1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "dso.h" 11 #include "map.h" 12 #include "maps.h" 13 #include "symbol.h" 14 #include "symsrc.h" 15 #include "demangle-cxx.h" 16 #include "demangle-ocaml.h" 17 #include "demangle-java.h" 18 #include "demangle-rust.h" 19 #include "machine.h" 20 #include "vdso.h" 21 #include "debug.h" 22 #include "util/copyfile.h" 23 #include <linux/ctype.h> 24 #include <linux/kernel.h> 25 #include <linux/zalloc.h> 26 #include <symbol/kallsyms.h> 27 #include <internal/lib.h> 28 29 #ifdef HAVE_LIBBFD_SUPPORT 30 #define PACKAGE 'perf' 31 #include <bfd.h> 32 #endif 33 34 #if defined(HAVE_LIBBFD_SUPPORT) || defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 35 #ifndef DMGL_PARAMS 36 #define DMGL_PARAMS (1 << 0) /* Include function args */ 37 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */ 38 #endif 39 #endif 40 41 #ifndef EM_AARCH64 42 #define EM_AARCH64 183 /* ARM 64 bit */ 43 #endif 44 45 #ifndef EM_LOONGARCH 46 #define EM_LOONGARCH 258 47 #endif 48 49 #ifndef ELF32_ST_VISIBILITY 50 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 51 #endif 52 53 /* For ELF64 the definitions are the same. */ 54 #ifndef ELF64_ST_VISIBILITY 55 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 56 #endif 57 58 /* How to extract information held in the st_other field. */ 59 #ifndef GELF_ST_VISIBILITY 60 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 61 #endif 62 63 typedef Elf64_Nhdr GElf_Nhdr; 64 65 66 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 67 static int elf_getphdrnum(Elf *elf, size_t *dst) 68 { 69 GElf_Ehdr gehdr; 70 GElf_Ehdr *ehdr; 71 72 ehdr = gelf_getehdr(elf, &gehdr); 73 if (!ehdr) 74 return -1; 75 76 *dst = ehdr->e_phnum; 77 78 return 0; 79 } 80 #endif 81 82 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 83 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 84 { 85 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 86 return -1; 87 } 88 #endif 89 90 #ifndef NT_GNU_BUILD_ID 91 #define NT_GNU_BUILD_ID 3 92 #endif 93 94 /** 95 * elf_symtab__for_each_symbol - iterate thru all the symbols 96 * 97 * @syms: struct elf_symtab instance to iterate 98 * @idx: uint32_t idx 99 * @sym: GElf_Sym iterator 100 */ 101 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 102 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 103 idx < nr_syms; \ 104 idx++, gelf_getsym(syms, idx, &sym)) 105 106 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 107 { 108 return GELF_ST_TYPE(sym->st_info); 109 } 110 111 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 112 { 113 return GELF_ST_VISIBILITY(sym->st_other); 114 } 115 116 #ifndef STT_GNU_IFUNC 117 #define STT_GNU_IFUNC 10 118 #endif 119 120 static inline int elf_sym__is_function(const GElf_Sym *sym) 121 { 122 return (elf_sym__type(sym) == STT_FUNC || 123 elf_sym__type(sym) == STT_GNU_IFUNC) && 124 sym->st_name != 0 && 125 sym->st_shndx != SHN_UNDEF; 126 } 127 128 static inline bool elf_sym__is_object(const GElf_Sym *sym) 129 { 130 return elf_sym__type(sym) == STT_OBJECT && 131 sym->st_name != 0 && 132 sym->st_shndx != SHN_UNDEF; 133 } 134 135 static inline int elf_sym__is_label(const GElf_Sym *sym) 136 { 137 return elf_sym__type(sym) == STT_NOTYPE && 138 sym->st_name != 0 && 139 sym->st_shndx != SHN_UNDEF && 140 sym->st_shndx != SHN_ABS && 141 elf_sym__visibility(sym) != STV_HIDDEN && 142 elf_sym__visibility(sym) != STV_INTERNAL; 143 } 144 145 static bool elf_sym__filter(GElf_Sym *sym) 146 { 147 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 148 } 149 150 static inline const char *elf_sym__name(const GElf_Sym *sym, 151 const Elf_Data *symstrs) 152 { 153 return symstrs->d_buf + sym->st_name; 154 } 155 156 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 157 const Elf_Data *secstrs) 158 { 159 return secstrs->d_buf + shdr->sh_name; 160 } 161 162 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 163 const Elf_Data *secstrs) 164 { 165 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 166 } 167 168 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 169 const Elf_Data *secstrs) 170 { 171 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 172 } 173 174 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 175 { 176 return elf_sec__is_text(shdr, secstrs) || 177 elf_sec__is_data(shdr, secstrs); 178 } 179 180 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 181 { 182 Elf_Scn *sec = NULL; 183 GElf_Shdr shdr; 184 size_t cnt = 1; 185 186 while ((sec = elf_nextscn(elf, sec)) != NULL) { 187 gelf_getshdr(sec, &shdr); 188 189 if ((addr >= shdr.sh_addr) && 190 (addr < (shdr.sh_addr + shdr.sh_size))) 191 return cnt; 192 193 ++cnt; 194 } 195 196 return -1; 197 } 198 199 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 200 GElf_Shdr *shp, const char *name, size_t *idx) 201 { 202 Elf_Scn *sec = NULL; 203 size_t cnt = 1; 204 205 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 206 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 207 return NULL; 208 209 while ((sec = elf_nextscn(elf, sec)) != NULL) { 210 char *str; 211 212 gelf_getshdr(sec, shp); 213 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 214 if (str && !strcmp(name, str)) { 215 if (idx) 216 *idx = cnt; 217 return sec; 218 } 219 ++cnt; 220 } 221 222 return NULL; 223 } 224 225 bool filename__has_section(const char *filename, const char *sec) 226 { 227 int fd; 228 Elf *elf; 229 GElf_Ehdr ehdr; 230 GElf_Shdr shdr; 231 bool found = false; 232 233 fd = open(filename, O_RDONLY); 234 if (fd < 0) 235 return false; 236 237 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 238 if (elf == NULL) 239 goto out; 240 241 if (gelf_getehdr(elf, &ehdr) == NULL) 242 goto elf_out; 243 244 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL); 245 246 elf_out: 247 elf_end(elf); 248 out: 249 close(fd); 250 return found; 251 } 252 253 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr) 254 { 255 size_t i, phdrnum; 256 u64 sz; 257 258 if (elf_getphdrnum(elf, &phdrnum)) 259 return -1; 260 261 for (i = 0; i < phdrnum; i++) { 262 if (gelf_getphdr(elf, i, phdr) == NULL) 263 return -1; 264 265 if (phdr->p_type != PT_LOAD) 266 continue; 267 268 sz = max(phdr->p_memsz, phdr->p_filesz); 269 if (!sz) 270 continue; 271 272 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz)) 273 return 0; 274 } 275 276 /* Not found any valid program header */ 277 return -1; 278 } 279 280 static bool want_demangle(bool is_kernel_sym) 281 { 282 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 283 } 284 285 /* 286 * Demangle C++ function signature, typically replaced by demangle-cxx.cpp 287 * version. 288 */ 289 __weak char *cxx_demangle_sym(const char *str __maybe_unused, bool params __maybe_unused, 290 bool modifiers __maybe_unused) 291 { 292 #ifdef HAVE_LIBBFD_SUPPORT 293 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0); 294 295 return bfd_demangle(NULL, str, flags); 296 #elif defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 297 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0); 298 299 return cplus_demangle(str, flags); 300 #else 301 return NULL; 302 #endif 303 } 304 305 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 306 { 307 char *demangled = NULL; 308 309 /* 310 * We need to figure out if the object was created from C++ sources 311 * DWARF DW_compile_unit has this, but we don't always have access 312 * to it... 313 */ 314 if (!want_demangle(dso->kernel || kmodule)) 315 return demangled; 316 317 demangled = cxx_demangle_sym(elf_name, verbose > 0, verbose > 0); 318 if (demangled == NULL) { 319 demangled = ocaml_demangle_sym(elf_name); 320 if (demangled == NULL) { 321 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 322 } 323 } 324 else if (rust_is_mangled(demangled)) 325 /* 326 * Input to Rust demangling is the BFD-demangled 327 * name which it Rust-demangles in place. 328 */ 329 rust_demangle_sym(demangled); 330 331 return demangled; 332 } 333 334 struct rel_info { 335 u32 nr_entries; 336 u32 *sorted; 337 bool is_rela; 338 Elf_Data *reldata; 339 GElf_Rela rela; 340 GElf_Rel rel; 341 }; 342 343 static u32 get_rel_symidx(struct rel_info *ri, u32 idx) 344 { 345 idx = ri->sorted ? ri->sorted[idx] : idx; 346 if (ri->is_rela) { 347 gelf_getrela(ri->reldata, idx, &ri->rela); 348 return GELF_R_SYM(ri->rela.r_info); 349 } 350 gelf_getrel(ri->reldata, idx, &ri->rel); 351 return GELF_R_SYM(ri->rel.r_info); 352 } 353 354 static u64 get_rel_offset(struct rel_info *ri, u32 x) 355 { 356 if (ri->is_rela) { 357 GElf_Rela rela; 358 359 gelf_getrela(ri->reldata, x, &rela); 360 return rela.r_offset; 361 } else { 362 GElf_Rel rel; 363 364 gelf_getrel(ri->reldata, x, &rel); 365 return rel.r_offset; 366 } 367 } 368 369 static int rel_cmp(const void *a, const void *b, void *r) 370 { 371 struct rel_info *ri = r; 372 u64 a_offset = get_rel_offset(ri, *(const u32 *)a); 373 u64 b_offset = get_rel_offset(ri, *(const u32 *)b); 374 375 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0); 376 } 377 378 static int sort_rel(struct rel_info *ri) 379 { 380 size_t sz = sizeof(ri->sorted[0]); 381 u32 i; 382 383 ri->sorted = calloc(ri->nr_entries, sz); 384 if (!ri->sorted) 385 return -1; 386 for (i = 0; i < ri->nr_entries; i++) 387 ri->sorted[i] = i; 388 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri); 389 return 0; 390 } 391 392 /* 393 * For x86_64, the GNU linker is putting IFUNC information in the relocation 394 * addend. 395 */ 396 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri) 397 { 398 return ehdr->e_machine == EM_X86_64 && ri->is_rela && 399 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE; 400 } 401 402 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr, 403 struct rel_info *ri, char *buf, size_t buf_sz) 404 { 405 u64 addr = ri->rela.r_addend; 406 struct symbol *sym; 407 GElf_Phdr phdr; 408 409 if (!addend_may_be_ifunc(ehdr, ri)) 410 return false; 411 412 if (elf_read_program_header(elf, addr, &phdr)) 413 return false; 414 415 addr -= phdr.p_vaddr - phdr.p_offset; 416 417 sym = dso__find_symbol_nocache(dso, addr); 418 419 /* Expecting the address to be an IFUNC or IFUNC alias */ 420 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias)) 421 return false; 422 423 snprintf(buf, buf_sz, "%s@plt", sym->name); 424 425 return true; 426 } 427 428 static void exit_rel(struct rel_info *ri) 429 { 430 zfree(&ri->sorted); 431 } 432 433 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt, 434 u64 *plt_header_size, u64 *plt_entry_size) 435 { 436 switch (ehdr->e_machine) { 437 case EM_ARM: 438 *plt_header_size = 20; 439 *plt_entry_size = 12; 440 return true; 441 case EM_AARCH64: 442 *plt_header_size = 32; 443 *plt_entry_size = 16; 444 return true; 445 case EM_LOONGARCH: 446 *plt_header_size = 32; 447 *plt_entry_size = 16; 448 return true; 449 case EM_SPARC: 450 *plt_header_size = 48; 451 *plt_entry_size = 12; 452 return true; 453 case EM_SPARCV9: 454 *plt_header_size = 128; 455 *plt_entry_size = 32; 456 return true; 457 case EM_386: 458 case EM_X86_64: 459 *plt_entry_size = shdr_plt->sh_entsize; 460 /* Size is 8 or 16, if not, assume alignment indicates size */ 461 if (*plt_entry_size != 8 && *plt_entry_size != 16) 462 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16; 463 *plt_header_size = *plt_entry_size; 464 break; 465 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 466 *plt_header_size = shdr_plt->sh_entsize; 467 *plt_entry_size = shdr_plt->sh_entsize; 468 break; 469 } 470 if (*plt_entry_size) 471 return true; 472 pr_debug("Missing PLT entry size for %s\n", dso->long_name); 473 return false; 474 } 475 476 static bool machine_is_x86(GElf_Half e_machine) 477 { 478 return e_machine == EM_386 || e_machine == EM_X86_64; 479 } 480 481 struct rela_dyn { 482 GElf_Addr offset; 483 u32 sym_idx; 484 }; 485 486 struct rela_dyn_info { 487 struct dso *dso; 488 Elf_Data *plt_got_data; 489 u32 nr_entries; 490 struct rela_dyn *sorted; 491 Elf_Data *dynsym_data; 492 Elf_Data *dynstr_data; 493 Elf_Data *rela_dyn_data; 494 }; 495 496 static void exit_rela_dyn(struct rela_dyn_info *di) 497 { 498 zfree(&di->sorted); 499 } 500 501 static int cmp_offset(const void *a, const void *b) 502 { 503 const struct rela_dyn *va = a; 504 const struct rela_dyn *vb = b; 505 506 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0); 507 } 508 509 static int sort_rela_dyn(struct rela_dyn_info *di) 510 { 511 u32 i, n; 512 513 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0])); 514 if (!di->sorted) 515 return -1; 516 517 /* Get data for sorting: the offset and symbol index */ 518 for (i = 0, n = 0; i < di->nr_entries; i++) { 519 GElf_Rela rela; 520 u32 sym_idx; 521 522 gelf_getrela(di->rela_dyn_data, i, &rela); 523 sym_idx = GELF_R_SYM(rela.r_info); 524 if (sym_idx) { 525 di->sorted[n].sym_idx = sym_idx; 526 di->sorted[n].offset = rela.r_offset; 527 n += 1; 528 } 529 } 530 531 /* Sort by offset */ 532 di->nr_entries = n; 533 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset); 534 535 return 0; 536 } 537 538 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn) 539 { 540 GElf_Shdr rela_dyn_shdr; 541 GElf_Shdr shdr; 542 543 di->plt_got_data = elf_getdata(scn, NULL); 544 545 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL); 546 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize) 547 return; 548 549 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize; 550 di->rela_dyn_data = elf_getdata(scn, NULL); 551 552 scn = elf_getscn(elf, rela_dyn_shdr.sh_link); 553 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link) 554 return; 555 556 di->dynsym_data = elf_getdata(scn, NULL); 557 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL); 558 559 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data) 560 return; 561 562 /* Sort into offset order */ 563 sort_rela_dyn(di); 564 } 565 566 /* Get instruction displacement from a plt entry for x86_64 */ 567 static u32 get_x86_64_plt_disp(const u8 *p) 568 { 569 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa}; 570 int n = 0; 571 572 /* Skip endbr64 */ 573 if (!memcmp(p, endbr64, sizeof(endbr64))) 574 n += sizeof(endbr64); 575 /* Skip bnd prefix */ 576 if (p[n] == 0xf2) 577 n += 1; 578 /* jmp with 4-byte displacement */ 579 if (p[n] == 0xff && p[n + 1] == 0x25) { 580 u32 disp; 581 582 n += 2; 583 /* Also add offset from start of entry to end of instruction */ 584 memcpy(&disp, p + n, sizeof(disp)); 585 return n + 4 + le32toh(disp); 586 } 587 return 0; 588 } 589 590 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i, 591 struct rela_dyn_info *di, 592 char *buf, size_t buf_sz) 593 { 594 struct rela_dyn vi, *vr; 595 const char *sym_name; 596 char *demangled; 597 GElf_Sym sym; 598 bool result; 599 u32 disp; 600 601 if (!di->sorted) 602 return false; 603 604 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i); 605 if (!disp) 606 return false; 607 608 /* Compute target offset of the .plt.got entry */ 609 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp; 610 611 /* Find that offset in .rela.dyn (sorted by offset) */ 612 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset); 613 if (!vr) 614 return false; 615 616 /* Get the associated symbol */ 617 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym); 618 sym_name = elf_sym__name(&sym, di->dynstr_data); 619 demangled = demangle_sym(di->dso, 0, sym_name); 620 if (demangled != NULL) 621 sym_name = demangled; 622 623 snprintf(buf, buf_sz, "%s@plt", sym_name); 624 625 result = *sym_name; 626 627 free(demangled); 628 629 return result; 630 } 631 632 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf, 633 GElf_Ehdr *ehdr, 634 char *buf, size_t buf_sz) 635 { 636 struct rela_dyn_info di = { .dso = dso }; 637 struct symbol *sym; 638 GElf_Shdr shdr; 639 Elf_Scn *scn; 640 int err = -1; 641 size_t i; 642 643 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL); 644 if (!scn || !shdr.sh_entsize) 645 return 0; 646 647 if (ehdr->e_machine == EM_X86_64) 648 get_rela_dyn_info(elf, ehdr, &di, scn); 649 650 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) { 651 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz)) 652 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i); 653 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf); 654 if (!sym) 655 goto out; 656 symbols__insert(&dso->symbols, sym); 657 } 658 err = 0; 659 out: 660 exit_rela_dyn(&di); 661 return err; 662 } 663 664 /* 665 * We need to check if we have a .dynsym, so that we can handle the 666 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 667 * .dynsym or .symtab). 668 * And always look at the original dso, not at debuginfo packages, that 669 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 670 */ 671 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 672 { 673 uint32_t idx; 674 GElf_Sym sym; 675 u64 plt_offset, plt_header_size, plt_entry_size; 676 GElf_Shdr shdr_plt, plt_sec_shdr; 677 struct symbol *f, *plt_sym; 678 GElf_Shdr shdr_rel_plt, shdr_dynsym; 679 Elf_Data *syms, *symstrs; 680 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 681 GElf_Ehdr ehdr; 682 char sympltname[1024]; 683 Elf *elf; 684 int nr = 0, err = -1; 685 struct rel_info ri = { .is_rela = false }; 686 bool lazy_plt; 687 688 elf = ss->elf; 689 ehdr = ss->ehdr; 690 691 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL)) 692 return 0; 693 694 /* 695 * A symbol from a previous section (e.g. .init) can have been expanded 696 * by symbols__fixup_end() to overlap .plt. Truncate it before adding 697 * a symbol for .plt header. 698 */ 699 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset); 700 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset) 701 f->end = shdr_plt.sh_offset; 702 703 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size)) 704 return 0; 705 706 /* Add a symbol for .plt header */ 707 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt"); 708 if (!plt_sym) 709 goto out_elf_end; 710 symbols__insert(&dso->symbols, plt_sym); 711 712 /* Only x86 has .plt.got */ 713 if (machine_is_x86(ehdr.e_machine) && 714 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname))) 715 goto out_elf_end; 716 717 /* Only x86 has .plt.sec */ 718 if (machine_is_x86(ehdr.e_machine) && 719 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) { 720 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size)) 721 return 0; 722 /* Extend .plt symbol to entire .plt */ 723 plt_sym->end = plt_sym->start + shdr_plt.sh_size; 724 /* Use .plt.sec offset */ 725 plt_offset = plt_sec_shdr.sh_offset; 726 lazy_plt = false; 727 } else { 728 plt_offset = shdr_plt.sh_offset; 729 lazy_plt = true; 730 } 731 732 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 733 ".rela.plt", NULL); 734 if (scn_plt_rel == NULL) { 735 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 736 ".rel.plt", NULL); 737 if (scn_plt_rel == NULL) 738 return 0; 739 } 740 741 if (shdr_rel_plt.sh_type != SHT_RELA && 742 shdr_rel_plt.sh_type != SHT_REL) 743 return 0; 744 745 if (!shdr_rel_plt.sh_link) 746 return 0; 747 748 if (shdr_rel_plt.sh_link == ss->dynsym_idx) { 749 scn_dynsym = ss->dynsym; 750 shdr_dynsym = ss->dynshdr; 751 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) { 752 /* 753 * A static executable can have a .plt due to IFUNCs, in which 754 * case .symtab is used not .dynsym. 755 */ 756 scn_dynsym = ss->symtab; 757 shdr_dynsym = ss->symshdr; 758 } else { 759 goto out_elf_end; 760 } 761 762 if (!scn_dynsym) 763 return 0; 764 765 /* 766 * Fetch the relocation section to find the idxes to the GOT 767 * and the symbols in the .dynsym they refer to. 768 */ 769 ri.reldata = elf_getdata(scn_plt_rel, NULL); 770 if (!ri.reldata) 771 goto out_elf_end; 772 773 syms = elf_getdata(scn_dynsym, NULL); 774 if (syms == NULL) 775 goto out_elf_end; 776 777 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 778 if (scn_symstrs == NULL) 779 goto out_elf_end; 780 781 symstrs = elf_getdata(scn_symstrs, NULL); 782 if (symstrs == NULL) 783 goto out_elf_end; 784 785 if (symstrs->d_size == 0) 786 goto out_elf_end; 787 788 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 789 790 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA; 791 792 if (lazy_plt) { 793 /* 794 * Assume a .plt with the same number of entries as the number 795 * of relocation entries is not lazy and does not have a header. 796 */ 797 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size) 798 dso__delete_symbol(dso, plt_sym); 799 else 800 plt_offset += plt_header_size; 801 } 802 803 /* 804 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get 805 * back in order. 806 */ 807 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri)) 808 goto out_elf_end; 809 810 for (idx = 0; idx < ri.nr_entries; idx++) { 811 const char *elf_name = NULL; 812 char *demangled = NULL; 813 814 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym); 815 816 elf_name = elf_sym__name(&sym, symstrs); 817 demangled = demangle_sym(dso, 0, elf_name); 818 if (demangled) 819 elf_name = demangled; 820 if (*elf_name) 821 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name); 822 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname))) 823 snprintf(sympltname, sizeof(sympltname), 824 "offset_%#" PRIx64 "@plt", plt_offset); 825 free(demangled); 826 827 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname); 828 if (!f) 829 goto out_elf_end; 830 831 plt_offset += plt_entry_size; 832 symbols__insert(&dso->symbols, f); 833 ++nr; 834 } 835 836 err = 0; 837 out_elf_end: 838 exit_rel(&ri); 839 if (err == 0) 840 return nr; 841 pr_debug("%s: problems reading %s PLT info.\n", 842 __func__, dso->long_name); 843 return 0; 844 } 845 846 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 847 { 848 return demangle_sym(dso, kmodule, elf_name); 849 } 850 851 /* 852 * Align offset to 4 bytes as needed for note name and descriptor data. 853 */ 854 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 855 856 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 857 { 858 int err = -1; 859 GElf_Ehdr ehdr; 860 GElf_Shdr shdr; 861 Elf_Data *data; 862 Elf_Scn *sec; 863 Elf_Kind ek; 864 void *ptr; 865 866 if (size < BUILD_ID_SIZE) 867 goto out; 868 869 ek = elf_kind(elf); 870 if (ek != ELF_K_ELF) 871 goto out; 872 873 if (gelf_getehdr(elf, &ehdr) == NULL) { 874 pr_err("%s: cannot get elf header.\n", __func__); 875 goto out; 876 } 877 878 /* 879 * Check following sections for notes: 880 * '.note.gnu.build-id' 881 * '.notes' 882 * '.note' (VDSO specific) 883 */ 884 do { 885 sec = elf_section_by_name(elf, &ehdr, &shdr, 886 ".note.gnu.build-id", NULL); 887 if (sec) 888 break; 889 890 sec = elf_section_by_name(elf, &ehdr, &shdr, 891 ".notes", NULL); 892 if (sec) 893 break; 894 895 sec = elf_section_by_name(elf, &ehdr, &shdr, 896 ".note", NULL); 897 if (sec) 898 break; 899 900 return err; 901 902 } while (0); 903 904 data = elf_getdata(sec, NULL); 905 if (data == NULL) 906 goto out; 907 908 ptr = data->d_buf; 909 while (ptr < (data->d_buf + data->d_size)) { 910 GElf_Nhdr *nhdr = ptr; 911 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 912 descsz = NOTE_ALIGN(nhdr->n_descsz); 913 const char *name; 914 915 ptr += sizeof(*nhdr); 916 name = ptr; 917 ptr += namesz; 918 if (nhdr->n_type == NT_GNU_BUILD_ID && 919 nhdr->n_namesz == sizeof("GNU")) { 920 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 921 size_t sz = min(size, descsz); 922 memcpy(bf, ptr, sz); 923 memset(bf + sz, 0, size - sz); 924 err = sz; 925 break; 926 } 927 } 928 ptr += descsz; 929 } 930 931 out: 932 return err; 933 } 934 935 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT 936 937 static int read_build_id(const char *filename, struct build_id *bid) 938 { 939 size_t size = sizeof(bid->data); 940 int err = -1; 941 bfd *abfd; 942 943 abfd = bfd_openr(filename, NULL); 944 if (!abfd) 945 return -1; 946 947 if (!bfd_check_format(abfd, bfd_object)) { 948 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 949 goto out_close; 950 } 951 952 if (!abfd->build_id || abfd->build_id->size > size) 953 goto out_close; 954 955 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size); 956 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size); 957 err = bid->size = abfd->build_id->size; 958 959 out_close: 960 bfd_close(abfd); 961 return err; 962 } 963 964 #else // HAVE_LIBBFD_BUILDID_SUPPORT 965 966 static int read_build_id(const char *filename, struct build_id *bid) 967 { 968 size_t size = sizeof(bid->data); 969 int fd, err = -1; 970 Elf *elf; 971 972 if (size < BUILD_ID_SIZE) 973 goto out; 974 975 fd = open(filename, O_RDONLY); 976 if (fd < 0) 977 goto out; 978 979 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 980 if (elf == NULL) { 981 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 982 goto out_close; 983 } 984 985 err = elf_read_build_id(elf, bid->data, size); 986 if (err > 0) 987 bid->size = err; 988 989 elf_end(elf); 990 out_close: 991 close(fd); 992 out: 993 return err; 994 } 995 996 #endif // HAVE_LIBBFD_BUILDID_SUPPORT 997 998 int filename__read_build_id(const char *filename, struct build_id *bid) 999 { 1000 struct kmod_path m = { .name = NULL, }; 1001 char path[PATH_MAX]; 1002 int err; 1003 1004 if (!filename) 1005 return -EFAULT; 1006 1007 err = kmod_path__parse(&m, filename); 1008 if (err) 1009 return -1; 1010 1011 if (m.comp) { 1012 int error = 0, fd; 1013 1014 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error); 1015 if (fd < 0) { 1016 pr_debug("Failed to decompress (error %d) %s\n", 1017 error, filename); 1018 return -1; 1019 } 1020 close(fd); 1021 filename = path; 1022 } 1023 1024 err = read_build_id(filename, bid); 1025 1026 if (m.comp) 1027 unlink(filename); 1028 return err; 1029 } 1030 1031 int sysfs__read_build_id(const char *filename, struct build_id *bid) 1032 { 1033 size_t size = sizeof(bid->data); 1034 int fd, err = -1; 1035 1036 fd = open(filename, O_RDONLY); 1037 if (fd < 0) 1038 goto out; 1039 1040 while (1) { 1041 char bf[BUFSIZ]; 1042 GElf_Nhdr nhdr; 1043 size_t namesz, descsz; 1044 1045 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 1046 break; 1047 1048 namesz = NOTE_ALIGN(nhdr.n_namesz); 1049 descsz = NOTE_ALIGN(nhdr.n_descsz); 1050 if (nhdr.n_type == NT_GNU_BUILD_ID && 1051 nhdr.n_namesz == sizeof("GNU")) { 1052 if (read(fd, bf, namesz) != (ssize_t)namesz) 1053 break; 1054 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 1055 size_t sz = min(descsz, size); 1056 if (read(fd, bid->data, sz) == (ssize_t)sz) { 1057 memset(bid->data + sz, 0, size - sz); 1058 bid->size = sz; 1059 err = 0; 1060 break; 1061 } 1062 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 1063 break; 1064 } else { 1065 int n = namesz + descsz; 1066 1067 if (n > (int)sizeof(bf)) { 1068 n = sizeof(bf); 1069 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 1070 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 1071 } 1072 if (read(fd, bf, n) != n) 1073 break; 1074 } 1075 } 1076 close(fd); 1077 out: 1078 return err; 1079 } 1080 1081 #ifdef HAVE_LIBBFD_SUPPORT 1082 1083 int filename__read_debuglink(const char *filename, char *debuglink, 1084 size_t size) 1085 { 1086 int err = -1; 1087 asection *section; 1088 bfd *abfd; 1089 1090 abfd = bfd_openr(filename, NULL); 1091 if (!abfd) 1092 return -1; 1093 1094 if (!bfd_check_format(abfd, bfd_object)) { 1095 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 1096 goto out_close; 1097 } 1098 1099 section = bfd_get_section_by_name(abfd, ".gnu_debuglink"); 1100 if (!section) 1101 goto out_close; 1102 1103 if (section->size > size) 1104 goto out_close; 1105 1106 if (!bfd_get_section_contents(abfd, section, debuglink, 0, 1107 section->size)) 1108 goto out_close; 1109 1110 err = 0; 1111 1112 out_close: 1113 bfd_close(abfd); 1114 return err; 1115 } 1116 1117 #else 1118 1119 int filename__read_debuglink(const char *filename, char *debuglink, 1120 size_t size) 1121 { 1122 int fd, err = -1; 1123 Elf *elf; 1124 GElf_Ehdr ehdr; 1125 GElf_Shdr shdr; 1126 Elf_Data *data; 1127 Elf_Scn *sec; 1128 Elf_Kind ek; 1129 1130 fd = open(filename, O_RDONLY); 1131 if (fd < 0) 1132 goto out; 1133 1134 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1135 if (elf == NULL) { 1136 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 1137 goto out_close; 1138 } 1139 1140 ek = elf_kind(elf); 1141 if (ek != ELF_K_ELF) 1142 goto out_elf_end; 1143 1144 if (gelf_getehdr(elf, &ehdr) == NULL) { 1145 pr_err("%s: cannot get elf header.\n", __func__); 1146 goto out_elf_end; 1147 } 1148 1149 sec = elf_section_by_name(elf, &ehdr, &shdr, 1150 ".gnu_debuglink", NULL); 1151 if (sec == NULL) 1152 goto out_elf_end; 1153 1154 data = elf_getdata(sec, NULL); 1155 if (data == NULL) 1156 goto out_elf_end; 1157 1158 /* the start of this section is a zero-terminated string */ 1159 strncpy(debuglink, data->d_buf, size); 1160 1161 err = 0; 1162 1163 out_elf_end: 1164 elf_end(elf); 1165 out_close: 1166 close(fd); 1167 out: 1168 return err; 1169 } 1170 1171 #endif 1172 1173 static int dso__swap_init(struct dso *dso, unsigned char eidata) 1174 { 1175 static unsigned int const endian = 1; 1176 1177 dso->needs_swap = DSO_SWAP__NO; 1178 1179 switch (eidata) { 1180 case ELFDATA2LSB: 1181 /* We are big endian, DSO is little endian. */ 1182 if (*(unsigned char const *)&endian != 1) 1183 dso->needs_swap = DSO_SWAP__YES; 1184 break; 1185 1186 case ELFDATA2MSB: 1187 /* We are little endian, DSO is big endian. */ 1188 if (*(unsigned char const *)&endian != 0) 1189 dso->needs_swap = DSO_SWAP__YES; 1190 break; 1191 1192 default: 1193 pr_err("unrecognized DSO data encoding %d\n", eidata); 1194 return -EINVAL; 1195 } 1196 1197 return 0; 1198 } 1199 1200 bool symsrc__possibly_runtime(struct symsrc *ss) 1201 { 1202 return ss->dynsym || ss->opdsec; 1203 } 1204 1205 bool symsrc__has_symtab(struct symsrc *ss) 1206 { 1207 return ss->symtab != NULL; 1208 } 1209 1210 void symsrc__destroy(struct symsrc *ss) 1211 { 1212 zfree(&ss->name); 1213 elf_end(ss->elf); 1214 close(ss->fd); 1215 } 1216 1217 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 1218 { 1219 /* 1220 * Usually vmlinux is an ELF file with type ET_EXEC for most 1221 * architectures; except Arm64 kernel is linked with option 1222 * '-share', so need to check type ET_DYN. 1223 */ 1224 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 1225 ehdr.e_type == ET_DYN; 1226 } 1227 1228 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 1229 enum dso_binary_type type) 1230 { 1231 GElf_Ehdr ehdr; 1232 Elf *elf; 1233 int fd; 1234 1235 if (dso__needs_decompress(dso)) { 1236 fd = dso__decompress_kmodule_fd(dso, name); 1237 if (fd < 0) 1238 return -1; 1239 1240 type = dso->symtab_type; 1241 } else { 1242 fd = open(name, O_RDONLY); 1243 if (fd < 0) { 1244 dso->load_errno = errno; 1245 return -1; 1246 } 1247 } 1248 1249 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1250 if (elf == NULL) { 1251 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 1252 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 1253 goto out_close; 1254 } 1255 1256 if (gelf_getehdr(elf, &ehdr) == NULL) { 1257 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 1258 pr_debug("%s: cannot get elf header.\n", __func__); 1259 goto out_elf_end; 1260 } 1261 1262 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 1263 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR; 1264 goto out_elf_end; 1265 } 1266 1267 /* Always reject images with a mismatched build-id: */ 1268 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) { 1269 u8 build_id[BUILD_ID_SIZE]; 1270 struct build_id bid; 1271 int size; 1272 1273 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE); 1274 if (size <= 0) { 1275 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 1276 goto out_elf_end; 1277 } 1278 1279 build_id__init(&bid, build_id, size); 1280 if (!dso__build_id_equal(dso, &bid)) { 1281 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 1282 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 1283 goto out_elf_end; 1284 } 1285 } 1286 1287 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1288 1289 ss->symtab_idx = 0; 1290 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 1291 &ss->symtab_idx); 1292 if (ss->symshdr.sh_type != SHT_SYMTAB) 1293 ss->symtab = NULL; 1294 1295 ss->dynsym_idx = 0; 1296 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 1297 &ss->dynsym_idx); 1298 if (ss->dynshdr.sh_type != SHT_DYNSYM) 1299 ss->dynsym = NULL; 1300 1301 ss->opdidx = 0; 1302 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 1303 &ss->opdidx); 1304 if (ss->opdshdr.sh_type != SHT_PROGBITS) 1305 ss->opdsec = NULL; 1306 1307 if (dso->kernel == DSO_SPACE__USER) 1308 ss->adjust_symbols = true; 1309 else 1310 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 1311 1312 ss->name = strdup(name); 1313 if (!ss->name) { 1314 dso->load_errno = errno; 1315 goto out_elf_end; 1316 } 1317 1318 ss->elf = elf; 1319 ss->fd = fd; 1320 ss->ehdr = ehdr; 1321 ss->type = type; 1322 1323 return 0; 1324 1325 out_elf_end: 1326 elf_end(elf); 1327 out_close: 1328 close(fd); 1329 return -1; 1330 } 1331 1332 /** 1333 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 1334 * @kmap: kernel maps and relocation reference symbol 1335 * 1336 * This function returns %true if we are dealing with the kernel maps and the 1337 * relocation reference symbol has not yet been found. Otherwise %false is 1338 * returned. 1339 */ 1340 static bool ref_reloc_sym_not_found(struct kmap *kmap) 1341 { 1342 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 1343 !kmap->ref_reloc_sym->unrelocated_addr; 1344 } 1345 1346 /** 1347 * ref_reloc - kernel relocation offset. 1348 * @kmap: kernel maps and relocation reference symbol 1349 * 1350 * This function returns the offset of kernel addresses as determined by using 1351 * the relocation reference symbol i.e. if the kernel has not been relocated 1352 * then the return value is zero. 1353 */ 1354 static u64 ref_reloc(struct kmap *kmap) 1355 { 1356 if (kmap && kmap->ref_reloc_sym && 1357 kmap->ref_reloc_sym->unrelocated_addr) 1358 return kmap->ref_reloc_sym->addr - 1359 kmap->ref_reloc_sym->unrelocated_addr; 1360 return 0; 1361 } 1362 1363 void __weak arch__sym_update(struct symbol *s __maybe_unused, 1364 GElf_Sym *sym __maybe_unused) { } 1365 1366 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 1367 GElf_Sym *sym, GElf_Shdr *shdr, 1368 struct maps *kmaps, struct kmap *kmap, 1369 struct dso **curr_dsop, struct map **curr_mapp, 1370 const char *section_name, 1371 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel) 1372 { 1373 struct dso *curr_dso = *curr_dsop; 1374 struct map *curr_map; 1375 char dso_name[PATH_MAX]; 1376 1377 /* Adjust symbol to map to file offset */ 1378 if (adjust_kernel_syms) 1379 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 1380 1381 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0) 1382 return 0; 1383 1384 if (strcmp(section_name, ".text") == 0) { 1385 /* 1386 * The initial kernel mapping is based on 1387 * kallsyms and identity maps. Overwrite it to 1388 * map to the kernel dso. 1389 */ 1390 if (*remap_kernel && dso->kernel && !kmodule) { 1391 *remap_kernel = false; 1392 map__set_start(map, shdr->sh_addr + ref_reloc(kmap)); 1393 map__set_end(map, map__start(map) + shdr->sh_size); 1394 map__set_pgoff(map, shdr->sh_offset); 1395 map__set_map_ip(map, map__dso_map_ip); 1396 map__set_unmap_ip(map, map__dso_unmap_ip); 1397 /* Ensure maps are correctly ordered */ 1398 if (kmaps) { 1399 int err; 1400 struct map *tmp = map__get(map); 1401 1402 maps__remove(kmaps, map); 1403 err = maps__insert(kmaps, map); 1404 map__put(tmp); 1405 if (err) 1406 return err; 1407 } 1408 } 1409 1410 /* 1411 * The initial module mapping is based on 1412 * /proc/modules mapped to offset zero. 1413 * Overwrite it to map to the module dso. 1414 */ 1415 if (*remap_kernel && kmodule) { 1416 *remap_kernel = false; 1417 map__set_pgoff(map, shdr->sh_offset); 1418 } 1419 1420 *curr_mapp = map; 1421 *curr_dsop = dso; 1422 return 0; 1423 } 1424 1425 if (!kmap) 1426 return 0; 1427 1428 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name); 1429 1430 curr_map = maps__find_by_name(kmaps, dso_name); 1431 if (curr_map == NULL) { 1432 u64 start = sym->st_value; 1433 1434 if (kmodule) 1435 start += map__start(map) + shdr->sh_offset; 1436 1437 curr_dso = dso__new(dso_name); 1438 if (curr_dso == NULL) 1439 return -1; 1440 curr_dso->kernel = dso->kernel; 1441 curr_dso->long_name = dso->long_name; 1442 curr_dso->long_name_len = dso->long_name_len; 1443 curr_map = map__new2(start, curr_dso); 1444 dso__put(curr_dso); 1445 if (curr_map == NULL) 1446 return -1; 1447 1448 if (curr_dso->kernel) 1449 map__kmap(curr_map)->kmaps = kmaps; 1450 1451 if (adjust_kernel_syms) { 1452 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap)); 1453 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size); 1454 map__set_pgoff(curr_map, shdr->sh_offset); 1455 } else { 1456 map__set_map_ip(curr_map, identity__map_ip); 1457 map__set_unmap_ip(curr_map, identity__map_ip); 1458 } 1459 curr_dso->symtab_type = dso->symtab_type; 1460 if (maps__insert(kmaps, curr_map)) 1461 return -1; 1462 /* 1463 * Add it before we drop the reference to curr_map, i.e. while 1464 * we still are sure to have a reference to this DSO via 1465 * *curr_map->dso. 1466 */ 1467 dsos__add(&maps__machine(kmaps)->dsos, curr_dso); 1468 /* kmaps already got it */ 1469 map__put(curr_map); 1470 dso__set_loaded(curr_dso); 1471 *curr_mapp = curr_map; 1472 *curr_dsop = curr_dso; 1473 } else 1474 *curr_dsop = map__dso(curr_map); 1475 1476 return 0; 1477 } 1478 1479 static int 1480 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1481 struct symsrc *runtime_ss, int kmodule, int dynsym) 1482 { 1483 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL; 1484 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 1485 struct map *curr_map = map; 1486 struct dso *curr_dso = dso; 1487 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym; 1488 uint32_t nr_syms; 1489 int err = -1; 1490 uint32_t idx; 1491 GElf_Ehdr ehdr; 1492 GElf_Shdr shdr; 1493 GElf_Shdr tshdr; 1494 Elf_Data *syms, *opddata = NULL; 1495 GElf_Sym sym; 1496 Elf_Scn *sec, *sec_strndx; 1497 Elf *elf; 1498 int nr = 0; 1499 bool remap_kernel = false, adjust_kernel_syms = false; 1500 1501 if (kmap && !kmaps) 1502 return -1; 1503 1504 elf = syms_ss->elf; 1505 ehdr = syms_ss->ehdr; 1506 if (dynsym) { 1507 sec = syms_ss->dynsym; 1508 shdr = syms_ss->dynshdr; 1509 } else { 1510 sec = syms_ss->symtab; 1511 shdr = syms_ss->symshdr; 1512 } 1513 1514 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1515 ".text", NULL)) 1516 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset; 1517 1518 if (runtime_ss->opdsec) 1519 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1520 1521 syms = elf_getdata(sec, NULL); 1522 if (syms == NULL) 1523 goto out_elf_end; 1524 1525 sec = elf_getscn(elf, shdr.sh_link); 1526 if (sec == NULL) 1527 goto out_elf_end; 1528 1529 symstrs = elf_getdata(sec, NULL); 1530 if (symstrs == NULL) 1531 goto out_elf_end; 1532 1533 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1534 if (sec_strndx == NULL) 1535 goto out_elf_end; 1536 1537 secstrs_run = elf_getdata(sec_strndx, NULL); 1538 if (secstrs_run == NULL) 1539 goto out_elf_end; 1540 1541 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx); 1542 if (sec_strndx == NULL) 1543 goto out_elf_end; 1544 1545 secstrs_sym = elf_getdata(sec_strndx, NULL); 1546 if (secstrs_sym == NULL) 1547 goto out_elf_end; 1548 1549 nr_syms = shdr.sh_size / shdr.sh_entsize; 1550 1551 memset(&sym, 0, sizeof(sym)); 1552 1553 /* 1554 * The kernel relocation symbol is needed in advance in order to adjust 1555 * kernel maps correctly. 1556 */ 1557 if (ref_reloc_sym_not_found(kmap)) { 1558 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1559 const char *elf_name = elf_sym__name(&sym, symstrs); 1560 1561 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1562 continue; 1563 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1564 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr); 1565 break; 1566 } 1567 } 1568 1569 /* 1570 * Handle any relocation of vdso necessary because older kernels 1571 * attempted to prelink vdso to its virtual address. 1572 */ 1573 if (dso__is_vdso(dso)) 1574 map__set_reloc(map, map__start(map) - dso->text_offset); 1575 1576 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap); 1577 /* 1578 * Initial kernel and module mappings do not map to the dso. 1579 * Flag the fixups. 1580 */ 1581 if (dso->kernel) { 1582 remap_kernel = true; 1583 adjust_kernel_syms = dso->adjust_symbols; 1584 } 1585 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1586 struct symbol *f; 1587 const char *elf_name = elf_sym__name(&sym, symstrs); 1588 char *demangled = NULL; 1589 int is_label = elf_sym__is_label(&sym); 1590 const char *section_name; 1591 bool used_opd = false; 1592 1593 if (!is_label && !elf_sym__filter(&sym)) 1594 continue; 1595 1596 /* Reject ARM ELF "mapping symbols": these aren't unique and 1597 * don't identify functions, so will confuse the profile 1598 * output: */ 1599 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1600 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1601 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1602 continue; 1603 } 1604 1605 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1606 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1607 u64 *opd = opddata->d_buf + offset; 1608 sym.st_value = DSO__SWAP(dso, u64, *opd); 1609 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1610 sym.st_value); 1611 used_opd = true; 1612 } 1613 1614 /* 1615 * When loading symbols in a data mapping, ABS symbols (which 1616 * has a value of SHN_ABS in its st_shndx) failed at 1617 * elf_getscn(). And it marks the loading as a failure so 1618 * already loaded symbols cannot be fixed up. 1619 * 1620 * I'm not sure what should be done. Just ignore them for now. 1621 * - Namhyung Kim 1622 */ 1623 if (sym.st_shndx == SHN_ABS) 1624 continue; 1625 1626 sec = elf_getscn(syms_ss->elf, sym.st_shndx); 1627 if (!sec) 1628 goto out_elf_end; 1629 1630 gelf_getshdr(sec, &shdr); 1631 1632 /* 1633 * If the attribute bit SHF_ALLOC is not set, the section 1634 * doesn't occupy memory during process execution. 1635 * E.g. ".gnu.warning.*" section is used by linker to generate 1636 * warnings when calling deprecated functions, the symbols in 1637 * the section aren't loaded to memory during process execution, 1638 * so skip them. 1639 */ 1640 if (!(shdr.sh_flags & SHF_ALLOC)) 1641 continue; 1642 1643 secstrs = secstrs_sym; 1644 1645 /* 1646 * We have to fallback to runtime when syms' section header has 1647 * NOBITS set. NOBITS results in file offset (sh_offset) not 1648 * being incremented. So sh_offset used below has different 1649 * values for syms (invalid) and runtime (valid). 1650 */ 1651 if (shdr.sh_type == SHT_NOBITS) { 1652 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1653 if (!sec) 1654 goto out_elf_end; 1655 1656 gelf_getshdr(sec, &shdr); 1657 secstrs = secstrs_run; 1658 } 1659 1660 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1661 continue; 1662 1663 section_name = elf_sec__name(&shdr, secstrs); 1664 1665 /* On ARM, symbols for thumb functions have 1 added to 1666 * the symbol address as a flag - remove it */ 1667 if ((ehdr.e_machine == EM_ARM) && 1668 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1669 (sym.st_value & 1)) 1670 --sym.st_value; 1671 1672 if (dso->kernel) { 1673 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map, 1674 section_name, adjust_kernel_syms, kmodule, &remap_kernel)) 1675 goto out_elf_end; 1676 } else if ((used_opd && runtime_ss->adjust_symbols) || 1677 (!used_opd && syms_ss->adjust_symbols)) { 1678 GElf_Phdr phdr; 1679 1680 if (elf_read_program_header(runtime_ss->elf, 1681 (u64)sym.st_value, &phdr)) { 1682 pr_debug4("%s: failed to find program header for " 1683 "symbol: %s st_value: %#" PRIx64 "\n", 1684 __func__, elf_name, (u64)sym.st_value); 1685 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1686 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", 1687 __func__, (u64)sym.st_value, (u64)shdr.sh_addr, 1688 (u64)shdr.sh_offset); 1689 /* 1690 * Fail to find program header, let's rollback 1691 * to use shdr.sh_addr and shdr.sh_offset to 1692 * calibrate symbol's file address, though this 1693 * is not necessary for normal C ELF file, we 1694 * still need to handle java JIT symbols in this 1695 * case. 1696 */ 1697 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1698 } else { 1699 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1700 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n", 1701 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr, 1702 (u64)phdr.p_offset); 1703 sym.st_value -= phdr.p_vaddr - phdr.p_offset; 1704 } 1705 } 1706 1707 demangled = demangle_sym(dso, kmodule, elf_name); 1708 if (demangled != NULL) 1709 elf_name = demangled; 1710 1711 f = symbol__new(sym.st_value, sym.st_size, 1712 GELF_ST_BIND(sym.st_info), 1713 GELF_ST_TYPE(sym.st_info), elf_name); 1714 free(demangled); 1715 if (!f) 1716 goto out_elf_end; 1717 1718 arch__sym_update(f, &sym); 1719 1720 __symbols__insert(&curr_dso->symbols, f, dso->kernel); 1721 nr++; 1722 } 1723 1724 /* 1725 * For misannotated, zeroed, ASM function sizes. 1726 */ 1727 if (nr > 0) { 1728 symbols__fixup_end(&dso->symbols, false); 1729 symbols__fixup_duplicate(&dso->symbols); 1730 if (kmap) { 1731 /* 1732 * We need to fixup this here too because we create new 1733 * maps here, for things like vsyscall sections. 1734 */ 1735 maps__fixup_end(kmaps); 1736 } 1737 } 1738 err = nr; 1739 out_elf_end: 1740 return err; 1741 } 1742 1743 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1744 struct symsrc *runtime_ss, int kmodule) 1745 { 1746 int nr = 0; 1747 int err = -1; 1748 1749 dso->symtab_type = syms_ss->type; 1750 dso->is_64_bit = syms_ss->is_64_bit; 1751 dso->rel = syms_ss->ehdr.e_type == ET_REL; 1752 1753 /* 1754 * Modules may already have symbols from kallsyms, but those symbols 1755 * have the wrong values for the dso maps, so remove them. 1756 */ 1757 if (kmodule && syms_ss->symtab) 1758 symbols__delete(&dso->symbols); 1759 1760 if (!syms_ss->symtab) { 1761 /* 1762 * If the vmlinux is stripped, fail so we will fall back 1763 * to using kallsyms. The vmlinux runtime symbols aren't 1764 * of much use. 1765 */ 1766 if (dso->kernel) 1767 return err; 1768 } else { 1769 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1770 kmodule, 0); 1771 if (err < 0) 1772 return err; 1773 nr = err; 1774 } 1775 1776 if (syms_ss->dynsym) { 1777 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1778 kmodule, 1); 1779 if (err < 0) 1780 return err; 1781 err += nr; 1782 } 1783 1784 return err; 1785 } 1786 1787 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1788 { 1789 GElf_Phdr phdr; 1790 size_t i, phdrnum; 1791 int err; 1792 u64 sz; 1793 1794 if (elf_getphdrnum(elf, &phdrnum)) 1795 return -1; 1796 1797 for (i = 0; i < phdrnum; i++) { 1798 if (gelf_getphdr(elf, i, &phdr) == NULL) 1799 return -1; 1800 if (phdr.p_type != PT_LOAD) 1801 continue; 1802 if (exe) { 1803 if (!(phdr.p_flags & PF_X)) 1804 continue; 1805 } else { 1806 if (!(phdr.p_flags & PF_R)) 1807 continue; 1808 } 1809 sz = min(phdr.p_memsz, phdr.p_filesz); 1810 if (!sz) 1811 continue; 1812 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1813 if (err) 1814 return err; 1815 } 1816 return 0; 1817 } 1818 1819 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1820 bool *is_64_bit) 1821 { 1822 int err; 1823 Elf *elf; 1824 1825 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1826 if (elf == NULL) 1827 return -1; 1828 1829 if (is_64_bit) 1830 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1831 1832 err = elf_read_maps(elf, exe, mapfn, data); 1833 1834 elf_end(elf); 1835 return err; 1836 } 1837 1838 enum dso_type dso__type_fd(int fd) 1839 { 1840 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1841 GElf_Ehdr ehdr; 1842 Elf_Kind ek; 1843 Elf *elf; 1844 1845 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1846 if (elf == NULL) 1847 goto out; 1848 1849 ek = elf_kind(elf); 1850 if (ek != ELF_K_ELF) 1851 goto out_end; 1852 1853 if (gelf_getclass(elf) == ELFCLASS64) { 1854 dso_type = DSO__TYPE_64BIT; 1855 goto out_end; 1856 } 1857 1858 if (gelf_getehdr(elf, &ehdr) == NULL) 1859 goto out_end; 1860 1861 if (ehdr.e_machine == EM_X86_64) 1862 dso_type = DSO__TYPE_X32BIT; 1863 else 1864 dso_type = DSO__TYPE_32BIT; 1865 out_end: 1866 elf_end(elf); 1867 out: 1868 return dso_type; 1869 } 1870 1871 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1872 { 1873 ssize_t r; 1874 size_t n; 1875 int err = -1; 1876 char *buf = malloc(page_size); 1877 1878 if (buf == NULL) 1879 return -1; 1880 1881 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1882 goto out; 1883 1884 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1885 goto out; 1886 1887 while (len) { 1888 n = page_size; 1889 if (len < n) 1890 n = len; 1891 /* Use read because mmap won't work on proc files */ 1892 r = read(from, buf, n); 1893 if (r < 0) 1894 goto out; 1895 if (!r) 1896 break; 1897 n = r; 1898 r = write(to, buf, n); 1899 if (r < 0) 1900 goto out; 1901 if ((size_t)r != n) 1902 goto out; 1903 len -= n; 1904 } 1905 1906 err = 0; 1907 out: 1908 free(buf); 1909 return err; 1910 } 1911 1912 struct kcore { 1913 int fd; 1914 int elfclass; 1915 Elf *elf; 1916 GElf_Ehdr ehdr; 1917 }; 1918 1919 static int kcore__open(struct kcore *kcore, const char *filename) 1920 { 1921 GElf_Ehdr *ehdr; 1922 1923 kcore->fd = open(filename, O_RDONLY); 1924 if (kcore->fd == -1) 1925 return -1; 1926 1927 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 1928 if (!kcore->elf) 1929 goto out_close; 1930 1931 kcore->elfclass = gelf_getclass(kcore->elf); 1932 if (kcore->elfclass == ELFCLASSNONE) 1933 goto out_end; 1934 1935 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 1936 if (!ehdr) 1937 goto out_end; 1938 1939 return 0; 1940 1941 out_end: 1942 elf_end(kcore->elf); 1943 out_close: 1944 close(kcore->fd); 1945 return -1; 1946 } 1947 1948 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 1949 bool temp) 1950 { 1951 kcore->elfclass = elfclass; 1952 1953 if (temp) 1954 kcore->fd = mkstemp(filename); 1955 else 1956 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 1957 if (kcore->fd == -1) 1958 return -1; 1959 1960 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 1961 if (!kcore->elf) 1962 goto out_close; 1963 1964 if (!gelf_newehdr(kcore->elf, elfclass)) 1965 goto out_end; 1966 1967 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 1968 1969 return 0; 1970 1971 out_end: 1972 elf_end(kcore->elf); 1973 out_close: 1974 close(kcore->fd); 1975 unlink(filename); 1976 return -1; 1977 } 1978 1979 static void kcore__close(struct kcore *kcore) 1980 { 1981 elf_end(kcore->elf); 1982 close(kcore->fd); 1983 } 1984 1985 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 1986 { 1987 GElf_Ehdr *ehdr = &to->ehdr; 1988 GElf_Ehdr *kehdr = &from->ehdr; 1989 1990 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 1991 ehdr->e_type = kehdr->e_type; 1992 ehdr->e_machine = kehdr->e_machine; 1993 ehdr->e_version = kehdr->e_version; 1994 ehdr->e_entry = 0; 1995 ehdr->e_shoff = 0; 1996 ehdr->e_flags = kehdr->e_flags; 1997 ehdr->e_phnum = count; 1998 ehdr->e_shentsize = 0; 1999 ehdr->e_shnum = 0; 2000 ehdr->e_shstrndx = 0; 2001 2002 if (from->elfclass == ELFCLASS32) { 2003 ehdr->e_phoff = sizeof(Elf32_Ehdr); 2004 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 2005 ehdr->e_phentsize = sizeof(Elf32_Phdr); 2006 } else { 2007 ehdr->e_phoff = sizeof(Elf64_Ehdr); 2008 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 2009 ehdr->e_phentsize = sizeof(Elf64_Phdr); 2010 } 2011 2012 if (!gelf_update_ehdr(to->elf, ehdr)) 2013 return -1; 2014 2015 if (!gelf_newphdr(to->elf, count)) 2016 return -1; 2017 2018 return 0; 2019 } 2020 2021 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 2022 u64 addr, u64 len) 2023 { 2024 GElf_Phdr phdr = { 2025 .p_type = PT_LOAD, 2026 .p_flags = PF_R | PF_W | PF_X, 2027 .p_offset = offset, 2028 .p_vaddr = addr, 2029 .p_paddr = 0, 2030 .p_filesz = len, 2031 .p_memsz = len, 2032 .p_align = page_size, 2033 }; 2034 2035 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 2036 return -1; 2037 2038 return 0; 2039 } 2040 2041 static off_t kcore__write(struct kcore *kcore) 2042 { 2043 return elf_update(kcore->elf, ELF_C_WRITE); 2044 } 2045 2046 struct phdr_data { 2047 off_t offset; 2048 off_t rel; 2049 u64 addr; 2050 u64 len; 2051 struct list_head node; 2052 struct phdr_data *remaps; 2053 }; 2054 2055 struct sym_data { 2056 u64 addr; 2057 struct list_head node; 2058 }; 2059 2060 struct kcore_copy_info { 2061 u64 stext; 2062 u64 etext; 2063 u64 first_symbol; 2064 u64 last_symbol; 2065 u64 first_module; 2066 u64 first_module_symbol; 2067 u64 last_module_symbol; 2068 size_t phnum; 2069 struct list_head phdrs; 2070 struct list_head syms; 2071 }; 2072 2073 #define kcore_copy__for_each_phdr(k, p) \ 2074 list_for_each_entry((p), &(k)->phdrs, node) 2075 2076 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 2077 { 2078 struct phdr_data *p = zalloc(sizeof(*p)); 2079 2080 if (p) { 2081 p->addr = addr; 2082 p->len = len; 2083 p->offset = offset; 2084 } 2085 2086 return p; 2087 } 2088 2089 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 2090 u64 addr, u64 len, 2091 off_t offset) 2092 { 2093 struct phdr_data *p = phdr_data__new(addr, len, offset); 2094 2095 if (p) 2096 list_add_tail(&p->node, &kci->phdrs); 2097 2098 return p; 2099 } 2100 2101 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 2102 { 2103 struct phdr_data *p, *tmp; 2104 2105 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 2106 list_del_init(&p->node); 2107 free(p); 2108 } 2109 } 2110 2111 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 2112 u64 addr) 2113 { 2114 struct sym_data *s = zalloc(sizeof(*s)); 2115 2116 if (s) { 2117 s->addr = addr; 2118 list_add_tail(&s->node, &kci->syms); 2119 } 2120 2121 return s; 2122 } 2123 2124 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 2125 { 2126 struct sym_data *s, *tmp; 2127 2128 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 2129 list_del_init(&s->node); 2130 free(s); 2131 } 2132 } 2133 2134 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 2135 u64 start) 2136 { 2137 struct kcore_copy_info *kci = arg; 2138 2139 if (!kallsyms__is_function(type)) 2140 return 0; 2141 2142 if (strchr(name, '[')) { 2143 if (!kci->first_module_symbol || start < kci->first_module_symbol) 2144 kci->first_module_symbol = start; 2145 if (start > kci->last_module_symbol) 2146 kci->last_module_symbol = start; 2147 return 0; 2148 } 2149 2150 if (!kci->first_symbol || start < kci->first_symbol) 2151 kci->first_symbol = start; 2152 2153 if (!kci->last_symbol || start > kci->last_symbol) 2154 kci->last_symbol = start; 2155 2156 if (!strcmp(name, "_stext")) { 2157 kci->stext = start; 2158 return 0; 2159 } 2160 2161 if (!strcmp(name, "_etext")) { 2162 kci->etext = start; 2163 return 0; 2164 } 2165 2166 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 2167 return -1; 2168 2169 return 0; 2170 } 2171 2172 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 2173 const char *dir) 2174 { 2175 char kallsyms_filename[PATH_MAX]; 2176 2177 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 2178 2179 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 2180 return -1; 2181 2182 if (kallsyms__parse(kallsyms_filename, kci, 2183 kcore_copy__process_kallsyms) < 0) 2184 return -1; 2185 2186 return 0; 2187 } 2188 2189 static int kcore_copy__process_modules(void *arg, 2190 const char *name __maybe_unused, 2191 u64 start, u64 size __maybe_unused) 2192 { 2193 struct kcore_copy_info *kci = arg; 2194 2195 if (!kci->first_module || start < kci->first_module) 2196 kci->first_module = start; 2197 2198 return 0; 2199 } 2200 2201 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 2202 const char *dir) 2203 { 2204 char modules_filename[PATH_MAX]; 2205 2206 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 2207 2208 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 2209 return -1; 2210 2211 if (modules__parse(modules_filename, kci, 2212 kcore_copy__process_modules) < 0) 2213 return -1; 2214 2215 return 0; 2216 } 2217 2218 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 2219 u64 pgoff, u64 s, u64 e) 2220 { 2221 u64 len, offset; 2222 2223 if (s < start || s >= end) 2224 return 0; 2225 2226 offset = (s - start) + pgoff; 2227 len = e < end ? e - s : end - s; 2228 2229 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 2230 } 2231 2232 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 2233 { 2234 struct kcore_copy_info *kci = data; 2235 u64 end = start + len; 2236 struct sym_data *sdat; 2237 2238 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 2239 return -1; 2240 2241 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 2242 kci->last_module_symbol)) 2243 return -1; 2244 2245 list_for_each_entry(sdat, &kci->syms, node) { 2246 u64 s = round_down(sdat->addr, page_size); 2247 2248 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 2249 return -1; 2250 } 2251 2252 return 0; 2253 } 2254 2255 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 2256 { 2257 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 2258 return -1; 2259 2260 return 0; 2261 } 2262 2263 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 2264 { 2265 struct phdr_data *p, *k = NULL; 2266 u64 kend; 2267 2268 if (!kci->stext) 2269 return; 2270 2271 /* Find phdr that corresponds to the kernel map (contains stext) */ 2272 kcore_copy__for_each_phdr(kci, p) { 2273 u64 pend = p->addr + p->len - 1; 2274 2275 if (p->addr <= kci->stext && pend >= kci->stext) { 2276 k = p; 2277 break; 2278 } 2279 } 2280 2281 if (!k) 2282 return; 2283 2284 kend = k->offset + k->len; 2285 2286 /* Find phdrs that remap the kernel */ 2287 kcore_copy__for_each_phdr(kci, p) { 2288 u64 pend = p->offset + p->len; 2289 2290 if (p == k) 2291 continue; 2292 2293 if (p->offset >= k->offset && pend <= kend) 2294 p->remaps = k; 2295 } 2296 } 2297 2298 static void kcore_copy__layout(struct kcore_copy_info *kci) 2299 { 2300 struct phdr_data *p; 2301 off_t rel = 0; 2302 2303 kcore_copy__find_remaps(kci); 2304 2305 kcore_copy__for_each_phdr(kci, p) { 2306 if (!p->remaps) { 2307 p->rel = rel; 2308 rel += p->len; 2309 } 2310 kci->phnum += 1; 2311 } 2312 2313 kcore_copy__for_each_phdr(kci, p) { 2314 struct phdr_data *k = p->remaps; 2315 2316 if (k) 2317 p->rel = p->offset - k->offset + k->rel; 2318 } 2319 } 2320 2321 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 2322 Elf *elf) 2323 { 2324 if (kcore_copy__parse_kallsyms(kci, dir)) 2325 return -1; 2326 2327 if (kcore_copy__parse_modules(kci, dir)) 2328 return -1; 2329 2330 if (kci->stext) 2331 kci->stext = round_down(kci->stext, page_size); 2332 else 2333 kci->stext = round_down(kci->first_symbol, page_size); 2334 2335 if (kci->etext) { 2336 kci->etext = round_up(kci->etext, page_size); 2337 } else if (kci->last_symbol) { 2338 kci->etext = round_up(kci->last_symbol, page_size); 2339 kci->etext += page_size; 2340 } 2341 2342 if (kci->first_module_symbol && 2343 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 2344 kci->first_module = kci->first_module_symbol; 2345 2346 kci->first_module = round_down(kci->first_module, page_size); 2347 2348 if (kci->last_module_symbol) { 2349 kci->last_module_symbol = round_up(kci->last_module_symbol, 2350 page_size); 2351 kci->last_module_symbol += page_size; 2352 } 2353 2354 if (!kci->stext || !kci->etext) 2355 return -1; 2356 2357 if (kci->first_module && !kci->last_module_symbol) 2358 return -1; 2359 2360 if (kcore_copy__read_maps(kci, elf)) 2361 return -1; 2362 2363 kcore_copy__layout(kci); 2364 2365 return 0; 2366 } 2367 2368 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 2369 const char *name) 2370 { 2371 char from_filename[PATH_MAX]; 2372 char to_filename[PATH_MAX]; 2373 2374 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2375 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2376 2377 return copyfile_mode(from_filename, to_filename, 0400); 2378 } 2379 2380 static int kcore_copy__unlink(const char *dir, const char *name) 2381 { 2382 char filename[PATH_MAX]; 2383 2384 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 2385 2386 return unlink(filename); 2387 } 2388 2389 static int kcore_copy__compare_fds(int from, int to) 2390 { 2391 char *buf_from; 2392 char *buf_to; 2393 ssize_t ret; 2394 size_t len; 2395 int err = -1; 2396 2397 buf_from = malloc(page_size); 2398 buf_to = malloc(page_size); 2399 if (!buf_from || !buf_to) 2400 goto out; 2401 2402 while (1) { 2403 /* Use read because mmap won't work on proc files */ 2404 ret = read(from, buf_from, page_size); 2405 if (ret < 0) 2406 goto out; 2407 2408 if (!ret) 2409 break; 2410 2411 len = ret; 2412 2413 if (readn(to, buf_to, len) != (int)len) 2414 goto out; 2415 2416 if (memcmp(buf_from, buf_to, len)) 2417 goto out; 2418 } 2419 2420 err = 0; 2421 out: 2422 free(buf_to); 2423 free(buf_from); 2424 return err; 2425 } 2426 2427 static int kcore_copy__compare_files(const char *from_filename, 2428 const char *to_filename) 2429 { 2430 int from, to, err = -1; 2431 2432 from = open(from_filename, O_RDONLY); 2433 if (from < 0) 2434 return -1; 2435 2436 to = open(to_filename, O_RDONLY); 2437 if (to < 0) 2438 goto out_close_from; 2439 2440 err = kcore_copy__compare_fds(from, to); 2441 2442 close(to); 2443 out_close_from: 2444 close(from); 2445 return err; 2446 } 2447 2448 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 2449 const char *name) 2450 { 2451 char from_filename[PATH_MAX]; 2452 char to_filename[PATH_MAX]; 2453 2454 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2455 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2456 2457 return kcore_copy__compare_files(from_filename, to_filename); 2458 } 2459 2460 /** 2461 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 2462 * @from_dir: from directory 2463 * @to_dir: to directory 2464 * 2465 * This function copies kallsyms, modules and kcore files from one directory to 2466 * another. kallsyms and modules are copied entirely. Only code segments are 2467 * copied from kcore. It is assumed that two segments suffice: one for the 2468 * kernel proper and one for all the modules. The code segments are determined 2469 * from kallsyms and modules files. The kernel map starts at _stext or the 2470 * lowest function symbol, and ends at _etext or the highest function symbol. 2471 * The module map starts at the lowest module address and ends at the highest 2472 * module symbol. Start addresses are rounded down to the nearest page. End 2473 * addresses are rounded up to the nearest page. An extra page is added to the 2474 * highest kernel symbol and highest module symbol to, hopefully, encompass that 2475 * symbol too. Because it contains only code sections, the resulting kcore is 2476 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 2477 * is not the same for the kernel map and the modules map. That happens because 2478 * the data is copied adjacently whereas the original kcore has gaps. Finally, 2479 * kallsyms file is compared with its copy to check that modules have not been 2480 * loaded or unloaded while the copies were taking place. 2481 * 2482 * Return: %0 on success, %-1 on failure. 2483 */ 2484 int kcore_copy(const char *from_dir, const char *to_dir) 2485 { 2486 struct kcore kcore; 2487 struct kcore extract; 2488 int idx = 0, err = -1; 2489 off_t offset, sz; 2490 struct kcore_copy_info kci = { .stext = 0, }; 2491 char kcore_filename[PATH_MAX]; 2492 char extract_filename[PATH_MAX]; 2493 struct phdr_data *p; 2494 2495 INIT_LIST_HEAD(&kci.phdrs); 2496 INIT_LIST_HEAD(&kci.syms); 2497 2498 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 2499 return -1; 2500 2501 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 2502 goto out_unlink_kallsyms; 2503 2504 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 2505 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 2506 2507 if (kcore__open(&kcore, kcore_filename)) 2508 goto out_unlink_modules; 2509 2510 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 2511 goto out_kcore_close; 2512 2513 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 2514 goto out_kcore_close; 2515 2516 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 2517 goto out_extract_close; 2518 2519 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 2520 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 2521 offset = round_up(offset, page_size); 2522 2523 kcore_copy__for_each_phdr(&kci, p) { 2524 off_t offs = p->rel + offset; 2525 2526 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 2527 goto out_extract_close; 2528 } 2529 2530 sz = kcore__write(&extract); 2531 if (sz < 0 || sz > offset) 2532 goto out_extract_close; 2533 2534 kcore_copy__for_each_phdr(&kci, p) { 2535 off_t offs = p->rel + offset; 2536 2537 if (p->remaps) 2538 continue; 2539 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 2540 goto out_extract_close; 2541 } 2542 2543 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 2544 goto out_extract_close; 2545 2546 err = 0; 2547 2548 out_extract_close: 2549 kcore__close(&extract); 2550 if (err) 2551 unlink(extract_filename); 2552 out_kcore_close: 2553 kcore__close(&kcore); 2554 out_unlink_modules: 2555 if (err) 2556 kcore_copy__unlink(to_dir, "modules"); 2557 out_unlink_kallsyms: 2558 if (err) 2559 kcore_copy__unlink(to_dir, "kallsyms"); 2560 2561 kcore_copy__free_phdrs(&kci); 2562 kcore_copy__free_syms(&kci); 2563 2564 return err; 2565 } 2566 2567 int kcore_extract__create(struct kcore_extract *kce) 2568 { 2569 struct kcore kcore; 2570 struct kcore extract; 2571 size_t count = 1; 2572 int idx = 0, err = -1; 2573 off_t offset = page_size, sz; 2574 2575 if (kcore__open(&kcore, kce->kcore_filename)) 2576 return -1; 2577 2578 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 2579 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 2580 goto out_kcore_close; 2581 2582 if (kcore__copy_hdr(&kcore, &extract, count)) 2583 goto out_extract_close; 2584 2585 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 2586 goto out_extract_close; 2587 2588 sz = kcore__write(&extract); 2589 if (sz < 0 || sz > offset) 2590 goto out_extract_close; 2591 2592 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 2593 goto out_extract_close; 2594 2595 err = 0; 2596 2597 out_extract_close: 2598 kcore__close(&extract); 2599 if (err) 2600 unlink(kce->extract_filename); 2601 out_kcore_close: 2602 kcore__close(&kcore); 2603 2604 return err; 2605 } 2606 2607 void kcore_extract__delete(struct kcore_extract *kce) 2608 { 2609 unlink(kce->extract_filename); 2610 } 2611 2612 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2613 2614 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2615 { 2616 if (!base_off) 2617 return; 2618 2619 if (tmp->bit32) 2620 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2621 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2622 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2623 else 2624 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2625 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2626 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2627 } 2628 2629 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2630 GElf_Addr base_off) 2631 { 2632 if (!base_off) 2633 return; 2634 2635 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2636 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2637 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2638 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2639 } 2640 2641 /** 2642 * populate_sdt_note : Parse raw data and identify SDT note 2643 * @elf: elf of the opened file 2644 * @data: raw data of a section with description offset applied 2645 * @len: note description size 2646 * @type: type of the note 2647 * @sdt_notes: List to add the SDT note 2648 * 2649 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2650 * if its an SDT note, it appends to @sdt_notes list. 2651 */ 2652 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2653 struct list_head *sdt_notes) 2654 { 2655 const char *provider, *name, *args; 2656 struct sdt_note *tmp = NULL; 2657 GElf_Ehdr ehdr; 2658 GElf_Shdr shdr; 2659 int ret = -EINVAL; 2660 2661 union { 2662 Elf64_Addr a64[NR_ADDR]; 2663 Elf32_Addr a32[NR_ADDR]; 2664 } buf; 2665 2666 Elf_Data dst = { 2667 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2668 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2669 .d_off = 0, .d_align = 0 2670 }; 2671 Elf_Data src = { 2672 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2673 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2674 .d_align = 0 2675 }; 2676 2677 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2678 if (!tmp) { 2679 ret = -ENOMEM; 2680 goto out_err; 2681 } 2682 2683 INIT_LIST_HEAD(&tmp->note_list); 2684 2685 if (len < dst.d_size + 3) 2686 goto out_free_note; 2687 2688 /* Translation from file representation to memory representation */ 2689 if (gelf_xlatetom(*elf, &dst, &src, 2690 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2691 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2692 goto out_free_note; 2693 } 2694 2695 /* Populate the fields of sdt_note */ 2696 provider = data + dst.d_size; 2697 2698 name = (const char *)memchr(provider, '\0', data + len - provider); 2699 if (name++ == NULL) 2700 goto out_free_note; 2701 2702 tmp->provider = strdup(provider); 2703 if (!tmp->provider) { 2704 ret = -ENOMEM; 2705 goto out_free_note; 2706 } 2707 tmp->name = strdup(name); 2708 if (!tmp->name) { 2709 ret = -ENOMEM; 2710 goto out_free_prov; 2711 } 2712 2713 args = memchr(name, '\0', data + len - name); 2714 2715 /* 2716 * There is no argument if: 2717 * - We reached the end of the note; 2718 * - There is not enough room to hold a potential string; 2719 * - The argument string is empty or just contains ':'. 2720 */ 2721 if (args == NULL || data + len - args < 2 || 2722 args[1] == ':' || args[1] == '\0') 2723 tmp->args = NULL; 2724 else { 2725 tmp->args = strdup(++args); 2726 if (!tmp->args) { 2727 ret = -ENOMEM; 2728 goto out_free_name; 2729 } 2730 } 2731 2732 if (gelf_getclass(*elf) == ELFCLASS32) { 2733 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2734 tmp->bit32 = true; 2735 } else { 2736 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2737 tmp->bit32 = false; 2738 } 2739 2740 if (!gelf_getehdr(*elf, &ehdr)) { 2741 pr_debug("%s : cannot get elf header.\n", __func__); 2742 ret = -EBADF; 2743 goto out_free_args; 2744 } 2745 2746 /* Adjust the prelink effect : 2747 * Find out the .stapsdt.base section. 2748 * This scn will help us to handle prelinking (if present). 2749 * Compare the retrieved file offset of the base section with the 2750 * base address in the description of the SDT note. If its different, 2751 * then accordingly, adjust the note location. 2752 */ 2753 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2754 sdt_adjust_loc(tmp, shdr.sh_offset); 2755 2756 /* Adjust reference counter offset */ 2757 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2758 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2759 2760 list_add_tail(&tmp->note_list, sdt_notes); 2761 return 0; 2762 2763 out_free_args: 2764 zfree(&tmp->args); 2765 out_free_name: 2766 zfree(&tmp->name); 2767 out_free_prov: 2768 zfree(&tmp->provider); 2769 out_free_note: 2770 free(tmp); 2771 out_err: 2772 return ret; 2773 } 2774 2775 /** 2776 * construct_sdt_notes_list : constructs a list of SDT notes 2777 * @elf : elf to look into 2778 * @sdt_notes : empty list_head 2779 * 2780 * Scans the sections in 'elf' for the section 2781 * .note.stapsdt. It, then calls populate_sdt_note to find 2782 * out the SDT events and populates the 'sdt_notes'. 2783 */ 2784 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2785 { 2786 GElf_Ehdr ehdr; 2787 Elf_Scn *scn = NULL; 2788 Elf_Data *data; 2789 GElf_Shdr shdr; 2790 size_t shstrndx, next; 2791 GElf_Nhdr nhdr; 2792 size_t name_off, desc_off, offset; 2793 int ret = 0; 2794 2795 if (gelf_getehdr(elf, &ehdr) == NULL) { 2796 ret = -EBADF; 2797 goto out_ret; 2798 } 2799 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2800 ret = -EBADF; 2801 goto out_ret; 2802 } 2803 2804 /* Look for the required section */ 2805 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2806 if (!scn) { 2807 ret = -ENOENT; 2808 goto out_ret; 2809 } 2810 2811 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2812 ret = -ENOENT; 2813 goto out_ret; 2814 } 2815 2816 data = elf_getdata(scn, NULL); 2817 2818 /* Get the SDT notes */ 2819 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2820 &desc_off)) > 0; offset = next) { 2821 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2822 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2823 sizeof(SDT_NOTE_NAME))) { 2824 /* Check the type of the note */ 2825 if (nhdr.n_type != SDT_NOTE_TYPE) 2826 goto out_ret; 2827 2828 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2829 nhdr.n_descsz, sdt_notes); 2830 if (ret < 0) 2831 goto out_ret; 2832 } 2833 } 2834 if (list_empty(sdt_notes)) 2835 ret = -ENOENT; 2836 2837 out_ret: 2838 return ret; 2839 } 2840 2841 /** 2842 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2843 * @head : empty list_head 2844 * @target : file to find SDT notes from 2845 * 2846 * This opens the file, initializes 2847 * the ELF and then calls construct_sdt_notes_list. 2848 */ 2849 int get_sdt_note_list(struct list_head *head, const char *target) 2850 { 2851 Elf *elf; 2852 int fd, ret; 2853 2854 fd = open(target, O_RDONLY); 2855 if (fd < 0) 2856 return -EBADF; 2857 2858 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2859 if (!elf) { 2860 ret = -EBADF; 2861 goto out_close; 2862 } 2863 ret = construct_sdt_notes_list(elf, head); 2864 elf_end(elf); 2865 out_close: 2866 close(fd); 2867 return ret; 2868 } 2869 2870 /** 2871 * cleanup_sdt_note_list : free the sdt notes' list 2872 * @sdt_notes: sdt notes' list 2873 * 2874 * Free up the SDT notes in @sdt_notes. 2875 * Returns the number of SDT notes free'd. 2876 */ 2877 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2878 { 2879 struct sdt_note *tmp, *pos; 2880 int nr_free = 0; 2881 2882 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2883 list_del_init(&pos->note_list); 2884 zfree(&pos->args); 2885 zfree(&pos->name); 2886 zfree(&pos->provider); 2887 free(pos); 2888 nr_free++; 2889 } 2890 return nr_free; 2891 } 2892 2893 /** 2894 * sdt_notes__get_count: Counts the number of sdt events 2895 * @start: list_head to sdt_notes list 2896 * 2897 * Returns the number of SDT notes in a list 2898 */ 2899 int sdt_notes__get_count(struct list_head *start) 2900 { 2901 struct sdt_note *sdt_ptr; 2902 int count = 0; 2903 2904 list_for_each_entry(sdt_ptr, start, note_list) 2905 count++; 2906 return count; 2907 } 2908 #endif 2909 2910 void symbol__elf_init(void) 2911 { 2912 elf_version(EV_CURRENT); 2913 } 2914