xref: /linux/tools/perf/util/symbol-elf.c (revision 107ef66cb054f8d54e336236a31631a8cc167c1f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9 
10 #include "dso.h"
11 #include "map.h"
12 #include "maps.h"
13 #include "symbol.h"
14 #include "symsrc.h"
15 #include "demangle-cxx.h"
16 #include "demangle-ocaml.h"
17 #include "demangle-java.h"
18 #include "demangle-rust.h"
19 #include "machine.h"
20 #include "vdso.h"
21 #include "debug.h"
22 #include "util/copyfile.h"
23 #include <linux/ctype.h>
24 #include <linux/kernel.h>
25 #include <linux/zalloc.h>
26 #include <linux/string.h>
27 #include <symbol/kallsyms.h>
28 #include <internal/lib.h>
29 
30 #ifdef HAVE_LIBBFD_SUPPORT
31 #define PACKAGE 'perf'
32 #include <bfd.h>
33 #endif
34 
35 #if defined(HAVE_LIBBFD_SUPPORT) || defined(HAVE_CPLUS_DEMANGLE_SUPPORT)
36 #ifndef DMGL_PARAMS
37 #define DMGL_PARAMS     (1 << 0)  /* Include function args */
38 #define DMGL_ANSI       (1 << 1)  /* Include const, volatile, etc */
39 #endif
40 #endif
41 
42 #ifndef EM_AARCH64
43 #define EM_AARCH64	183  /* ARM 64 bit */
44 #endif
45 
46 #ifndef EM_LOONGARCH
47 #define EM_LOONGARCH	258
48 #endif
49 
50 #ifndef ELF32_ST_VISIBILITY
51 #define ELF32_ST_VISIBILITY(o)	((o) & 0x03)
52 #endif
53 
54 /* For ELF64 the definitions are the same.  */
55 #ifndef ELF64_ST_VISIBILITY
56 #define ELF64_ST_VISIBILITY(o)	ELF32_ST_VISIBILITY (o)
57 #endif
58 
59 /* How to extract information held in the st_other field.  */
60 #ifndef GELF_ST_VISIBILITY
61 #define GELF_ST_VISIBILITY(val)	ELF64_ST_VISIBILITY (val)
62 #endif
63 
64 typedef Elf64_Nhdr GElf_Nhdr;
65 
66 
67 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
68 static int elf_getphdrnum(Elf *elf, size_t *dst)
69 {
70 	GElf_Ehdr gehdr;
71 	GElf_Ehdr *ehdr;
72 
73 	ehdr = gelf_getehdr(elf, &gehdr);
74 	if (!ehdr)
75 		return -1;
76 
77 	*dst = ehdr->e_phnum;
78 
79 	return 0;
80 }
81 #endif
82 
83 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
84 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
85 {
86 	pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
87 	return -1;
88 }
89 #endif
90 
91 #ifndef NT_GNU_BUILD_ID
92 #define NT_GNU_BUILD_ID 3
93 #endif
94 
95 /**
96  * elf_symtab__for_each_symbol - iterate thru all the symbols
97  *
98  * @syms: struct elf_symtab instance to iterate
99  * @idx: uint32_t idx
100  * @sym: GElf_Sym iterator
101  */
102 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
103 	for (idx = 0, gelf_getsym(syms, idx, &sym);\
104 	     idx < nr_syms; \
105 	     idx++, gelf_getsym(syms, idx, &sym))
106 
107 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
108 {
109 	return GELF_ST_TYPE(sym->st_info);
110 }
111 
112 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
113 {
114 	return GELF_ST_VISIBILITY(sym->st_other);
115 }
116 
117 #ifndef STT_GNU_IFUNC
118 #define STT_GNU_IFUNC 10
119 #endif
120 
121 static inline int elf_sym__is_function(const GElf_Sym *sym)
122 {
123 	return (elf_sym__type(sym) == STT_FUNC ||
124 		elf_sym__type(sym) == STT_GNU_IFUNC) &&
125 	       sym->st_name != 0 &&
126 	       sym->st_shndx != SHN_UNDEF;
127 }
128 
129 static inline bool elf_sym__is_object(const GElf_Sym *sym)
130 {
131 	return elf_sym__type(sym) == STT_OBJECT &&
132 		sym->st_name != 0 &&
133 		sym->st_shndx != SHN_UNDEF;
134 }
135 
136 static inline int elf_sym__is_label(const GElf_Sym *sym)
137 {
138 	return elf_sym__type(sym) == STT_NOTYPE &&
139 		sym->st_name != 0 &&
140 		sym->st_shndx != SHN_UNDEF &&
141 		sym->st_shndx != SHN_ABS &&
142 		elf_sym__visibility(sym) != STV_HIDDEN &&
143 		elf_sym__visibility(sym) != STV_INTERNAL;
144 }
145 
146 static bool elf_sym__filter(GElf_Sym *sym)
147 {
148 	return elf_sym__is_function(sym) || elf_sym__is_object(sym);
149 }
150 
151 static inline const char *elf_sym__name(const GElf_Sym *sym,
152 					const Elf_Data *symstrs)
153 {
154 	return symstrs->d_buf + sym->st_name;
155 }
156 
157 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
158 					const Elf_Data *secstrs)
159 {
160 	return secstrs->d_buf + shdr->sh_name;
161 }
162 
163 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
164 					const Elf_Data *secstrs)
165 {
166 	return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
167 }
168 
169 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
170 				    const Elf_Data *secstrs)
171 {
172 	return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
173 }
174 
175 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
176 {
177 	return elf_sec__is_text(shdr, secstrs) ||
178 	       elf_sec__is_data(shdr, secstrs);
179 }
180 
181 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
182 {
183 	Elf_Scn *sec = NULL;
184 	GElf_Shdr shdr;
185 	size_t cnt = 1;
186 
187 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
188 		gelf_getshdr(sec, &shdr);
189 
190 		if ((addr >= shdr.sh_addr) &&
191 		    (addr < (shdr.sh_addr + shdr.sh_size)))
192 			return cnt;
193 
194 		++cnt;
195 	}
196 
197 	return -1;
198 }
199 
200 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
201 			     GElf_Shdr *shp, const char *name, size_t *idx)
202 {
203 	Elf_Scn *sec = NULL;
204 	size_t cnt = 1;
205 
206 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
207 	if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
208 		return NULL;
209 
210 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
211 		char *str;
212 
213 		gelf_getshdr(sec, shp);
214 		str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
215 		if (str && !strcmp(name, str)) {
216 			if (idx)
217 				*idx = cnt;
218 			return sec;
219 		}
220 		++cnt;
221 	}
222 
223 	return NULL;
224 }
225 
226 bool filename__has_section(const char *filename, const char *sec)
227 {
228 	int fd;
229 	Elf *elf;
230 	GElf_Ehdr ehdr;
231 	GElf_Shdr shdr;
232 	bool found = false;
233 
234 	fd = open(filename, O_RDONLY);
235 	if (fd < 0)
236 		return false;
237 
238 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
239 	if (elf == NULL)
240 		goto out;
241 
242 	if (gelf_getehdr(elf, &ehdr) == NULL)
243 		goto elf_out;
244 
245 	found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
246 
247 elf_out:
248 	elf_end(elf);
249 out:
250 	close(fd);
251 	return found;
252 }
253 
254 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
255 {
256 	size_t i, phdrnum;
257 	u64 sz;
258 
259 	if (elf_getphdrnum(elf, &phdrnum))
260 		return -1;
261 
262 	for (i = 0; i < phdrnum; i++) {
263 		if (gelf_getphdr(elf, i, phdr) == NULL)
264 			return -1;
265 
266 		if (phdr->p_type != PT_LOAD)
267 			continue;
268 
269 		sz = max(phdr->p_memsz, phdr->p_filesz);
270 		if (!sz)
271 			continue;
272 
273 		if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
274 			return 0;
275 	}
276 
277 	/* Not found any valid program header */
278 	return -1;
279 }
280 
281 static bool want_demangle(bool is_kernel_sym)
282 {
283 	return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
284 }
285 
286 /*
287  * Demangle C++ function signature, typically replaced by demangle-cxx.cpp
288  * version.
289  */
290 __weak char *cxx_demangle_sym(const char *str __maybe_unused, bool params __maybe_unused,
291 			      bool modifiers __maybe_unused)
292 {
293 #ifdef HAVE_LIBBFD_SUPPORT
294 	int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0);
295 
296 	return bfd_demangle(NULL, str, flags);
297 #elif defined(HAVE_CPLUS_DEMANGLE_SUPPORT)
298 	int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0);
299 
300 	return cplus_demangle(str, flags);
301 #else
302 	return NULL;
303 #endif
304 }
305 
306 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
307 {
308 	char *demangled = NULL;
309 
310 	/*
311 	 * We need to figure out if the object was created from C++ sources
312 	 * DWARF DW_compile_unit has this, but we don't always have access
313 	 * to it...
314 	 */
315 	if (!want_demangle(dso->kernel || kmodule))
316 	    return demangled;
317 
318 	demangled = cxx_demangle_sym(elf_name, verbose > 0, verbose > 0);
319 	if (demangled == NULL) {
320 		demangled = ocaml_demangle_sym(elf_name);
321 		if (demangled == NULL) {
322 			demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
323 		}
324 	}
325 	else if (rust_is_mangled(demangled))
326 		/*
327 		    * Input to Rust demangling is the BFD-demangled
328 		    * name which it Rust-demangles in place.
329 		    */
330 		rust_demangle_sym(demangled);
331 
332 	return demangled;
333 }
334 
335 struct rel_info {
336 	u32		nr_entries;
337 	u32		*sorted;
338 	bool		is_rela;
339 	Elf_Data	*reldata;
340 	GElf_Rela	rela;
341 	GElf_Rel	rel;
342 };
343 
344 static u32 get_rel_symidx(struct rel_info *ri, u32 idx)
345 {
346 	idx = ri->sorted ? ri->sorted[idx] : idx;
347 	if (ri->is_rela) {
348 		gelf_getrela(ri->reldata, idx, &ri->rela);
349 		return GELF_R_SYM(ri->rela.r_info);
350 	}
351 	gelf_getrel(ri->reldata, idx, &ri->rel);
352 	return GELF_R_SYM(ri->rel.r_info);
353 }
354 
355 static u64 get_rel_offset(struct rel_info *ri, u32 x)
356 {
357 	if (ri->is_rela) {
358 		GElf_Rela rela;
359 
360 		gelf_getrela(ri->reldata, x, &rela);
361 		return rela.r_offset;
362 	} else {
363 		GElf_Rel rel;
364 
365 		gelf_getrel(ri->reldata, x, &rel);
366 		return rel.r_offset;
367 	}
368 }
369 
370 static int rel_cmp(const void *a, const void *b, void *r)
371 {
372 	struct rel_info *ri = r;
373 	u64 a_offset = get_rel_offset(ri, *(const u32 *)a);
374 	u64 b_offset = get_rel_offset(ri, *(const u32 *)b);
375 
376 	return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0);
377 }
378 
379 static int sort_rel(struct rel_info *ri)
380 {
381 	size_t sz = sizeof(ri->sorted[0]);
382 	u32 i;
383 
384 	ri->sorted = calloc(ri->nr_entries, sz);
385 	if (!ri->sorted)
386 		return -1;
387 	for (i = 0; i < ri->nr_entries; i++)
388 		ri->sorted[i] = i;
389 	qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri);
390 	return 0;
391 }
392 
393 /*
394  * For x86_64, the GNU linker is putting IFUNC information in the relocation
395  * addend.
396  */
397 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri)
398 {
399 	return ehdr->e_machine == EM_X86_64 && ri->is_rela &&
400 	       GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE;
401 }
402 
403 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr,
404 			   struct rel_info *ri, char *buf, size_t buf_sz)
405 {
406 	u64 addr = ri->rela.r_addend;
407 	struct symbol *sym;
408 	GElf_Phdr phdr;
409 
410 	if (!addend_may_be_ifunc(ehdr, ri))
411 		return false;
412 
413 	if (elf_read_program_header(elf, addr, &phdr))
414 		return false;
415 
416 	addr -= phdr.p_vaddr - phdr.p_offset;
417 
418 	sym = dso__find_symbol_nocache(dso, addr);
419 
420 	/* Expecting the address to be an IFUNC or IFUNC alias */
421 	if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias))
422 		return false;
423 
424 	snprintf(buf, buf_sz, "%s@plt", sym->name);
425 
426 	return true;
427 }
428 
429 static void exit_rel(struct rel_info *ri)
430 {
431 	zfree(&ri->sorted);
432 }
433 
434 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt,
435 			  u64 *plt_header_size, u64 *plt_entry_size)
436 {
437 	switch (ehdr->e_machine) {
438 	case EM_ARM:
439 		*plt_header_size = 20;
440 		*plt_entry_size = 12;
441 		return true;
442 	case EM_AARCH64:
443 		*plt_header_size = 32;
444 		*plt_entry_size = 16;
445 		return true;
446 	case EM_LOONGARCH:
447 		*plt_header_size = 32;
448 		*plt_entry_size = 16;
449 		return true;
450 	case EM_SPARC:
451 		*plt_header_size = 48;
452 		*plt_entry_size = 12;
453 		return true;
454 	case EM_SPARCV9:
455 		*plt_header_size = 128;
456 		*plt_entry_size = 32;
457 		return true;
458 	case EM_386:
459 	case EM_X86_64:
460 		*plt_entry_size = shdr_plt->sh_entsize;
461 		/* Size is 8 or 16, if not, assume alignment indicates size */
462 		if (*plt_entry_size != 8 && *plt_entry_size != 16)
463 			*plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16;
464 		*plt_header_size = *plt_entry_size;
465 		break;
466 	default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
467 		*plt_header_size = shdr_plt->sh_entsize;
468 		*plt_entry_size = shdr_plt->sh_entsize;
469 		break;
470 	}
471 	if (*plt_entry_size)
472 		return true;
473 	pr_debug("Missing PLT entry size for %s\n", dso->long_name);
474 	return false;
475 }
476 
477 static bool machine_is_x86(GElf_Half e_machine)
478 {
479 	return e_machine == EM_386 || e_machine == EM_X86_64;
480 }
481 
482 struct rela_dyn {
483 	GElf_Addr	offset;
484 	u32		sym_idx;
485 };
486 
487 struct rela_dyn_info {
488 	struct dso	*dso;
489 	Elf_Data	*plt_got_data;
490 	u32		nr_entries;
491 	struct rela_dyn	*sorted;
492 	Elf_Data	*dynsym_data;
493 	Elf_Data	*dynstr_data;
494 	Elf_Data	*rela_dyn_data;
495 };
496 
497 static void exit_rela_dyn(struct rela_dyn_info *di)
498 {
499 	zfree(&di->sorted);
500 }
501 
502 static int cmp_offset(const void *a, const void *b)
503 {
504 	const struct rela_dyn *va = a;
505 	const struct rela_dyn *vb = b;
506 
507 	return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0);
508 }
509 
510 static int sort_rela_dyn(struct rela_dyn_info *di)
511 {
512 	u32 i, n;
513 
514 	di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0]));
515 	if (!di->sorted)
516 		return -1;
517 
518 	/* Get data for sorting: the offset and symbol index */
519 	for (i = 0, n = 0; i < di->nr_entries; i++) {
520 		GElf_Rela rela;
521 		u32 sym_idx;
522 
523 		gelf_getrela(di->rela_dyn_data, i, &rela);
524 		sym_idx = GELF_R_SYM(rela.r_info);
525 		if (sym_idx) {
526 			di->sorted[n].sym_idx = sym_idx;
527 			di->sorted[n].offset = rela.r_offset;
528 			n += 1;
529 		}
530 	}
531 
532 	/* Sort by offset */
533 	di->nr_entries = n;
534 	qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset);
535 
536 	return 0;
537 }
538 
539 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn)
540 {
541 	GElf_Shdr rela_dyn_shdr;
542 	GElf_Shdr shdr;
543 
544 	di->plt_got_data = elf_getdata(scn, NULL);
545 
546 	scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL);
547 	if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize)
548 		return;
549 
550 	di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize;
551 	di->rela_dyn_data = elf_getdata(scn, NULL);
552 
553 	scn = elf_getscn(elf, rela_dyn_shdr.sh_link);
554 	if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link)
555 		return;
556 
557 	di->dynsym_data = elf_getdata(scn, NULL);
558 	di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL);
559 
560 	if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data)
561 		return;
562 
563 	/* Sort into offset order */
564 	sort_rela_dyn(di);
565 }
566 
567 /* Get instruction displacement from a plt entry for x86_64 */
568 static u32 get_x86_64_plt_disp(const u8 *p)
569 {
570 	u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa};
571 	int n = 0;
572 
573 	/* Skip endbr64 */
574 	if (!memcmp(p, endbr64, sizeof(endbr64)))
575 		n += sizeof(endbr64);
576 	/* Skip bnd prefix */
577 	if (p[n] == 0xf2)
578 		n += 1;
579 	/* jmp with 4-byte displacement */
580 	if (p[n] == 0xff && p[n + 1] == 0x25) {
581 		u32 disp;
582 
583 		n += 2;
584 		/* Also add offset from start of entry to end of instruction */
585 		memcpy(&disp, p + n, sizeof(disp));
586 		return n + 4 + le32toh(disp);
587 	}
588 	return 0;
589 }
590 
591 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i,
592 			     struct rela_dyn_info *di,
593 			     char *buf, size_t buf_sz)
594 {
595 	struct rela_dyn vi, *vr;
596 	const char *sym_name;
597 	char *demangled;
598 	GElf_Sym sym;
599 	bool result;
600 	u32 disp;
601 
602 	if (!di->sorted)
603 		return false;
604 
605 	disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i);
606 	if (!disp)
607 		return false;
608 
609 	/* Compute target offset of the .plt.got entry */
610 	vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp;
611 
612 	/* Find that offset in .rela.dyn (sorted by offset) */
613 	vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset);
614 	if (!vr)
615 		return false;
616 
617 	/* Get the associated symbol */
618 	gelf_getsym(di->dynsym_data, vr->sym_idx, &sym);
619 	sym_name = elf_sym__name(&sym, di->dynstr_data);
620 	demangled = demangle_sym(di->dso, 0, sym_name);
621 	if (demangled != NULL)
622 		sym_name = demangled;
623 
624 	snprintf(buf, buf_sz, "%s@plt", sym_name);
625 
626 	result = *sym_name;
627 
628 	free(demangled);
629 
630 	return result;
631 }
632 
633 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf,
634 					   GElf_Ehdr *ehdr,
635 					   char *buf, size_t buf_sz)
636 {
637 	struct rela_dyn_info di = { .dso = dso };
638 	struct symbol *sym;
639 	GElf_Shdr shdr;
640 	Elf_Scn *scn;
641 	int err = -1;
642 	size_t i;
643 
644 	scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL);
645 	if (!scn || !shdr.sh_entsize)
646 		return 0;
647 
648 	if (ehdr->e_machine == EM_X86_64)
649 		get_rela_dyn_info(elf, ehdr, &di, scn);
650 
651 	for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) {
652 		if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz))
653 			snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i);
654 		sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf);
655 		if (!sym)
656 			goto out;
657 		symbols__insert(&dso->symbols, sym);
658 	}
659 	err = 0;
660 out:
661 	exit_rela_dyn(&di);
662 	return err;
663 }
664 
665 /*
666  * We need to check if we have a .dynsym, so that we can handle the
667  * .plt, synthesizing its symbols, that aren't on the symtabs (be it
668  * .dynsym or .symtab).
669  * And always look at the original dso, not at debuginfo packages, that
670  * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
671  */
672 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
673 {
674 	uint32_t idx;
675 	GElf_Sym sym;
676 	u64 plt_offset, plt_header_size, plt_entry_size;
677 	GElf_Shdr shdr_plt, plt_sec_shdr;
678 	struct symbol *f, *plt_sym;
679 	GElf_Shdr shdr_rel_plt, shdr_dynsym;
680 	Elf_Data *syms, *symstrs;
681 	Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
682 	GElf_Ehdr ehdr;
683 	char sympltname[1024];
684 	Elf *elf;
685 	int nr = 0, err = -1;
686 	struct rel_info ri = { .is_rela = false };
687 	bool lazy_plt;
688 
689 	elf = ss->elf;
690 	ehdr = ss->ehdr;
691 
692 	if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL))
693 		return 0;
694 
695 	/*
696 	 * A symbol from a previous section (e.g. .init) can have been expanded
697 	 * by symbols__fixup_end() to overlap .plt. Truncate it before adding
698 	 * a symbol for .plt header.
699 	 */
700 	f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset);
701 	if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset)
702 		f->end = shdr_plt.sh_offset;
703 
704 	if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size))
705 		return 0;
706 
707 	/* Add a symbol for .plt header */
708 	plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt");
709 	if (!plt_sym)
710 		goto out_elf_end;
711 	symbols__insert(&dso->symbols, plt_sym);
712 
713 	/* Only x86 has .plt.got */
714 	if (machine_is_x86(ehdr.e_machine) &&
715 	    dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname)))
716 		goto out_elf_end;
717 
718 	/* Only x86 has .plt.sec */
719 	if (machine_is_x86(ehdr.e_machine) &&
720 	    elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) {
721 		if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size))
722 			return 0;
723 		/* Extend .plt symbol to entire .plt */
724 		plt_sym->end = plt_sym->start + shdr_plt.sh_size;
725 		/* Use .plt.sec offset */
726 		plt_offset = plt_sec_shdr.sh_offset;
727 		lazy_plt = false;
728 	} else {
729 		plt_offset = shdr_plt.sh_offset;
730 		lazy_plt = true;
731 	}
732 
733 	scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
734 					  ".rela.plt", NULL);
735 	if (scn_plt_rel == NULL) {
736 		scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
737 						  ".rel.plt", NULL);
738 		if (scn_plt_rel == NULL)
739 			return 0;
740 	}
741 
742 	if (shdr_rel_plt.sh_type != SHT_RELA &&
743 	    shdr_rel_plt.sh_type != SHT_REL)
744 		return 0;
745 
746 	if (!shdr_rel_plt.sh_link)
747 		return 0;
748 
749 	if (shdr_rel_plt.sh_link == ss->dynsym_idx) {
750 		scn_dynsym = ss->dynsym;
751 		shdr_dynsym = ss->dynshdr;
752 	} else if (shdr_rel_plt.sh_link == ss->symtab_idx) {
753 		/*
754 		 * A static executable can have a .plt due to IFUNCs, in which
755 		 * case .symtab is used not .dynsym.
756 		 */
757 		scn_dynsym = ss->symtab;
758 		shdr_dynsym = ss->symshdr;
759 	} else {
760 		goto out_elf_end;
761 	}
762 
763 	if (!scn_dynsym)
764 		return 0;
765 
766 	/*
767 	 * Fetch the relocation section to find the idxes to the GOT
768 	 * and the symbols in the .dynsym they refer to.
769 	 */
770 	ri.reldata = elf_getdata(scn_plt_rel, NULL);
771 	if (!ri.reldata)
772 		goto out_elf_end;
773 
774 	syms = elf_getdata(scn_dynsym, NULL);
775 	if (syms == NULL)
776 		goto out_elf_end;
777 
778 	scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
779 	if (scn_symstrs == NULL)
780 		goto out_elf_end;
781 
782 	symstrs = elf_getdata(scn_symstrs, NULL);
783 	if (symstrs == NULL)
784 		goto out_elf_end;
785 
786 	if (symstrs->d_size == 0)
787 		goto out_elf_end;
788 
789 	ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
790 
791 	ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA;
792 
793 	if (lazy_plt) {
794 		/*
795 		 * Assume a .plt with the same number of entries as the number
796 		 * of relocation entries is not lazy and does not have a header.
797 		 */
798 		if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size)
799 			dso__delete_symbol(dso, plt_sym);
800 		else
801 			plt_offset += plt_header_size;
802 	}
803 
804 	/*
805 	 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get
806 	 * back in order.
807 	 */
808 	if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri))
809 		goto out_elf_end;
810 
811 	for (idx = 0; idx < ri.nr_entries; idx++) {
812 		const char *elf_name = NULL;
813 		char *demangled = NULL;
814 
815 		gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym);
816 
817 		elf_name = elf_sym__name(&sym, symstrs);
818 		demangled = demangle_sym(dso, 0, elf_name);
819 		if (demangled)
820 			elf_name = demangled;
821 		if (*elf_name)
822 			snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name);
823 		else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname)))
824 			snprintf(sympltname, sizeof(sympltname),
825 				 "offset_%#" PRIx64 "@plt", plt_offset);
826 		free(demangled);
827 
828 		f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname);
829 		if (!f)
830 			goto out_elf_end;
831 
832 		plt_offset += plt_entry_size;
833 		symbols__insert(&dso->symbols, f);
834 		++nr;
835 	}
836 
837 	err = 0;
838 out_elf_end:
839 	exit_rel(&ri);
840 	if (err == 0)
841 		return nr;
842 	pr_debug("%s: problems reading %s PLT info.\n",
843 		 __func__, dso->long_name);
844 	return 0;
845 }
846 
847 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
848 {
849 	return demangle_sym(dso, kmodule, elf_name);
850 }
851 
852 /*
853  * Align offset to 4 bytes as needed for note name and descriptor data.
854  */
855 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
856 
857 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
858 {
859 	int err = -1;
860 	GElf_Ehdr ehdr;
861 	GElf_Shdr shdr;
862 	Elf_Data *data;
863 	Elf_Scn *sec;
864 	Elf_Kind ek;
865 	void *ptr;
866 
867 	if (size < BUILD_ID_SIZE)
868 		goto out;
869 
870 	ek = elf_kind(elf);
871 	if (ek != ELF_K_ELF)
872 		goto out;
873 
874 	if (gelf_getehdr(elf, &ehdr) == NULL) {
875 		pr_err("%s: cannot get elf header.\n", __func__);
876 		goto out;
877 	}
878 
879 	/*
880 	 * Check following sections for notes:
881 	 *   '.note.gnu.build-id'
882 	 *   '.notes'
883 	 *   '.note' (VDSO specific)
884 	 */
885 	do {
886 		sec = elf_section_by_name(elf, &ehdr, &shdr,
887 					  ".note.gnu.build-id", NULL);
888 		if (sec)
889 			break;
890 
891 		sec = elf_section_by_name(elf, &ehdr, &shdr,
892 					  ".notes", NULL);
893 		if (sec)
894 			break;
895 
896 		sec = elf_section_by_name(elf, &ehdr, &shdr,
897 					  ".note", NULL);
898 		if (sec)
899 			break;
900 
901 		return err;
902 
903 	} while (0);
904 
905 	data = elf_getdata(sec, NULL);
906 	if (data == NULL)
907 		goto out;
908 
909 	ptr = data->d_buf;
910 	while (ptr < (data->d_buf + data->d_size)) {
911 		GElf_Nhdr *nhdr = ptr;
912 		size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
913 		       descsz = NOTE_ALIGN(nhdr->n_descsz);
914 		const char *name;
915 
916 		ptr += sizeof(*nhdr);
917 		name = ptr;
918 		ptr += namesz;
919 		if (nhdr->n_type == NT_GNU_BUILD_ID &&
920 		    nhdr->n_namesz == sizeof("GNU")) {
921 			if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
922 				size_t sz = min(size, descsz);
923 				memcpy(bf, ptr, sz);
924 				memset(bf + sz, 0, size - sz);
925 				err = sz;
926 				break;
927 			}
928 		}
929 		ptr += descsz;
930 	}
931 
932 out:
933 	return err;
934 }
935 
936 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT
937 
938 static int read_build_id(const char *filename, struct build_id *bid)
939 {
940 	size_t size = sizeof(bid->data);
941 	int err = -1;
942 	bfd *abfd;
943 
944 	abfd = bfd_openr(filename, NULL);
945 	if (!abfd)
946 		return -1;
947 
948 	if (!bfd_check_format(abfd, bfd_object)) {
949 		pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
950 		goto out_close;
951 	}
952 
953 	if (!abfd->build_id || abfd->build_id->size > size)
954 		goto out_close;
955 
956 	memcpy(bid->data, abfd->build_id->data, abfd->build_id->size);
957 	memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size);
958 	err = bid->size = abfd->build_id->size;
959 
960 out_close:
961 	bfd_close(abfd);
962 	return err;
963 }
964 
965 #else // HAVE_LIBBFD_BUILDID_SUPPORT
966 
967 static int read_build_id(const char *filename, struct build_id *bid)
968 {
969 	size_t size = sizeof(bid->data);
970 	int fd, err = -1;
971 	Elf *elf;
972 
973 	if (size < BUILD_ID_SIZE)
974 		goto out;
975 
976 	fd = open(filename, O_RDONLY);
977 	if (fd < 0)
978 		goto out;
979 
980 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
981 	if (elf == NULL) {
982 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
983 		goto out_close;
984 	}
985 
986 	err = elf_read_build_id(elf, bid->data, size);
987 	if (err > 0)
988 		bid->size = err;
989 
990 	elf_end(elf);
991 out_close:
992 	close(fd);
993 out:
994 	return err;
995 }
996 
997 #endif // HAVE_LIBBFD_BUILDID_SUPPORT
998 
999 int filename__read_build_id(const char *filename, struct build_id *bid)
1000 {
1001 	struct kmod_path m = { .name = NULL, };
1002 	char path[PATH_MAX];
1003 	int err;
1004 
1005 	if (!filename)
1006 		return -EFAULT;
1007 
1008 	err = kmod_path__parse(&m, filename);
1009 	if (err)
1010 		return -1;
1011 
1012 	if (m.comp) {
1013 		int error = 0, fd;
1014 
1015 		fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
1016 		if (fd < 0) {
1017 			pr_debug("Failed to decompress (error %d) %s\n",
1018 				 error, filename);
1019 			return -1;
1020 		}
1021 		close(fd);
1022 		filename = path;
1023 	}
1024 
1025 	err = read_build_id(filename, bid);
1026 
1027 	if (m.comp)
1028 		unlink(filename);
1029 	return err;
1030 }
1031 
1032 int sysfs__read_build_id(const char *filename, struct build_id *bid)
1033 {
1034 	size_t size = sizeof(bid->data);
1035 	int fd, err = -1;
1036 
1037 	fd = open(filename, O_RDONLY);
1038 	if (fd < 0)
1039 		goto out;
1040 
1041 	while (1) {
1042 		char bf[BUFSIZ];
1043 		GElf_Nhdr nhdr;
1044 		size_t namesz, descsz;
1045 
1046 		if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
1047 			break;
1048 
1049 		namesz = NOTE_ALIGN(nhdr.n_namesz);
1050 		descsz = NOTE_ALIGN(nhdr.n_descsz);
1051 		if (nhdr.n_type == NT_GNU_BUILD_ID &&
1052 		    nhdr.n_namesz == sizeof("GNU")) {
1053 			if (read(fd, bf, namesz) != (ssize_t)namesz)
1054 				break;
1055 			if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
1056 				size_t sz = min(descsz, size);
1057 				if (read(fd, bid->data, sz) == (ssize_t)sz) {
1058 					memset(bid->data + sz, 0, size - sz);
1059 					bid->size = sz;
1060 					err = 0;
1061 					break;
1062 				}
1063 			} else if (read(fd, bf, descsz) != (ssize_t)descsz)
1064 				break;
1065 		} else {
1066 			int n = namesz + descsz;
1067 
1068 			if (n > (int)sizeof(bf)) {
1069 				n = sizeof(bf);
1070 				pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
1071 					 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
1072 			}
1073 			if (read(fd, bf, n) != n)
1074 				break;
1075 		}
1076 	}
1077 	close(fd);
1078 out:
1079 	return err;
1080 }
1081 
1082 #ifdef HAVE_LIBBFD_SUPPORT
1083 
1084 int filename__read_debuglink(const char *filename, char *debuglink,
1085 			     size_t size)
1086 {
1087 	int err = -1;
1088 	asection *section;
1089 	bfd *abfd;
1090 
1091 	abfd = bfd_openr(filename, NULL);
1092 	if (!abfd)
1093 		return -1;
1094 
1095 	if (!bfd_check_format(abfd, bfd_object)) {
1096 		pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
1097 		goto out_close;
1098 	}
1099 
1100 	section = bfd_get_section_by_name(abfd, ".gnu_debuglink");
1101 	if (!section)
1102 		goto out_close;
1103 
1104 	if (section->size > size)
1105 		goto out_close;
1106 
1107 	if (!bfd_get_section_contents(abfd, section, debuglink, 0,
1108 				      section->size))
1109 		goto out_close;
1110 
1111 	err = 0;
1112 
1113 out_close:
1114 	bfd_close(abfd);
1115 	return err;
1116 }
1117 
1118 #else
1119 
1120 int filename__read_debuglink(const char *filename, char *debuglink,
1121 			     size_t size)
1122 {
1123 	int fd, err = -1;
1124 	Elf *elf;
1125 	GElf_Ehdr ehdr;
1126 	GElf_Shdr shdr;
1127 	Elf_Data *data;
1128 	Elf_Scn *sec;
1129 	Elf_Kind ek;
1130 
1131 	fd = open(filename, O_RDONLY);
1132 	if (fd < 0)
1133 		goto out;
1134 
1135 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1136 	if (elf == NULL) {
1137 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
1138 		goto out_close;
1139 	}
1140 
1141 	ek = elf_kind(elf);
1142 	if (ek != ELF_K_ELF)
1143 		goto out_elf_end;
1144 
1145 	if (gelf_getehdr(elf, &ehdr) == NULL) {
1146 		pr_err("%s: cannot get elf header.\n", __func__);
1147 		goto out_elf_end;
1148 	}
1149 
1150 	sec = elf_section_by_name(elf, &ehdr, &shdr,
1151 				  ".gnu_debuglink", NULL);
1152 	if (sec == NULL)
1153 		goto out_elf_end;
1154 
1155 	data = elf_getdata(sec, NULL);
1156 	if (data == NULL)
1157 		goto out_elf_end;
1158 
1159 	/* the start of this section is a zero-terminated string */
1160 	strncpy(debuglink, data->d_buf, size);
1161 
1162 	err = 0;
1163 
1164 out_elf_end:
1165 	elf_end(elf);
1166 out_close:
1167 	close(fd);
1168 out:
1169 	return err;
1170 }
1171 
1172 #endif
1173 
1174 static int dso__swap_init(struct dso *dso, unsigned char eidata)
1175 {
1176 	static unsigned int const endian = 1;
1177 
1178 	dso->needs_swap = DSO_SWAP__NO;
1179 
1180 	switch (eidata) {
1181 	case ELFDATA2LSB:
1182 		/* We are big endian, DSO is little endian. */
1183 		if (*(unsigned char const *)&endian != 1)
1184 			dso->needs_swap = DSO_SWAP__YES;
1185 		break;
1186 
1187 	case ELFDATA2MSB:
1188 		/* We are little endian, DSO is big endian. */
1189 		if (*(unsigned char const *)&endian != 0)
1190 			dso->needs_swap = DSO_SWAP__YES;
1191 		break;
1192 
1193 	default:
1194 		pr_err("unrecognized DSO data encoding %d\n", eidata);
1195 		return -EINVAL;
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 bool symsrc__possibly_runtime(struct symsrc *ss)
1202 {
1203 	return ss->dynsym || ss->opdsec;
1204 }
1205 
1206 bool symsrc__has_symtab(struct symsrc *ss)
1207 {
1208 	return ss->symtab != NULL;
1209 }
1210 
1211 void symsrc__destroy(struct symsrc *ss)
1212 {
1213 	zfree(&ss->name);
1214 	elf_end(ss->elf);
1215 	close(ss->fd);
1216 }
1217 
1218 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
1219 {
1220 	/*
1221 	 * Usually vmlinux is an ELF file with type ET_EXEC for most
1222 	 * architectures; except Arm64 kernel is linked with option
1223 	 * '-share', so need to check type ET_DYN.
1224 	 */
1225 	return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
1226 	       ehdr.e_type == ET_DYN;
1227 }
1228 
1229 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
1230 		 enum dso_binary_type type)
1231 {
1232 	GElf_Ehdr ehdr;
1233 	Elf *elf;
1234 	int fd;
1235 
1236 	if (dso__needs_decompress(dso)) {
1237 		fd = dso__decompress_kmodule_fd(dso, name);
1238 		if (fd < 0)
1239 			return -1;
1240 
1241 		type = dso->symtab_type;
1242 	} else {
1243 		fd = open(name, O_RDONLY);
1244 		if (fd < 0) {
1245 			dso->load_errno = errno;
1246 			return -1;
1247 		}
1248 	}
1249 
1250 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1251 	if (elf == NULL) {
1252 		pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1253 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
1254 		goto out_close;
1255 	}
1256 
1257 	if (gelf_getehdr(elf, &ehdr) == NULL) {
1258 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
1259 		pr_debug("%s: cannot get elf header.\n", __func__);
1260 		goto out_elf_end;
1261 	}
1262 
1263 	if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
1264 		dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
1265 		goto out_elf_end;
1266 	}
1267 
1268 	/* Always reject images with a mismatched build-id: */
1269 	if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
1270 		u8 build_id[BUILD_ID_SIZE];
1271 		struct build_id bid;
1272 		int size;
1273 
1274 		size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
1275 		if (size <= 0) {
1276 			dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
1277 			goto out_elf_end;
1278 		}
1279 
1280 		build_id__init(&bid, build_id, size);
1281 		if (!dso__build_id_equal(dso, &bid)) {
1282 			pr_debug("%s: build id mismatch for %s.\n", __func__, name);
1283 			dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
1284 			goto out_elf_end;
1285 		}
1286 	}
1287 
1288 	ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1289 
1290 	ss->symtab_idx = 0;
1291 	ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
1292 			&ss->symtab_idx);
1293 	if (ss->symshdr.sh_type != SHT_SYMTAB)
1294 		ss->symtab = NULL;
1295 
1296 	ss->dynsym_idx = 0;
1297 	ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
1298 			&ss->dynsym_idx);
1299 	if (ss->dynshdr.sh_type != SHT_DYNSYM)
1300 		ss->dynsym = NULL;
1301 
1302 	ss->opdidx = 0;
1303 	ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
1304 			&ss->opdidx);
1305 	if (ss->opdshdr.sh_type != SHT_PROGBITS)
1306 		ss->opdsec = NULL;
1307 
1308 	if (dso->kernel == DSO_SPACE__USER)
1309 		ss->adjust_symbols = true;
1310 	else
1311 		ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
1312 
1313 	ss->name   = strdup(name);
1314 	if (!ss->name) {
1315 		dso->load_errno = errno;
1316 		goto out_elf_end;
1317 	}
1318 
1319 	ss->elf    = elf;
1320 	ss->fd     = fd;
1321 	ss->ehdr   = ehdr;
1322 	ss->type   = type;
1323 
1324 	return 0;
1325 
1326 out_elf_end:
1327 	elf_end(elf);
1328 out_close:
1329 	close(fd);
1330 	return -1;
1331 }
1332 
1333 static bool is_exe_text(int flags)
1334 {
1335 	return (flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR);
1336 }
1337 
1338 /*
1339  * Some executable module sections like .noinstr.text might be laid out with
1340  * .text so they can use the same mapping (memory address to file offset).
1341  * Check if that is the case. Refer to kernel layout_sections(). Return the
1342  * maximum offset.
1343  */
1344 static u64 max_text_section(Elf *elf, GElf_Ehdr *ehdr)
1345 {
1346 	Elf_Scn *sec = NULL;
1347 	GElf_Shdr shdr;
1348 	u64 offs = 0;
1349 
1350 	/* Doesn't work for some arch */
1351 	if (ehdr->e_machine == EM_PARISC ||
1352 	    ehdr->e_machine == EM_ALPHA)
1353 		return 0;
1354 
1355 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1356 	if (!elf_rawdata(elf_getscn(elf, ehdr->e_shstrndx), NULL))
1357 		return 0;
1358 
1359 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
1360 		char *sec_name;
1361 
1362 		if (!gelf_getshdr(sec, &shdr))
1363 			break;
1364 
1365 		if (!is_exe_text(shdr.sh_flags))
1366 			continue;
1367 
1368 		/* .init and .exit sections are not placed with .text */
1369 		sec_name = elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name);
1370 		if (!sec_name ||
1371 		    strstarts(sec_name, ".init") ||
1372 		    strstarts(sec_name, ".exit"))
1373 			break;
1374 
1375 		/* Must be next to previous, assumes .text is first */
1376 		if (offs && PERF_ALIGN(offs, shdr.sh_addralign ?: 1) != shdr.sh_offset)
1377 			break;
1378 
1379 		offs = shdr.sh_offset + shdr.sh_size;
1380 	}
1381 
1382 	return offs;
1383 }
1384 
1385 /**
1386  * ref_reloc_sym_not_found - has kernel relocation symbol been found.
1387  * @kmap: kernel maps and relocation reference symbol
1388  *
1389  * This function returns %true if we are dealing with the kernel maps and the
1390  * relocation reference symbol has not yet been found.  Otherwise %false is
1391  * returned.
1392  */
1393 static bool ref_reloc_sym_not_found(struct kmap *kmap)
1394 {
1395 	return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1396 	       !kmap->ref_reloc_sym->unrelocated_addr;
1397 }
1398 
1399 /**
1400  * ref_reloc - kernel relocation offset.
1401  * @kmap: kernel maps and relocation reference symbol
1402  *
1403  * This function returns the offset of kernel addresses as determined by using
1404  * the relocation reference symbol i.e. if the kernel has not been relocated
1405  * then the return value is zero.
1406  */
1407 static u64 ref_reloc(struct kmap *kmap)
1408 {
1409 	if (kmap && kmap->ref_reloc_sym &&
1410 	    kmap->ref_reloc_sym->unrelocated_addr)
1411 		return kmap->ref_reloc_sym->addr -
1412 		       kmap->ref_reloc_sym->unrelocated_addr;
1413 	return 0;
1414 }
1415 
1416 void __weak arch__sym_update(struct symbol *s __maybe_unused,
1417 		GElf_Sym *sym __maybe_unused) { }
1418 
1419 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1420 				      GElf_Sym *sym, GElf_Shdr *shdr,
1421 				      struct maps *kmaps, struct kmap *kmap,
1422 				      struct dso **curr_dsop, struct map **curr_mapp,
1423 				      const char *section_name,
1424 				      bool adjust_kernel_syms, bool kmodule, bool *remap_kernel,
1425 				      u64 max_text_sh_offset)
1426 {
1427 	struct dso *curr_dso = *curr_dsop;
1428 	struct map *curr_map;
1429 	char dso_name[PATH_MAX];
1430 
1431 	/* Adjust symbol to map to file offset */
1432 	if (adjust_kernel_syms)
1433 		sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1434 
1435 	if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
1436 		return 0;
1437 
1438 	if (strcmp(section_name, ".text") == 0) {
1439 		/*
1440 		 * The initial kernel mapping is based on
1441 		 * kallsyms and identity maps.  Overwrite it to
1442 		 * map to the kernel dso.
1443 		 */
1444 		if (*remap_kernel && dso->kernel && !kmodule) {
1445 			*remap_kernel = false;
1446 			map__set_start(map, shdr->sh_addr + ref_reloc(kmap));
1447 			map__set_end(map, map__start(map) + shdr->sh_size);
1448 			map__set_pgoff(map, shdr->sh_offset);
1449 			map__set_mapping_type(map, MAPPING_TYPE__DSO);
1450 			/* Ensure maps are correctly ordered */
1451 			if (kmaps) {
1452 				int err;
1453 				struct map *tmp = map__get(map);
1454 
1455 				maps__remove(kmaps, map);
1456 				err = maps__insert(kmaps, map);
1457 				map__put(tmp);
1458 				if (err)
1459 					return err;
1460 			}
1461 		}
1462 
1463 		/*
1464 		 * The initial module mapping is based on
1465 		 * /proc/modules mapped to offset zero.
1466 		 * Overwrite it to map to the module dso.
1467 		 */
1468 		if (*remap_kernel && kmodule) {
1469 			*remap_kernel = false;
1470 			map__set_pgoff(map, shdr->sh_offset);
1471 		}
1472 
1473 		*curr_mapp = map;
1474 		*curr_dsop = dso;
1475 		return 0;
1476 	}
1477 
1478 	if (!kmap)
1479 		return 0;
1480 
1481 	/*
1482 	 * perf does not record module section addresses except for .text, but
1483 	 * some sections can use the same mapping as .text.
1484 	 */
1485 	if (kmodule && adjust_kernel_syms && is_exe_text(shdr->sh_flags) &&
1486 	    shdr->sh_offset <= max_text_sh_offset) {
1487 		*curr_mapp = map;
1488 		*curr_dsop = dso;
1489 		return 0;
1490 	}
1491 
1492 	snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
1493 
1494 	curr_map = maps__find_by_name(kmaps, dso_name);
1495 	if (curr_map == NULL) {
1496 		u64 start = sym->st_value;
1497 
1498 		if (kmodule)
1499 			start += map__start(map) + shdr->sh_offset;
1500 
1501 		curr_dso = dso__new(dso_name);
1502 		if (curr_dso == NULL)
1503 			return -1;
1504 		curr_dso->kernel = dso->kernel;
1505 		curr_dso->long_name = dso->long_name;
1506 		curr_dso->long_name_len = dso->long_name_len;
1507 		curr_dso->binary_type = dso->binary_type;
1508 		curr_dso->adjust_symbols = dso->adjust_symbols;
1509 		curr_map = map__new2(start, curr_dso);
1510 		dso__put(curr_dso);
1511 		if (curr_map == NULL)
1512 			return -1;
1513 
1514 		if (curr_dso->kernel)
1515 			map__kmap(curr_map)->kmaps = kmaps;
1516 
1517 		if (adjust_kernel_syms) {
1518 			map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap));
1519 			map__set_end(curr_map, map__start(curr_map) + shdr->sh_size);
1520 			map__set_pgoff(curr_map, shdr->sh_offset);
1521 		} else {
1522 			map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY);
1523 		}
1524 		curr_dso->symtab_type = dso->symtab_type;
1525 		if (maps__insert(kmaps, curr_map))
1526 			return -1;
1527 		/*
1528 		 * Add it before we drop the reference to curr_map, i.e. while
1529 		 * we still are sure to have a reference to this DSO via
1530 		 * *curr_map->dso.
1531 		 */
1532 		dsos__add(&maps__machine(kmaps)->dsos, curr_dso);
1533 		/* kmaps already got it */
1534 		map__put(curr_map);
1535 		dso__set_loaded(curr_dso);
1536 		*curr_mapp = curr_map;
1537 		*curr_dsop = curr_dso;
1538 	} else {
1539 		*curr_dsop = map__dso(curr_map);
1540 		map__put(curr_map);
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 static int
1547 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1548 		       struct symsrc *runtime_ss, int kmodule, int dynsym)
1549 {
1550 	struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
1551 	struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1552 	struct map *curr_map = map;
1553 	struct dso *curr_dso = dso;
1554 	Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1555 	uint32_t nr_syms;
1556 	int err = -1;
1557 	uint32_t idx;
1558 	GElf_Ehdr ehdr;
1559 	GElf_Shdr shdr;
1560 	GElf_Shdr tshdr;
1561 	Elf_Data *syms, *opddata = NULL;
1562 	GElf_Sym sym;
1563 	Elf_Scn *sec, *sec_strndx;
1564 	Elf *elf;
1565 	int nr = 0;
1566 	bool remap_kernel = false, adjust_kernel_syms = false;
1567 	u64 max_text_sh_offset = 0;
1568 
1569 	if (kmap && !kmaps)
1570 		return -1;
1571 
1572 	elf = syms_ss->elf;
1573 	ehdr = syms_ss->ehdr;
1574 	if (dynsym) {
1575 		sec  = syms_ss->dynsym;
1576 		shdr = syms_ss->dynshdr;
1577 	} else {
1578 		sec =  syms_ss->symtab;
1579 		shdr = syms_ss->symshdr;
1580 	}
1581 
1582 	if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1583 				".text", NULL)) {
1584 		dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1585 		dso->text_end = tshdr.sh_offset + tshdr.sh_size;
1586 	}
1587 
1588 	if (runtime_ss->opdsec)
1589 		opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1590 
1591 	syms = elf_getdata(sec, NULL);
1592 	if (syms == NULL)
1593 		goto out_elf_end;
1594 
1595 	sec = elf_getscn(elf, shdr.sh_link);
1596 	if (sec == NULL)
1597 		goto out_elf_end;
1598 
1599 	symstrs = elf_getdata(sec, NULL);
1600 	if (symstrs == NULL)
1601 		goto out_elf_end;
1602 
1603 	sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1604 	if (sec_strndx == NULL)
1605 		goto out_elf_end;
1606 
1607 	secstrs_run = elf_getdata(sec_strndx, NULL);
1608 	if (secstrs_run == NULL)
1609 		goto out_elf_end;
1610 
1611 	sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1612 	if (sec_strndx == NULL)
1613 		goto out_elf_end;
1614 
1615 	secstrs_sym = elf_getdata(sec_strndx, NULL);
1616 	if (secstrs_sym == NULL)
1617 		goto out_elf_end;
1618 
1619 	nr_syms = shdr.sh_size / shdr.sh_entsize;
1620 
1621 	memset(&sym, 0, sizeof(sym));
1622 
1623 	/*
1624 	 * The kernel relocation symbol is needed in advance in order to adjust
1625 	 * kernel maps correctly.
1626 	 */
1627 	if (ref_reloc_sym_not_found(kmap)) {
1628 		elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1629 			const char *elf_name = elf_sym__name(&sym, symstrs);
1630 
1631 			if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1632 				continue;
1633 			kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1634 			map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr);
1635 			break;
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * Handle any relocation of vdso necessary because older kernels
1641 	 * attempted to prelink vdso to its virtual address.
1642 	 */
1643 	if (dso__is_vdso(dso))
1644 		map__set_reloc(map, map__start(map) - dso->text_offset);
1645 
1646 	dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1647 	/*
1648 	 * Initial kernel and module mappings do not map to the dso.
1649 	 * Flag the fixups.
1650 	 */
1651 	if (dso->kernel) {
1652 		remap_kernel = true;
1653 		adjust_kernel_syms = dso->adjust_symbols;
1654 	}
1655 
1656 	if (kmodule && adjust_kernel_syms)
1657 		max_text_sh_offset = max_text_section(runtime_ss->elf, &runtime_ss->ehdr);
1658 
1659 	elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1660 		struct symbol *f;
1661 		const char *elf_name = elf_sym__name(&sym, symstrs);
1662 		char *demangled = NULL;
1663 		int is_label = elf_sym__is_label(&sym);
1664 		const char *section_name;
1665 		bool used_opd = false;
1666 
1667 		if (!is_label && !elf_sym__filter(&sym))
1668 			continue;
1669 
1670 		/* Reject ARM ELF "mapping symbols": these aren't unique and
1671 		 * don't identify functions, so will confuse the profile
1672 		 * output: */
1673 		if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1674 			if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1675 			    && (elf_name[2] == '\0' || elf_name[2] == '.'))
1676 				continue;
1677 		}
1678 
1679 		if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1680 			u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1681 			u64 *opd = opddata->d_buf + offset;
1682 			sym.st_value = DSO__SWAP(dso, u64, *opd);
1683 			sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1684 					sym.st_value);
1685 			used_opd = true;
1686 		}
1687 
1688 		/*
1689 		 * When loading symbols in a data mapping, ABS symbols (which
1690 		 * has a value of SHN_ABS in its st_shndx) failed at
1691 		 * elf_getscn().  And it marks the loading as a failure so
1692 		 * already loaded symbols cannot be fixed up.
1693 		 *
1694 		 * I'm not sure what should be done. Just ignore them for now.
1695 		 * - Namhyung Kim
1696 		 */
1697 		if (sym.st_shndx == SHN_ABS)
1698 			continue;
1699 
1700 		sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1701 		if (!sec)
1702 			goto out_elf_end;
1703 
1704 		gelf_getshdr(sec, &shdr);
1705 
1706 		/*
1707 		 * If the attribute bit SHF_ALLOC is not set, the section
1708 		 * doesn't occupy memory during process execution.
1709 		 * E.g. ".gnu.warning.*" section is used by linker to generate
1710 		 * warnings when calling deprecated functions, the symbols in
1711 		 * the section aren't loaded to memory during process execution,
1712 		 * so skip them.
1713 		 */
1714 		if (!(shdr.sh_flags & SHF_ALLOC))
1715 			continue;
1716 
1717 		secstrs = secstrs_sym;
1718 
1719 		/*
1720 		 * We have to fallback to runtime when syms' section header has
1721 		 * NOBITS set. NOBITS results in file offset (sh_offset) not
1722 		 * being incremented. So sh_offset used below has different
1723 		 * values for syms (invalid) and runtime (valid).
1724 		 */
1725 		if (shdr.sh_type == SHT_NOBITS) {
1726 			sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1727 			if (!sec)
1728 				goto out_elf_end;
1729 
1730 			gelf_getshdr(sec, &shdr);
1731 			secstrs = secstrs_run;
1732 		}
1733 
1734 		if (is_label && !elf_sec__filter(&shdr, secstrs))
1735 			continue;
1736 
1737 		section_name = elf_sec__name(&shdr, secstrs);
1738 
1739 		/* On ARM, symbols for thumb functions have 1 added to
1740 		 * the symbol address as a flag - remove it */
1741 		if ((ehdr.e_machine == EM_ARM) &&
1742 		    (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1743 		    (sym.st_value & 1))
1744 			--sym.st_value;
1745 
1746 		if (dso->kernel) {
1747 			if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1748 						       section_name, adjust_kernel_syms, kmodule,
1749 						       &remap_kernel, max_text_sh_offset))
1750 				goto out_elf_end;
1751 		} else if ((used_opd && runtime_ss->adjust_symbols) ||
1752 			   (!used_opd && syms_ss->adjust_symbols)) {
1753 			GElf_Phdr phdr;
1754 
1755 			if (elf_read_program_header(runtime_ss->elf,
1756 						    (u64)sym.st_value, &phdr)) {
1757 				pr_debug4("%s: failed to find program header for "
1758 					   "symbol: %s st_value: %#" PRIx64 "\n",
1759 					   __func__, elf_name, (u64)sym.st_value);
1760 				pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1761 					"sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1762 					__func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1763 					(u64)shdr.sh_offset);
1764 				/*
1765 				 * Fail to find program header, let's rollback
1766 				 * to use shdr.sh_addr and shdr.sh_offset to
1767 				 * calibrate symbol's file address, though this
1768 				 * is not necessary for normal C ELF file, we
1769 				 * still need to handle java JIT symbols in this
1770 				 * case.
1771 				 */
1772 				sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1773 			} else {
1774 				pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1775 					"p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1776 					__func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1777 					(u64)phdr.p_offset);
1778 				sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1779 			}
1780 		}
1781 
1782 		demangled = demangle_sym(dso, kmodule, elf_name);
1783 		if (demangled != NULL)
1784 			elf_name = demangled;
1785 
1786 		f = symbol__new(sym.st_value, sym.st_size,
1787 				GELF_ST_BIND(sym.st_info),
1788 				GELF_ST_TYPE(sym.st_info), elf_name);
1789 		free(demangled);
1790 		if (!f)
1791 			goto out_elf_end;
1792 
1793 		arch__sym_update(f, &sym);
1794 
1795 		__symbols__insert(&curr_dso->symbols, f, dso->kernel);
1796 		nr++;
1797 	}
1798 
1799 	/*
1800 	 * For misannotated, zeroed, ASM function sizes.
1801 	 */
1802 	if (nr > 0) {
1803 		symbols__fixup_end(&dso->symbols, false);
1804 		symbols__fixup_duplicate(&dso->symbols);
1805 		if (kmap) {
1806 			/*
1807 			 * We need to fixup this here too because we create new
1808 			 * maps here, for things like vsyscall sections.
1809 			 */
1810 			maps__fixup_end(kmaps);
1811 		}
1812 	}
1813 	err = nr;
1814 out_elf_end:
1815 	return err;
1816 }
1817 
1818 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1819 		  struct symsrc *runtime_ss, int kmodule)
1820 {
1821 	int nr = 0;
1822 	int err = -1;
1823 
1824 	dso->symtab_type = syms_ss->type;
1825 	dso->is_64_bit = syms_ss->is_64_bit;
1826 	dso->rel = syms_ss->ehdr.e_type == ET_REL;
1827 
1828 	/*
1829 	 * Modules may already have symbols from kallsyms, but those symbols
1830 	 * have the wrong values for the dso maps, so remove them.
1831 	 */
1832 	if (kmodule && syms_ss->symtab)
1833 		symbols__delete(&dso->symbols);
1834 
1835 	if (!syms_ss->symtab) {
1836 		/*
1837 		 * If the vmlinux is stripped, fail so we will fall back
1838 		 * to using kallsyms. The vmlinux runtime symbols aren't
1839 		 * of much use.
1840 		 */
1841 		if (dso->kernel)
1842 			return err;
1843 	} else  {
1844 		err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1845 					     kmodule, 0);
1846 		if (err < 0)
1847 			return err;
1848 		nr = err;
1849 	}
1850 
1851 	if (syms_ss->dynsym) {
1852 		err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1853 					     kmodule, 1);
1854 		if (err < 0)
1855 			return err;
1856 		err += nr;
1857 	}
1858 
1859 	return err;
1860 }
1861 
1862 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1863 {
1864 	GElf_Phdr phdr;
1865 	size_t i, phdrnum;
1866 	int err;
1867 	u64 sz;
1868 
1869 	if (elf_getphdrnum(elf, &phdrnum))
1870 		return -1;
1871 
1872 	for (i = 0; i < phdrnum; i++) {
1873 		if (gelf_getphdr(elf, i, &phdr) == NULL)
1874 			return -1;
1875 		if (phdr.p_type != PT_LOAD)
1876 			continue;
1877 		if (exe) {
1878 			if (!(phdr.p_flags & PF_X))
1879 				continue;
1880 		} else {
1881 			if (!(phdr.p_flags & PF_R))
1882 				continue;
1883 		}
1884 		sz = min(phdr.p_memsz, phdr.p_filesz);
1885 		if (!sz)
1886 			continue;
1887 		err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1888 		if (err)
1889 			return err;
1890 	}
1891 	return 0;
1892 }
1893 
1894 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1895 		    bool *is_64_bit)
1896 {
1897 	int err;
1898 	Elf *elf;
1899 
1900 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1901 	if (elf == NULL)
1902 		return -1;
1903 
1904 	if (is_64_bit)
1905 		*is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1906 
1907 	err = elf_read_maps(elf, exe, mapfn, data);
1908 
1909 	elf_end(elf);
1910 	return err;
1911 }
1912 
1913 enum dso_type dso__type_fd(int fd)
1914 {
1915 	enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1916 	GElf_Ehdr ehdr;
1917 	Elf_Kind ek;
1918 	Elf *elf;
1919 
1920 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1921 	if (elf == NULL)
1922 		goto out;
1923 
1924 	ek = elf_kind(elf);
1925 	if (ek != ELF_K_ELF)
1926 		goto out_end;
1927 
1928 	if (gelf_getclass(elf) == ELFCLASS64) {
1929 		dso_type = DSO__TYPE_64BIT;
1930 		goto out_end;
1931 	}
1932 
1933 	if (gelf_getehdr(elf, &ehdr) == NULL)
1934 		goto out_end;
1935 
1936 	if (ehdr.e_machine == EM_X86_64)
1937 		dso_type = DSO__TYPE_X32BIT;
1938 	else
1939 		dso_type = DSO__TYPE_32BIT;
1940 out_end:
1941 	elf_end(elf);
1942 out:
1943 	return dso_type;
1944 }
1945 
1946 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1947 {
1948 	ssize_t r;
1949 	size_t n;
1950 	int err = -1;
1951 	char *buf = malloc(page_size);
1952 
1953 	if (buf == NULL)
1954 		return -1;
1955 
1956 	if (lseek(to, to_offs, SEEK_SET) != to_offs)
1957 		goto out;
1958 
1959 	if (lseek(from, from_offs, SEEK_SET) != from_offs)
1960 		goto out;
1961 
1962 	while (len) {
1963 		n = page_size;
1964 		if (len < n)
1965 			n = len;
1966 		/* Use read because mmap won't work on proc files */
1967 		r = read(from, buf, n);
1968 		if (r < 0)
1969 			goto out;
1970 		if (!r)
1971 			break;
1972 		n = r;
1973 		r = write(to, buf, n);
1974 		if (r < 0)
1975 			goto out;
1976 		if ((size_t)r != n)
1977 			goto out;
1978 		len -= n;
1979 	}
1980 
1981 	err = 0;
1982 out:
1983 	free(buf);
1984 	return err;
1985 }
1986 
1987 struct kcore {
1988 	int fd;
1989 	int elfclass;
1990 	Elf *elf;
1991 	GElf_Ehdr ehdr;
1992 };
1993 
1994 static int kcore__open(struct kcore *kcore, const char *filename)
1995 {
1996 	GElf_Ehdr *ehdr;
1997 
1998 	kcore->fd = open(filename, O_RDONLY);
1999 	if (kcore->fd == -1)
2000 		return -1;
2001 
2002 	kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
2003 	if (!kcore->elf)
2004 		goto out_close;
2005 
2006 	kcore->elfclass = gelf_getclass(kcore->elf);
2007 	if (kcore->elfclass == ELFCLASSNONE)
2008 		goto out_end;
2009 
2010 	ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
2011 	if (!ehdr)
2012 		goto out_end;
2013 
2014 	return 0;
2015 
2016 out_end:
2017 	elf_end(kcore->elf);
2018 out_close:
2019 	close(kcore->fd);
2020 	return -1;
2021 }
2022 
2023 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
2024 		       bool temp)
2025 {
2026 	kcore->elfclass = elfclass;
2027 
2028 	if (temp)
2029 		kcore->fd = mkstemp(filename);
2030 	else
2031 		kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
2032 	if (kcore->fd == -1)
2033 		return -1;
2034 
2035 	kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
2036 	if (!kcore->elf)
2037 		goto out_close;
2038 
2039 	if (!gelf_newehdr(kcore->elf, elfclass))
2040 		goto out_end;
2041 
2042 	memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
2043 
2044 	return 0;
2045 
2046 out_end:
2047 	elf_end(kcore->elf);
2048 out_close:
2049 	close(kcore->fd);
2050 	unlink(filename);
2051 	return -1;
2052 }
2053 
2054 static void kcore__close(struct kcore *kcore)
2055 {
2056 	elf_end(kcore->elf);
2057 	close(kcore->fd);
2058 }
2059 
2060 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
2061 {
2062 	GElf_Ehdr *ehdr = &to->ehdr;
2063 	GElf_Ehdr *kehdr = &from->ehdr;
2064 
2065 	memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
2066 	ehdr->e_type      = kehdr->e_type;
2067 	ehdr->e_machine   = kehdr->e_machine;
2068 	ehdr->e_version   = kehdr->e_version;
2069 	ehdr->e_entry     = 0;
2070 	ehdr->e_shoff     = 0;
2071 	ehdr->e_flags     = kehdr->e_flags;
2072 	ehdr->e_phnum     = count;
2073 	ehdr->e_shentsize = 0;
2074 	ehdr->e_shnum     = 0;
2075 	ehdr->e_shstrndx  = 0;
2076 
2077 	if (from->elfclass == ELFCLASS32) {
2078 		ehdr->e_phoff     = sizeof(Elf32_Ehdr);
2079 		ehdr->e_ehsize    = sizeof(Elf32_Ehdr);
2080 		ehdr->e_phentsize = sizeof(Elf32_Phdr);
2081 	} else {
2082 		ehdr->e_phoff     = sizeof(Elf64_Ehdr);
2083 		ehdr->e_ehsize    = sizeof(Elf64_Ehdr);
2084 		ehdr->e_phentsize = sizeof(Elf64_Phdr);
2085 	}
2086 
2087 	if (!gelf_update_ehdr(to->elf, ehdr))
2088 		return -1;
2089 
2090 	if (!gelf_newphdr(to->elf, count))
2091 		return -1;
2092 
2093 	return 0;
2094 }
2095 
2096 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
2097 			   u64 addr, u64 len)
2098 {
2099 	GElf_Phdr phdr = {
2100 		.p_type		= PT_LOAD,
2101 		.p_flags	= PF_R | PF_W | PF_X,
2102 		.p_offset	= offset,
2103 		.p_vaddr	= addr,
2104 		.p_paddr	= 0,
2105 		.p_filesz	= len,
2106 		.p_memsz	= len,
2107 		.p_align	= page_size,
2108 	};
2109 
2110 	if (!gelf_update_phdr(kcore->elf, idx, &phdr))
2111 		return -1;
2112 
2113 	return 0;
2114 }
2115 
2116 static off_t kcore__write(struct kcore *kcore)
2117 {
2118 	return elf_update(kcore->elf, ELF_C_WRITE);
2119 }
2120 
2121 struct phdr_data {
2122 	off_t offset;
2123 	off_t rel;
2124 	u64 addr;
2125 	u64 len;
2126 	struct list_head node;
2127 	struct phdr_data *remaps;
2128 };
2129 
2130 struct sym_data {
2131 	u64 addr;
2132 	struct list_head node;
2133 };
2134 
2135 struct kcore_copy_info {
2136 	u64 stext;
2137 	u64 etext;
2138 	u64 first_symbol;
2139 	u64 last_symbol;
2140 	u64 first_module;
2141 	u64 first_module_symbol;
2142 	u64 last_module_symbol;
2143 	size_t phnum;
2144 	struct list_head phdrs;
2145 	struct list_head syms;
2146 };
2147 
2148 #define kcore_copy__for_each_phdr(k, p) \
2149 	list_for_each_entry((p), &(k)->phdrs, node)
2150 
2151 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
2152 {
2153 	struct phdr_data *p = zalloc(sizeof(*p));
2154 
2155 	if (p) {
2156 		p->addr   = addr;
2157 		p->len    = len;
2158 		p->offset = offset;
2159 	}
2160 
2161 	return p;
2162 }
2163 
2164 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
2165 						 u64 addr, u64 len,
2166 						 off_t offset)
2167 {
2168 	struct phdr_data *p = phdr_data__new(addr, len, offset);
2169 
2170 	if (p)
2171 		list_add_tail(&p->node, &kci->phdrs);
2172 
2173 	return p;
2174 }
2175 
2176 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
2177 {
2178 	struct phdr_data *p, *tmp;
2179 
2180 	list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
2181 		list_del_init(&p->node);
2182 		free(p);
2183 	}
2184 }
2185 
2186 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
2187 					    u64 addr)
2188 {
2189 	struct sym_data *s = zalloc(sizeof(*s));
2190 
2191 	if (s) {
2192 		s->addr = addr;
2193 		list_add_tail(&s->node, &kci->syms);
2194 	}
2195 
2196 	return s;
2197 }
2198 
2199 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
2200 {
2201 	struct sym_data *s, *tmp;
2202 
2203 	list_for_each_entry_safe(s, tmp, &kci->syms, node) {
2204 		list_del_init(&s->node);
2205 		free(s);
2206 	}
2207 }
2208 
2209 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
2210 					u64 start)
2211 {
2212 	struct kcore_copy_info *kci = arg;
2213 
2214 	if (!kallsyms__is_function(type))
2215 		return 0;
2216 
2217 	if (strchr(name, '[')) {
2218 		if (!kci->first_module_symbol || start < kci->first_module_symbol)
2219 			kci->first_module_symbol = start;
2220 		if (start > kci->last_module_symbol)
2221 			kci->last_module_symbol = start;
2222 		return 0;
2223 	}
2224 
2225 	if (!kci->first_symbol || start < kci->first_symbol)
2226 		kci->first_symbol = start;
2227 
2228 	if (!kci->last_symbol || start > kci->last_symbol)
2229 		kci->last_symbol = start;
2230 
2231 	if (!strcmp(name, "_stext")) {
2232 		kci->stext = start;
2233 		return 0;
2234 	}
2235 
2236 	if (!strcmp(name, "_etext")) {
2237 		kci->etext = start;
2238 		return 0;
2239 	}
2240 
2241 	if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
2242 		return -1;
2243 
2244 	return 0;
2245 }
2246 
2247 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
2248 				      const char *dir)
2249 {
2250 	char kallsyms_filename[PATH_MAX];
2251 
2252 	scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
2253 
2254 	if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
2255 		return -1;
2256 
2257 	if (kallsyms__parse(kallsyms_filename, kci,
2258 			    kcore_copy__process_kallsyms) < 0)
2259 		return -1;
2260 
2261 	return 0;
2262 }
2263 
2264 static int kcore_copy__process_modules(void *arg,
2265 				       const char *name __maybe_unused,
2266 				       u64 start, u64 size __maybe_unused)
2267 {
2268 	struct kcore_copy_info *kci = arg;
2269 
2270 	if (!kci->first_module || start < kci->first_module)
2271 		kci->first_module = start;
2272 
2273 	return 0;
2274 }
2275 
2276 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
2277 				     const char *dir)
2278 {
2279 	char modules_filename[PATH_MAX];
2280 
2281 	scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
2282 
2283 	if (symbol__restricted_filename(modules_filename, "/proc/modules"))
2284 		return -1;
2285 
2286 	if (modules__parse(modules_filename, kci,
2287 			   kcore_copy__process_modules) < 0)
2288 		return -1;
2289 
2290 	return 0;
2291 }
2292 
2293 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
2294 			   u64 pgoff, u64 s, u64 e)
2295 {
2296 	u64 len, offset;
2297 
2298 	if (s < start || s >= end)
2299 		return 0;
2300 
2301 	offset = (s - start) + pgoff;
2302 	len = e < end ? e - s : end - s;
2303 
2304 	return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
2305 }
2306 
2307 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
2308 {
2309 	struct kcore_copy_info *kci = data;
2310 	u64 end = start + len;
2311 	struct sym_data *sdat;
2312 
2313 	if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
2314 		return -1;
2315 
2316 	if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
2317 			    kci->last_module_symbol))
2318 		return -1;
2319 
2320 	list_for_each_entry(sdat, &kci->syms, node) {
2321 		u64 s = round_down(sdat->addr, page_size);
2322 
2323 		if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
2324 			return -1;
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
2331 {
2332 	if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
2333 		return -1;
2334 
2335 	return 0;
2336 }
2337 
2338 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
2339 {
2340 	struct phdr_data *p, *k = NULL;
2341 	u64 kend;
2342 
2343 	if (!kci->stext)
2344 		return;
2345 
2346 	/* Find phdr that corresponds to the kernel map (contains stext) */
2347 	kcore_copy__for_each_phdr(kci, p) {
2348 		u64 pend = p->addr + p->len - 1;
2349 
2350 		if (p->addr <= kci->stext && pend >= kci->stext) {
2351 			k = p;
2352 			break;
2353 		}
2354 	}
2355 
2356 	if (!k)
2357 		return;
2358 
2359 	kend = k->offset + k->len;
2360 
2361 	/* Find phdrs that remap the kernel */
2362 	kcore_copy__for_each_phdr(kci, p) {
2363 		u64 pend = p->offset + p->len;
2364 
2365 		if (p == k)
2366 			continue;
2367 
2368 		if (p->offset >= k->offset && pend <= kend)
2369 			p->remaps = k;
2370 	}
2371 }
2372 
2373 static void kcore_copy__layout(struct kcore_copy_info *kci)
2374 {
2375 	struct phdr_data *p;
2376 	off_t rel = 0;
2377 
2378 	kcore_copy__find_remaps(kci);
2379 
2380 	kcore_copy__for_each_phdr(kci, p) {
2381 		if (!p->remaps) {
2382 			p->rel = rel;
2383 			rel += p->len;
2384 		}
2385 		kci->phnum += 1;
2386 	}
2387 
2388 	kcore_copy__for_each_phdr(kci, p) {
2389 		struct phdr_data *k = p->remaps;
2390 
2391 		if (k)
2392 			p->rel = p->offset - k->offset + k->rel;
2393 	}
2394 }
2395 
2396 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
2397 				 Elf *elf)
2398 {
2399 	if (kcore_copy__parse_kallsyms(kci, dir))
2400 		return -1;
2401 
2402 	if (kcore_copy__parse_modules(kci, dir))
2403 		return -1;
2404 
2405 	if (kci->stext)
2406 		kci->stext = round_down(kci->stext, page_size);
2407 	else
2408 		kci->stext = round_down(kci->first_symbol, page_size);
2409 
2410 	if (kci->etext) {
2411 		kci->etext = round_up(kci->etext, page_size);
2412 	} else if (kci->last_symbol) {
2413 		kci->etext = round_up(kci->last_symbol, page_size);
2414 		kci->etext += page_size;
2415 	}
2416 
2417 	if (kci->first_module_symbol &&
2418 	    (!kci->first_module || kci->first_module_symbol < kci->first_module))
2419 		kci->first_module = kci->first_module_symbol;
2420 
2421 	kci->first_module = round_down(kci->first_module, page_size);
2422 
2423 	if (kci->last_module_symbol) {
2424 		kci->last_module_symbol = round_up(kci->last_module_symbol,
2425 						   page_size);
2426 		kci->last_module_symbol += page_size;
2427 	}
2428 
2429 	if (!kci->stext || !kci->etext)
2430 		return -1;
2431 
2432 	if (kci->first_module && !kci->last_module_symbol)
2433 		return -1;
2434 
2435 	if (kcore_copy__read_maps(kci, elf))
2436 		return -1;
2437 
2438 	kcore_copy__layout(kci);
2439 
2440 	return 0;
2441 }
2442 
2443 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2444 				 const char *name)
2445 {
2446 	char from_filename[PATH_MAX];
2447 	char to_filename[PATH_MAX];
2448 
2449 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2450 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2451 
2452 	return copyfile_mode(from_filename, to_filename, 0400);
2453 }
2454 
2455 static int kcore_copy__unlink(const char *dir, const char *name)
2456 {
2457 	char filename[PATH_MAX];
2458 
2459 	scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2460 
2461 	return unlink(filename);
2462 }
2463 
2464 static int kcore_copy__compare_fds(int from, int to)
2465 {
2466 	char *buf_from;
2467 	char *buf_to;
2468 	ssize_t ret;
2469 	size_t len;
2470 	int err = -1;
2471 
2472 	buf_from = malloc(page_size);
2473 	buf_to = malloc(page_size);
2474 	if (!buf_from || !buf_to)
2475 		goto out;
2476 
2477 	while (1) {
2478 		/* Use read because mmap won't work on proc files */
2479 		ret = read(from, buf_from, page_size);
2480 		if (ret < 0)
2481 			goto out;
2482 
2483 		if (!ret)
2484 			break;
2485 
2486 		len = ret;
2487 
2488 		if (readn(to, buf_to, len) != (int)len)
2489 			goto out;
2490 
2491 		if (memcmp(buf_from, buf_to, len))
2492 			goto out;
2493 	}
2494 
2495 	err = 0;
2496 out:
2497 	free(buf_to);
2498 	free(buf_from);
2499 	return err;
2500 }
2501 
2502 static int kcore_copy__compare_files(const char *from_filename,
2503 				     const char *to_filename)
2504 {
2505 	int from, to, err = -1;
2506 
2507 	from = open(from_filename, O_RDONLY);
2508 	if (from < 0)
2509 		return -1;
2510 
2511 	to = open(to_filename, O_RDONLY);
2512 	if (to < 0)
2513 		goto out_close_from;
2514 
2515 	err = kcore_copy__compare_fds(from, to);
2516 
2517 	close(to);
2518 out_close_from:
2519 	close(from);
2520 	return err;
2521 }
2522 
2523 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2524 				    const char *name)
2525 {
2526 	char from_filename[PATH_MAX];
2527 	char to_filename[PATH_MAX];
2528 
2529 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2530 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2531 
2532 	return kcore_copy__compare_files(from_filename, to_filename);
2533 }
2534 
2535 /**
2536  * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2537  * @from_dir: from directory
2538  * @to_dir: to directory
2539  *
2540  * This function copies kallsyms, modules and kcore files from one directory to
2541  * another.  kallsyms and modules are copied entirely.  Only code segments are
2542  * copied from kcore.  It is assumed that two segments suffice: one for the
2543  * kernel proper and one for all the modules.  The code segments are determined
2544  * from kallsyms and modules files.  The kernel map starts at _stext or the
2545  * lowest function symbol, and ends at _etext or the highest function symbol.
2546  * The module map starts at the lowest module address and ends at the highest
2547  * module symbol.  Start addresses are rounded down to the nearest page.  End
2548  * addresses are rounded up to the nearest page.  An extra page is added to the
2549  * highest kernel symbol and highest module symbol to, hopefully, encompass that
2550  * symbol too.  Because it contains only code sections, the resulting kcore is
2551  * unusual.  One significant peculiarity is that the mapping (start -> pgoff)
2552  * is not the same for the kernel map and the modules map.  That happens because
2553  * the data is copied adjacently whereas the original kcore has gaps.  Finally,
2554  * kallsyms file is compared with its copy to check that modules have not been
2555  * loaded or unloaded while the copies were taking place.
2556  *
2557  * Return: %0 on success, %-1 on failure.
2558  */
2559 int kcore_copy(const char *from_dir, const char *to_dir)
2560 {
2561 	struct kcore kcore;
2562 	struct kcore extract;
2563 	int idx = 0, err = -1;
2564 	off_t offset, sz;
2565 	struct kcore_copy_info kci = { .stext = 0, };
2566 	char kcore_filename[PATH_MAX];
2567 	char extract_filename[PATH_MAX];
2568 	struct phdr_data *p;
2569 
2570 	INIT_LIST_HEAD(&kci.phdrs);
2571 	INIT_LIST_HEAD(&kci.syms);
2572 
2573 	if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2574 		return -1;
2575 
2576 	if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2577 		goto out_unlink_kallsyms;
2578 
2579 	scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2580 	scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2581 
2582 	if (kcore__open(&kcore, kcore_filename))
2583 		goto out_unlink_modules;
2584 
2585 	if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2586 		goto out_kcore_close;
2587 
2588 	if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2589 		goto out_kcore_close;
2590 
2591 	if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2592 		goto out_extract_close;
2593 
2594 	offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2595 		 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2596 	offset = round_up(offset, page_size);
2597 
2598 	kcore_copy__for_each_phdr(&kci, p) {
2599 		off_t offs = p->rel + offset;
2600 
2601 		if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2602 			goto out_extract_close;
2603 	}
2604 
2605 	sz = kcore__write(&extract);
2606 	if (sz < 0 || sz > offset)
2607 		goto out_extract_close;
2608 
2609 	kcore_copy__for_each_phdr(&kci, p) {
2610 		off_t offs = p->rel + offset;
2611 
2612 		if (p->remaps)
2613 			continue;
2614 		if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2615 			goto out_extract_close;
2616 	}
2617 
2618 	if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2619 		goto out_extract_close;
2620 
2621 	err = 0;
2622 
2623 out_extract_close:
2624 	kcore__close(&extract);
2625 	if (err)
2626 		unlink(extract_filename);
2627 out_kcore_close:
2628 	kcore__close(&kcore);
2629 out_unlink_modules:
2630 	if (err)
2631 		kcore_copy__unlink(to_dir, "modules");
2632 out_unlink_kallsyms:
2633 	if (err)
2634 		kcore_copy__unlink(to_dir, "kallsyms");
2635 
2636 	kcore_copy__free_phdrs(&kci);
2637 	kcore_copy__free_syms(&kci);
2638 
2639 	return err;
2640 }
2641 
2642 int kcore_extract__create(struct kcore_extract *kce)
2643 {
2644 	struct kcore kcore;
2645 	struct kcore extract;
2646 	size_t count = 1;
2647 	int idx = 0, err = -1;
2648 	off_t offset = page_size, sz;
2649 
2650 	if (kcore__open(&kcore, kce->kcore_filename))
2651 		return -1;
2652 
2653 	strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2654 	if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2655 		goto out_kcore_close;
2656 
2657 	if (kcore__copy_hdr(&kcore, &extract, count))
2658 		goto out_extract_close;
2659 
2660 	if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2661 		goto out_extract_close;
2662 
2663 	sz = kcore__write(&extract);
2664 	if (sz < 0 || sz > offset)
2665 		goto out_extract_close;
2666 
2667 	if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2668 		goto out_extract_close;
2669 
2670 	err = 0;
2671 
2672 out_extract_close:
2673 	kcore__close(&extract);
2674 	if (err)
2675 		unlink(kce->extract_filename);
2676 out_kcore_close:
2677 	kcore__close(&kcore);
2678 
2679 	return err;
2680 }
2681 
2682 void kcore_extract__delete(struct kcore_extract *kce)
2683 {
2684 	unlink(kce->extract_filename);
2685 }
2686 
2687 #ifdef HAVE_GELF_GETNOTE_SUPPORT
2688 
2689 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2690 {
2691 	if (!base_off)
2692 		return;
2693 
2694 	if (tmp->bit32)
2695 		tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2696 			tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2697 			tmp->addr.a32[SDT_NOTE_IDX_BASE];
2698 	else
2699 		tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2700 			tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2701 			tmp->addr.a64[SDT_NOTE_IDX_BASE];
2702 }
2703 
2704 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2705 			      GElf_Addr base_off)
2706 {
2707 	if (!base_off)
2708 		return;
2709 
2710 	if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2711 		tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2712 	else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2713 		tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2714 }
2715 
2716 /**
2717  * populate_sdt_note : Parse raw data and identify SDT note
2718  * @elf: elf of the opened file
2719  * @data: raw data of a section with description offset applied
2720  * @len: note description size
2721  * @type: type of the note
2722  * @sdt_notes: List to add the SDT note
2723  *
2724  * Responsible for parsing the @data in section .note.stapsdt in @elf and
2725  * if its an SDT note, it appends to @sdt_notes list.
2726  */
2727 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2728 			     struct list_head *sdt_notes)
2729 {
2730 	const char *provider, *name, *args;
2731 	struct sdt_note *tmp = NULL;
2732 	GElf_Ehdr ehdr;
2733 	GElf_Shdr shdr;
2734 	int ret = -EINVAL;
2735 
2736 	union {
2737 		Elf64_Addr a64[NR_ADDR];
2738 		Elf32_Addr a32[NR_ADDR];
2739 	} buf;
2740 
2741 	Elf_Data dst = {
2742 		.d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2743 		.d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2744 		.d_off = 0, .d_align = 0
2745 	};
2746 	Elf_Data src = {
2747 		.d_buf = (void *) data, .d_type = ELF_T_ADDR,
2748 		.d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2749 		.d_align = 0
2750 	};
2751 
2752 	tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2753 	if (!tmp) {
2754 		ret = -ENOMEM;
2755 		goto out_err;
2756 	}
2757 
2758 	INIT_LIST_HEAD(&tmp->note_list);
2759 
2760 	if (len < dst.d_size + 3)
2761 		goto out_free_note;
2762 
2763 	/* Translation from file representation to memory representation */
2764 	if (gelf_xlatetom(*elf, &dst, &src,
2765 			  elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2766 		pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2767 		goto out_free_note;
2768 	}
2769 
2770 	/* Populate the fields of sdt_note */
2771 	provider = data + dst.d_size;
2772 
2773 	name = (const char *)memchr(provider, '\0', data + len - provider);
2774 	if (name++ == NULL)
2775 		goto out_free_note;
2776 
2777 	tmp->provider = strdup(provider);
2778 	if (!tmp->provider) {
2779 		ret = -ENOMEM;
2780 		goto out_free_note;
2781 	}
2782 	tmp->name = strdup(name);
2783 	if (!tmp->name) {
2784 		ret = -ENOMEM;
2785 		goto out_free_prov;
2786 	}
2787 
2788 	args = memchr(name, '\0', data + len - name);
2789 
2790 	/*
2791 	 * There is no argument if:
2792 	 * - We reached the end of the note;
2793 	 * - There is not enough room to hold a potential string;
2794 	 * - The argument string is empty or just contains ':'.
2795 	 */
2796 	if (args == NULL || data + len - args < 2 ||
2797 		args[1] == ':' || args[1] == '\0')
2798 		tmp->args = NULL;
2799 	else {
2800 		tmp->args = strdup(++args);
2801 		if (!tmp->args) {
2802 			ret = -ENOMEM;
2803 			goto out_free_name;
2804 		}
2805 	}
2806 
2807 	if (gelf_getclass(*elf) == ELFCLASS32) {
2808 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2809 		tmp->bit32 = true;
2810 	} else {
2811 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2812 		tmp->bit32 = false;
2813 	}
2814 
2815 	if (!gelf_getehdr(*elf, &ehdr)) {
2816 		pr_debug("%s : cannot get elf header.\n", __func__);
2817 		ret = -EBADF;
2818 		goto out_free_args;
2819 	}
2820 
2821 	/* Adjust the prelink effect :
2822 	 * Find out the .stapsdt.base section.
2823 	 * This scn will help us to handle prelinking (if present).
2824 	 * Compare the retrieved file offset of the base section with the
2825 	 * base address in the description of the SDT note. If its different,
2826 	 * then accordingly, adjust the note location.
2827 	 */
2828 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2829 		sdt_adjust_loc(tmp, shdr.sh_offset);
2830 
2831 	/* Adjust reference counter offset */
2832 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2833 		sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2834 
2835 	list_add_tail(&tmp->note_list, sdt_notes);
2836 	return 0;
2837 
2838 out_free_args:
2839 	zfree(&tmp->args);
2840 out_free_name:
2841 	zfree(&tmp->name);
2842 out_free_prov:
2843 	zfree(&tmp->provider);
2844 out_free_note:
2845 	free(tmp);
2846 out_err:
2847 	return ret;
2848 }
2849 
2850 /**
2851  * construct_sdt_notes_list : constructs a list of SDT notes
2852  * @elf : elf to look into
2853  * @sdt_notes : empty list_head
2854  *
2855  * Scans the sections in 'elf' for the section
2856  * .note.stapsdt. It, then calls populate_sdt_note to find
2857  * out the SDT events and populates the 'sdt_notes'.
2858  */
2859 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2860 {
2861 	GElf_Ehdr ehdr;
2862 	Elf_Scn *scn = NULL;
2863 	Elf_Data *data;
2864 	GElf_Shdr shdr;
2865 	size_t shstrndx, next;
2866 	GElf_Nhdr nhdr;
2867 	size_t name_off, desc_off, offset;
2868 	int ret = 0;
2869 
2870 	if (gelf_getehdr(elf, &ehdr) == NULL) {
2871 		ret = -EBADF;
2872 		goto out_ret;
2873 	}
2874 	if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2875 		ret = -EBADF;
2876 		goto out_ret;
2877 	}
2878 
2879 	/* Look for the required section */
2880 	scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2881 	if (!scn) {
2882 		ret = -ENOENT;
2883 		goto out_ret;
2884 	}
2885 
2886 	if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2887 		ret = -ENOENT;
2888 		goto out_ret;
2889 	}
2890 
2891 	data = elf_getdata(scn, NULL);
2892 
2893 	/* Get the SDT notes */
2894 	for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2895 					      &desc_off)) > 0; offset = next) {
2896 		if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2897 		    !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2898 			    sizeof(SDT_NOTE_NAME))) {
2899 			/* Check the type of the note */
2900 			if (nhdr.n_type != SDT_NOTE_TYPE)
2901 				goto out_ret;
2902 
2903 			ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2904 						nhdr.n_descsz, sdt_notes);
2905 			if (ret < 0)
2906 				goto out_ret;
2907 		}
2908 	}
2909 	if (list_empty(sdt_notes))
2910 		ret = -ENOENT;
2911 
2912 out_ret:
2913 	return ret;
2914 }
2915 
2916 /**
2917  * get_sdt_note_list : Wrapper to construct a list of sdt notes
2918  * @head : empty list_head
2919  * @target : file to find SDT notes from
2920  *
2921  * This opens the file, initializes
2922  * the ELF and then calls construct_sdt_notes_list.
2923  */
2924 int get_sdt_note_list(struct list_head *head, const char *target)
2925 {
2926 	Elf *elf;
2927 	int fd, ret;
2928 
2929 	fd = open(target, O_RDONLY);
2930 	if (fd < 0)
2931 		return -EBADF;
2932 
2933 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2934 	if (!elf) {
2935 		ret = -EBADF;
2936 		goto out_close;
2937 	}
2938 	ret = construct_sdt_notes_list(elf, head);
2939 	elf_end(elf);
2940 out_close:
2941 	close(fd);
2942 	return ret;
2943 }
2944 
2945 /**
2946  * cleanup_sdt_note_list : free the sdt notes' list
2947  * @sdt_notes: sdt notes' list
2948  *
2949  * Free up the SDT notes in @sdt_notes.
2950  * Returns the number of SDT notes free'd.
2951  */
2952 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2953 {
2954 	struct sdt_note *tmp, *pos;
2955 	int nr_free = 0;
2956 
2957 	list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2958 		list_del_init(&pos->note_list);
2959 		zfree(&pos->args);
2960 		zfree(&pos->name);
2961 		zfree(&pos->provider);
2962 		free(pos);
2963 		nr_free++;
2964 	}
2965 	return nr_free;
2966 }
2967 
2968 /**
2969  * sdt_notes__get_count: Counts the number of sdt events
2970  * @start: list_head to sdt_notes list
2971  *
2972  * Returns the number of SDT notes in a list
2973  */
2974 int sdt_notes__get_count(struct list_head *start)
2975 {
2976 	struct sdt_note *sdt_ptr;
2977 	int count = 0;
2978 
2979 	list_for_each_entry(sdt_ptr, start, note_list)
2980 		count++;
2981 	return count;
2982 }
2983 #endif
2984 
2985 void symbol__elf_init(void)
2986 {
2987 	elf_version(EV_CURRENT);
2988 }
2989