1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "dso.h" 11 #include "map.h" 12 #include "maps.h" 13 #include "symbol.h" 14 #include "symsrc.h" 15 #include "demangle-cxx.h" 16 #include "demangle-ocaml.h" 17 #include "demangle-java.h" 18 #include "demangle-rust.h" 19 #include "machine.h" 20 #include "vdso.h" 21 #include "debug.h" 22 #include "util/copyfile.h" 23 #include <linux/ctype.h> 24 #include <linux/kernel.h> 25 #include <linux/zalloc.h> 26 #include <linux/string.h> 27 #include <symbol/kallsyms.h> 28 #include <internal/lib.h> 29 30 #ifdef HAVE_LIBBFD_SUPPORT 31 #define PACKAGE 'perf' 32 #include <bfd.h> 33 #endif 34 35 #if defined(HAVE_LIBBFD_SUPPORT) || defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 36 #ifndef DMGL_PARAMS 37 #define DMGL_PARAMS (1 << 0) /* Include function args */ 38 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */ 39 #endif 40 #endif 41 42 #ifndef EM_AARCH64 43 #define EM_AARCH64 183 /* ARM 64 bit */ 44 #endif 45 46 #ifndef EM_LOONGARCH 47 #define EM_LOONGARCH 258 48 #endif 49 50 #ifndef ELF32_ST_VISIBILITY 51 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 52 #endif 53 54 /* For ELF64 the definitions are the same. */ 55 #ifndef ELF64_ST_VISIBILITY 56 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 57 #endif 58 59 /* How to extract information held in the st_other field. */ 60 #ifndef GELF_ST_VISIBILITY 61 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 62 #endif 63 64 typedef Elf64_Nhdr GElf_Nhdr; 65 66 67 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 68 static int elf_getphdrnum(Elf *elf, size_t *dst) 69 { 70 GElf_Ehdr gehdr; 71 GElf_Ehdr *ehdr; 72 73 ehdr = gelf_getehdr(elf, &gehdr); 74 if (!ehdr) 75 return -1; 76 77 *dst = ehdr->e_phnum; 78 79 return 0; 80 } 81 #endif 82 83 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 84 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 85 { 86 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 87 return -1; 88 } 89 #endif 90 91 #ifndef NT_GNU_BUILD_ID 92 #define NT_GNU_BUILD_ID 3 93 #endif 94 95 /** 96 * elf_symtab__for_each_symbol - iterate thru all the symbols 97 * 98 * @syms: struct elf_symtab instance to iterate 99 * @idx: uint32_t idx 100 * @sym: GElf_Sym iterator 101 */ 102 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 103 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 104 idx < nr_syms; \ 105 idx++, gelf_getsym(syms, idx, &sym)) 106 107 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 108 { 109 return GELF_ST_TYPE(sym->st_info); 110 } 111 112 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 113 { 114 return GELF_ST_VISIBILITY(sym->st_other); 115 } 116 117 #ifndef STT_GNU_IFUNC 118 #define STT_GNU_IFUNC 10 119 #endif 120 121 static inline int elf_sym__is_function(const GElf_Sym *sym) 122 { 123 return (elf_sym__type(sym) == STT_FUNC || 124 elf_sym__type(sym) == STT_GNU_IFUNC) && 125 sym->st_name != 0 && 126 sym->st_shndx != SHN_UNDEF; 127 } 128 129 static inline bool elf_sym__is_object(const GElf_Sym *sym) 130 { 131 return elf_sym__type(sym) == STT_OBJECT && 132 sym->st_name != 0 && 133 sym->st_shndx != SHN_UNDEF; 134 } 135 136 static inline int elf_sym__is_label(const GElf_Sym *sym) 137 { 138 return elf_sym__type(sym) == STT_NOTYPE && 139 sym->st_name != 0 && 140 sym->st_shndx != SHN_UNDEF && 141 sym->st_shndx != SHN_ABS && 142 elf_sym__visibility(sym) != STV_HIDDEN && 143 elf_sym__visibility(sym) != STV_INTERNAL; 144 } 145 146 static bool elf_sym__filter(GElf_Sym *sym) 147 { 148 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 149 } 150 151 static inline const char *elf_sym__name(const GElf_Sym *sym, 152 const Elf_Data *symstrs) 153 { 154 return symstrs->d_buf + sym->st_name; 155 } 156 157 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 158 const Elf_Data *secstrs) 159 { 160 return secstrs->d_buf + shdr->sh_name; 161 } 162 163 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 164 const Elf_Data *secstrs) 165 { 166 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 167 } 168 169 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 170 const Elf_Data *secstrs) 171 { 172 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 173 } 174 175 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 176 { 177 return elf_sec__is_text(shdr, secstrs) || 178 elf_sec__is_data(shdr, secstrs); 179 } 180 181 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 182 { 183 Elf_Scn *sec = NULL; 184 GElf_Shdr shdr; 185 size_t cnt = 1; 186 187 while ((sec = elf_nextscn(elf, sec)) != NULL) { 188 gelf_getshdr(sec, &shdr); 189 190 if ((addr >= shdr.sh_addr) && 191 (addr < (shdr.sh_addr + shdr.sh_size))) 192 return cnt; 193 194 ++cnt; 195 } 196 197 return -1; 198 } 199 200 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 201 GElf_Shdr *shp, const char *name, size_t *idx) 202 { 203 Elf_Scn *sec = NULL; 204 size_t cnt = 1; 205 206 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 207 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 208 return NULL; 209 210 while ((sec = elf_nextscn(elf, sec)) != NULL) { 211 char *str; 212 213 gelf_getshdr(sec, shp); 214 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 215 if (str && !strcmp(name, str)) { 216 if (idx) 217 *idx = cnt; 218 return sec; 219 } 220 ++cnt; 221 } 222 223 return NULL; 224 } 225 226 bool filename__has_section(const char *filename, const char *sec) 227 { 228 int fd; 229 Elf *elf; 230 GElf_Ehdr ehdr; 231 GElf_Shdr shdr; 232 bool found = false; 233 234 fd = open(filename, O_RDONLY); 235 if (fd < 0) 236 return false; 237 238 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 239 if (elf == NULL) 240 goto out; 241 242 if (gelf_getehdr(elf, &ehdr) == NULL) 243 goto elf_out; 244 245 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL); 246 247 elf_out: 248 elf_end(elf); 249 out: 250 close(fd); 251 return found; 252 } 253 254 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr) 255 { 256 size_t i, phdrnum; 257 u64 sz; 258 259 if (elf_getphdrnum(elf, &phdrnum)) 260 return -1; 261 262 for (i = 0; i < phdrnum; i++) { 263 if (gelf_getphdr(elf, i, phdr) == NULL) 264 return -1; 265 266 if (phdr->p_type != PT_LOAD) 267 continue; 268 269 sz = max(phdr->p_memsz, phdr->p_filesz); 270 if (!sz) 271 continue; 272 273 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz)) 274 return 0; 275 } 276 277 /* Not found any valid program header */ 278 return -1; 279 } 280 281 static bool want_demangle(bool is_kernel_sym) 282 { 283 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 284 } 285 286 /* 287 * Demangle C++ function signature, typically replaced by demangle-cxx.cpp 288 * version. 289 */ 290 __weak char *cxx_demangle_sym(const char *str __maybe_unused, bool params __maybe_unused, 291 bool modifiers __maybe_unused) 292 { 293 #ifdef HAVE_LIBBFD_SUPPORT 294 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0); 295 296 return bfd_demangle(NULL, str, flags); 297 #elif defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 298 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0); 299 300 return cplus_demangle(str, flags); 301 #else 302 return NULL; 303 #endif 304 } 305 306 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 307 { 308 char *demangled = NULL; 309 310 /* 311 * We need to figure out if the object was created from C++ sources 312 * DWARF DW_compile_unit has this, but we don't always have access 313 * to it... 314 */ 315 if (!want_demangle(dso__kernel(dso) || kmodule)) 316 return demangled; 317 318 demangled = cxx_demangle_sym(elf_name, verbose > 0, verbose > 0); 319 if (demangled == NULL) { 320 demangled = ocaml_demangle_sym(elf_name); 321 if (demangled == NULL) { 322 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 323 } 324 } 325 else if (rust_is_mangled(demangled)) 326 /* 327 * Input to Rust demangling is the BFD-demangled 328 * name which it Rust-demangles in place. 329 */ 330 rust_demangle_sym(demangled); 331 332 return demangled; 333 } 334 335 struct rel_info { 336 u32 nr_entries; 337 u32 *sorted; 338 bool is_rela; 339 Elf_Data *reldata; 340 GElf_Rela rela; 341 GElf_Rel rel; 342 }; 343 344 static u32 get_rel_symidx(struct rel_info *ri, u32 idx) 345 { 346 idx = ri->sorted ? ri->sorted[idx] : idx; 347 if (ri->is_rela) { 348 gelf_getrela(ri->reldata, idx, &ri->rela); 349 return GELF_R_SYM(ri->rela.r_info); 350 } 351 gelf_getrel(ri->reldata, idx, &ri->rel); 352 return GELF_R_SYM(ri->rel.r_info); 353 } 354 355 static u64 get_rel_offset(struct rel_info *ri, u32 x) 356 { 357 if (ri->is_rela) { 358 GElf_Rela rela; 359 360 gelf_getrela(ri->reldata, x, &rela); 361 return rela.r_offset; 362 } else { 363 GElf_Rel rel; 364 365 gelf_getrel(ri->reldata, x, &rel); 366 return rel.r_offset; 367 } 368 } 369 370 static int rel_cmp(const void *a, const void *b, void *r) 371 { 372 struct rel_info *ri = r; 373 u64 a_offset = get_rel_offset(ri, *(const u32 *)a); 374 u64 b_offset = get_rel_offset(ri, *(const u32 *)b); 375 376 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0); 377 } 378 379 static int sort_rel(struct rel_info *ri) 380 { 381 size_t sz = sizeof(ri->sorted[0]); 382 u32 i; 383 384 ri->sorted = calloc(ri->nr_entries, sz); 385 if (!ri->sorted) 386 return -1; 387 for (i = 0; i < ri->nr_entries; i++) 388 ri->sorted[i] = i; 389 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri); 390 return 0; 391 } 392 393 /* 394 * For x86_64, the GNU linker is putting IFUNC information in the relocation 395 * addend. 396 */ 397 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri) 398 { 399 return ehdr->e_machine == EM_X86_64 && ri->is_rela && 400 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE; 401 } 402 403 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr, 404 struct rel_info *ri, char *buf, size_t buf_sz) 405 { 406 u64 addr = ri->rela.r_addend; 407 struct symbol *sym; 408 GElf_Phdr phdr; 409 410 if (!addend_may_be_ifunc(ehdr, ri)) 411 return false; 412 413 if (elf_read_program_header(elf, addr, &phdr)) 414 return false; 415 416 addr -= phdr.p_vaddr - phdr.p_offset; 417 418 sym = dso__find_symbol_nocache(dso, addr); 419 420 /* Expecting the address to be an IFUNC or IFUNC alias */ 421 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias)) 422 return false; 423 424 snprintf(buf, buf_sz, "%s@plt", sym->name); 425 426 return true; 427 } 428 429 static void exit_rel(struct rel_info *ri) 430 { 431 zfree(&ri->sorted); 432 } 433 434 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt, 435 u64 *plt_header_size, u64 *plt_entry_size) 436 { 437 switch (ehdr->e_machine) { 438 case EM_ARM: 439 *plt_header_size = 20; 440 *plt_entry_size = 12; 441 return true; 442 case EM_AARCH64: 443 *plt_header_size = 32; 444 *plt_entry_size = 16; 445 return true; 446 case EM_LOONGARCH: 447 *plt_header_size = 32; 448 *plt_entry_size = 16; 449 return true; 450 case EM_SPARC: 451 *plt_header_size = 48; 452 *plt_entry_size = 12; 453 return true; 454 case EM_SPARCV9: 455 *plt_header_size = 128; 456 *plt_entry_size = 32; 457 return true; 458 case EM_386: 459 case EM_X86_64: 460 *plt_entry_size = shdr_plt->sh_entsize; 461 /* Size is 8 or 16, if not, assume alignment indicates size */ 462 if (*plt_entry_size != 8 && *plt_entry_size != 16) 463 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16; 464 *plt_header_size = *plt_entry_size; 465 break; 466 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 467 *plt_header_size = shdr_plt->sh_entsize; 468 *plt_entry_size = shdr_plt->sh_entsize; 469 break; 470 } 471 if (*plt_entry_size) 472 return true; 473 pr_debug("Missing PLT entry size for %s\n", dso__long_name(dso)); 474 return false; 475 } 476 477 static bool machine_is_x86(GElf_Half e_machine) 478 { 479 return e_machine == EM_386 || e_machine == EM_X86_64; 480 } 481 482 struct rela_dyn { 483 GElf_Addr offset; 484 u32 sym_idx; 485 }; 486 487 struct rela_dyn_info { 488 struct dso *dso; 489 Elf_Data *plt_got_data; 490 u32 nr_entries; 491 struct rela_dyn *sorted; 492 Elf_Data *dynsym_data; 493 Elf_Data *dynstr_data; 494 Elf_Data *rela_dyn_data; 495 }; 496 497 static void exit_rela_dyn(struct rela_dyn_info *di) 498 { 499 zfree(&di->sorted); 500 } 501 502 static int cmp_offset(const void *a, const void *b) 503 { 504 const struct rela_dyn *va = a; 505 const struct rela_dyn *vb = b; 506 507 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0); 508 } 509 510 static int sort_rela_dyn(struct rela_dyn_info *di) 511 { 512 u32 i, n; 513 514 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0])); 515 if (!di->sorted) 516 return -1; 517 518 /* Get data for sorting: the offset and symbol index */ 519 for (i = 0, n = 0; i < di->nr_entries; i++) { 520 GElf_Rela rela; 521 u32 sym_idx; 522 523 gelf_getrela(di->rela_dyn_data, i, &rela); 524 sym_idx = GELF_R_SYM(rela.r_info); 525 if (sym_idx) { 526 di->sorted[n].sym_idx = sym_idx; 527 di->sorted[n].offset = rela.r_offset; 528 n += 1; 529 } 530 } 531 532 /* Sort by offset */ 533 di->nr_entries = n; 534 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset); 535 536 return 0; 537 } 538 539 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn) 540 { 541 GElf_Shdr rela_dyn_shdr; 542 GElf_Shdr shdr; 543 544 di->plt_got_data = elf_getdata(scn, NULL); 545 546 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL); 547 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize) 548 return; 549 550 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize; 551 di->rela_dyn_data = elf_getdata(scn, NULL); 552 553 scn = elf_getscn(elf, rela_dyn_shdr.sh_link); 554 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link) 555 return; 556 557 di->dynsym_data = elf_getdata(scn, NULL); 558 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL); 559 560 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data) 561 return; 562 563 /* Sort into offset order */ 564 sort_rela_dyn(di); 565 } 566 567 /* Get instruction displacement from a plt entry for x86_64 */ 568 static u32 get_x86_64_plt_disp(const u8 *p) 569 { 570 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa}; 571 int n = 0; 572 573 /* Skip endbr64 */ 574 if (!memcmp(p, endbr64, sizeof(endbr64))) 575 n += sizeof(endbr64); 576 /* Skip bnd prefix */ 577 if (p[n] == 0xf2) 578 n += 1; 579 /* jmp with 4-byte displacement */ 580 if (p[n] == 0xff && p[n + 1] == 0x25) { 581 u32 disp; 582 583 n += 2; 584 /* Also add offset from start of entry to end of instruction */ 585 memcpy(&disp, p + n, sizeof(disp)); 586 return n + 4 + le32toh(disp); 587 } 588 return 0; 589 } 590 591 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i, 592 struct rela_dyn_info *di, 593 char *buf, size_t buf_sz) 594 { 595 struct rela_dyn vi, *vr; 596 const char *sym_name; 597 char *demangled; 598 GElf_Sym sym; 599 bool result; 600 u32 disp; 601 602 if (!di->sorted) 603 return false; 604 605 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i); 606 if (!disp) 607 return false; 608 609 /* Compute target offset of the .plt.got entry */ 610 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp; 611 612 /* Find that offset in .rela.dyn (sorted by offset) */ 613 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset); 614 if (!vr) 615 return false; 616 617 /* Get the associated symbol */ 618 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym); 619 sym_name = elf_sym__name(&sym, di->dynstr_data); 620 demangled = demangle_sym(di->dso, 0, sym_name); 621 if (demangled != NULL) 622 sym_name = demangled; 623 624 snprintf(buf, buf_sz, "%s@plt", sym_name); 625 626 result = *sym_name; 627 628 free(demangled); 629 630 return result; 631 } 632 633 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf, 634 GElf_Ehdr *ehdr, 635 char *buf, size_t buf_sz) 636 { 637 struct rela_dyn_info di = { .dso = dso }; 638 struct symbol *sym; 639 GElf_Shdr shdr; 640 Elf_Scn *scn; 641 int err = -1; 642 size_t i; 643 644 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL); 645 if (!scn || !shdr.sh_entsize) 646 return 0; 647 648 if (ehdr->e_machine == EM_X86_64) 649 get_rela_dyn_info(elf, ehdr, &di, scn); 650 651 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) { 652 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz)) 653 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i); 654 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf); 655 if (!sym) 656 goto out; 657 symbols__insert(dso__symbols(dso), sym); 658 } 659 err = 0; 660 out: 661 exit_rela_dyn(&di); 662 return err; 663 } 664 665 /* 666 * We need to check if we have a .dynsym, so that we can handle the 667 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 668 * .dynsym or .symtab). 669 * And always look at the original dso, not at debuginfo packages, that 670 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 671 */ 672 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 673 { 674 uint32_t idx; 675 GElf_Sym sym; 676 u64 plt_offset, plt_header_size, plt_entry_size; 677 GElf_Shdr shdr_plt, plt_sec_shdr; 678 struct symbol *f, *plt_sym; 679 GElf_Shdr shdr_rel_plt, shdr_dynsym; 680 Elf_Data *syms, *symstrs; 681 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 682 GElf_Ehdr ehdr; 683 char sympltname[1024]; 684 Elf *elf; 685 int nr = 0, err = -1; 686 struct rel_info ri = { .is_rela = false }; 687 bool lazy_plt; 688 689 elf = ss->elf; 690 ehdr = ss->ehdr; 691 692 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL)) 693 return 0; 694 695 /* 696 * A symbol from a previous section (e.g. .init) can have been expanded 697 * by symbols__fixup_end() to overlap .plt. Truncate it before adding 698 * a symbol for .plt header. 699 */ 700 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset); 701 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset) 702 f->end = shdr_plt.sh_offset; 703 704 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size)) 705 return 0; 706 707 /* Add a symbol for .plt header */ 708 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt"); 709 if (!plt_sym) 710 goto out_elf_end; 711 symbols__insert(dso__symbols(dso), plt_sym); 712 713 /* Only x86 has .plt.got */ 714 if (machine_is_x86(ehdr.e_machine) && 715 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname))) 716 goto out_elf_end; 717 718 /* Only x86 has .plt.sec */ 719 if (machine_is_x86(ehdr.e_machine) && 720 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) { 721 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size)) 722 return 0; 723 /* Extend .plt symbol to entire .plt */ 724 plt_sym->end = plt_sym->start + shdr_plt.sh_size; 725 /* Use .plt.sec offset */ 726 plt_offset = plt_sec_shdr.sh_offset; 727 lazy_plt = false; 728 } else { 729 plt_offset = shdr_plt.sh_offset; 730 lazy_plt = true; 731 } 732 733 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 734 ".rela.plt", NULL); 735 if (scn_plt_rel == NULL) { 736 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 737 ".rel.plt", NULL); 738 if (scn_plt_rel == NULL) 739 return 0; 740 } 741 742 if (shdr_rel_plt.sh_type != SHT_RELA && 743 shdr_rel_plt.sh_type != SHT_REL) 744 return 0; 745 746 if (!shdr_rel_plt.sh_link) 747 return 0; 748 749 if (shdr_rel_plt.sh_link == ss->dynsym_idx) { 750 scn_dynsym = ss->dynsym; 751 shdr_dynsym = ss->dynshdr; 752 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) { 753 /* 754 * A static executable can have a .plt due to IFUNCs, in which 755 * case .symtab is used not .dynsym. 756 */ 757 scn_dynsym = ss->symtab; 758 shdr_dynsym = ss->symshdr; 759 } else { 760 goto out_elf_end; 761 } 762 763 if (!scn_dynsym) 764 return 0; 765 766 /* 767 * Fetch the relocation section to find the idxes to the GOT 768 * and the symbols in the .dynsym they refer to. 769 */ 770 ri.reldata = elf_getdata(scn_plt_rel, NULL); 771 if (!ri.reldata) 772 goto out_elf_end; 773 774 syms = elf_getdata(scn_dynsym, NULL); 775 if (syms == NULL) 776 goto out_elf_end; 777 778 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 779 if (scn_symstrs == NULL) 780 goto out_elf_end; 781 782 symstrs = elf_getdata(scn_symstrs, NULL); 783 if (symstrs == NULL) 784 goto out_elf_end; 785 786 if (symstrs->d_size == 0) 787 goto out_elf_end; 788 789 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 790 791 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA; 792 793 if (lazy_plt) { 794 /* 795 * Assume a .plt with the same number of entries as the number 796 * of relocation entries is not lazy and does not have a header. 797 */ 798 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size) 799 dso__delete_symbol(dso, plt_sym); 800 else 801 plt_offset += plt_header_size; 802 } 803 804 /* 805 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get 806 * back in order. 807 */ 808 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri)) 809 goto out_elf_end; 810 811 for (idx = 0; idx < ri.nr_entries; idx++) { 812 const char *elf_name = NULL; 813 char *demangled = NULL; 814 815 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym); 816 817 elf_name = elf_sym__name(&sym, symstrs); 818 demangled = demangle_sym(dso, 0, elf_name); 819 if (demangled) 820 elf_name = demangled; 821 if (*elf_name) 822 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name); 823 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname))) 824 snprintf(sympltname, sizeof(sympltname), 825 "offset_%#" PRIx64 "@plt", plt_offset); 826 free(demangled); 827 828 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname); 829 if (!f) 830 goto out_elf_end; 831 832 plt_offset += plt_entry_size; 833 symbols__insert(dso__symbols(dso), f); 834 ++nr; 835 } 836 837 err = 0; 838 out_elf_end: 839 exit_rel(&ri); 840 if (err == 0) 841 return nr; 842 pr_debug("%s: problems reading %s PLT info.\n", 843 __func__, dso__long_name(dso)); 844 return 0; 845 } 846 847 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 848 { 849 return demangle_sym(dso, kmodule, elf_name); 850 } 851 852 /* 853 * Align offset to 4 bytes as needed for note name and descriptor data. 854 */ 855 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 856 857 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 858 { 859 int err = -1; 860 GElf_Ehdr ehdr; 861 GElf_Shdr shdr; 862 Elf_Data *data; 863 Elf_Scn *sec; 864 Elf_Kind ek; 865 void *ptr; 866 867 if (size < BUILD_ID_SIZE) 868 goto out; 869 870 ek = elf_kind(elf); 871 if (ek != ELF_K_ELF) 872 goto out; 873 874 if (gelf_getehdr(elf, &ehdr) == NULL) { 875 pr_err("%s: cannot get elf header.\n", __func__); 876 goto out; 877 } 878 879 /* 880 * Check following sections for notes: 881 * '.note.gnu.build-id' 882 * '.notes' 883 * '.note' (VDSO specific) 884 */ 885 do { 886 sec = elf_section_by_name(elf, &ehdr, &shdr, 887 ".note.gnu.build-id", NULL); 888 if (sec) 889 break; 890 891 sec = elf_section_by_name(elf, &ehdr, &shdr, 892 ".notes", NULL); 893 if (sec) 894 break; 895 896 sec = elf_section_by_name(elf, &ehdr, &shdr, 897 ".note", NULL); 898 if (sec) 899 break; 900 901 return err; 902 903 } while (0); 904 905 data = elf_getdata(sec, NULL); 906 if (data == NULL) 907 goto out; 908 909 ptr = data->d_buf; 910 while (ptr < (data->d_buf + data->d_size)) { 911 GElf_Nhdr *nhdr = ptr; 912 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 913 descsz = NOTE_ALIGN(nhdr->n_descsz); 914 const char *name; 915 916 ptr += sizeof(*nhdr); 917 name = ptr; 918 ptr += namesz; 919 if (nhdr->n_type == NT_GNU_BUILD_ID && 920 nhdr->n_namesz == sizeof("GNU")) { 921 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 922 size_t sz = min(size, descsz); 923 memcpy(bf, ptr, sz); 924 memset(bf + sz, 0, size - sz); 925 err = sz; 926 break; 927 } 928 } 929 ptr += descsz; 930 } 931 932 out: 933 return err; 934 } 935 936 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT 937 938 static int read_build_id(const char *filename, struct build_id *bid) 939 { 940 size_t size = sizeof(bid->data); 941 int err = -1; 942 bfd *abfd; 943 944 abfd = bfd_openr(filename, NULL); 945 if (!abfd) 946 return -1; 947 948 if (!bfd_check_format(abfd, bfd_object)) { 949 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 950 goto out_close; 951 } 952 953 if (!abfd->build_id || abfd->build_id->size > size) 954 goto out_close; 955 956 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size); 957 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size); 958 err = bid->size = abfd->build_id->size; 959 960 out_close: 961 bfd_close(abfd); 962 return err; 963 } 964 965 #else // HAVE_LIBBFD_BUILDID_SUPPORT 966 967 static int read_build_id(const char *filename, struct build_id *bid) 968 { 969 size_t size = sizeof(bid->data); 970 int fd, err = -1; 971 Elf *elf; 972 973 if (size < BUILD_ID_SIZE) 974 goto out; 975 976 fd = open(filename, O_RDONLY); 977 if (fd < 0) 978 goto out; 979 980 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 981 if (elf == NULL) { 982 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 983 goto out_close; 984 } 985 986 err = elf_read_build_id(elf, bid->data, size); 987 if (err > 0) 988 bid->size = err; 989 990 elf_end(elf); 991 out_close: 992 close(fd); 993 out: 994 return err; 995 } 996 997 #endif // HAVE_LIBBFD_BUILDID_SUPPORT 998 999 int filename__read_build_id(const char *filename, struct build_id *bid) 1000 { 1001 struct kmod_path m = { .name = NULL, }; 1002 char path[PATH_MAX]; 1003 int err; 1004 1005 if (!filename) 1006 return -EFAULT; 1007 1008 err = kmod_path__parse(&m, filename); 1009 if (err) 1010 return -1; 1011 1012 if (m.comp) { 1013 int error = 0, fd; 1014 1015 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error); 1016 if (fd < 0) { 1017 pr_debug("Failed to decompress (error %d) %s\n", 1018 error, filename); 1019 return -1; 1020 } 1021 close(fd); 1022 filename = path; 1023 } 1024 1025 err = read_build_id(filename, bid); 1026 1027 if (m.comp) 1028 unlink(filename); 1029 return err; 1030 } 1031 1032 int sysfs__read_build_id(const char *filename, struct build_id *bid) 1033 { 1034 size_t size = sizeof(bid->data); 1035 int fd, err = -1; 1036 1037 fd = open(filename, O_RDONLY); 1038 if (fd < 0) 1039 goto out; 1040 1041 while (1) { 1042 char bf[BUFSIZ]; 1043 GElf_Nhdr nhdr; 1044 size_t namesz, descsz; 1045 1046 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 1047 break; 1048 1049 namesz = NOTE_ALIGN(nhdr.n_namesz); 1050 descsz = NOTE_ALIGN(nhdr.n_descsz); 1051 if (nhdr.n_type == NT_GNU_BUILD_ID && 1052 nhdr.n_namesz == sizeof("GNU")) { 1053 if (read(fd, bf, namesz) != (ssize_t)namesz) 1054 break; 1055 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 1056 size_t sz = min(descsz, size); 1057 if (read(fd, bid->data, sz) == (ssize_t)sz) { 1058 memset(bid->data + sz, 0, size - sz); 1059 bid->size = sz; 1060 err = 0; 1061 break; 1062 } 1063 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 1064 break; 1065 } else { 1066 int n = namesz + descsz; 1067 1068 if (n > (int)sizeof(bf)) { 1069 n = sizeof(bf); 1070 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 1071 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 1072 } 1073 if (read(fd, bf, n) != n) 1074 break; 1075 } 1076 } 1077 close(fd); 1078 out: 1079 return err; 1080 } 1081 1082 #ifdef HAVE_LIBBFD_SUPPORT 1083 1084 int filename__read_debuglink(const char *filename, char *debuglink, 1085 size_t size) 1086 { 1087 int err = -1; 1088 asection *section; 1089 bfd *abfd; 1090 1091 abfd = bfd_openr(filename, NULL); 1092 if (!abfd) 1093 return -1; 1094 1095 if (!bfd_check_format(abfd, bfd_object)) { 1096 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 1097 goto out_close; 1098 } 1099 1100 section = bfd_get_section_by_name(abfd, ".gnu_debuglink"); 1101 if (!section) 1102 goto out_close; 1103 1104 if (section->size > size) 1105 goto out_close; 1106 1107 if (!bfd_get_section_contents(abfd, section, debuglink, 0, 1108 section->size)) 1109 goto out_close; 1110 1111 err = 0; 1112 1113 out_close: 1114 bfd_close(abfd); 1115 return err; 1116 } 1117 1118 #else 1119 1120 int filename__read_debuglink(const char *filename, char *debuglink, 1121 size_t size) 1122 { 1123 int fd, err = -1; 1124 Elf *elf; 1125 GElf_Ehdr ehdr; 1126 GElf_Shdr shdr; 1127 Elf_Data *data; 1128 Elf_Scn *sec; 1129 Elf_Kind ek; 1130 1131 fd = open(filename, O_RDONLY); 1132 if (fd < 0) 1133 goto out; 1134 1135 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1136 if (elf == NULL) { 1137 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 1138 goto out_close; 1139 } 1140 1141 ek = elf_kind(elf); 1142 if (ek != ELF_K_ELF) 1143 goto out_elf_end; 1144 1145 if (gelf_getehdr(elf, &ehdr) == NULL) { 1146 pr_err("%s: cannot get elf header.\n", __func__); 1147 goto out_elf_end; 1148 } 1149 1150 sec = elf_section_by_name(elf, &ehdr, &shdr, 1151 ".gnu_debuglink", NULL); 1152 if (sec == NULL) 1153 goto out_elf_end; 1154 1155 data = elf_getdata(sec, NULL); 1156 if (data == NULL) 1157 goto out_elf_end; 1158 1159 /* the start of this section is a zero-terminated string */ 1160 strncpy(debuglink, data->d_buf, size); 1161 1162 err = 0; 1163 1164 out_elf_end: 1165 elf_end(elf); 1166 out_close: 1167 close(fd); 1168 out: 1169 return err; 1170 } 1171 1172 #endif 1173 1174 static int dso__swap_init(struct dso *dso, unsigned char eidata) 1175 { 1176 static unsigned int const endian = 1; 1177 1178 dso__set_needs_swap(dso, DSO_SWAP__NO); 1179 1180 switch (eidata) { 1181 case ELFDATA2LSB: 1182 /* We are big endian, DSO is little endian. */ 1183 if (*(unsigned char const *)&endian != 1) 1184 dso__set_needs_swap(dso, DSO_SWAP__YES); 1185 break; 1186 1187 case ELFDATA2MSB: 1188 /* We are little endian, DSO is big endian. */ 1189 if (*(unsigned char const *)&endian != 0) 1190 dso__set_needs_swap(dso, DSO_SWAP__YES); 1191 break; 1192 1193 default: 1194 pr_err("unrecognized DSO data encoding %d\n", eidata); 1195 return -EINVAL; 1196 } 1197 1198 return 0; 1199 } 1200 1201 bool symsrc__possibly_runtime(struct symsrc *ss) 1202 { 1203 return ss->dynsym || ss->opdsec; 1204 } 1205 1206 bool symsrc__has_symtab(struct symsrc *ss) 1207 { 1208 return ss->symtab != NULL; 1209 } 1210 1211 void symsrc__destroy(struct symsrc *ss) 1212 { 1213 zfree(&ss->name); 1214 elf_end(ss->elf); 1215 close(ss->fd); 1216 } 1217 1218 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 1219 { 1220 /* 1221 * Usually vmlinux is an ELF file with type ET_EXEC for most 1222 * architectures; except Arm64 kernel is linked with option 1223 * '-share', so need to check type ET_DYN. 1224 */ 1225 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 1226 ehdr.e_type == ET_DYN; 1227 } 1228 1229 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 1230 enum dso_binary_type type) 1231 { 1232 GElf_Ehdr ehdr; 1233 Elf *elf; 1234 int fd; 1235 1236 if (dso__needs_decompress(dso)) { 1237 fd = dso__decompress_kmodule_fd(dso, name); 1238 if (fd < 0) 1239 return -1; 1240 1241 type = dso__symtab_type(dso); 1242 } else { 1243 fd = open(name, O_RDONLY); 1244 if (fd < 0) { 1245 *dso__load_errno(dso) = errno; 1246 return -1; 1247 } 1248 } 1249 1250 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1251 if (elf == NULL) { 1252 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 1253 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1254 goto out_close; 1255 } 1256 1257 if (gelf_getehdr(elf, &ehdr) == NULL) { 1258 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF; 1259 pr_debug("%s: cannot get elf header.\n", __func__); 1260 goto out_elf_end; 1261 } 1262 1263 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 1264 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INTERNAL_ERROR; 1265 goto out_elf_end; 1266 } 1267 1268 /* Always reject images with a mismatched build-id: */ 1269 if (dso__has_build_id(dso) && !symbol_conf.ignore_vmlinux_buildid) { 1270 u8 build_id[BUILD_ID_SIZE]; 1271 struct build_id bid; 1272 int size; 1273 1274 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE); 1275 if (size <= 0) { 1276 *dso__load_errno(dso) = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 1277 goto out_elf_end; 1278 } 1279 1280 build_id__init(&bid, build_id, size); 1281 if (!dso__build_id_equal(dso, &bid)) { 1282 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 1283 *dso__load_errno(dso) = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 1284 goto out_elf_end; 1285 } 1286 } 1287 1288 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1289 1290 ss->symtab_idx = 0; 1291 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 1292 &ss->symtab_idx); 1293 if (ss->symshdr.sh_type != SHT_SYMTAB) 1294 ss->symtab = NULL; 1295 1296 ss->dynsym_idx = 0; 1297 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 1298 &ss->dynsym_idx); 1299 if (ss->dynshdr.sh_type != SHT_DYNSYM) 1300 ss->dynsym = NULL; 1301 1302 ss->opdidx = 0; 1303 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 1304 &ss->opdidx); 1305 if (ss->opdshdr.sh_type != SHT_PROGBITS) 1306 ss->opdsec = NULL; 1307 1308 if (dso__kernel(dso) == DSO_SPACE__USER) 1309 ss->adjust_symbols = true; 1310 else 1311 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 1312 1313 ss->name = strdup(name); 1314 if (!ss->name) { 1315 *dso__load_errno(dso) = errno; 1316 goto out_elf_end; 1317 } 1318 1319 ss->elf = elf; 1320 ss->fd = fd; 1321 ss->ehdr = ehdr; 1322 ss->type = type; 1323 1324 return 0; 1325 1326 out_elf_end: 1327 elf_end(elf); 1328 out_close: 1329 close(fd); 1330 return -1; 1331 } 1332 1333 static bool is_exe_text(int flags) 1334 { 1335 return (flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR); 1336 } 1337 1338 /* 1339 * Some executable module sections like .noinstr.text might be laid out with 1340 * .text so they can use the same mapping (memory address to file offset). 1341 * Check if that is the case. Refer to kernel layout_sections(). Return the 1342 * maximum offset. 1343 */ 1344 static u64 max_text_section(Elf *elf, GElf_Ehdr *ehdr) 1345 { 1346 Elf_Scn *sec = NULL; 1347 GElf_Shdr shdr; 1348 u64 offs = 0; 1349 1350 /* Doesn't work for some arch */ 1351 if (ehdr->e_machine == EM_PARISC || 1352 ehdr->e_machine == EM_ALPHA) 1353 return 0; 1354 1355 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1356 if (!elf_rawdata(elf_getscn(elf, ehdr->e_shstrndx), NULL)) 1357 return 0; 1358 1359 while ((sec = elf_nextscn(elf, sec)) != NULL) { 1360 char *sec_name; 1361 1362 if (!gelf_getshdr(sec, &shdr)) 1363 break; 1364 1365 if (!is_exe_text(shdr.sh_flags)) 1366 continue; 1367 1368 /* .init and .exit sections are not placed with .text */ 1369 sec_name = elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name); 1370 if (!sec_name || 1371 strstarts(sec_name, ".init") || 1372 strstarts(sec_name, ".exit")) 1373 break; 1374 1375 /* Must be next to previous, assumes .text is first */ 1376 if (offs && PERF_ALIGN(offs, shdr.sh_addralign ?: 1) != shdr.sh_offset) 1377 break; 1378 1379 offs = shdr.sh_offset + shdr.sh_size; 1380 } 1381 1382 return offs; 1383 } 1384 1385 /** 1386 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 1387 * @kmap: kernel maps and relocation reference symbol 1388 * 1389 * This function returns %true if we are dealing with the kernel maps and the 1390 * relocation reference symbol has not yet been found. Otherwise %false is 1391 * returned. 1392 */ 1393 static bool ref_reloc_sym_not_found(struct kmap *kmap) 1394 { 1395 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 1396 !kmap->ref_reloc_sym->unrelocated_addr; 1397 } 1398 1399 /** 1400 * ref_reloc - kernel relocation offset. 1401 * @kmap: kernel maps and relocation reference symbol 1402 * 1403 * This function returns the offset of kernel addresses as determined by using 1404 * the relocation reference symbol i.e. if the kernel has not been relocated 1405 * then the return value is zero. 1406 */ 1407 static u64 ref_reloc(struct kmap *kmap) 1408 { 1409 if (kmap && kmap->ref_reloc_sym && 1410 kmap->ref_reloc_sym->unrelocated_addr) 1411 return kmap->ref_reloc_sym->addr - 1412 kmap->ref_reloc_sym->unrelocated_addr; 1413 return 0; 1414 } 1415 1416 void __weak arch__sym_update(struct symbol *s __maybe_unused, 1417 GElf_Sym *sym __maybe_unused) { } 1418 1419 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 1420 GElf_Sym *sym, GElf_Shdr *shdr, 1421 struct maps *kmaps, struct kmap *kmap, 1422 struct dso **curr_dsop, 1423 const char *section_name, 1424 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel, 1425 u64 max_text_sh_offset) 1426 { 1427 struct dso *curr_dso = *curr_dsop; 1428 struct map *curr_map; 1429 char dso_name[PATH_MAX]; 1430 1431 /* Adjust symbol to map to file offset */ 1432 if (adjust_kernel_syms) 1433 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 1434 1435 if (strcmp(section_name, (dso__short_name(curr_dso) + dso__short_name_len(dso))) == 0) 1436 return 0; 1437 1438 if (strcmp(section_name, ".text") == 0) { 1439 /* 1440 * The initial kernel mapping is based on 1441 * kallsyms and identity maps. Overwrite it to 1442 * map to the kernel dso. 1443 */ 1444 if (*remap_kernel && dso__kernel(dso) && !kmodule) { 1445 *remap_kernel = false; 1446 map__set_start(map, shdr->sh_addr + ref_reloc(kmap)); 1447 map__set_end(map, map__start(map) + shdr->sh_size); 1448 map__set_pgoff(map, shdr->sh_offset); 1449 map__set_mapping_type(map, MAPPING_TYPE__DSO); 1450 /* Ensure maps are correctly ordered */ 1451 if (kmaps) { 1452 int err; 1453 struct map *tmp = map__get(map); 1454 1455 maps__remove(kmaps, map); 1456 err = maps__insert(kmaps, map); 1457 map__put(tmp); 1458 if (err) 1459 return err; 1460 } 1461 } 1462 1463 /* 1464 * The initial module mapping is based on 1465 * /proc/modules mapped to offset zero. 1466 * Overwrite it to map to the module dso. 1467 */ 1468 if (*remap_kernel && kmodule) { 1469 *remap_kernel = false; 1470 map__set_pgoff(map, shdr->sh_offset); 1471 } 1472 1473 dso__put(*curr_dsop); 1474 *curr_dsop = dso__get(dso); 1475 return 0; 1476 } 1477 1478 if (!kmap) 1479 return 0; 1480 1481 /* 1482 * perf does not record module section addresses except for .text, but 1483 * some sections can use the same mapping as .text. 1484 */ 1485 if (kmodule && adjust_kernel_syms && is_exe_text(shdr->sh_flags) && 1486 shdr->sh_offset <= max_text_sh_offset) { 1487 dso__put(*curr_dsop); 1488 *curr_dsop = dso__get(dso); 1489 return 0; 1490 } 1491 1492 snprintf(dso_name, sizeof(dso_name), "%s%s", dso__short_name(dso), section_name); 1493 1494 curr_map = maps__find_by_name(kmaps, dso_name); 1495 if (curr_map == NULL) { 1496 u64 start = sym->st_value; 1497 1498 if (kmodule) 1499 start += map__start(map) + shdr->sh_offset; 1500 1501 curr_dso = dso__new(dso_name); 1502 if (curr_dso == NULL) 1503 return -1; 1504 dso__set_kernel(curr_dso, dso__kernel(dso)); 1505 RC_CHK_ACCESS(curr_dso)->long_name = dso__long_name(dso); 1506 RC_CHK_ACCESS(curr_dso)->long_name_len = dso__long_name_len(dso); 1507 dso__set_binary_type(curr_dso, dso__binary_type(dso)); 1508 dso__set_adjust_symbols(curr_dso, dso__adjust_symbols(dso)); 1509 curr_map = map__new2(start, curr_dso); 1510 if (curr_map == NULL) { 1511 dso__put(curr_dso); 1512 return -1; 1513 } 1514 if (dso__kernel(curr_dso)) 1515 map__kmap(curr_map)->kmaps = kmaps; 1516 1517 if (adjust_kernel_syms) { 1518 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap)); 1519 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size); 1520 map__set_pgoff(curr_map, shdr->sh_offset); 1521 } else { 1522 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY); 1523 } 1524 dso__set_symtab_type(curr_dso, dso__symtab_type(dso)); 1525 if (maps__insert(kmaps, curr_map)) 1526 return -1; 1527 dsos__add(&maps__machine(kmaps)->dsos, curr_dso); 1528 dso__set_loaded(curr_dso); 1529 dso__put(*curr_dsop); 1530 *curr_dsop = curr_dso; 1531 } else { 1532 dso__put(*curr_dsop); 1533 *curr_dsop = dso__get(map__dso(curr_map)); 1534 } 1535 map__put(curr_map); 1536 1537 return 0; 1538 } 1539 1540 static int 1541 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1542 struct symsrc *runtime_ss, int kmodule, int dynsym) 1543 { 1544 struct kmap *kmap = dso__kernel(dso) ? map__kmap(map) : NULL; 1545 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 1546 struct dso *curr_dso = NULL; 1547 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym; 1548 uint32_t nr_syms; 1549 uint32_t idx; 1550 GElf_Ehdr ehdr; 1551 GElf_Shdr shdr; 1552 GElf_Shdr tshdr; 1553 Elf_Data *syms, *opddata = NULL; 1554 GElf_Sym sym; 1555 Elf_Scn *sec, *sec_strndx; 1556 Elf *elf; 1557 int nr = 0; 1558 bool remap_kernel = false, adjust_kernel_syms = false; 1559 u64 max_text_sh_offset = 0; 1560 1561 if (kmap && !kmaps) 1562 return -1; 1563 1564 elf = syms_ss->elf; 1565 ehdr = syms_ss->ehdr; 1566 if (dynsym) { 1567 sec = syms_ss->dynsym; 1568 shdr = syms_ss->dynshdr; 1569 } else { 1570 sec = syms_ss->symtab; 1571 shdr = syms_ss->symshdr; 1572 } 1573 1574 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1575 ".text", NULL)) { 1576 dso__set_text_offset(dso, tshdr.sh_addr - tshdr.sh_offset); 1577 dso__set_text_end(dso, tshdr.sh_offset + tshdr.sh_size); 1578 } 1579 1580 if (runtime_ss->opdsec) 1581 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1582 1583 syms = elf_getdata(sec, NULL); 1584 if (syms == NULL) 1585 goto out_elf_end; 1586 1587 sec = elf_getscn(elf, shdr.sh_link); 1588 if (sec == NULL) 1589 goto out_elf_end; 1590 1591 symstrs = elf_getdata(sec, NULL); 1592 if (symstrs == NULL) 1593 goto out_elf_end; 1594 1595 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1596 if (sec_strndx == NULL) 1597 goto out_elf_end; 1598 1599 secstrs_run = elf_getdata(sec_strndx, NULL); 1600 if (secstrs_run == NULL) 1601 goto out_elf_end; 1602 1603 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx); 1604 if (sec_strndx == NULL) 1605 goto out_elf_end; 1606 1607 secstrs_sym = elf_getdata(sec_strndx, NULL); 1608 if (secstrs_sym == NULL) 1609 goto out_elf_end; 1610 1611 nr_syms = shdr.sh_size / shdr.sh_entsize; 1612 1613 memset(&sym, 0, sizeof(sym)); 1614 1615 /* 1616 * The kernel relocation symbol is needed in advance in order to adjust 1617 * kernel maps correctly. 1618 */ 1619 if (ref_reloc_sym_not_found(kmap)) { 1620 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1621 const char *elf_name = elf_sym__name(&sym, symstrs); 1622 1623 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1624 continue; 1625 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1626 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr); 1627 break; 1628 } 1629 } 1630 1631 /* 1632 * Handle any relocation of vdso necessary because older kernels 1633 * attempted to prelink vdso to its virtual address. 1634 */ 1635 if (dso__is_vdso(dso)) 1636 map__set_reloc(map, map__start(map) - dso__text_offset(dso)); 1637 1638 dso__set_adjust_symbols(dso, runtime_ss->adjust_symbols || ref_reloc(kmap)); 1639 /* 1640 * Initial kernel and module mappings do not map to the dso. 1641 * Flag the fixups. 1642 */ 1643 if (dso__kernel(dso)) { 1644 remap_kernel = true; 1645 adjust_kernel_syms = dso__adjust_symbols(dso); 1646 } 1647 1648 if (kmodule && adjust_kernel_syms) 1649 max_text_sh_offset = max_text_section(runtime_ss->elf, &runtime_ss->ehdr); 1650 1651 curr_dso = dso__get(dso); 1652 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1653 struct symbol *f; 1654 const char *elf_name = elf_sym__name(&sym, symstrs); 1655 char *demangled = NULL; 1656 int is_label = elf_sym__is_label(&sym); 1657 const char *section_name; 1658 bool used_opd = false; 1659 1660 if (!is_label && !elf_sym__filter(&sym)) 1661 continue; 1662 1663 /* Reject ARM ELF "mapping symbols": these aren't unique and 1664 * don't identify functions, so will confuse the profile 1665 * output: */ 1666 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1667 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1668 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1669 continue; 1670 } 1671 1672 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1673 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1674 u64 *opd = opddata->d_buf + offset; 1675 sym.st_value = DSO__SWAP(dso, u64, *opd); 1676 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1677 sym.st_value); 1678 used_opd = true; 1679 } 1680 1681 /* 1682 * When loading symbols in a data mapping, ABS symbols (which 1683 * has a value of SHN_ABS in its st_shndx) failed at 1684 * elf_getscn(). And it marks the loading as a failure so 1685 * already loaded symbols cannot be fixed up. 1686 * 1687 * I'm not sure what should be done. Just ignore them for now. 1688 * - Namhyung Kim 1689 */ 1690 if (sym.st_shndx == SHN_ABS) 1691 continue; 1692 1693 sec = elf_getscn(syms_ss->elf, sym.st_shndx); 1694 if (!sec) 1695 goto out_elf_end; 1696 1697 gelf_getshdr(sec, &shdr); 1698 1699 /* 1700 * If the attribute bit SHF_ALLOC is not set, the section 1701 * doesn't occupy memory during process execution. 1702 * E.g. ".gnu.warning.*" section is used by linker to generate 1703 * warnings when calling deprecated functions, the symbols in 1704 * the section aren't loaded to memory during process execution, 1705 * so skip them. 1706 */ 1707 if (!(shdr.sh_flags & SHF_ALLOC)) 1708 continue; 1709 1710 secstrs = secstrs_sym; 1711 1712 /* 1713 * We have to fallback to runtime when syms' section header has 1714 * NOBITS set. NOBITS results in file offset (sh_offset) not 1715 * being incremented. So sh_offset used below has different 1716 * values for syms (invalid) and runtime (valid). 1717 */ 1718 if (shdr.sh_type == SHT_NOBITS) { 1719 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1720 if (!sec) 1721 goto out_elf_end; 1722 1723 gelf_getshdr(sec, &shdr); 1724 secstrs = secstrs_run; 1725 } 1726 1727 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1728 continue; 1729 1730 section_name = elf_sec__name(&shdr, secstrs); 1731 1732 /* On ARM, symbols for thumb functions have 1 added to 1733 * the symbol address as a flag - remove it */ 1734 if ((ehdr.e_machine == EM_ARM) && 1735 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1736 (sym.st_value & 1)) 1737 --sym.st_value; 1738 1739 if (dso__kernel(dso)) { 1740 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, 1741 kmaps, kmap, &curr_dso, 1742 section_name, 1743 adjust_kernel_syms, 1744 kmodule, 1745 &remap_kernel, 1746 max_text_sh_offset)) 1747 goto out_elf_end; 1748 } else if ((used_opd && runtime_ss->adjust_symbols) || 1749 (!used_opd && syms_ss->adjust_symbols)) { 1750 GElf_Phdr phdr; 1751 1752 if (elf_read_program_header(runtime_ss->elf, 1753 (u64)sym.st_value, &phdr)) { 1754 pr_debug4("%s: failed to find program header for " 1755 "symbol: %s st_value: %#" PRIx64 "\n", 1756 __func__, elf_name, (u64)sym.st_value); 1757 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1758 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", 1759 __func__, (u64)sym.st_value, (u64)shdr.sh_addr, 1760 (u64)shdr.sh_offset); 1761 /* 1762 * Fail to find program header, let's rollback 1763 * to use shdr.sh_addr and shdr.sh_offset to 1764 * calibrate symbol's file address, though this 1765 * is not necessary for normal C ELF file, we 1766 * still need to handle java JIT symbols in this 1767 * case. 1768 */ 1769 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1770 } else { 1771 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1772 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n", 1773 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr, 1774 (u64)phdr.p_offset); 1775 sym.st_value -= phdr.p_vaddr - phdr.p_offset; 1776 } 1777 } 1778 1779 demangled = demangle_sym(dso, kmodule, elf_name); 1780 if (demangled != NULL) 1781 elf_name = demangled; 1782 1783 f = symbol__new(sym.st_value, sym.st_size, 1784 GELF_ST_BIND(sym.st_info), 1785 GELF_ST_TYPE(sym.st_info), elf_name); 1786 free(demangled); 1787 if (!f) 1788 goto out_elf_end; 1789 1790 arch__sym_update(f, &sym); 1791 1792 __symbols__insert(dso__symbols(curr_dso), f, dso__kernel(dso)); 1793 nr++; 1794 } 1795 dso__put(curr_dso); 1796 1797 /* 1798 * For misannotated, zeroed, ASM function sizes. 1799 */ 1800 if (nr > 0) { 1801 symbols__fixup_end(dso__symbols(dso), false); 1802 symbols__fixup_duplicate(dso__symbols(dso)); 1803 if (kmap) { 1804 /* 1805 * We need to fixup this here too because we create new 1806 * maps here, for things like vsyscall sections. 1807 */ 1808 maps__fixup_end(kmaps); 1809 } 1810 } 1811 return nr; 1812 out_elf_end: 1813 dso__put(curr_dso); 1814 return -1; 1815 } 1816 1817 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1818 struct symsrc *runtime_ss, int kmodule) 1819 { 1820 int nr = 0; 1821 int err = -1; 1822 1823 dso__set_symtab_type(dso, syms_ss->type); 1824 dso__set_is_64_bit(dso, syms_ss->is_64_bit); 1825 dso__set_rel(dso, syms_ss->ehdr.e_type == ET_REL); 1826 1827 /* 1828 * Modules may already have symbols from kallsyms, but those symbols 1829 * have the wrong values for the dso maps, so remove them. 1830 */ 1831 if (kmodule && syms_ss->symtab) 1832 symbols__delete(dso__symbols(dso)); 1833 1834 if (!syms_ss->symtab) { 1835 /* 1836 * If the vmlinux is stripped, fail so we will fall back 1837 * to using kallsyms. The vmlinux runtime symbols aren't 1838 * of much use. 1839 */ 1840 if (dso__kernel(dso)) 1841 return err; 1842 } else { 1843 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1844 kmodule, 0); 1845 if (err < 0) 1846 return err; 1847 nr = err; 1848 } 1849 1850 if (syms_ss->dynsym) { 1851 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1852 kmodule, 1); 1853 if (err < 0) 1854 return err; 1855 err += nr; 1856 } 1857 1858 return err; 1859 } 1860 1861 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1862 { 1863 GElf_Phdr phdr; 1864 size_t i, phdrnum; 1865 int err; 1866 u64 sz; 1867 1868 if (elf_getphdrnum(elf, &phdrnum)) 1869 return -1; 1870 1871 for (i = 0; i < phdrnum; i++) { 1872 if (gelf_getphdr(elf, i, &phdr) == NULL) 1873 return -1; 1874 if (phdr.p_type != PT_LOAD) 1875 continue; 1876 if (exe) { 1877 if (!(phdr.p_flags & PF_X)) 1878 continue; 1879 } else { 1880 if (!(phdr.p_flags & PF_R)) 1881 continue; 1882 } 1883 sz = min(phdr.p_memsz, phdr.p_filesz); 1884 if (!sz) 1885 continue; 1886 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1887 if (err) 1888 return err; 1889 } 1890 return 0; 1891 } 1892 1893 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1894 bool *is_64_bit) 1895 { 1896 int err; 1897 Elf *elf; 1898 1899 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1900 if (elf == NULL) 1901 return -1; 1902 1903 if (is_64_bit) 1904 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1905 1906 err = elf_read_maps(elf, exe, mapfn, data); 1907 1908 elf_end(elf); 1909 return err; 1910 } 1911 1912 enum dso_type dso__type_fd(int fd) 1913 { 1914 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1915 GElf_Ehdr ehdr; 1916 Elf_Kind ek; 1917 Elf *elf; 1918 1919 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1920 if (elf == NULL) 1921 goto out; 1922 1923 ek = elf_kind(elf); 1924 if (ek != ELF_K_ELF) 1925 goto out_end; 1926 1927 if (gelf_getclass(elf) == ELFCLASS64) { 1928 dso_type = DSO__TYPE_64BIT; 1929 goto out_end; 1930 } 1931 1932 if (gelf_getehdr(elf, &ehdr) == NULL) 1933 goto out_end; 1934 1935 if (ehdr.e_machine == EM_X86_64) 1936 dso_type = DSO__TYPE_X32BIT; 1937 else 1938 dso_type = DSO__TYPE_32BIT; 1939 out_end: 1940 elf_end(elf); 1941 out: 1942 return dso_type; 1943 } 1944 1945 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1946 { 1947 ssize_t r; 1948 size_t n; 1949 int err = -1; 1950 char *buf = malloc(page_size); 1951 1952 if (buf == NULL) 1953 return -1; 1954 1955 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1956 goto out; 1957 1958 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1959 goto out; 1960 1961 while (len) { 1962 n = page_size; 1963 if (len < n) 1964 n = len; 1965 /* Use read because mmap won't work on proc files */ 1966 r = read(from, buf, n); 1967 if (r < 0) 1968 goto out; 1969 if (!r) 1970 break; 1971 n = r; 1972 r = write(to, buf, n); 1973 if (r < 0) 1974 goto out; 1975 if ((size_t)r != n) 1976 goto out; 1977 len -= n; 1978 } 1979 1980 err = 0; 1981 out: 1982 free(buf); 1983 return err; 1984 } 1985 1986 struct kcore { 1987 int fd; 1988 int elfclass; 1989 Elf *elf; 1990 GElf_Ehdr ehdr; 1991 }; 1992 1993 static int kcore__open(struct kcore *kcore, const char *filename) 1994 { 1995 GElf_Ehdr *ehdr; 1996 1997 kcore->fd = open(filename, O_RDONLY); 1998 if (kcore->fd == -1) 1999 return -1; 2000 2001 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 2002 if (!kcore->elf) 2003 goto out_close; 2004 2005 kcore->elfclass = gelf_getclass(kcore->elf); 2006 if (kcore->elfclass == ELFCLASSNONE) 2007 goto out_end; 2008 2009 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 2010 if (!ehdr) 2011 goto out_end; 2012 2013 return 0; 2014 2015 out_end: 2016 elf_end(kcore->elf); 2017 out_close: 2018 close(kcore->fd); 2019 return -1; 2020 } 2021 2022 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 2023 bool temp) 2024 { 2025 kcore->elfclass = elfclass; 2026 2027 if (temp) 2028 kcore->fd = mkstemp(filename); 2029 else 2030 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 2031 if (kcore->fd == -1) 2032 return -1; 2033 2034 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 2035 if (!kcore->elf) 2036 goto out_close; 2037 2038 if (!gelf_newehdr(kcore->elf, elfclass)) 2039 goto out_end; 2040 2041 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 2042 2043 return 0; 2044 2045 out_end: 2046 elf_end(kcore->elf); 2047 out_close: 2048 close(kcore->fd); 2049 unlink(filename); 2050 return -1; 2051 } 2052 2053 static void kcore__close(struct kcore *kcore) 2054 { 2055 elf_end(kcore->elf); 2056 close(kcore->fd); 2057 } 2058 2059 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 2060 { 2061 GElf_Ehdr *ehdr = &to->ehdr; 2062 GElf_Ehdr *kehdr = &from->ehdr; 2063 2064 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 2065 ehdr->e_type = kehdr->e_type; 2066 ehdr->e_machine = kehdr->e_machine; 2067 ehdr->e_version = kehdr->e_version; 2068 ehdr->e_entry = 0; 2069 ehdr->e_shoff = 0; 2070 ehdr->e_flags = kehdr->e_flags; 2071 ehdr->e_phnum = count; 2072 ehdr->e_shentsize = 0; 2073 ehdr->e_shnum = 0; 2074 ehdr->e_shstrndx = 0; 2075 2076 if (from->elfclass == ELFCLASS32) { 2077 ehdr->e_phoff = sizeof(Elf32_Ehdr); 2078 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 2079 ehdr->e_phentsize = sizeof(Elf32_Phdr); 2080 } else { 2081 ehdr->e_phoff = sizeof(Elf64_Ehdr); 2082 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 2083 ehdr->e_phentsize = sizeof(Elf64_Phdr); 2084 } 2085 2086 if (!gelf_update_ehdr(to->elf, ehdr)) 2087 return -1; 2088 2089 if (!gelf_newphdr(to->elf, count)) 2090 return -1; 2091 2092 return 0; 2093 } 2094 2095 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 2096 u64 addr, u64 len) 2097 { 2098 GElf_Phdr phdr = { 2099 .p_type = PT_LOAD, 2100 .p_flags = PF_R | PF_W | PF_X, 2101 .p_offset = offset, 2102 .p_vaddr = addr, 2103 .p_paddr = 0, 2104 .p_filesz = len, 2105 .p_memsz = len, 2106 .p_align = page_size, 2107 }; 2108 2109 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 2110 return -1; 2111 2112 return 0; 2113 } 2114 2115 static off_t kcore__write(struct kcore *kcore) 2116 { 2117 return elf_update(kcore->elf, ELF_C_WRITE); 2118 } 2119 2120 struct phdr_data { 2121 off_t offset; 2122 off_t rel; 2123 u64 addr; 2124 u64 len; 2125 struct list_head node; 2126 struct phdr_data *remaps; 2127 }; 2128 2129 struct sym_data { 2130 u64 addr; 2131 struct list_head node; 2132 }; 2133 2134 struct kcore_copy_info { 2135 u64 stext; 2136 u64 etext; 2137 u64 first_symbol; 2138 u64 last_symbol; 2139 u64 first_module; 2140 u64 first_module_symbol; 2141 u64 last_module_symbol; 2142 size_t phnum; 2143 struct list_head phdrs; 2144 struct list_head syms; 2145 }; 2146 2147 #define kcore_copy__for_each_phdr(k, p) \ 2148 list_for_each_entry((p), &(k)->phdrs, node) 2149 2150 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 2151 { 2152 struct phdr_data *p = zalloc(sizeof(*p)); 2153 2154 if (p) { 2155 p->addr = addr; 2156 p->len = len; 2157 p->offset = offset; 2158 } 2159 2160 return p; 2161 } 2162 2163 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 2164 u64 addr, u64 len, 2165 off_t offset) 2166 { 2167 struct phdr_data *p = phdr_data__new(addr, len, offset); 2168 2169 if (p) 2170 list_add_tail(&p->node, &kci->phdrs); 2171 2172 return p; 2173 } 2174 2175 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 2176 { 2177 struct phdr_data *p, *tmp; 2178 2179 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 2180 list_del_init(&p->node); 2181 free(p); 2182 } 2183 } 2184 2185 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 2186 u64 addr) 2187 { 2188 struct sym_data *s = zalloc(sizeof(*s)); 2189 2190 if (s) { 2191 s->addr = addr; 2192 list_add_tail(&s->node, &kci->syms); 2193 } 2194 2195 return s; 2196 } 2197 2198 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 2199 { 2200 struct sym_data *s, *tmp; 2201 2202 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 2203 list_del_init(&s->node); 2204 free(s); 2205 } 2206 } 2207 2208 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 2209 u64 start) 2210 { 2211 struct kcore_copy_info *kci = arg; 2212 2213 if (!kallsyms__is_function(type)) 2214 return 0; 2215 2216 if (strchr(name, '[')) { 2217 if (!kci->first_module_symbol || start < kci->first_module_symbol) 2218 kci->first_module_symbol = start; 2219 if (start > kci->last_module_symbol) 2220 kci->last_module_symbol = start; 2221 return 0; 2222 } 2223 2224 if (!kci->first_symbol || start < kci->first_symbol) 2225 kci->first_symbol = start; 2226 2227 if (!kci->last_symbol || start > kci->last_symbol) 2228 kci->last_symbol = start; 2229 2230 if (!strcmp(name, "_stext")) { 2231 kci->stext = start; 2232 return 0; 2233 } 2234 2235 if (!strcmp(name, "_etext")) { 2236 kci->etext = start; 2237 return 0; 2238 } 2239 2240 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 2241 return -1; 2242 2243 return 0; 2244 } 2245 2246 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 2247 const char *dir) 2248 { 2249 char kallsyms_filename[PATH_MAX]; 2250 2251 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 2252 2253 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 2254 return -1; 2255 2256 if (kallsyms__parse(kallsyms_filename, kci, 2257 kcore_copy__process_kallsyms) < 0) 2258 return -1; 2259 2260 return 0; 2261 } 2262 2263 static int kcore_copy__process_modules(void *arg, 2264 const char *name __maybe_unused, 2265 u64 start, u64 size __maybe_unused) 2266 { 2267 struct kcore_copy_info *kci = arg; 2268 2269 if (!kci->first_module || start < kci->first_module) 2270 kci->first_module = start; 2271 2272 return 0; 2273 } 2274 2275 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 2276 const char *dir) 2277 { 2278 char modules_filename[PATH_MAX]; 2279 2280 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 2281 2282 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 2283 return -1; 2284 2285 if (modules__parse(modules_filename, kci, 2286 kcore_copy__process_modules) < 0) 2287 return -1; 2288 2289 return 0; 2290 } 2291 2292 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 2293 u64 pgoff, u64 s, u64 e) 2294 { 2295 u64 len, offset; 2296 2297 if (s < start || s >= end) 2298 return 0; 2299 2300 offset = (s - start) + pgoff; 2301 len = e < end ? e - s : end - s; 2302 2303 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 2304 } 2305 2306 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 2307 { 2308 struct kcore_copy_info *kci = data; 2309 u64 end = start + len; 2310 struct sym_data *sdat; 2311 2312 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 2313 return -1; 2314 2315 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 2316 kci->last_module_symbol)) 2317 return -1; 2318 2319 list_for_each_entry(sdat, &kci->syms, node) { 2320 u64 s = round_down(sdat->addr, page_size); 2321 2322 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 2323 return -1; 2324 } 2325 2326 return 0; 2327 } 2328 2329 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 2330 { 2331 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 2332 return -1; 2333 2334 return 0; 2335 } 2336 2337 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 2338 { 2339 struct phdr_data *p, *k = NULL; 2340 u64 kend; 2341 2342 if (!kci->stext) 2343 return; 2344 2345 /* Find phdr that corresponds to the kernel map (contains stext) */ 2346 kcore_copy__for_each_phdr(kci, p) { 2347 u64 pend = p->addr + p->len - 1; 2348 2349 if (p->addr <= kci->stext && pend >= kci->stext) { 2350 k = p; 2351 break; 2352 } 2353 } 2354 2355 if (!k) 2356 return; 2357 2358 kend = k->offset + k->len; 2359 2360 /* Find phdrs that remap the kernel */ 2361 kcore_copy__for_each_phdr(kci, p) { 2362 u64 pend = p->offset + p->len; 2363 2364 if (p == k) 2365 continue; 2366 2367 if (p->offset >= k->offset && pend <= kend) 2368 p->remaps = k; 2369 } 2370 } 2371 2372 static void kcore_copy__layout(struct kcore_copy_info *kci) 2373 { 2374 struct phdr_data *p; 2375 off_t rel = 0; 2376 2377 kcore_copy__find_remaps(kci); 2378 2379 kcore_copy__for_each_phdr(kci, p) { 2380 if (!p->remaps) { 2381 p->rel = rel; 2382 rel += p->len; 2383 } 2384 kci->phnum += 1; 2385 } 2386 2387 kcore_copy__for_each_phdr(kci, p) { 2388 struct phdr_data *k = p->remaps; 2389 2390 if (k) 2391 p->rel = p->offset - k->offset + k->rel; 2392 } 2393 } 2394 2395 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 2396 Elf *elf) 2397 { 2398 if (kcore_copy__parse_kallsyms(kci, dir)) 2399 return -1; 2400 2401 if (kcore_copy__parse_modules(kci, dir)) 2402 return -1; 2403 2404 if (kci->stext) 2405 kci->stext = round_down(kci->stext, page_size); 2406 else 2407 kci->stext = round_down(kci->first_symbol, page_size); 2408 2409 if (kci->etext) { 2410 kci->etext = round_up(kci->etext, page_size); 2411 } else if (kci->last_symbol) { 2412 kci->etext = round_up(kci->last_symbol, page_size); 2413 kci->etext += page_size; 2414 } 2415 2416 if (kci->first_module_symbol && 2417 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 2418 kci->first_module = kci->first_module_symbol; 2419 2420 kci->first_module = round_down(kci->first_module, page_size); 2421 2422 if (kci->last_module_symbol) { 2423 kci->last_module_symbol = round_up(kci->last_module_symbol, 2424 page_size); 2425 kci->last_module_symbol += page_size; 2426 } 2427 2428 if (!kci->stext || !kci->etext) 2429 return -1; 2430 2431 if (kci->first_module && !kci->last_module_symbol) 2432 return -1; 2433 2434 if (kcore_copy__read_maps(kci, elf)) 2435 return -1; 2436 2437 kcore_copy__layout(kci); 2438 2439 return 0; 2440 } 2441 2442 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 2443 const char *name) 2444 { 2445 char from_filename[PATH_MAX]; 2446 char to_filename[PATH_MAX]; 2447 2448 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2449 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2450 2451 return copyfile_mode(from_filename, to_filename, 0400); 2452 } 2453 2454 static int kcore_copy__unlink(const char *dir, const char *name) 2455 { 2456 char filename[PATH_MAX]; 2457 2458 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 2459 2460 return unlink(filename); 2461 } 2462 2463 static int kcore_copy__compare_fds(int from, int to) 2464 { 2465 char *buf_from; 2466 char *buf_to; 2467 ssize_t ret; 2468 size_t len; 2469 int err = -1; 2470 2471 buf_from = malloc(page_size); 2472 buf_to = malloc(page_size); 2473 if (!buf_from || !buf_to) 2474 goto out; 2475 2476 while (1) { 2477 /* Use read because mmap won't work on proc files */ 2478 ret = read(from, buf_from, page_size); 2479 if (ret < 0) 2480 goto out; 2481 2482 if (!ret) 2483 break; 2484 2485 len = ret; 2486 2487 if (readn(to, buf_to, len) != (int)len) 2488 goto out; 2489 2490 if (memcmp(buf_from, buf_to, len)) 2491 goto out; 2492 } 2493 2494 err = 0; 2495 out: 2496 free(buf_to); 2497 free(buf_from); 2498 return err; 2499 } 2500 2501 static int kcore_copy__compare_files(const char *from_filename, 2502 const char *to_filename) 2503 { 2504 int from, to, err = -1; 2505 2506 from = open(from_filename, O_RDONLY); 2507 if (from < 0) 2508 return -1; 2509 2510 to = open(to_filename, O_RDONLY); 2511 if (to < 0) 2512 goto out_close_from; 2513 2514 err = kcore_copy__compare_fds(from, to); 2515 2516 close(to); 2517 out_close_from: 2518 close(from); 2519 return err; 2520 } 2521 2522 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 2523 const char *name) 2524 { 2525 char from_filename[PATH_MAX]; 2526 char to_filename[PATH_MAX]; 2527 2528 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2529 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2530 2531 return kcore_copy__compare_files(from_filename, to_filename); 2532 } 2533 2534 /** 2535 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 2536 * @from_dir: from directory 2537 * @to_dir: to directory 2538 * 2539 * This function copies kallsyms, modules and kcore files from one directory to 2540 * another. kallsyms and modules are copied entirely. Only code segments are 2541 * copied from kcore. It is assumed that two segments suffice: one for the 2542 * kernel proper and one for all the modules. The code segments are determined 2543 * from kallsyms and modules files. The kernel map starts at _stext or the 2544 * lowest function symbol, and ends at _etext or the highest function symbol. 2545 * The module map starts at the lowest module address and ends at the highest 2546 * module symbol. Start addresses are rounded down to the nearest page. End 2547 * addresses are rounded up to the nearest page. An extra page is added to the 2548 * highest kernel symbol and highest module symbol to, hopefully, encompass that 2549 * symbol too. Because it contains only code sections, the resulting kcore is 2550 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 2551 * is not the same for the kernel map and the modules map. That happens because 2552 * the data is copied adjacently whereas the original kcore has gaps. Finally, 2553 * kallsyms file is compared with its copy to check that modules have not been 2554 * loaded or unloaded while the copies were taking place. 2555 * 2556 * Return: %0 on success, %-1 on failure. 2557 */ 2558 int kcore_copy(const char *from_dir, const char *to_dir) 2559 { 2560 struct kcore kcore; 2561 struct kcore extract; 2562 int idx = 0, err = -1; 2563 off_t offset, sz; 2564 struct kcore_copy_info kci = { .stext = 0, }; 2565 char kcore_filename[PATH_MAX]; 2566 char extract_filename[PATH_MAX]; 2567 struct phdr_data *p; 2568 2569 INIT_LIST_HEAD(&kci.phdrs); 2570 INIT_LIST_HEAD(&kci.syms); 2571 2572 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 2573 return -1; 2574 2575 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 2576 goto out_unlink_kallsyms; 2577 2578 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 2579 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 2580 2581 if (kcore__open(&kcore, kcore_filename)) 2582 goto out_unlink_modules; 2583 2584 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 2585 goto out_kcore_close; 2586 2587 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 2588 goto out_kcore_close; 2589 2590 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 2591 goto out_extract_close; 2592 2593 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 2594 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 2595 offset = round_up(offset, page_size); 2596 2597 kcore_copy__for_each_phdr(&kci, p) { 2598 off_t offs = p->rel + offset; 2599 2600 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 2601 goto out_extract_close; 2602 } 2603 2604 sz = kcore__write(&extract); 2605 if (sz < 0 || sz > offset) 2606 goto out_extract_close; 2607 2608 kcore_copy__for_each_phdr(&kci, p) { 2609 off_t offs = p->rel + offset; 2610 2611 if (p->remaps) 2612 continue; 2613 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 2614 goto out_extract_close; 2615 } 2616 2617 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 2618 goto out_extract_close; 2619 2620 err = 0; 2621 2622 out_extract_close: 2623 kcore__close(&extract); 2624 if (err) 2625 unlink(extract_filename); 2626 out_kcore_close: 2627 kcore__close(&kcore); 2628 out_unlink_modules: 2629 if (err) 2630 kcore_copy__unlink(to_dir, "modules"); 2631 out_unlink_kallsyms: 2632 if (err) 2633 kcore_copy__unlink(to_dir, "kallsyms"); 2634 2635 kcore_copy__free_phdrs(&kci); 2636 kcore_copy__free_syms(&kci); 2637 2638 return err; 2639 } 2640 2641 int kcore_extract__create(struct kcore_extract *kce) 2642 { 2643 struct kcore kcore; 2644 struct kcore extract; 2645 size_t count = 1; 2646 int idx = 0, err = -1; 2647 off_t offset = page_size, sz; 2648 2649 if (kcore__open(&kcore, kce->kcore_filename)) 2650 return -1; 2651 2652 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 2653 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 2654 goto out_kcore_close; 2655 2656 if (kcore__copy_hdr(&kcore, &extract, count)) 2657 goto out_extract_close; 2658 2659 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 2660 goto out_extract_close; 2661 2662 sz = kcore__write(&extract); 2663 if (sz < 0 || sz > offset) 2664 goto out_extract_close; 2665 2666 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 2667 goto out_extract_close; 2668 2669 err = 0; 2670 2671 out_extract_close: 2672 kcore__close(&extract); 2673 if (err) 2674 unlink(kce->extract_filename); 2675 out_kcore_close: 2676 kcore__close(&kcore); 2677 2678 return err; 2679 } 2680 2681 void kcore_extract__delete(struct kcore_extract *kce) 2682 { 2683 unlink(kce->extract_filename); 2684 } 2685 2686 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2687 2688 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2689 { 2690 if (!base_off) 2691 return; 2692 2693 if (tmp->bit32) 2694 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2695 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2696 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2697 else 2698 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2699 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2700 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2701 } 2702 2703 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2704 GElf_Addr base_off) 2705 { 2706 if (!base_off) 2707 return; 2708 2709 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2710 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2711 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2712 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2713 } 2714 2715 /** 2716 * populate_sdt_note : Parse raw data and identify SDT note 2717 * @elf: elf of the opened file 2718 * @data: raw data of a section with description offset applied 2719 * @len: note description size 2720 * @type: type of the note 2721 * @sdt_notes: List to add the SDT note 2722 * 2723 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2724 * if its an SDT note, it appends to @sdt_notes list. 2725 */ 2726 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2727 struct list_head *sdt_notes) 2728 { 2729 const char *provider, *name, *args; 2730 struct sdt_note *tmp = NULL; 2731 GElf_Ehdr ehdr; 2732 GElf_Shdr shdr; 2733 int ret = -EINVAL; 2734 2735 union { 2736 Elf64_Addr a64[NR_ADDR]; 2737 Elf32_Addr a32[NR_ADDR]; 2738 } buf; 2739 2740 Elf_Data dst = { 2741 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2742 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2743 .d_off = 0, .d_align = 0 2744 }; 2745 Elf_Data src = { 2746 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2747 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2748 .d_align = 0 2749 }; 2750 2751 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2752 if (!tmp) { 2753 ret = -ENOMEM; 2754 goto out_err; 2755 } 2756 2757 INIT_LIST_HEAD(&tmp->note_list); 2758 2759 if (len < dst.d_size + 3) 2760 goto out_free_note; 2761 2762 /* Translation from file representation to memory representation */ 2763 if (gelf_xlatetom(*elf, &dst, &src, 2764 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2765 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2766 goto out_free_note; 2767 } 2768 2769 /* Populate the fields of sdt_note */ 2770 provider = data + dst.d_size; 2771 2772 name = (const char *)memchr(provider, '\0', data + len - provider); 2773 if (name++ == NULL) 2774 goto out_free_note; 2775 2776 tmp->provider = strdup(provider); 2777 if (!tmp->provider) { 2778 ret = -ENOMEM; 2779 goto out_free_note; 2780 } 2781 tmp->name = strdup(name); 2782 if (!tmp->name) { 2783 ret = -ENOMEM; 2784 goto out_free_prov; 2785 } 2786 2787 args = memchr(name, '\0', data + len - name); 2788 2789 /* 2790 * There is no argument if: 2791 * - We reached the end of the note; 2792 * - There is not enough room to hold a potential string; 2793 * - The argument string is empty or just contains ':'. 2794 */ 2795 if (args == NULL || data + len - args < 2 || 2796 args[1] == ':' || args[1] == '\0') 2797 tmp->args = NULL; 2798 else { 2799 tmp->args = strdup(++args); 2800 if (!tmp->args) { 2801 ret = -ENOMEM; 2802 goto out_free_name; 2803 } 2804 } 2805 2806 if (gelf_getclass(*elf) == ELFCLASS32) { 2807 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2808 tmp->bit32 = true; 2809 } else { 2810 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2811 tmp->bit32 = false; 2812 } 2813 2814 if (!gelf_getehdr(*elf, &ehdr)) { 2815 pr_debug("%s : cannot get elf header.\n", __func__); 2816 ret = -EBADF; 2817 goto out_free_args; 2818 } 2819 2820 /* Adjust the prelink effect : 2821 * Find out the .stapsdt.base section. 2822 * This scn will help us to handle prelinking (if present). 2823 * Compare the retrieved file offset of the base section with the 2824 * base address in the description of the SDT note. If its different, 2825 * then accordingly, adjust the note location. 2826 */ 2827 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2828 sdt_adjust_loc(tmp, shdr.sh_offset); 2829 2830 /* Adjust reference counter offset */ 2831 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2832 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2833 2834 list_add_tail(&tmp->note_list, sdt_notes); 2835 return 0; 2836 2837 out_free_args: 2838 zfree(&tmp->args); 2839 out_free_name: 2840 zfree(&tmp->name); 2841 out_free_prov: 2842 zfree(&tmp->provider); 2843 out_free_note: 2844 free(tmp); 2845 out_err: 2846 return ret; 2847 } 2848 2849 /** 2850 * construct_sdt_notes_list : constructs a list of SDT notes 2851 * @elf : elf to look into 2852 * @sdt_notes : empty list_head 2853 * 2854 * Scans the sections in 'elf' for the section 2855 * .note.stapsdt. It, then calls populate_sdt_note to find 2856 * out the SDT events and populates the 'sdt_notes'. 2857 */ 2858 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2859 { 2860 GElf_Ehdr ehdr; 2861 Elf_Scn *scn = NULL; 2862 Elf_Data *data; 2863 GElf_Shdr shdr; 2864 size_t shstrndx, next; 2865 GElf_Nhdr nhdr; 2866 size_t name_off, desc_off, offset; 2867 int ret = 0; 2868 2869 if (gelf_getehdr(elf, &ehdr) == NULL) { 2870 ret = -EBADF; 2871 goto out_ret; 2872 } 2873 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2874 ret = -EBADF; 2875 goto out_ret; 2876 } 2877 2878 /* Look for the required section */ 2879 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2880 if (!scn) { 2881 ret = -ENOENT; 2882 goto out_ret; 2883 } 2884 2885 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2886 ret = -ENOENT; 2887 goto out_ret; 2888 } 2889 2890 data = elf_getdata(scn, NULL); 2891 2892 /* Get the SDT notes */ 2893 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2894 &desc_off)) > 0; offset = next) { 2895 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2896 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2897 sizeof(SDT_NOTE_NAME))) { 2898 /* Check the type of the note */ 2899 if (nhdr.n_type != SDT_NOTE_TYPE) 2900 goto out_ret; 2901 2902 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2903 nhdr.n_descsz, sdt_notes); 2904 if (ret < 0) 2905 goto out_ret; 2906 } 2907 } 2908 if (list_empty(sdt_notes)) 2909 ret = -ENOENT; 2910 2911 out_ret: 2912 return ret; 2913 } 2914 2915 /** 2916 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2917 * @head : empty list_head 2918 * @target : file to find SDT notes from 2919 * 2920 * This opens the file, initializes 2921 * the ELF and then calls construct_sdt_notes_list. 2922 */ 2923 int get_sdt_note_list(struct list_head *head, const char *target) 2924 { 2925 Elf *elf; 2926 int fd, ret; 2927 2928 fd = open(target, O_RDONLY); 2929 if (fd < 0) 2930 return -EBADF; 2931 2932 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2933 if (!elf) { 2934 ret = -EBADF; 2935 goto out_close; 2936 } 2937 ret = construct_sdt_notes_list(elf, head); 2938 elf_end(elf); 2939 out_close: 2940 close(fd); 2941 return ret; 2942 } 2943 2944 /** 2945 * cleanup_sdt_note_list : free the sdt notes' list 2946 * @sdt_notes: sdt notes' list 2947 * 2948 * Free up the SDT notes in @sdt_notes. 2949 * Returns the number of SDT notes free'd. 2950 */ 2951 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2952 { 2953 struct sdt_note *tmp, *pos; 2954 int nr_free = 0; 2955 2956 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2957 list_del_init(&pos->note_list); 2958 zfree(&pos->args); 2959 zfree(&pos->name); 2960 zfree(&pos->provider); 2961 free(pos); 2962 nr_free++; 2963 } 2964 return nr_free; 2965 } 2966 2967 /** 2968 * sdt_notes__get_count: Counts the number of sdt events 2969 * @start: list_head to sdt_notes list 2970 * 2971 * Returns the number of SDT notes in a list 2972 */ 2973 int sdt_notes__get_count(struct list_head *start) 2974 { 2975 struct sdt_note *sdt_ptr; 2976 int count = 0; 2977 2978 list_for_each_entry(sdt_ptr, start, note_list) 2979 count++; 2980 return count; 2981 } 2982 #endif 2983 2984 void symbol__elf_init(void) 2985 { 2986 elf_version(EV_CURRENT); 2987 } 2988