1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "compress.h" 11 #include "dso.h" 12 #include "map.h" 13 #include "maps.h" 14 #include "symbol.h" 15 #include "symsrc.h" 16 #include "machine.h" 17 #include "vdso.h" 18 #include "debug.h" 19 #include "util/copyfile.h" 20 #include <linux/ctype.h> 21 #include <linux/kernel.h> 22 #include <linux/zalloc.h> 23 #include <linux/string.h> 24 #include <symbol/kallsyms.h> 25 #include <internal/lib.h> 26 27 #ifdef HAVE_LIBBFD_SUPPORT 28 #define PACKAGE 'perf' 29 #include <bfd.h> 30 #endif 31 32 #if defined(HAVE_LIBBFD_SUPPORT) || defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 33 #ifndef DMGL_PARAMS 34 #define DMGL_PARAMS (1 << 0) /* Include function args */ 35 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */ 36 #endif 37 #endif 38 39 #ifndef EM_AARCH64 40 #define EM_AARCH64 183 /* ARM 64 bit */ 41 #endif 42 43 #ifndef EM_LOONGARCH 44 #define EM_LOONGARCH 258 45 #endif 46 47 #ifndef ELF32_ST_VISIBILITY 48 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 49 #endif 50 51 /* For ELF64 the definitions are the same. */ 52 #ifndef ELF64_ST_VISIBILITY 53 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 54 #endif 55 56 /* How to extract information held in the st_other field. */ 57 #ifndef GELF_ST_VISIBILITY 58 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 59 #endif 60 61 typedef Elf64_Nhdr GElf_Nhdr; 62 63 64 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 65 static int elf_getphdrnum(Elf *elf, size_t *dst) 66 { 67 GElf_Ehdr gehdr; 68 GElf_Ehdr *ehdr; 69 70 ehdr = gelf_getehdr(elf, &gehdr); 71 if (!ehdr) 72 return -1; 73 74 *dst = ehdr->e_phnum; 75 76 return 0; 77 } 78 #endif 79 80 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 81 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 82 { 83 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 84 return -1; 85 } 86 #endif 87 88 #ifndef NT_GNU_BUILD_ID 89 #define NT_GNU_BUILD_ID 3 90 #endif 91 92 /** 93 * elf_symtab__for_each_symbol - iterate thru all the symbols 94 * 95 * @syms: struct elf_symtab instance to iterate 96 * @idx: uint32_t idx 97 * @sym: GElf_Sym iterator 98 */ 99 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 100 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 101 idx < nr_syms; \ 102 idx++, gelf_getsym(syms, idx, &sym)) 103 104 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 105 { 106 return GELF_ST_TYPE(sym->st_info); 107 } 108 109 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 110 { 111 return GELF_ST_VISIBILITY(sym->st_other); 112 } 113 114 #ifndef STT_GNU_IFUNC 115 #define STT_GNU_IFUNC 10 116 #endif 117 118 static inline int elf_sym__is_function(const GElf_Sym *sym) 119 { 120 return (elf_sym__type(sym) == STT_FUNC || 121 elf_sym__type(sym) == STT_GNU_IFUNC) && 122 sym->st_name != 0 && 123 sym->st_shndx != SHN_UNDEF; 124 } 125 126 static inline bool elf_sym__is_object(const GElf_Sym *sym) 127 { 128 return elf_sym__type(sym) == STT_OBJECT && 129 sym->st_name != 0 && 130 sym->st_shndx != SHN_UNDEF; 131 } 132 133 static inline int elf_sym__is_label(const GElf_Sym *sym) 134 { 135 return elf_sym__type(sym) == STT_NOTYPE && 136 sym->st_name != 0 && 137 sym->st_shndx != SHN_UNDEF && 138 sym->st_shndx != SHN_ABS && 139 elf_sym__visibility(sym) != STV_HIDDEN && 140 elf_sym__visibility(sym) != STV_INTERNAL; 141 } 142 143 static bool elf_sym__filter(GElf_Sym *sym) 144 { 145 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 146 } 147 148 static inline const char *elf_sym__name(const GElf_Sym *sym, 149 const Elf_Data *symstrs) 150 { 151 return symstrs->d_buf + sym->st_name; 152 } 153 154 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 155 const Elf_Data *secstrs) 156 { 157 return secstrs->d_buf + shdr->sh_name; 158 } 159 160 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 161 const Elf_Data *secstrs) 162 { 163 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 164 } 165 166 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 167 const Elf_Data *secstrs) 168 { 169 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 170 } 171 172 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 173 { 174 return elf_sec__is_text(shdr, secstrs) || 175 elf_sec__is_data(shdr, secstrs); 176 } 177 178 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 179 { 180 Elf_Scn *sec = NULL; 181 GElf_Shdr shdr; 182 size_t cnt = 1; 183 184 while ((sec = elf_nextscn(elf, sec)) != NULL) { 185 gelf_getshdr(sec, &shdr); 186 187 if ((addr >= shdr.sh_addr) && 188 (addr < (shdr.sh_addr + shdr.sh_size))) 189 return cnt; 190 191 ++cnt; 192 } 193 194 return -1; 195 } 196 197 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 198 GElf_Shdr *shp, const char *name, size_t *idx) 199 { 200 Elf_Scn *sec = NULL; 201 size_t cnt = 1; 202 203 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 204 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 205 return NULL; 206 207 while ((sec = elf_nextscn(elf, sec)) != NULL) { 208 char *str; 209 210 gelf_getshdr(sec, shp); 211 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 212 if (str && !strcmp(name, str)) { 213 if (idx) 214 *idx = cnt; 215 return sec; 216 } 217 ++cnt; 218 } 219 220 return NULL; 221 } 222 223 bool filename__has_section(const char *filename, const char *sec) 224 { 225 int fd; 226 Elf *elf; 227 GElf_Ehdr ehdr; 228 GElf_Shdr shdr; 229 bool found = false; 230 231 fd = open(filename, O_RDONLY); 232 if (fd < 0) 233 return false; 234 235 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 236 if (elf == NULL) 237 goto out; 238 239 if (gelf_getehdr(elf, &ehdr) == NULL) 240 goto elf_out; 241 242 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL); 243 244 elf_out: 245 elf_end(elf); 246 out: 247 close(fd); 248 return found; 249 } 250 251 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr) 252 { 253 size_t i, phdrnum; 254 u64 sz; 255 256 if (elf_getphdrnum(elf, &phdrnum)) 257 return -1; 258 259 for (i = 0; i < phdrnum; i++) { 260 if (gelf_getphdr(elf, i, phdr) == NULL) 261 return -1; 262 263 if (phdr->p_type != PT_LOAD) 264 continue; 265 266 sz = max(phdr->p_memsz, phdr->p_filesz); 267 if (!sz) 268 continue; 269 270 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz)) 271 return 0; 272 } 273 274 /* Not found any valid program header */ 275 return -1; 276 } 277 278 struct rel_info { 279 u32 nr_entries; 280 u32 *sorted; 281 bool is_rela; 282 Elf_Data *reldata; 283 GElf_Rela rela; 284 GElf_Rel rel; 285 }; 286 287 static u32 get_rel_symidx(struct rel_info *ri, u32 idx) 288 { 289 idx = ri->sorted ? ri->sorted[idx] : idx; 290 if (ri->is_rela) { 291 gelf_getrela(ri->reldata, idx, &ri->rela); 292 return GELF_R_SYM(ri->rela.r_info); 293 } 294 gelf_getrel(ri->reldata, idx, &ri->rel); 295 return GELF_R_SYM(ri->rel.r_info); 296 } 297 298 static u64 get_rel_offset(struct rel_info *ri, u32 x) 299 { 300 if (ri->is_rela) { 301 GElf_Rela rela; 302 303 gelf_getrela(ri->reldata, x, &rela); 304 return rela.r_offset; 305 } else { 306 GElf_Rel rel; 307 308 gelf_getrel(ri->reldata, x, &rel); 309 return rel.r_offset; 310 } 311 } 312 313 static int rel_cmp(const void *a, const void *b, void *r) 314 { 315 struct rel_info *ri = r; 316 u64 a_offset = get_rel_offset(ri, *(const u32 *)a); 317 u64 b_offset = get_rel_offset(ri, *(const u32 *)b); 318 319 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0); 320 } 321 322 static int sort_rel(struct rel_info *ri) 323 { 324 size_t sz = sizeof(ri->sorted[0]); 325 u32 i; 326 327 ri->sorted = calloc(ri->nr_entries, sz); 328 if (!ri->sorted) 329 return -1; 330 for (i = 0; i < ri->nr_entries; i++) 331 ri->sorted[i] = i; 332 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri); 333 return 0; 334 } 335 336 /* 337 * For x86_64, the GNU linker is putting IFUNC information in the relocation 338 * addend. 339 */ 340 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri) 341 { 342 return ehdr->e_machine == EM_X86_64 && ri->is_rela && 343 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE; 344 } 345 346 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr, 347 struct rel_info *ri, char *buf, size_t buf_sz) 348 { 349 u64 addr = ri->rela.r_addend; 350 struct symbol *sym; 351 GElf_Phdr phdr; 352 353 if (!addend_may_be_ifunc(ehdr, ri)) 354 return false; 355 356 if (elf_read_program_header(elf, addr, &phdr)) 357 return false; 358 359 addr -= phdr.p_vaddr - phdr.p_offset; 360 361 sym = dso__find_symbol_nocache(dso, addr); 362 363 /* Expecting the address to be an IFUNC or IFUNC alias */ 364 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias)) 365 return false; 366 367 snprintf(buf, buf_sz, "%s@plt", sym->name); 368 369 return true; 370 } 371 372 static void exit_rel(struct rel_info *ri) 373 { 374 zfree(&ri->sorted); 375 } 376 377 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt, 378 u64 *plt_header_size, u64 *plt_entry_size) 379 { 380 switch (ehdr->e_machine) { 381 case EM_ARM: 382 *plt_header_size = 20; 383 *plt_entry_size = 12; 384 return true; 385 case EM_AARCH64: 386 *plt_header_size = 32; 387 *plt_entry_size = 16; 388 return true; 389 case EM_LOONGARCH: 390 *plt_header_size = 32; 391 *plt_entry_size = 16; 392 return true; 393 case EM_SPARC: 394 *plt_header_size = 48; 395 *plt_entry_size = 12; 396 return true; 397 case EM_SPARCV9: 398 *plt_header_size = 128; 399 *plt_entry_size = 32; 400 return true; 401 case EM_386: 402 case EM_X86_64: 403 *plt_entry_size = shdr_plt->sh_entsize; 404 /* Size is 8 or 16, if not, assume alignment indicates size */ 405 if (*plt_entry_size != 8 && *plt_entry_size != 16) 406 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16; 407 *plt_header_size = *plt_entry_size; 408 break; 409 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 410 *plt_header_size = shdr_plt->sh_entsize; 411 *plt_entry_size = shdr_plt->sh_entsize; 412 break; 413 } 414 if (*plt_entry_size) 415 return true; 416 pr_debug("Missing PLT entry size for %s\n", dso__long_name(dso)); 417 return false; 418 } 419 420 static bool machine_is_x86(GElf_Half e_machine) 421 { 422 return e_machine == EM_386 || e_machine == EM_X86_64; 423 } 424 425 struct rela_dyn { 426 GElf_Addr offset; 427 u32 sym_idx; 428 }; 429 430 struct rela_dyn_info { 431 struct dso *dso; 432 Elf_Data *plt_got_data; 433 u32 nr_entries; 434 struct rela_dyn *sorted; 435 Elf_Data *dynsym_data; 436 Elf_Data *dynstr_data; 437 Elf_Data *rela_dyn_data; 438 }; 439 440 static void exit_rela_dyn(struct rela_dyn_info *di) 441 { 442 zfree(&di->sorted); 443 } 444 445 static int cmp_offset(const void *a, const void *b) 446 { 447 const struct rela_dyn *va = a; 448 const struct rela_dyn *vb = b; 449 450 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0); 451 } 452 453 static int sort_rela_dyn(struct rela_dyn_info *di) 454 { 455 u32 i, n; 456 457 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0])); 458 if (!di->sorted) 459 return -1; 460 461 /* Get data for sorting: the offset and symbol index */ 462 for (i = 0, n = 0; i < di->nr_entries; i++) { 463 GElf_Rela rela; 464 u32 sym_idx; 465 466 gelf_getrela(di->rela_dyn_data, i, &rela); 467 sym_idx = GELF_R_SYM(rela.r_info); 468 if (sym_idx) { 469 di->sorted[n].sym_idx = sym_idx; 470 di->sorted[n].offset = rela.r_offset; 471 n += 1; 472 } 473 } 474 475 /* Sort by offset */ 476 di->nr_entries = n; 477 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset); 478 479 return 0; 480 } 481 482 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn) 483 { 484 GElf_Shdr rela_dyn_shdr; 485 GElf_Shdr shdr; 486 487 di->plt_got_data = elf_getdata(scn, NULL); 488 489 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL); 490 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize) 491 return; 492 493 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize; 494 di->rela_dyn_data = elf_getdata(scn, NULL); 495 496 scn = elf_getscn(elf, rela_dyn_shdr.sh_link); 497 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link) 498 return; 499 500 di->dynsym_data = elf_getdata(scn, NULL); 501 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL); 502 503 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data) 504 return; 505 506 /* Sort into offset order */ 507 sort_rela_dyn(di); 508 } 509 510 /* Get instruction displacement from a plt entry for x86_64 */ 511 static u32 get_x86_64_plt_disp(const u8 *p) 512 { 513 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa}; 514 int n = 0; 515 516 /* Skip endbr64 */ 517 if (!memcmp(p, endbr64, sizeof(endbr64))) 518 n += sizeof(endbr64); 519 /* Skip bnd prefix */ 520 if (p[n] == 0xf2) 521 n += 1; 522 /* jmp with 4-byte displacement */ 523 if (p[n] == 0xff && p[n + 1] == 0x25) { 524 u32 disp; 525 526 n += 2; 527 /* Also add offset from start of entry to end of instruction */ 528 memcpy(&disp, p + n, sizeof(disp)); 529 return n + 4 + le32toh(disp); 530 } 531 return 0; 532 } 533 534 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i, 535 struct rela_dyn_info *di, 536 char *buf, size_t buf_sz) 537 { 538 struct rela_dyn vi, *vr; 539 const char *sym_name; 540 char *demangled; 541 GElf_Sym sym; 542 bool result; 543 u32 disp; 544 545 if (!di->sorted) 546 return false; 547 548 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i); 549 if (!disp) 550 return false; 551 552 /* Compute target offset of the .plt.got entry */ 553 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp; 554 555 /* Find that offset in .rela.dyn (sorted by offset) */ 556 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset); 557 if (!vr) 558 return false; 559 560 /* Get the associated symbol */ 561 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym); 562 sym_name = elf_sym__name(&sym, di->dynstr_data); 563 demangled = dso__demangle_sym(di->dso, /*kmodule=*/0, sym_name); 564 if (demangled != NULL) 565 sym_name = demangled; 566 567 snprintf(buf, buf_sz, "%s@plt", sym_name); 568 569 result = *sym_name; 570 571 free(demangled); 572 573 return result; 574 } 575 576 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf, 577 GElf_Ehdr *ehdr, 578 char *buf, size_t buf_sz) 579 { 580 struct rela_dyn_info di = { .dso = dso }; 581 struct symbol *sym; 582 GElf_Shdr shdr; 583 Elf_Scn *scn; 584 int err = -1; 585 size_t i; 586 587 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL); 588 if (!scn || !shdr.sh_entsize) 589 return 0; 590 591 if (ehdr->e_machine == EM_X86_64) 592 get_rela_dyn_info(elf, ehdr, &di, scn); 593 594 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) { 595 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz)) 596 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i); 597 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf); 598 if (!sym) 599 goto out; 600 symbols__insert(dso__symbols(dso), sym); 601 } 602 err = 0; 603 out: 604 exit_rela_dyn(&di); 605 return err; 606 } 607 608 /* 609 * We need to check if we have a .dynsym, so that we can handle the 610 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 611 * .dynsym or .symtab). 612 * And always look at the original dso, not at debuginfo packages, that 613 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 614 */ 615 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 616 { 617 uint32_t idx; 618 GElf_Sym sym; 619 u64 plt_offset, plt_header_size, plt_entry_size; 620 GElf_Shdr shdr_plt, plt_sec_shdr; 621 struct symbol *f, *plt_sym; 622 GElf_Shdr shdr_rel_plt, shdr_dynsym; 623 Elf_Data *syms, *symstrs; 624 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 625 GElf_Ehdr ehdr; 626 char sympltname[1024]; 627 Elf *elf; 628 int nr = 0, err = -1; 629 struct rel_info ri = { .is_rela = false }; 630 bool lazy_plt; 631 632 elf = ss->elf; 633 ehdr = ss->ehdr; 634 635 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL)) 636 return 0; 637 638 /* 639 * A symbol from a previous section (e.g. .init) can have been expanded 640 * by symbols__fixup_end() to overlap .plt. Truncate it before adding 641 * a symbol for .plt header. 642 */ 643 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset); 644 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset) 645 f->end = shdr_plt.sh_offset; 646 647 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size)) 648 return 0; 649 650 /* Add a symbol for .plt header */ 651 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt"); 652 if (!plt_sym) 653 goto out_elf_end; 654 symbols__insert(dso__symbols(dso), plt_sym); 655 656 /* Only x86 has .plt.got */ 657 if (machine_is_x86(ehdr.e_machine) && 658 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname))) 659 goto out_elf_end; 660 661 /* Only x86 has .plt.sec */ 662 if (machine_is_x86(ehdr.e_machine) && 663 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) { 664 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size)) 665 return 0; 666 /* Extend .plt symbol to entire .plt */ 667 plt_sym->end = plt_sym->start + shdr_plt.sh_size; 668 /* Use .plt.sec offset */ 669 plt_offset = plt_sec_shdr.sh_offset; 670 lazy_plt = false; 671 } else { 672 plt_offset = shdr_plt.sh_offset; 673 lazy_plt = true; 674 } 675 676 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 677 ".rela.plt", NULL); 678 if (scn_plt_rel == NULL) { 679 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 680 ".rel.plt", NULL); 681 if (scn_plt_rel == NULL) 682 return 0; 683 } 684 685 if (shdr_rel_plt.sh_type != SHT_RELA && 686 shdr_rel_plt.sh_type != SHT_REL) 687 return 0; 688 689 if (!shdr_rel_plt.sh_link) 690 return 0; 691 692 if (shdr_rel_plt.sh_link == ss->dynsym_idx) { 693 scn_dynsym = ss->dynsym; 694 shdr_dynsym = ss->dynshdr; 695 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) { 696 /* 697 * A static executable can have a .plt due to IFUNCs, in which 698 * case .symtab is used not .dynsym. 699 */ 700 scn_dynsym = ss->symtab; 701 shdr_dynsym = ss->symshdr; 702 } else { 703 goto out_elf_end; 704 } 705 706 if (!scn_dynsym) 707 return 0; 708 709 /* 710 * Fetch the relocation section to find the idxes to the GOT 711 * and the symbols in the .dynsym they refer to. 712 */ 713 ri.reldata = elf_getdata(scn_plt_rel, NULL); 714 if (!ri.reldata) 715 goto out_elf_end; 716 717 syms = elf_getdata(scn_dynsym, NULL); 718 if (syms == NULL) 719 goto out_elf_end; 720 721 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 722 if (scn_symstrs == NULL) 723 goto out_elf_end; 724 725 symstrs = elf_getdata(scn_symstrs, NULL); 726 if (symstrs == NULL) 727 goto out_elf_end; 728 729 if (symstrs->d_size == 0) 730 goto out_elf_end; 731 732 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 733 734 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA; 735 736 if (lazy_plt) { 737 /* 738 * Assume a .plt with the same number of entries as the number 739 * of relocation entries is not lazy and does not have a header. 740 */ 741 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size) 742 dso__delete_symbol(dso, plt_sym); 743 else 744 plt_offset += plt_header_size; 745 } 746 747 /* 748 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get 749 * back in order. 750 */ 751 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri)) 752 goto out_elf_end; 753 754 for (idx = 0; idx < ri.nr_entries; idx++) { 755 const char *elf_name = NULL; 756 char *demangled = NULL; 757 758 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym); 759 760 elf_name = elf_sym__name(&sym, symstrs); 761 demangled = dso__demangle_sym(dso, /*kmodule=*/0, elf_name); 762 if (demangled) 763 elf_name = demangled; 764 if (*elf_name) 765 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name); 766 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname))) 767 snprintf(sympltname, sizeof(sympltname), 768 "offset_%#" PRIx64 "@plt", plt_offset); 769 free(demangled); 770 771 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname); 772 if (!f) 773 goto out_elf_end; 774 775 plt_offset += plt_entry_size; 776 symbols__insert(dso__symbols(dso), f); 777 ++nr; 778 } 779 780 err = 0; 781 out_elf_end: 782 exit_rel(&ri); 783 if (err == 0) 784 return nr; 785 pr_debug("%s: problems reading %s PLT info.\n", 786 __func__, dso__long_name(dso)); 787 return 0; 788 } 789 790 /* 791 * Align offset to 4 bytes as needed for note name and descriptor data. 792 */ 793 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 794 795 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 796 { 797 int err = -1; 798 GElf_Ehdr ehdr; 799 GElf_Shdr shdr; 800 Elf_Data *data; 801 Elf_Scn *sec; 802 Elf_Kind ek; 803 void *ptr; 804 805 if (size < BUILD_ID_SIZE) 806 goto out; 807 808 ek = elf_kind(elf); 809 if (ek != ELF_K_ELF) 810 goto out; 811 812 if (gelf_getehdr(elf, &ehdr) == NULL) { 813 pr_err("%s: cannot get elf header.\n", __func__); 814 goto out; 815 } 816 817 /* 818 * Check following sections for notes: 819 * '.note.gnu.build-id' 820 * '.notes' 821 * '.note' (VDSO specific) 822 */ 823 do { 824 sec = elf_section_by_name(elf, &ehdr, &shdr, 825 ".note.gnu.build-id", NULL); 826 if (sec) 827 break; 828 829 sec = elf_section_by_name(elf, &ehdr, &shdr, 830 ".notes", NULL); 831 if (sec) 832 break; 833 834 sec = elf_section_by_name(elf, &ehdr, &shdr, 835 ".note", NULL); 836 if (sec) 837 break; 838 839 return err; 840 841 } while (0); 842 843 data = elf_getdata(sec, NULL); 844 if (data == NULL) 845 goto out; 846 847 ptr = data->d_buf; 848 while (ptr < (data->d_buf + data->d_size)) { 849 GElf_Nhdr *nhdr = ptr; 850 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 851 descsz = NOTE_ALIGN(nhdr->n_descsz); 852 const char *name; 853 854 ptr += sizeof(*nhdr); 855 name = ptr; 856 ptr += namesz; 857 if (nhdr->n_type == NT_GNU_BUILD_ID && 858 nhdr->n_namesz == sizeof("GNU")) { 859 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 860 size_t sz = min(size, descsz); 861 memcpy(bf, ptr, sz); 862 memset(bf + sz, 0, size - sz); 863 err = sz; 864 break; 865 } 866 } 867 ptr += descsz; 868 } 869 870 out: 871 return err; 872 } 873 874 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT 875 876 static int read_build_id(const char *filename, struct build_id *bid, bool block) 877 { 878 size_t size = sizeof(bid->data); 879 int err = -1, fd; 880 bfd *abfd; 881 882 fd = open(filename, block ? O_RDONLY : (O_RDONLY | O_NONBLOCK)); 883 if (fd < 0) 884 return -1; 885 886 abfd = bfd_fdopenr(filename, /*target=*/NULL, fd); 887 if (!abfd) 888 return -1; 889 890 if (!bfd_check_format(abfd, bfd_object)) { 891 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 892 goto out_close; 893 } 894 895 if (!abfd->build_id || abfd->build_id->size > size) 896 goto out_close; 897 898 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size); 899 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size); 900 err = bid->size = abfd->build_id->size; 901 902 out_close: 903 bfd_close(abfd); 904 return err; 905 } 906 907 #else // HAVE_LIBBFD_BUILDID_SUPPORT 908 909 static int read_build_id(const char *filename, struct build_id *bid, bool block) 910 { 911 size_t size = sizeof(bid->data); 912 int fd, err = -1; 913 Elf *elf; 914 915 if (size < BUILD_ID_SIZE) 916 goto out; 917 918 fd = open(filename, block ? O_RDONLY : (O_RDONLY | O_NONBLOCK)); 919 if (fd < 0) 920 goto out; 921 922 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 923 if (elf == NULL) { 924 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 925 goto out_close; 926 } 927 928 err = elf_read_build_id(elf, bid->data, size); 929 if (err > 0) 930 bid->size = err; 931 932 elf_end(elf); 933 out_close: 934 close(fd); 935 out: 936 return err; 937 } 938 939 #endif // HAVE_LIBBFD_BUILDID_SUPPORT 940 941 int filename__read_build_id(const char *filename, struct build_id *bid, bool block) 942 { 943 struct kmod_path m = { .name = NULL, }; 944 char path[PATH_MAX]; 945 int err; 946 947 if (!filename) 948 return -EFAULT; 949 950 err = kmod_path__parse(&m, filename); 951 if (err) 952 return -1; 953 954 if (m.comp) { 955 int error = 0, fd; 956 957 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error); 958 if (fd < 0) { 959 pr_debug("Failed to decompress (error %d) %s\n", 960 error, filename); 961 return -1; 962 } 963 close(fd); 964 filename = path; 965 block = true; 966 } 967 968 err = read_build_id(filename, bid, block); 969 970 if (m.comp) 971 unlink(filename); 972 return err; 973 } 974 975 int sysfs__read_build_id(const char *filename, struct build_id *bid) 976 { 977 size_t size = sizeof(bid->data); 978 int fd, err = -1; 979 980 fd = open(filename, O_RDONLY); 981 if (fd < 0) 982 goto out; 983 984 while (1) { 985 char bf[BUFSIZ]; 986 GElf_Nhdr nhdr; 987 size_t namesz, descsz; 988 989 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 990 break; 991 992 namesz = NOTE_ALIGN(nhdr.n_namesz); 993 descsz = NOTE_ALIGN(nhdr.n_descsz); 994 if (nhdr.n_type == NT_GNU_BUILD_ID && 995 nhdr.n_namesz == sizeof("GNU")) { 996 if (read(fd, bf, namesz) != (ssize_t)namesz) 997 break; 998 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 999 size_t sz = min(descsz, size); 1000 if (read(fd, bid->data, sz) == (ssize_t)sz) { 1001 memset(bid->data + sz, 0, size - sz); 1002 bid->size = sz; 1003 err = 0; 1004 break; 1005 } 1006 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 1007 break; 1008 } else { 1009 int n = namesz + descsz; 1010 1011 if (n > (int)sizeof(bf)) { 1012 n = sizeof(bf); 1013 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 1014 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 1015 } 1016 if (read(fd, bf, n) != n) 1017 break; 1018 } 1019 } 1020 close(fd); 1021 out: 1022 return err; 1023 } 1024 1025 #ifdef HAVE_LIBBFD_SUPPORT 1026 1027 int filename__read_debuglink(const char *filename, char *debuglink, 1028 size_t size) 1029 { 1030 int err = -1; 1031 asection *section; 1032 bfd *abfd; 1033 1034 abfd = bfd_openr(filename, NULL); 1035 if (!abfd) 1036 return -1; 1037 1038 if (!bfd_check_format(abfd, bfd_object)) { 1039 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 1040 goto out_close; 1041 } 1042 1043 section = bfd_get_section_by_name(abfd, ".gnu_debuglink"); 1044 if (!section) 1045 goto out_close; 1046 1047 if (section->size > size) 1048 goto out_close; 1049 1050 if (!bfd_get_section_contents(abfd, section, debuglink, 0, 1051 section->size)) 1052 goto out_close; 1053 1054 err = 0; 1055 1056 out_close: 1057 bfd_close(abfd); 1058 return err; 1059 } 1060 1061 #else 1062 1063 int filename__read_debuglink(const char *filename, char *debuglink, 1064 size_t size) 1065 { 1066 int fd, err = -1; 1067 Elf *elf; 1068 GElf_Ehdr ehdr; 1069 GElf_Shdr shdr; 1070 Elf_Data *data; 1071 Elf_Scn *sec; 1072 Elf_Kind ek; 1073 1074 fd = open(filename, O_RDONLY); 1075 if (fd < 0) 1076 goto out; 1077 1078 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1079 if (elf == NULL) { 1080 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 1081 goto out_close; 1082 } 1083 1084 ek = elf_kind(elf); 1085 if (ek != ELF_K_ELF) 1086 goto out_elf_end; 1087 1088 if (gelf_getehdr(elf, &ehdr) == NULL) { 1089 pr_err("%s: cannot get elf header.\n", __func__); 1090 goto out_elf_end; 1091 } 1092 1093 sec = elf_section_by_name(elf, &ehdr, &shdr, 1094 ".gnu_debuglink", NULL); 1095 if (sec == NULL) 1096 goto out_elf_end; 1097 1098 data = elf_getdata(sec, NULL); 1099 if (data == NULL) 1100 goto out_elf_end; 1101 1102 /* the start of this section is a zero-terminated string */ 1103 strncpy(debuglink, data->d_buf, size); 1104 1105 err = 0; 1106 1107 out_elf_end: 1108 elf_end(elf); 1109 out_close: 1110 close(fd); 1111 out: 1112 return err; 1113 } 1114 1115 #endif 1116 1117 bool symsrc__possibly_runtime(struct symsrc *ss) 1118 { 1119 return ss->dynsym || ss->opdsec; 1120 } 1121 1122 bool symsrc__has_symtab(struct symsrc *ss) 1123 { 1124 return ss->symtab != NULL; 1125 } 1126 1127 void symsrc__destroy(struct symsrc *ss) 1128 { 1129 zfree(&ss->name); 1130 elf_end(ss->elf); 1131 close(ss->fd); 1132 } 1133 1134 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 1135 { 1136 /* 1137 * Usually vmlinux is an ELF file with type ET_EXEC for most 1138 * architectures; except Arm64 kernel is linked with option 1139 * '-share', so need to check type ET_DYN. 1140 */ 1141 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 1142 ehdr.e_type == ET_DYN; 1143 } 1144 1145 static Elf *read_gnu_debugdata(struct dso *dso, Elf *elf, const char *name, int *fd_ret) 1146 { 1147 Elf *elf_embedded; 1148 GElf_Ehdr ehdr; 1149 GElf_Shdr shdr; 1150 Elf_Scn *scn; 1151 Elf_Data *scn_data; 1152 FILE *wrapped; 1153 size_t shndx; 1154 char temp_filename[] = "/tmp/perf.gnu_debugdata.elf.XXXXXX"; 1155 int ret, temp_fd; 1156 1157 if (gelf_getehdr(elf, &ehdr) == NULL) { 1158 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 1159 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1160 return NULL; 1161 } 1162 1163 scn = elf_section_by_name(elf, &ehdr, &shdr, ".gnu_debugdata", &shndx); 1164 if (!scn) { 1165 *dso__load_errno(dso) = -ENOENT; 1166 return NULL; 1167 } 1168 1169 if (shdr.sh_type == SHT_NOBITS) { 1170 pr_debug("%s: .gnu_debugdata of ELF file %s has no data.\n", __func__, name); 1171 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1172 return NULL; 1173 } 1174 1175 scn_data = elf_rawdata(scn, NULL); 1176 if (!scn_data) { 1177 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__, 1178 name, elf_errmsg(-1)); 1179 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1180 return NULL; 1181 } 1182 1183 wrapped = fmemopen(scn_data->d_buf, scn_data->d_size, "r"); 1184 if (!wrapped) { 1185 pr_debug("%s: fmemopen: %s\n", __func__, strerror(errno)); 1186 *dso__load_errno(dso) = -errno; 1187 return NULL; 1188 } 1189 1190 temp_fd = mkstemp(temp_filename); 1191 if (temp_fd < 0) { 1192 pr_debug("%s: mkstemp: %s\n", __func__, strerror(errno)); 1193 *dso__load_errno(dso) = -errno; 1194 fclose(wrapped); 1195 return NULL; 1196 } 1197 unlink(temp_filename); 1198 1199 ret = lzma_decompress_stream_to_file(wrapped, temp_fd); 1200 fclose(wrapped); 1201 if (ret < 0) { 1202 *dso__load_errno(dso) = -errno; 1203 close(temp_fd); 1204 return NULL; 1205 } 1206 1207 elf_embedded = elf_begin(temp_fd, PERF_ELF_C_READ_MMAP, NULL); 1208 if (!elf_embedded) { 1209 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__, 1210 name, elf_errmsg(-1)); 1211 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1212 close(temp_fd); 1213 return NULL; 1214 } 1215 pr_debug("%s: using .gnu_debugdata of %s\n", __func__, name); 1216 *fd_ret = temp_fd; 1217 return elf_embedded; 1218 } 1219 1220 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 1221 enum dso_binary_type type) 1222 { 1223 GElf_Ehdr ehdr; 1224 Elf *elf; 1225 int fd; 1226 1227 if (dso__needs_decompress(dso)) { 1228 fd = dso__decompress_kmodule_fd(dso, name); 1229 if (fd < 0) 1230 return -1; 1231 1232 type = dso__symtab_type(dso); 1233 } else { 1234 fd = open(name, O_RDONLY); 1235 if (fd < 0) { 1236 *dso__load_errno(dso) = errno; 1237 return -1; 1238 } 1239 } 1240 1241 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1242 if (elf == NULL) { 1243 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 1244 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1245 goto out_close; 1246 } 1247 1248 if (type == DSO_BINARY_TYPE__GNU_DEBUGDATA) { 1249 int new_fd; 1250 Elf *embedded = read_gnu_debugdata(dso, elf, name, &new_fd); 1251 1252 if (!embedded) 1253 goto out_close; 1254 1255 elf_end(elf); 1256 close(fd); 1257 fd = new_fd; 1258 elf = embedded; 1259 } 1260 1261 if (gelf_getehdr(elf, &ehdr) == NULL) { 1262 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1263 pr_debug("%s: cannot get elf header.\n", __func__); 1264 goto out_elf_end; 1265 } 1266 1267 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 1268 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INTERNAL_ERROR; 1269 goto out_elf_end; 1270 } 1271 1272 /* Always reject images with a mismatched build-id: */ 1273 if (dso__has_build_id(dso) && !symbol_conf.ignore_vmlinux_buildid) { 1274 u8 build_id[BUILD_ID_SIZE]; 1275 struct build_id bid; 1276 int size; 1277 1278 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE); 1279 if (size <= 0) { 1280 *dso__load_errno(dso) = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 1281 goto out_elf_end; 1282 } 1283 1284 build_id__init(&bid, build_id, size); 1285 if (!dso__build_id_equal(dso, &bid)) { 1286 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 1287 *dso__load_errno(dso) = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 1288 goto out_elf_end; 1289 } 1290 } 1291 1292 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1293 1294 ss->symtab_idx = 0; 1295 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 1296 &ss->symtab_idx); 1297 if (ss->symshdr.sh_type != SHT_SYMTAB) 1298 ss->symtab = NULL; 1299 1300 ss->dynsym_idx = 0; 1301 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 1302 &ss->dynsym_idx); 1303 if (ss->dynshdr.sh_type != SHT_DYNSYM) 1304 ss->dynsym = NULL; 1305 1306 ss->opdidx = 0; 1307 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 1308 &ss->opdidx); 1309 if (ss->opdshdr.sh_type != SHT_PROGBITS) 1310 ss->opdsec = NULL; 1311 1312 if (dso__kernel(dso) == DSO_SPACE__USER) 1313 ss->adjust_symbols = true; 1314 else 1315 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 1316 1317 ss->name = strdup(name); 1318 if (!ss->name) { 1319 *dso__load_errno(dso) = errno; 1320 goto out_elf_end; 1321 } 1322 1323 ss->elf = elf; 1324 ss->fd = fd; 1325 ss->ehdr = ehdr; 1326 ss->type = type; 1327 1328 return 0; 1329 1330 out_elf_end: 1331 elf_end(elf); 1332 out_close: 1333 close(fd); 1334 return -1; 1335 } 1336 1337 static bool is_exe_text(int flags) 1338 { 1339 return (flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR); 1340 } 1341 1342 /* 1343 * Some executable module sections like .noinstr.text might be laid out with 1344 * .text so they can use the same mapping (memory address to file offset). 1345 * Check if that is the case. Refer to kernel layout_sections(). Return the 1346 * maximum offset. 1347 */ 1348 static u64 max_text_section(Elf *elf, GElf_Ehdr *ehdr) 1349 { 1350 Elf_Scn *sec = NULL; 1351 GElf_Shdr shdr; 1352 u64 offs = 0; 1353 1354 /* Doesn't work for some arch */ 1355 if (ehdr->e_machine == EM_PARISC || 1356 ehdr->e_machine == EM_ALPHA) 1357 return 0; 1358 1359 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1360 if (!elf_rawdata(elf_getscn(elf, ehdr->e_shstrndx), NULL)) 1361 return 0; 1362 1363 while ((sec = elf_nextscn(elf, sec)) != NULL) { 1364 char *sec_name; 1365 1366 if (!gelf_getshdr(sec, &shdr)) 1367 break; 1368 1369 if (!is_exe_text(shdr.sh_flags)) 1370 continue; 1371 1372 /* .init and .exit sections are not placed with .text */ 1373 sec_name = elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name); 1374 if (!sec_name || 1375 strstarts(sec_name, ".init") || 1376 strstarts(sec_name, ".exit")) 1377 break; 1378 1379 /* Must be next to previous, assumes .text is first */ 1380 if (offs && PERF_ALIGN(offs, shdr.sh_addralign ?: 1) != shdr.sh_offset) 1381 break; 1382 1383 offs = shdr.sh_offset + shdr.sh_size; 1384 } 1385 1386 return offs; 1387 } 1388 1389 /** 1390 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 1391 * @kmap: kernel maps and relocation reference symbol 1392 * 1393 * This function returns %true if we are dealing with the kernel maps and the 1394 * relocation reference symbol has not yet been found. Otherwise %false is 1395 * returned. 1396 */ 1397 static bool ref_reloc_sym_not_found(struct kmap *kmap) 1398 { 1399 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 1400 !kmap->ref_reloc_sym->unrelocated_addr; 1401 } 1402 1403 /** 1404 * ref_reloc - kernel relocation offset. 1405 * @kmap: kernel maps and relocation reference symbol 1406 * 1407 * This function returns the offset of kernel addresses as determined by using 1408 * the relocation reference symbol i.e. if the kernel has not been relocated 1409 * then the return value is zero. 1410 */ 1411 static u64 ref_reloc(struct kmap *kmap) 1412 { 1413 if (kmap && kmap->ref_reloc_sym && 1414 kmap->ref_reloc_sym->unrelocated_addr) 1415 return kmap->ref_reloc_sym->addr - 1416 kmap->ref_reloc_sym->unrelocated_addr; 1417 return 0; 1418 } 1419 1420 void __weak arch__sym_update(struct symbol *s __maybe_unused, 1421 GElf_Sym *sym __maybe_unused) { } 1422 1423 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 1424 GElf_Sym *sym, GElf_Shdr *shdr, 1425 struct maps *kmaps, struct kmap *kmap, 1426 struct dso **curr_dsop, 1427 const char *section_name, 1428 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel, 1429 u64 max_text_sh_offset) 1430 { 1431 struct dso *curr_dso = *curr_dsop; 1432 struct map *curr_map; 1433 char dso_name[PATH_MAX]; 1434 1435 /* Adjust symbol to map to file offset */ 1436 if (adjust_kernel_syms) 1437 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 1438 1439 if (strcmp(section_name, (dso__short_name(curr_dso) + dso__short_name_len(dso))) == 0) 1440 return 0; 1441 1442 if (strcmp(section_name, ".text") == 0) { 1443 /* 1444 * The initial kernel mapping is based on 1445 * kallsyms and identity maps. Overwrite it to 1446 * map to the kernel dso. 1447 */ 1448 if (*remap_kernel && dso__kernel(dso) && !kmodule) { 1449 *remap_kernel = false; 1450 map__set_start(map, shdr->sh_addr + ref_reloc(kmap)); 1451 map__set_end(map, map__start(map) + shdr->sh_size); 1452 map__set_pgoff(map, shdr->sh_offset); 1453 map__set_mapping_type(map, MAPPING_TYPE__DSO); 1454 /* Ensure maps are correctly ordered */ 1455 if (kmaps) { 1456 int err; 1457 struct map *tmp = map__get(map); 1458 1459 maps__remove(kmaps, map); 1460 err = maps__insert(kmaps, map); 1461 map__put(tmp); 1462 if (err) 1463 return err; 1464 } 1465 } 1466 1467 /* 1468 * The initial module mapping is based on 1469 * /proc/modules mapped to offset zero. 1470 * Overwrite it to map to the module dso. 1471 */ 1472 if (*remap_kernel && kmodule) { 1473 *remap_kernel = false; 1474 map__set_pgoff(map, shdr->sh_offset); 1475 } 1476 1477 dso__put(*curr_dsop); 1478 *curr_dsop = dso__get(dso); 1479 return 0; 1480 } 1481 1482 if (!kmap) 1483 return 0; 1484 1485 /* 1486 * perf does not record module section addresses except for .text, but 1487 * some sections can use the same mapping as .text. 1488 */ 1489 if (kmodule && adjust_kernel_syms && is_exe_text(shdr->sh_flags) && 1490 shdr->sh_offset <= max_text_sh_offset) { 1491 dso__put(*curr_dsop); 1492 *curr_dsop = dso__get(dso); 1493 return 0; 1494 } 1495 1496 snprintf(dso_name, sizeof(dso_name), "%s%s", dso__short_name(dso), section_name); 1497 1498 curr_map = maps__find_by_name(kmaps, dso_name); 1499 if (curr_map == NULL) { 1500 u64 start = sym->st_value; 1501 1502 if (kmodule) 1503 start += map__start(map) + shdr->sh_offset; 1504 1505 curr_dso = dso__new(dso_name); 1506 if (curr_dso == NULL) 1507 return -1; 1508 dso__set_kernel(curr_dso, dso__kernel(dso)); 1509 RC_CHK_ACCESS(curr_dso)->long_name = dso__long_name(dso); 1510 RC_CHK_ACCESS(curr_dso)->long_name_len = dso__long_name_len(dso); 1511 dso__set_binary_type(curr_dso, dso__binary_type(dso)); 1512 dso__set_adjust_symbols(curr_dso, dso__adjust_symbols(dso)); 1513 curr_map = map__new2(start, curr_dso); 1514 if (curr_map == NULL) { 1515 dso__put(curr_dso); 1516 return -1; 1517 } 1518 if (dso__kernel(curr_dso)) 1519 map__kmap(curr_map)->kmaps = kmaps; 1520 1521 if (adjust_kernel_syms) { 1522 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap)); 1523 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size); 1524 map__set_pgoff(curr_map, shdr->sh_offset); 1525 } else { 1526 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY); 1527 } 1528 dso__set_symtab_type(curr_dso, dso__symtab_type(dso)); 1529 if (maps__insert(kmaps, curr_map)) 1530 return -1; 1531 dsos__add(&maps__machine(kmaps)->dsos, curr_dso); 1532 dso__set_loaded(curr_dso); 1533 dso__put(*curr_dsop); 1534 *curr_dsop = curr_dso; 1535 } else { 1536 dso__put(*curr_dsop); 1537 *curr_dsop = dso__get(map__dso(curr_map)); 1538 } 1539 map__put(curr_map); 1540 1541 return 0; 1542 } 1543 1544 static int 1545 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1546 struct symsrc *runtime_ss, int kmodule, int dynsym) 1547 { 1548 struct kmap *kmap = dso__kernel(dso) ? map__kmap(map) : NULL; 1549 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 1550 struct dso *curr_dso = NULL; 1551 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym; 1552 uint32_t nr_syms; 1553 uint32_t idx; 1554 GElf_Ehdr ehdr; 1555 GElf_Shdr shdr; 1556 GElf_Shdr tshdr; 1557 Elf_Data *syms, *opddata = NULL; 1558 GElf_Sym sym; 1559 Elf_Scn *sec, *sec_strndx; 1560 Elf *elf; 1561 int nr = 0; 1562 bool remap_kernel = false, adjust_kernel_syms = false; 1563 u64 max_text_sh_offset = 0; 1564 1565 if (kmap && !kmaps) 1566 return -1; 1567 1568 elf = syms_ss->elf; 1569 ehdr = syms_ss->ehdr; 1570 if (dynsym) { 1571 sec = syms_ss->dynsym; 1572 shdr = syms_ss->dynshdr; 1573 } else { 1574 sec = syms_ss->symtab; 1575 shdr = syms_ss->symshdr; 1576 } 1577 1578 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1579 ".text", NULL)) { 1580 dso__set_text_offset(dso, tshdr.sh_addr - tshdr.sh_offset); 1581 dso__set_text_end(dso, tshdr.sh_offset + tshdr.sh_size); 1582 } 1583 1584 if (runtime_ss->opdsec) 1585 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1586 1587 syms = elf_getdata(sec, NULL); 1588 if (syms == NULL) 1589 goto out_elf_end; 1590 1591 sec = elf_getscn(elf, shdr.sh_link); 1592 if (sec == NULL) 1593 goto out_elf_end; 1594 1595 symstrs = elf_getdata(sec, NULL); 1596 if (symstrs == NULL) 1597 goto out_elf_end; 1598 1599 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1600 if (sec_strndx == NULL) 1601 goto out_elf_end; 1602 1603 secstrs_run = elf_getdata(sec_strndx, NULL); 1604 if (secstrs_run == NULL) 1605 goto out_elf_end; 1606 1607 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx); 1608 if (sec_strndx == NULL) 1609 goto out_elf_end; 1610 1611 secstrs_sym = elf_getdata(sec_strndx, NULL); 1612 if (secstrs_sym == NULL) 1613 goto out_elf_end; 1614 1615 nr_syms = shdr.sh_size / shdr.sh_entsize; 1616 1617 memset(&sym, 0, sizeof(sym)); 1618 1619 /* 1620 * The kernel relocation symbol is needed in advance in order to adjust 1621 * kernel maps correctly. 1622 */ 1623 if (ref_reloc_sym_not_found(kmap)) { 1624 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1625 const char *elf_name = elf_sym__name(&sym, symstrs); 1626 1627 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1628 continue; 1629 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1630 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr); 1631 break; 1632 } 1633 } 1634 1635 /* 1636 * Handle any relocation of vdso necessary because older kernels 1637 * attempted to prelink vdso to its virtual address. 1638 */ 1639 if (dso__is_vdso(dso)) 1640 map__set_reloc(map, map__start(map) - dso__text_offset(dso)); 1641 1642 dso__set_adjust_symbols(dso, runtime_ss->adjust_symbols || ref_reloc(kmap)); 1643 /* 1644 * Initial kernel and module mappings do not map to the dso. 1645 * Flag the fixups. 1646 */ 1647 if (dso__kernel(dso)) { 1648 remap_kernel = true; 1649 adjust_kernel_syms = dso__adjust_symbols(dso); 1650 } 1651 1652 if (kmodule && adjust_kernel_syms) 1653 max_text_sh_offset = max_text_section(runtime_ss->elf, &runtime_ss->ehdr); 1654 1655 curr_dso = dso__get(dso); 1656 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1657 struct symbol *f; 1658 const char *elf_name = elf_sym__name(&sym, symstrs); 1659 char *demangled = NULL; 1660 int is_label = elf_sym__is_label(&sym); 1661 const char *section_name; 1662 bool used_opd = false; 1663 1664 if (!is_label && !elf_sym__filter(&sym)) 1665 continue; 1666 1667 /* Reject ARM ELF "mapping symbols": these aren't unique and 1668 * don't identify functions, so will confuse the profile 1669 * output: */ 1670 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1671 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1672 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1673 continue; 1674 } 1675 1676 /* Reject RISCV ELF "mapping symbols" */ 1677 if (ehdr.e_machine == EM_RISCV) { 1678 if (elf_name[0] == '$' && strchr("dx", elf_name[1])) 1679 continue; 1680 } 1681 1682 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1683 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1684 u64 *opd = opddata->d_buf + offset; 1685 sym.st_value = DSO__SWAP(dso, u64, *opd); 1686 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1687 sym.st_value); 1688 used_opd = true; 1689 } 1690 1691 /* 1692 * When loading symbols in a data mapping, ABS symbols (which 1693 * has a value of SHN_ABS in its st_shndx) failed at 1694 * elf_getscn(). And it marks the loading as a failure so 1695 * already loaded symbols cannot be fixed up. 1696 * 1697 * I'm not sure what should be done. Just ignore them for now. 1698 * - Namhyung Kim 1699 */ 1700 if (sym.st_shndx == SHN_ABS) 1701 continue; 1702 1703 sec = elf_getscn(syms_ss->elf, sym.st_shndx); 1704 if (!sec) 1705 goto out_elf_end; 1706 1707 gelf_getshdr(sec, &shdr); 1708 1709 /* 1710 * If the attribute bit SHF_ALLOC is not set, the section 1711 * doesn't occupy memory during process execution. 1712 * E.g. ".gnu.warning.*" section is used by linker to generate 1713 * warnings when calling deprecated functions, the symbols in 1714 * the section aren't loaded to memory during process execution, 1715 * so skip them. 1716 */ 1717 if (!(shdr.sh_flags & SHF_ALLOC)) 1718 continue; 1719 1720 secstrs = secstrs_sym; 1721 1722 /* 1723 * We have to fallback to runtime when syms' section header has 1724 * NOBITS set. NOBITS results in file offset (sh_offset) not 1725 * being incremented. So sh_offset used below has different 1726 * values for syms (invalid) and runtime (valid). 1727 */ 1728 if (shdr.sh_type == SHT_NOBITS) { 1729 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1730 if (!sec) 1731 goto out_elf_end; 1732 1733 gelf_getshdr(sec, &shdr); 1734 secstrs = secstrs_run; 1735 } 1736 1737 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1738 continue; 1739 1740 section_name = elf_sec__name(&shdr, secstrs); 1741 1742 /* On ARM, symbols for thumb functions have 1 added to 1743 * the symbol address as a flag - remove it */ 1744 if ((ehdr.e_machine == EM_ARM) && 1745 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1746 (sym.st_value & 1)) 1747 --sym.st_value; 1748 1749 if (dso__kernel(dso)) { 1750 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, 1751 kmaps, kmap, &curr_dso, 1752 section_name, 1753 adjust_kernel_syms, 1754 kmodule, 1755 &remap_kernel, 1756 max_text_sh_offset)) 1757 goto out_elf_end; 1758 } else if ((used_opd && runtime_ss->adjust_symbols) || 1759 (!used_opd && syms_ss->adjust_symbols)) { 1760 GElf_Phdr phdr; 1761 1762 if (elf_read_program_header(runtime_ss->elf, 1763 (u64)sym.st_value, &phdr)) { 1764 pr_debug4("%s: failed to find program header for " 1765 "symbol: %s st_value: %#" PRIx64 "\n", 1766 __func__, elf_name, (u64)sym.st_value); 1767 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1768 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", 1769 __func__, (u64)sym.st_value, (u64)shdr.sh_addr, 1770 (u64)shdr.sh_offset); 1771 /* 1772 * Fail to find program header, let's rollback 1773 * to use shdr.sh_addr and shdr.sh_offset to 1774 * calibrate symbol's file address, though this 1775 * is not necessary for normal C ELF file, we 1776 * still need to handle java JIT symbols in this 1777 * case. 1778 */ 1779 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1780 } else { 1781 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1782 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n", 1783 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr, 1784 (u64)phdr.p_offset); 1785 sym.st_value -= phdr.p_vaddr - phdr.p_offset; 1786 } 1787 } 1788 1789 demangled = dso__demangle_sym(dso, kmodule, elf_name); 1790 if (demangled != NULL) 1791 elf_name = demangled; 1792 1793 f = symbol__new(sym.st_value, sym.st_size, 1794 GELF_ST_BIND(sym.st_info), 1795 GELF_ST_TYPE(sym.st_info), elf_name); 1796 free(demangled); 1797 if (!f) 1798 goto out_elf_end; 1799 1800 arch__sym_update(f, &sym); 1801 1802 __symbols__insert(dso__symbols(curr_dso), f, dso__kernel(dso)); 1803 nr++; 1804 } 1805 dso__put(curr_dso); 1806 1807 /* 1808 * For misannotated, zeroed, ASM function sizes. 1809 */ 1810 if (nr > 0) { 1811 symbols__fixup_end(dso__symbols(dso), false); 1812 symbols__fixup_duplicate(dso__symbols(dso)); 1813 if (kmap) { 1814 /* 1815 * We need to fixup this here too because we create new 1816 * maps here, for things like vsyscall sections. 1817 */ 1818 maps__fixup_end(kmaps); 1819 } 1820 } 1821 return nr; 1822 out_elf_end: 1823 dso__put(curr_dso); 1824 return -1; 1825 } 1826 1827 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1828 struct symsrc *runtime_ss, int kmodule) 1829 { 1830 int nr = 0; 1831 int err = -1; 1832 1833 dso__set_symtab_type(dso, syms_ss->type); 1834 dso__set_is_64_bit(dso, syms_ss->is_64_bit); 1835 dso__set_rel(dso, syms_ss->ehdr.e_type == ET_REL); 1836 1837 /* 1838 * Modules may already have symbols from kallsyms, but those symbols 1839 * have the wrong values for the dso maps, so remove them. 1840 */ 1841 if (kmodule && syms_ss->symtab) 1842 symbols__delete(dso__symbols(dso)); 1843 1844 if (!syms_ss->symtab) { 1845 /* 1846 * If the vmlinux is stripped, fail so we will fall back 1847 * to using kallsyms. The vmlinux runtime symbols aren't 1848 * of much use. 1849 */ 1850 if (dso__kernel(dso)) 1851 return err; 1852 } else { 1853 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1854 kmodule, 0); 1855 if (err < 0) 1856 return err; 1857 nr = err; 1858 } 1859 1860 if (syms_ss->dynsym) { 1861 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1862 kmodule, 1); 1863 if (err < 0) 1864 return err; 1865 nr += err; 1866 } 1867 1868 /* 1869 * The .gnu_debugdata is a special situation: it contains a symbol 1870 * table, but the runtime file may also contain dynsym entries which are 1871 * not present there. We need to load both. 1872 */ 1873 if (syms_ss->type == DSO_BINARY_TYPE__GNU_DEBUGDATA && runtime_ss->dynsym) { 1874 err = dso__load_sym_internal(dso, map, runtime_ss, runtime_ss, 1875 kmodule, 1); 1876 if (err < 0) 1877 return err; 1878 nr += err; 1879 } 1880 1881 return nr; 1882 } 1883 1884 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1885 { 1886 GElf_Phdr phdr; 1887 size_t i, phdrnum; 1888 int err; 1889 u64 sz; 1890 1891 if (elf_getphdrnum(elf, &phdrnum)) 1892 return -1; 1893 1894 for (i = 0; i < phdrnum; i++) { 1895 if (gelf_getphdr(elf, i, &phdr) == NULL) 1896 return -1; 1897 if (phdr.p_type != PT_LOAD) 1898 continue; 1899 if (exe) { 1900 if (!(phdr.p_flags & PF_X)) 1901 continue; 1902 } else { 1903 if (!(phdr.p_flags & PF_R)) 1904 continue; 1905 } 1906 sz = min(phdr.p_memsz, phdr.p_filesz); 1907 if (!sz) 1908 continue; 1909 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1910 if (err) 1911 return err; 1912 } 1913 return 0; 1914 } 1915 1916 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1917 bool *is_64_bit) 1918 { 1919 int err; 1920 Elf *elf; 1921 1922 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1923 if (elf == NULL) 1924 return -1; 1925 1926 if (is_64_bit) 1927 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1928 1929 err = elf_read_maps(elf, exe, mapfn, data); 1930 1931 elf_end(elf); 1932 return err; 1933 } 1934 1935 enum dso_type dso__type_fd(int fd) 1936 { 1937 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1938 GElf_Ehdr ehdr; 1939 Elf_Kind ek; 1940 Elf *elf; 1941 1942 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1943 if (elf == NULL) 1944 goto out; 1945 1946 ek = elf_kind(elf); 1947 if (ek != ELF_K_ELF) 1948 goto out_end; 1949 1950 if (gelf_getclass(elf) == ELFCLASS64) { 1951 dso_type = DSO__TYPE_64BIT; 1952 goto out_end; 1953 } 1954 1955 if (gelf_getehdr(elf, &ehdr) == NULL) 1956 goto out_end; 1957 1958 if (ehdr.e_machine == EM_X86_64) 1959 dso_type = DSO__TYPE_X32BIT; 1960 else 1961 dso_type = DSO__TYPE_32BIT; 1962 out_end: 1963 elf_end(elf); 1964 out: 1965 return dso_type; 1966 } 1967 1968 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1969 { 1970 ssize_t r; 1971 size_t n; 1972 int err = -1; 1973 char *buf = malloc(page_size); 1974 1975 if (buf == NULL) 1976 return -1; 1977 1978 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1979 goto out; 1980 1981 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1982 goto out; 1983 1984 while (len) { 1985 n = page_size; 1986 if (len < n) 1987 n = len; 1988 /* Use read because mmap won't work on proc files */ 1989 r = read(from, buf, n); 1990 if (r < 0) 1991 goto out; 1992 if (!r) 1993 break; 1994 n = r; 1995 r = write(to, buf, n); 1996 if (r < 0) 1997 goto out; 1998 if ((size_t)r != n) 1999 goto out; 2000 len -= n; 2001 } 2002 2003 err = 0; 2004 out: 2005 free(buf); 2006 return err; 2007 } 2008 2009 struct kcore { 2010 int fd; 2011 int elfclass; 2012 Elf *elf; 2013 GElf_Ehdr ehdr; 2014 }; 2015 2016 static int kcore__open(struct kcore *kcore, const char *filename) 2017 { 2018 GElf_Ehdr *ehdr; 2019 2020 kcore->fd = open(filename, O_RDONLY); 2021 if (kcore->fd == -1) 2022 return -1; 2023 2024 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 2025 if (!kcore->elf) 2026 goto out_close; 2027 2028 kcore->elfclass = gelf_getclass(kcore->elf); 2029 if (kcore->elfclass == ELFCLASSNONE) 2030 goto out_end; 2031 2032 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 2033 if (!ehdr) 2034 goto out_end; 2035 2036 return 0; 2037 2038 out_end: 2039 elf_end(kcore->elf); 2040 out_close: 2041 close(kcore->fd); 2042 return -1; 2043 } 2044 2045 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 2046 bool temp) 2047 { 2048 kcore->elfclass = elfclass; 2049 2050 if (temp) 2051 kcore->fd = mkstemp(filename); 2052 else 2053 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 2054 if (kcore->fd == -1) 2055 return -1; 2056 2057 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 2058 if (!kcore->elf) 2059 goto out_close; 2060 2061 if (!gelf_newehdr(kcore->elf, elfclass)) 2062 goto out_end; 2063 2064 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 2065 2066 return 0; 2067 2068 out_end: 2069 elf_end(kcore->elf); 2070 out_close: 2071 close(kcore->fd); 2072 unlink(filename); 2073 return -1; 2074 } 2075 2076 static void kcore__close(struct kcore *kcore) 2077 { 2078 elf_end(kcore->elf); 2079 close(kcore->fd); 2080 } 2081 2082 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 2083 { 2084 GElf_Ehdr *ehdr = &to->ehdr; 2085 GElf_Ehdr *kehdr = &from->ehdr; 2086 2087 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 2088 ehdr->e_type = kehdr->e_type; 2089 ehdr->e_machine = kehdr->e_machine; 2090 ehdr->e_version = kehdr->e_version; 2091 ehdr->e_entry = 0; 2092 ehdr->e_shoff = 0; 2093 ehdr->e_flags = kehdr->e_flags; 2094 ehdr->e_phnum = count; 2095 ehdr->e_shentsize = 0; 2096 ehdr->e_shnum = 0; 2097 ehdr->e_shstrndx = 0; 2098 2099 if (from->elfclass == ELFCLASS32) { 2100 ehdr->e_phoff = sizeof(Elf32_Ehdr); 2101 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 2102 ehdr->e_phentsize = sizeof(Elf32_Phdr); 2103 } else { 2104 ehdr->e_phoff = sizeof(Elf64_Ehdr); 2105 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 2106 ehdr->e_phentsize = sizeof(Elf64_Phdr); 2107 } 2108 2109 if (!gelf_update_ehdr(to->elf, ehdr)) 2110 return -1; 2111 2112 if (!gelf_newphdr(to->elf, count)) 2113 return -1; 2114 2115 return 0; 2116 } 2117 2118 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 2119 u64 addr, u64 len) 2120 { 2121 GElf_Phdr phdr = { 2122 .p_type = PT_LOAD, 2123 .p_flags = PF_R | PF_W | PF_X, 2124 .p_offset = offset, 2125 .p_vaddr = addr, 2126 .p_paddr = 0, 2127 .p_filesz = len, 2128 .p_memsz = len, 2129 .p_align = page_size, 2130 }; 2131 2132 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 2133 return -1; 2134 2135 return 0; 2136 } 2137 2138 static off_t kcore__write(struct kcore *kcore) 2139 { 2140 return elf_update(kcore->elf, ELF_C_WRITE); 2141 } 2142 2143 struct phdr_data { 2144 off_t offset; 2145 off_t rel; 2146 u64 addr; 2147 u64 len; 2148 struct list_head node; 2149 struct phdr_data *remaps; 2150 }; 2151 2152 struct sym_data { 2153 u64 addr; 2154 struct list_head node; 2155 }; 2156 2157 struct kcore_copy_info { 2158 u64 stext; 2159 u64 etext; 2160 u64 first_symbol; 2161 u64 last_symbol; 2162 u64 first_module; 2163 u64 first_module_symbol; 2164 u64 last_module_symbol; 2165 size_t phnum; 2166 struct list_head phdrs; 2167 struct list_head syms; 2168 }; 2169 2170 #define kcore_copy__for_each_phdr(k, p) \ 2171 list_for_each_entry((p), &(k)->phdrs, node) 2172 2173 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 2174 { 2175 struct phdr_data *p = zalloc(sizeof(*p)); 2176 2177 if (p) { 2178 p->addr = addr; 2179 p->len = len; 2180 p->offset = offset; 2181 } 2182 2183 return p; 2184 } 2185 2186 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 2187 u64 addr, u64 len, 2188 off_t offset) 2189 { 2190 struct phdr_data *p = phdr_data__new(addr, len, offset); 2191 2192 if (p) 2193 list_add_tail(&p->node, &kci->phdrs); 2194 2195 return p; 2196 } 2197 2198 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 2199 { 2200 struct phdr_data *p, *tmp; 2201 2202 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 2203 list_del_init(&p->node); 2204 free(p); 2205 } 2206 } 2207 2208 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 2209 u64 addr) 2210 { 2211 struct sym_data *s = zalloc(sizeof(*s)); 2212 2213 if (s) { 2214 s->addr = addr; 2215 list_add_tail(&s->node, &kci->syms); 2216 } 2217 2218 return s; 2219 } 2220 2221 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 2222 { 2223 struct sym_data *s, *tmp; 2224 2225 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 2226 list_del_init(&s->node); 2227 free(s); 2228 } 2229 } 2230 2231 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 2232 u64 start) 2233 { 2234 struct kcore_copy_info *kci = arg; 2235 2236 if (!kallsyms__is_function(type)) 2237 return 0; 2238 2239 if (strchr(name, '[')) { 2240 if (!kci->first_module_symbol || start < kci->first_module_symbol) 2241 kci->first_module_symbol = start; 2242 if (start > kci->last_module_symbol) 2243 kci->last_module_symbol = start; 2244 return 0; 2245 } 2246 2247 if (!kci->first_symbol || start < kci->first_symbol) 2248 kci->first_symbol = start; 2249 2250 if (!kci->last_symbol || start > kci->last_symbol) 2251 kci->last_symbol = start; 2252 2253 if (!strcmp(name, "_stext")) { 2254 kci->stext = start; 2255 return 0; 2256 } 2257 2258 if (!strcmp(name, "_etext")) { 2259 kci->etext = start; 2260 return 0; 2261 } 2262 2263 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 2264 return -1; 2265 2266 return 0; 2267 } 2268 2269 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 2270 const char *dir) 2271 { 2272 char kallsyms_filename[PATH_MAX]; 2273 2274 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 2275 2276 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 2277 return -1; 2278 2279 if (kallsyms__parse(kallsyms_filename, kci, 2280 kcore_copy__process_kallsyms) < 0) 2281 return -1; 2282 2283 return 0; 2284 } 2285 2286 static int kcore_copy__process_modules(void *arg, 2287 const char *name __maybe_unused, 2288 u64 start, u64 size __maybe_unused) 2289 { 2290 struct kcore_copy_info *kci = arg; 2291 2292 if (!kci->first_module || start < kci->first_module) 2293 kci->first_module = start; 2294 2295 return 0; 2296 } 2297 2298 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 2299 const char *dir) 2300 { 2301 char modules_filename[PATH_MAX]; 2302 2303 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 2304 2305 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 2306 return -1; 2307 2308 if (modules__parse(modules_filename, kci, 2309 kcore_copy__process_modules) < 0) 2310 return -1; 2311 2312 return 0; 2313 } 2314 2315 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 2316 u64 pgoff, u64 s, u64 e) 2317 { 2318 u64 len, offset; 2319 2320 if (s < start || s >= end) 2321 return 0; 2322 2323 offset = (s - start) + pgoff; 2324 len = e < end ? e - s : end - s; 2325 2326 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 2327 } 2328 2329 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 2330 { 2331 struct kcore_copy_info *kci = data; 2332 u64 end = start + len; 2333 struct sym_data *sdat; 2334 2335 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 2336 return -1; 2337 2338 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 2339 kci->last_module_symbol)) 2340 return -1; 2341 2342 list_for_each_entry(sdat, &kci->syms, node) { 2343 u64 s = round_down(sdat->addr, page_size); 2344 2345 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 2346 return -1; 2347 } 2348 2349 return 0; 2350 } 2351 2352 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 2353 { 2354 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 2355 return -1; 2356 2357 return 0; 2358 } 2359 2360 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 2361 { 2362 struct phdr_data *p, *k = NULL; 2363 u64 kend; 2364 2365 if (!kci->stext) 2366 return; 2367 2368 /* Find phdr that corresponds to the kernel map (contains stext) */ 2369 kcore_copy__for_each_phdr(kci, p) { 2370 u64 pend = p->addr + p->len - 1; 2371 2372 if (p->addr <= kci->stext && pend >= kci->stext) { 2373 k = p; 2374 break; 2375 } 2376 } 2377 2378 if (!k) 2379 return; 2380 2381 kend = k->offset + k->len; 2382 2383 /* Find phdrs that remap the kernel */ 2384 kcore_copy__for_each_phdr(kci, p) { 2385 u64 pend = p->offset + p->len; 2386 2387 if (p == k) 2388 continue; 2389 2390 if (p->offset >= k->offset && pend <= kend) 2391 p->remaps = k; 2392 } 2393 } 2394 2395 static void kcore_copy__layout(struct kcore_copy_info *kci) 2396 { 2397 struct phdr_data *p; 2398 off_t rel = 0; 2399 2400 kcore_copy__find_remaps(kci); 2401 2402 kcore_copy__for_each_phdr(kci, p) { 2403 if (!p->remaps) { 2404 p->rel = rel; 2405 rel += p->len; 2406 } 2407 kci->phnum += 1; 2408 } 2409 2410 kcore_copy__for_each_phdr(kci, p) { 2411 struct phdr_data *k = p->remaps; 2412 2413 if (k) 2414 p->rel = p->offset - k->offset + k->rel; 2415 } 2416 } 2417 2418 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 2419 Elf *elf) 2420 { 2421 if (kcore_copy__parse_kallsyms(kci, dir)) 2422 return -1; 2423 2424 if (kcore_copy__parse_modules(kci, dir)) 2425 return -1; 2426 2427 if (kci->stext) 2428 kci->stext = round_down(kci->stext, page_size); 2429 else 2430 kci->stext = round_down(kci->first_symbol, page_size); 2431 2432 if (kci->etext) { 2433 kci->etext = round_up(kci->etext, page_size); 2434 } else if (kci->last_symbol) { 2435 kci->etext = round_up(kci->last_symbol, page_size); 2436 kci->etext += page_size; 2437 } 2438 2439 if (kci->first_module_symbol && 2440 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 2441 kci->first_module = kci->first_module_symbol; 2442 2443 kci->first_module = round_down(kci->first_module, page_size); 2444 2445 if (kci->last_module_symbol) { 2446 kci->last_module_symbol = round_up(kci->last_module_symbol, 2447 page_size); 2448 kci->last_module_symbol += page_size; 2449 } 2450 2451 if (!kci->stext || !kci->etext) 2452 return -1; 2453 2454 if (kci->first_module && !kci->last_module_symbol) 2455 return -1; 2456 2457 if (kcore_copy__read_maps(kci, elf)) 2458 return -1; 2459 2460 kcore_copy__layout(kci); 2461 2462 return 0; 2463 } 2464 2465 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 2466 const char *name) 2467 { 2468 char from_filename[PATH_MAX]; 2469 char to_filename[PATH_MAX]; 2470 2471 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2472 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2473 2474 return copyfile_mode(from_filename, to_filename, 0400); 2475 } 2476 2477 static int kcore_copy__unlink(const char *dir, const char *name) 2478 { 2479 char filename[PATH_MAX]; 2480 2481 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 2482 2483 return unlink(filename); 2484 } 2485 2486 static int kcore_copy__compare_fds(int from, int to) 2487 { 2488 char *buf_from; 2489 char *buf_to; 2490 ssize_t ret; 2491 size_t len; 2492 int err = -1; 2493 2494 buf_from = malloc(page_size); 2495 buf_to = malloc(page_size); 2496 if (!buf_from || !buf_to) 2497 goto out; 2498 2499 while (1) { 2500 /* Use read because mmap won't work on proc files */ 2501 ret = read(from, buf_from, page_size); 2502 if (ret < 0) 2503 goto out; 2504 2505 if (!ret) 2506 break; 2507 2508 len = ret; 2509 2510 if (readn(to, buf_to, len) != (int)len) 2511 goto out; 2512 2513 if (memcmp(buf_from, buf_to, len)) 2514 goto out; 2515 } 2516 2517 err = 0; 2518 out: 2519 free(buf_to); 2520 free(buf_from); 2521 return err; 2522 } 2523 2524 static int kcore_copy__compare_files(const char *from_filename, 2525 const char *to_filename) 2526 { 2527 int from, to, err = -1; 2528 2529 from = open(from_filename, O_RDONLY); 2530 if (from < 0) 2531 return -1; 2532 2533 to = open(to_filename, O_RDONLY); 2534 if (to < 0) 2535 goto out_close_from; 2536 2537 err = kcore_copy__compare_fds(from, to); 2538 2539 close(to); 2540 out_close_from: 2541 close(from); 2542 return err; 2543 } 2544 2545 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 2546 const char *name) 2547 { 2548 char from_filename[PATH_MAX]; 2549 char to_filename[PATH_MAX]; 2550 2551 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2552 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2553 2554 return kcore_copy__compare_files(from_filename, to_filename); 2555 } 2556 2557 /** 2558 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 2559 * @from_dir: from directory 2560 * @to_dir: to directory 2561 * 2562 * This function copies kallsyms, modules and kcore files from one directory to 2563 * another. kallsyms and modules are copied entirely. Only code segments are 2564 * copied from kcore. It is assumed that two segments suffice: one for the 2565 * kernel proper and one for all the modules. The code segments are determined 2566 * from kallsyms and modules files. The kernel map starts at _stext or the 2567 * lowest function symbol, and ends at _etext or the highest function symbol. 2568 * The module map starts at the lowest module address and ends at the highest 2569 * module symbol. Start addresses are rounded down to the nearest page. End 2570 * addresses are rounded up to the nearest page. An extra page is added to the 2571 * highest kernel symbol and highest module symbol to, hopefully, encompass that 2572 * symbol too. Because it contains only code sections, the resulting kcore is 2573 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 2574 * is not the same for the kernel map and the modules map. That happens because 2575 * the data is copied adjacently whereas the original kcore has gaps. Finally, 2576 * kallsyms file is compared with its copy to check that modules have not been 2577 * loaded or unloaded while the copies were taking place. 2578 * 2579 * Return: %0 on success, %-1 on failure. 2580 */ 2581 int kcore_copy(const char *from_dir, const char *to_dir) 2582 { 2583 struct kcore kcore; 2584 struct kcore extract; 2585 int idx = 0, err = -1; 2586 off_t offset, sz; 2587 struct kcore_copy_info kci = { .stext = 0, }; 2588 char kcore_filename[PATH_MAX]; 2589 char extract_filename[PATH_MAX]; 2590 struct phdr_data *p; 2591 2592 INIT_LIST_HEAD(&kci.phdrs); 2593 INIT_LIST_HEAD(&kci.syms); 2594 2595 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 2596 return -1; 2597 2598 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 2599 goto out_unlink_kallsyms; 2600 2601 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 2602 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 2603 2604 if (kcore__open(&kcore, kcore_filename)) 2605 goto out_unlink_modules; 2606 2607 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 2608 goto out_kcore_close; 2609 2610 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 2611 goto out_kcore_close; 2612 2613 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 2614 goto out_extract_close; 2615 2616 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 2617 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 2618 offset = round_up(offset, page_size); 2619 2620 kcore_copy__for_each_phdr(&kci, p) { 2621 off_t offs = p->rel + offset; 2622 2623 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 2624 goto out_extract_close; 2625 } 2626 2627 sz = kcore__write(&extract); 2628 if (sz < 0 || sz > offset) 2629 goto out_extract_close; 2630 2631 kcore_copy__for_each_phdr(&kci, p) { 2632 off_t offs = p->rel + offset; 2633 2634 if (p->remaps) 2635 continue; 2636 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 2637 goto out_extract_close; 2638 } 2639 2640 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 2641 goto out_extract_close; 2642 2643 err = 0; 2644 2645 out_extract_close: 2646 kcore__close(&extract); 2647 if (err) 2648 unlink(extract_filename); 2649 out_kcore_close: 2650 kcore__close(&kcore); 2651 out_unlink_modules: 2652 if (err) 2653 kcore_copy__unlink(to_dir, "modules"); 2654 out_unlink_kallsyms: 2655 if (err) 2656 kcore_copy__unlink(to_dir, "kallsyms"); 2657 2658 kcore_copy__free_phdrs(&kci); 2659 kcore_copy__free_syms(&kci); 2660 2661 return err; 2662 } 2663 2664 int kcore_extract__create(struct kcore_extract *kce) 2665 { 2666 struct kcore kcore; 2667 struct kcore extract; 2668 size_t count = 1; 2669 int idx = 0, err = -1; 2670 off_t offset = page_size, sz; 2671 2672 if (kcore__open(&kcore, kce->kcore_filename)) 2673 return -1; 2674 2675 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 2676 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 2677 goto out_kcore_close; 2678 2679 if (kcore__copy_hdr(&kcore, &extract, count)) 2680 goto out_extract_close; 2681 2682 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 2683 goto out_extract_close; 2684 2685 sz = kcore__write(&extract); 2686 if (sz < 0 || sz > offset) 2687 goto out_extract_close; 2688 2689 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 2690 goto out_extract_close; 2691 2692 err = 0; 2693 2694 out_extract_close: 2695 kcore__close(&extract); 2696 if (err) 2697 unlink(kce->extract_filename); 2698 out_kcore_close: 2699 kcore__close(&kcore); 2700 2701 return err; 2702 } 2703 2704 void kcore_extract__delete(struct kcore_extract *kce) 2705 { 2706 unlink(kce->extract_filename); 2707 } 2708 2709 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2710 2711 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2712 { 2713 if (!base_off) 2714 return; 2715 2716 if (tmp->bit32) 2717 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2718 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2719 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2720 else 2721 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2722 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2723 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2724 } 2725 2726 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2727 GElf_Addr base_off) 2728 { 2729 if (!base_off) 2730 return; 2731 2732 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2733 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2734 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2735 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2736 } 2737 2738 /** 2739 * populate_sdt_note : Parse raw data and identify SDT note 2740 * @elf: elf of the opened file 2741 * @data: raw data of a section with description offset applied 2742 * @len: note description size 2743 * @type: type of the note 2744 * @sdt_notes: List to add the SDT note 2745 * 2746 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2747 * if its an SDT note, it appends to @sdt_notes list. 2748 */ 2749 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2750 struct list_head *sdt_notes) 2751 { 2752 const char *provider, *name, *args; 2753 struct sdt_note *tmp = NULL; 2754 GElf_Ehdr ehdr; 2755 GElf_Shdr shdr; 2756 int ret = -EINVAL; 2757 2758 union { 2759 Elf64_Addr a64[NR_ADDR]; 2760 Elf32_Addr a32[NR_ADDR]; 2761 } buf; 2762 2763 Elf_Data dst = { 2764 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2765 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2766 .d_off = 0, .d_align = 0 2767 }; 2768 Elf_Data src = { 2769 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2770 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2771 .d_align = 0 2772 }; 2773 2774 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2775 if (!tmp) { 2776 ret = -ENOMEM; 2777 goto out_err; 2778 } 2779 2780 INIT_LIST_HEAD(&tmp->note_list); 2781 2782 if (len < dst.d_size + 3) 2783 goto out_free_note; 2784 2785 /* Translation from file representation to memory representation */ 2786 if (gelf_xlatetom(*elf, &dst, &src, 2787 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2788 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2789 goto out_free_note; 2790 } 2791 2792 /* Populate the fields of sdt_note */ 2793 provider = data + dst.d_size; 2794 2795 name = (const char *)memchr(provider, '\0', data + len - provider); 2796 if (name++ == NULL) 2797 goto out_free_note; 2798 2799 tmp->provider = strdup(provider); 2800 if (!tmp->provider) { 2801 ret = -ENOMEM; 2802 goto out_free_note; 2803 } 2804 tmp->name = strdup(name); 2805 if (!tmp->name) { 2806 ret = -ENOMEM; 2807 goto out_free_prov; 2808 } 2809 2810 args = memchr(name, '\0', data + len - name); 2811 2812 /* 2813 * There is no argument if: 2814 * - We reached the end of the note; 2815 * - There is not enough room to hold a potential string; 2816 * - The argument string is empty or just contains ':'. 2817 */ 2818 if (args == NULL || data + len - args < 2 || 2819 args[1] == ':' || args[1] == '\0') 2820 tmp->args = NULL; 2821 else { 2822 tmp->args = strdup(++args); 2823 if (!tmp->args) { 2824 ret = -ENOMEM; 2825 goto out_free_name; 2826 } 2827 } 2828 2829 if (gelf_getclass(*elf) == ELFCLASS32) { 2830 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2831 tmp->bit32 = true; 2832 } else { 2833 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2834 tmp->bit32 = false; 2835 } 2836 2837 if (!gelf_getehdr(*elf, &ehdr)) { 2838 pr_debug("%s : cannot get elf header.\n", __func__); 2839 ret = -EBADF; 2840 goto out_free_args; 2841 } 2842 2843 /* Adjust the prelink effect : 2844 * Find out the .stapsdt.base section. 2845 * This scn will help us to handle prelinking (if present). 2846 * Compare the retrieved file offset of the base section with the 2847 * base address in the description of the SDT note. If its different, 2848 * then accordingly, adjust the note location. 2849 */ 2850 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2851 sdt_adjust_loc(tmp, shdr.sh_offset); 2852 2853 /* Adjust reference counter offset */ 2854 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2855 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2856 2857 list_add_tail(&tmp->note_list, sdt_notes); 2858 return 0; 2859 2860 out_free_args: 2861 zfree(&tmp->args); 2862 out_free_name: 2863 zfree(&tmp->name); 2864 out_free_prov: 2865 zfree(&tmp->provider); 2866 out_free_note: 2867 free(tmp); 2868 out_err: 2869 return ret; 2870 } 2871 2872 /** 2873 * construct_sdt_notes_list : constructs a list of SDT notes 2874 * @elf : elf to look into 2875 * @sdt_notes : empty list_head 2876 * 2877 * Scans the sections in 'elf' for the section 2878 * .note.stapsdt. It, then calls populate_sdt_note to find 2879 * out the SDT events and populates the 'sdt_notes'. 2880 */ 2881 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2882 { 2883 GElf_Ehdr ehdr; 2884 Elf_Scn *scn = NULL; 2885 Elf_Data *data; 2886 GElf_Shdr shdr; 2887 size_t shstrndx, next; 2888 GElf_Nhdr nhdr; 2889 size_t name_off, desc_off, offset; 2890 int ret = 0; 2891 2892 if (gelf_getehdr(elf, &ehdr) == NULL) { 2893 ret = -EBADF; 2894 goto out_ret; 2895 } 2896 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2897 ret = -EBADF; 2898 goto out_ret; 2899 } 2900 2901 /* Look for the required section */ 2902 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2903 if (!scn) { 2904 ret = -ENOENT; 2905 goto out_ret; 2906 } 2907 2908 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2909 ret = -ENOENT; 2910 goto out_ret; 2911 } 2912 2913 data = elf_getdata(scn, NULL); 2914 2915 /* Get the SDT notes */ 2916 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2917 &desc_off)) > 0; offset = next) { 2918 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2919 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2920 sizeof(SDT_NOTE_NAME))) { 2921 /* Check the type of the note */ 2922 if (nhdr.n_type != SDT_NOTE_TYPE) 2923 goto out_ret; 2924 2925 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2926 nhdr.n_descsz, sdt_notes); 2927 if (ret < 0) 2928 goto out_ret; 2929 } 2930 } 2931 if (list_empty(sdt_notes)) 2932 ret = -ENOENT; 2933 2934 out_ret: 2935 return ret; 2936 } 2937 2938 /** 2939 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2940 * @head : empty list_head 2941 * @target : file to find SDT notes from 2942 * 2943 * This opens the file, initializes 2944 * the ELF and then calls construct_sdt_notes_list. 2945 */ 2946 int get_sdt_note_list(struct list_head *head, const char *target) 2947 { 2948 Elf *elf; 2949 int fd, ret; 2950 2951 fd = open(target, O_RDONLY); 2952 if (fd < 0) 2953 return -EBADF; 2954 2955 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2956 if (!elf) { 2957 ret = -EBADF; 2958 goto out_close; 2959 } 2960 ret = construct_sdt_notes_list(elf, head); 2961 elf_end(elf); 2962 out_close: 2963 close(fd); 2964 return ret; 2965 } 2966 2967 /** 2968 * cleanup_sdt_note_list : free the sdt notes' list 2969 * @sdt_notes: sdt notes' list 2970 * 2971 * Free up the SDT notes in @sdt_notes. 2972 * Returns the number of SDT notes free'd. 2973 */ 2974 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2975 { 2976 struct sdt_note *tmp, *pos; 2977 int nr_free = 0; 2978 2979 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2980 list_del_init(&pos->note_list); 2981 zfree(&pos->args); 2982 zfree(&pos->name); 2983 zfree(&pos->provider); 2984 free(pos); 2985 nr_free++; 2986 } 2987 return nr_free; 2988 } 2989 2990 /** 2991 * sdt_notes__get_count: Counts the number of sdt events 2992 * @start: list_head to sdt_notes list 2993 * 2994 * Returns the number of SDT notes in a list 2995 */ 2996 int sdt_notes__get_count(struct list_head *start) 2997 { 2998 struct sdt_note *sdt_ptr; 2999 int count = 0; 3000 3001 list_for_each_entry(sdt_ptr, start, note_list) 3002 count++; 3003 return count; 3004 } 3005 #endif 3006 3007 void symbol__elf_init(void) 3008 { 3009 elf_version(EV_CURRENT); 3010 } 3011