 2797 * @type: type of the note 2798 * @sdt_notes: List to add the SDT note 2799 * 2800 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2801 * if its an SDT note, it appends to @sdt_notes list. 2802 */ 2803 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2804 struct list_head *sdt_notes) 2805 { 2806 const char *provider, *name, *args; 2807 struct sdt_note *tmp = NULL; 2808 GElf_Ehdr ehdr; 2809 GElf_Shdr shdr; 2810 int ret = -EINVAL; 2811 2812 union { 2813 Elf64_Addr a64[NR_ADDR]; 2814 Elf32_Addr a32[NR_ADDR]; 2815 } buf; 2816 2817 Elf_Data dst = { 2818 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2819 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2820 .d_off = 0, .d_align = 0 2821 }; 2822 Elf_Data src = { 2823 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2824 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2825 .d_align = 0 2826 }; 2827 2828 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2829 if (!tmp) { 2830 ret = -ENOMEM; 2831 goto out_err; 2832 } 2833 2834 INIT_LIST_HEAD(&tmp->note_list); 2835 2836 if (len < dst.d_size + 3) 2837 goto out_free_note; 2838 2839 /* Translation from file representation to memory representation */ 2840 if (gelf_xlatetom(*elf, &dst, &src, 2841 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2842 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2843 goto out_free_note; 2844 } 2845 2846 /* Populate the fields of sdt_note */ 2847 provider = data + dst.d_size; 2848 2849 name = (const char *)memchr(provider, '\0', data + len - provider); 2850 if (name++ == NULL) 2851 goto out_free_note; 2852 2853 tmp->provider = strdup(provider); 2854 if (!tmp->provider) { 2855 ret = -ENOMEM; 2856 goto out_free_note; 2857 } 2858 tmp->name = strdup(name); 2859 if (!tmp->name) { 2860 ret = -ENOMEM; 2861 goto out_free_prov; 2862 } 2863 2864 args = memchr(name, '\0', data + len - name); 2865 2866 /* 2867 * There is no argument if: 2868 * - We reached the end of the note; 2869 * - There is not enough room to hold a potential string; 2870 * - The argument string is empty or just contains ':'. 2871 */ 2872 if (args == NULL || data + len - args < 2 || 2873 args[1] == ':' || args[1] == '\0') 2874 tmp->args = NULL; 2875 else { 2876 tmp->args = strdup(++args); 2877 if (!tmp->args) { 2878 ret = -ENOMEM; 2879 goto out_free_name; 2880 } 2881 } 2882 2883 if (gelf_getclass(*elf) == ELFCLASS32) { 2884 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2885 tmp->bit32 = true; 2886 } else { 2887 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2888 tmp->bit32 = false; 2889 } 2890 2891 if (!gelf_getehdr(*elf, &ehdr)) { 2892 pr_debug("%s : cannot get elf header.\n", __func__); 2893 ret = -EBADF; 2894 goto out_free_args; 2895 } 2896 2897 /* Adjust the prelink effect : 2898 * Find out the .stapsdt.base section. 2899 * This scn will help us to handle prelinking (if present). 2900 * Compare the retrieved file offset of the base section with the 2901 * base address in the description of the SDT note. If its different, 2902 * then accordingly, adjust the note location. 2903 */ 2904 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2905 sdt_adjust_loc(tmp, shdr.sh_offset); 2906 2907 /* Adjust reference counter offset */ 2908 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2909 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2910 2911 list_add_tail(&tmp->note_list, sdt_notes); 2912 return 0; 2913 2914 out_free_args: 2915 zfree(&tmp->args); 2916 out_free_name: 2917 zfree(&tmp->name); 2918 out_free_prov: 2919 zfree(&tmp->provider); 2920 out_free_note: 2921 free(tmp); 2922 out_err: 2923 return ret; 2924 } 2925 2926 /** 2927 * construct_sdt_notes_list : constructs a list of SDT notes 2928 * @elf : elf to look into 2929 * @sdt_notes : empty list_head 2930 * 2931 * Scans the sections in 'elf' for the section 2932 * .note.stapsdt. It, then calls populate_sdt_note to find 2933 * out the SDT events and populates the 'sdt_notes'. 2934 */ 2935 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2936 { 2937 GElf_Ehdr ehdr; 2938 Elf_Scn *scn = NULL; 2939 Elf_Data *data; 2940 GElf_Shdr shdr; 2941 size_t shstrndx, next; 2942 GElf_Nhdr nhdr; 2943 size_t name_off, desc_off, offset; 2944 int ret = 0; 2945 2946 if (gelf_getehdr(elf, &ehdr) == NULL) { 2947 ret = -EBADF; 2948 goto out_ret; 2949 } 2950 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2951 ret = -EBADF; 2952 goto out_ret; 2953 } 2954 2955 /* Look for the required section */ 2956 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2957 if (!scn) { 2958 ret = -ENOENT; 2959 goto out_ret; 2960 } 2961 2962 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2963 ret = -ENOENT; 2964 goto out_ret; 2965 } 2966 2967 data = elf_getdata(scn, NULL); 2968 2969 /* Get the SDT notes */ 2970 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2971 &desc_off)) > 0; offset = next) { 2972 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2973 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2974 sizeof(SDT_NOTE_NAME))) { 2975 /* Check the type of the note */ 2976 if (nhdr.n_type != SDT_NOTE_TYPE) 2977 goto out_ret; 2978 2979 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2980 nhdr.n_descsz, sdt_notes); 2981 if (ret < 0) 2982 goto out_ret; 2983 } 2984 } 2985 if (list_empty(sdt_notes)) 2986 ret = -ENOENT; 2987 2988 out_ret: 2989 return ret; 2990 } 2991 2992 /** 2993 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2994 * @head : empty list_head 2995 * @target : file to find SDT notes from 2996 * 2997 * This opens the file, initializes 2998 * the ELF and then calls construct_sdt_notes_list. 2999 */ 3000 int get_sdt_note_list(struct list_head *head, const char *target) 3001 { 3002 Elf *elf; 3003 int fd, ret; 3004 3005 fd = open(target, O_RDONLY); 3006 if (fd < 0) 3007 return -EBADF; 3008 3009 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 3010 if (!elf) { 3011 ret = -EBADF; 3012 goto out_close; 3013 } 3014 ret = construct_sdt_notes_list(elf, head); 3015 elf_end(elf); 3016 out_close: 3017 close(fd); 3018 return ret; 3019 } 3020 3021 /** 3022 * cleanup_sdt_note_list : free the sdt notes' list 3023 * @sdt_notes: sdt notes' list 3024 * 3025 * Free up the SDT notes in @sdt_notes. 3026 * Returns the number of SDT notes free'd. 3027 */ 3028 int cleanup_sdt_note_list(struct list_head *sdt_notes) 3029 { 3030 struct sdt_note *tmp, *pos; 3031 int nr_free = 0; 3032 3033 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 3034 list_del_init(&pos->note_list); 3035 zfree(&pos->args); 3036 zfree(&pos->name); 3037 zfree(&pos->provider); 3038 free(pos); 3039 nr_free++; 3040 } 3041 return nr_free; 3042 } 3043 3044 /** 3045 * sdt_notes__get_count: Counts the number of sdt events 3046 * @start: list_head to sdt_notes list 3047 * 3048 * Returns the number of SDT notes in a list 3049 */ 3050 int sdt_notes__get_count(struct list_head *start) 3051 { 3052 struct sdt_note *sdt_ptr; 3053 int count = 0; 3054 3055 list_for_each_entry(sdt_ptr, start, note_list) 3056 count++; 3057 return count; 3058 } 3059 #endif 3060 3061 void symbol__elf_init(void) 3062 { 3063 elf_version(EV_CURRENT); 3064 } 3065