xref: /linux/tools/perf/util/stat.c (revision f82811e22b480a203a438d8e1f29af9c93ccbb0c)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <linux/err.h>
4 #include <inttypes.h>
5 #include <math.h>
6 #include <string.h>
7 #include "counts.h"
8 #include "cpumap.h"
9 #include "debug.h"
10 #include "header.h"
11 #include "stat.h"
12 #include "session.h"
13 #include "target.h"
14 #include "evlist.h"
15 #include "evsel.h"
16 #include "thread_map.h"
17 #include "util/hashmap.h"
18 #include <linux/zalloc.h>
19 
20 void update_stats(struct stats *stats, u64 val)
21 {
22 	double delta;
23 
24 	stats->n++;
25 	delta = val - stats->mean;
26 	stats->mean += delta / stats->n;
27 	stats->M2 += delta*(val - stats->mean);
28 
29 	if (val > stats->max)
30 		stats->max = val;
31 
32 	if (val < stats->min)
33 		stats->min = val;
34 }
35 
36 double avg_stats(struct stats *stats)
37 {
38 	return stats->mean;
39 }
40 
41 /*
42  * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
43  *
44  *       (\Sum n_i^2) - ((\Sum n_i)^2)/n
45  * s^2 = -------------------------------
46  *                  n - 1
47  *
48  * http://en.wikipedia.org/wiki/Stddev
49  *
50  * The std dev of the mean is related to the std dev by:
51  *
52  *             s
53  * s_mean = -------
54  *          sqrt(n)
55  *
56  */
57 double stddev_stats(struct stats *stats)
58 {
59 	double variance, variance_mean;
60 
61 	if (stats->n < 2)
62 		return 0.0;
63 
64 	variance = stats->M2 / (stats->n - 1);
65 	variance_mean = variance / stats->n;
66 
67 	return sqrt(variance_mean);
68 }
69 
70 double rel_stddev_stats(double stddev, double avg)
71 {
72 	double pct = 0.0;
73 
74 	if (avg)
75 		pct = 100.0 * stddev/avg;
76 
77 	return pct;
78 }
79 
80 static void evsel__reset_aggr_stats(struct evsel *evsel)
81 {
82 	struct perf_stat_evsel *ps = evsel->stats;
83 	struct perf_stat_aggr *aggr = ps->aggr;
84 
85 	if (aggr)
86 		memset(aggr, 0, sizeof(*aggr) * ps->nr_aggr);
87 }
88 
89 static void evsel__reset_stat_priv(struct evsel *evsel)
90 {
91 	struct perf_stat_evsel *ps = evsel->stats;
92 
93 	init_stats(&ps->res_stats);
94 	evsel__reset_aggr_stats(evsel);
95 }
96 
97 static int evsel__alloc_aggr_stats(struct evsel *evsel, int nr_aggr)
98 {
99 	struct perf_stat_evsel *ps = evsel->stats;
100 
101 	if (ps == NULL)
102 		return 0;
103 
104 	ps->nr_aggr = nr_aggr;
105 	ps->aggr = calloc(nr_aggr, sizeof(*ps->aggr));
106 	if (ps->aggr == NULL)
107 		return -ENOMEM;
108 
109 	return 0;
110 }
111 
112 int evlist__alloc_aggr_stats(struct evlist *evlist, int nr_aggr)
113 {
114 	struct evsel *evsel;
115 
116 	evlist__for_each_entry(evlist, evsel) {
117 		if (evsel__alloc_aggr_stats(evsel, nr_aggr) < 0)
118 			return -1;
119 	}
120 	return 0;
121 }
122 
123 static int evsel__alloc_stat_priv(struct evsel *evsel, int nr_aggr)
124 {
125 	struct perf_stat_evsel *ps;
126 
127 	ps = zalloc(sizeof(*ps));
128 	if (ps == NULL)
129 		return -ENOMEM;
130 
131 	evsel->stats = ps;
132 
133 	if (nr_aggr && evsel__alloc_aggr_stats(evsel, nr_aggr) < 0) {
134 		evsel->stats = NULL;
135 		free(ps);
136 		return -ENOMEM;
137 	}
138 
139 	evsel__reset_stat_priv(evsel);
140 	return 0;
141 }
142 
143 static void evsel__free_stat_priv(struct evsel *evsel)
144 {
145 	struct perf_stat_evsel *ps = evsel->stats;
146 
147 	if (ps) {
148 		zfree(&ps->aggr);
149 		zfree(&ps->group_data);
150 	}
151 	zfree(&evsel->stats);
152 }
153 
154 static int evsel__alloc_prev_raw_counts(struct evsel *evsel)
155 {
156 	int cpu_map_nr = evsel__nr_cpus(evsel);
157 	int nthreads = perf_thread_map__nr(evsel->core.threads);
158 	struct perf_counts *counts;
159 
160 	counts = perf_counts__new(cpu_map_nr, nthreads);
161 	if (counts)
162 		evsel->prev_raw_counts = counts;
163 
164 	return counts ? 0 : -ENOMEM;
165 }
166 
167 static void evsel__free_prev_raw_counts(struct evsel *evsel)
168 {
169 	perf_counts__delete(evsel->prev_raw_counts);
170 	evsel->prev_raw_counts = NULL;
171 }
172 
173 static void evsel__reset_prev_raw_counts(struct evsel *evsel)
174 {
175 	if (evsel->prev_raw_counts)
176 		perf_counts__reset(evsel->prev_raw_counts);
177 }
178 
179 static int evsel__alloc_stats(struct evsel *evsel, int nr_aggr, bool alloc_raw)
180 {
181 	if (evsel__alloc_stat_priv(evsel, nr_aggr) < 0 ||
182 	    evsel__alloc_counts(evsel) < 0 ||
183 	    (alloc_raw && evsel__alloc_prev_raw_counts(evsel) < 0))
184 		return -ENOMEM;
185 
186 	return 0;
187 }
188 
189 int evlist__alloc_stats(struct perf_stat_config *config,
190 			struct evlist *evlist, bool alloc_raw)
191 {
192 	struct evsel *evsel;
193 	int nr_aggr = 0;
194 
195 	if (config && config->aggr_map)
196 		nr_aggr = config->aggr_map->nr;
197 
198 	evlist__for_each_entry(evlist, evsel) {
199 		if (evsel__alloc_stats(evsel, nr_aggr, alloc_raw))
200 			goto out_free;
201 	}
202 
203 	return 0;
204 
205 out_free:
206 	evlist__free_stats(evlist);
207 	return -1;
208 }
209 
210 void evlist__free_stats(struct evlist *evlist)
211 {
212 	struct evsel *evsel;
213 
214 	evlist__for_each_entry(evlist, evsel) {
215 		evsel__free_stat_priv(evsel);
216 		evsel__free_counts(evsel);
217 		evsel__free_prev_raw_counts(evsel);
218 	}
219 }
220 
221 void evlist__reset_stats(struct evlist *evlist)
222 {
223 	struct evsel *evsel;
224 
225 	evlist__for_each_entry(evlist, evsel) {
226 		evsel__reset_stat_priv(evsel);
227 		evsel__reset_counts(evsel);
228 	}
229 }
230 
231 void evlist__reset_aggr_stats(struct evlist *evlist)
232 {
233 	struct evsel *evsel;
234 
235 	evlist__for_each_entry(evlist, evsel)
236 		evsel__reset_aggr_stats(evsel);
237 }
238 
239 void evlist__reset_prev_raw_counts(struct evlist *evlist)
240 {
241 	struct evsel *evsel;
242 
243 	evlist__for_each_entry(evlist, evsel)
244 		evsel__reset_prev_raw_counts(evsel);
245 }
246 
247 static void evsel__copy_prev_raw_counts(struct evsel *evsel)
248 {
249 	int idx, nthreads = perf_thread_map__nr(evsel->core.threads);
250 
251 	for (int thread = 0; thread < nthreads; thread++) {
252 		perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
253 			*perf_counts(evsel->counts, idx, thread) =
254 				*perf_counts(evsel->prev_raw_counts, idx, thread);
255 		}
256 	}
257 }
258 
259 void evlist__copy_prev_raw_counts(struct evlist *evlist)
260 {
261 	struct evsel *evsel;
262 
263 	evlist__for_each_entry(evlist, evsel)
264 		evsel__copy_prev_raw_counts(evsel);
265 }
266 
267 static void evsel__copy_res_stats(struct evsel *evsel)
268 {
269 	struct perf_stat_evsel *ps = evsel->stats;
270 
271 	/*
272 	 * For GLOBAL aggregation mode, it updates the counts for each run
273 	 * in the evsel->stats.res_stats.  See perf_stat_process_counter().
274 	 */
275 	*ps->aggr[0].counts.values = avg_stats(&ps->res_stats);
276 }
277 
278 void evlist__copy_res_stats(struct perf_stat_config *config, struct evlist *evlist)
279 {
280 	struct evsel *evsel;
281 
282 	if (config->aggr_mode != AGGR_GLOBAL)
283 		return;
284 
285 	evlist__for_each_entry(evlist, evsel)
286 		evsel__copy_res_stats(evsel);
287 }
288 
289 static size_t pkg_id_hash(long __key, void *ctx __maybe_unused)
290 {
291 	uint64_t *key = (uint64_t *) __key;
292 
293 	return *key & 0xffffffff;
294 }
295 
296 static bool pkg_id_equal(long __key1, long __key2, void *ctx __maybe_unused)
297 {
298 	uint64_t *key1 = (uint64_t *) __key1;
299 	uint64_t *key2 = (uint64_t *) __key2;
300 
301 	return *key1 == *key2;
302 }
303 
304 static int check_per_pkg(struct evsel *counter, struct perf_counts_values *vals,
305 			 int cpu_map_idx, bool *skip)
306 {
307 	struct hashmap *mask = counter->per_pkg_mask;
308 	struct perf_cpu_map *cpus = evsel__cpus(counter);
309 	struct perf_cpu cpu = perf_cpu_map__cpu(cpus, cpu_map_idx);
310 	int s, d, ret = 0;
311 	uint64_t *key;
312 
313 	*skip = false;
314 
315 	if (!counter->per_pkg)
316 		return 0;
317 
318 	if (perf_cpu_map__has_any_cpu_or_is_empty(cpus))
319 		return 0;
320 
321 	if (!mask) {
322 		mask = hashmap__new(pkg_id_hash, pkg_id_equal, NULL);
323 		if (IS_ERR(mask))
324 			return -ENOMEM;
325 
326 		counter->per_pkg_mask = mask;
327 	}
328 
329 	/*
330 	 * we do not consider an event that has not run as a good
331 	 * instance to mark a package as used (skip=1). Otherwise
332 	 * we may run into a situation where the first CPU in a package
333 	 * is not running anything, yet the second is, and this function
334 	 * would mark the package as used after the first CPU and would
335 	 * not read the values from the second CPU.
336 	 */
337 	if (!(vals->run && vals->ena))
338 		return 0;
339 
340 	s = cpu__get_socket_id(cpu);
341 	if (s < 0)
342 		return -1;
343 
344 	/*
345 	 * On multi-die system, die_id > 0. On no-die system, die_id = 0.
346 	 * We use hashmap(socket, die) to check the used socket+die pair.
347 	 */
348 	d = cpu__get_die_id(cpu);
349 	if (d < 0)
350 		return -1;
351 
352 	key = malloc(sizeof(*key));
353 	if (!key)
354 		return -ENOMEM;
355 
356 	*key = (uint64_t)d << 32 | s;
357 	if (hashmap__find(mask, key, NULL)) {
358 		*skip = true;
359 		free(key);
360 	} else
361 		ret = hashmap__add(mask, key, 1);
362 
363 	return ret;
364 }
365 
366 static bool evsel__count_has_error(struct evsel *evsel,
367 				   struct perf_counts_values *count,
368 				   struct perf_stat_config *config)
369 {
370 	/* the evsel was failed already */
371 	if (evsel->err || evsel->counts->scaled == -1)
372 		return true;
373 
374 	/* this is meaningful for CPU aggregation modes only */
375 	if (config->aggr_mode == AGGR_GLOBAL)
376 		return false;
377 
378 	/* it's considered ok when it actually ran */
379 	if (count->ena != 0 && count->run != 0)
380 		return false;
381 
382 	return true;
383 }
384 
385 static int
386 process_counter_values(struct perf_stat_config *config, struct evsel *evsel,
387 		       int cpu_map_idx, int thread,
388 		       struct perf_counts_values *count)
389 {
390 	struct perf_stat_evsel *ps = evsel->stats;
391 	static struct perf_counts_values zero;
392 	bool skip = false;
393 
394 	if (check_per_pkg(evsel, count, cpu_map_idx, &skip)) {
395 		pr_err("failed to read per-pkg counter\n");
396 		return -1;
397 	}
398 
399 	if (skip)
400 		count = &zero;
401 
402 	if (!evsel->snapshot)
403 		evsel__compute_deltas(evsel, cpu_map_idx, thread, count);
404 	perf_counts_values__scale(count, config->scale, NULL);
405 
406 	if (config->aggr_mode == AGGR_THREAD) {
407 		struct perf_counts_values *aggr_counts = &ps->aggr[thread].counts;
408 
409 		/*
410 		 * Skip value 0 when enabling --per-thread globally,
411 		 * otherwise too many 0 output.
412 		 */
413 		if (count->val == 0 && config->system_wide)
414 			return 0;
415 
416 		ps->aggr[thread].nr++;
417 
418 		aggr_counts->val += count->val;
419 		aggr_counts->ena += count->ena;
420 		aggr_counts->run += count->run;
421 		return 0;
422 	}
423 
424 	if (ps->aggr) {
425 		struct perf_cpu cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx);
426 		struct aggr_cpu_id aggr_id = config->aggr_get_id(config, cpu);
427 		struct perf_stat_aggr *ps_aggr;
428 		int i;
429 
430 		for (i = 0; i < ps->nr_aggr; i++) {
431 			if (!aggr_cpu_id__equal(&aggr_id, &config->aggr_map->map[i]))
432 				continue;
433 
434 			ps_aggr = &ps->aggr[i];
435 			ps_aggr->nr++;
436 
437 			/*
438 			 * When any result is bad, make them all to give consistent output
439 			 * in interval mode.  But per-task counters can have 0 enabled time
440 			 * when some tasks are idle.
441 			 */
442 			if (evsel__count_has_error(evsel, count, config) && !ps_aggr->failed) {
443 				ps_aggr->counts.val = 0;
444 				ps_aggr->counts.ena = 0;
445 				ps_aggr->counts.run = 0;
446 				ps_aggr->failed = true;
447 			}
448 
449 			if (!ps_aggr->failed) {
450 				ps_aggr->counts.val += count->val;
451 				ps_aggr->counts.ena += count->ena;
452 				ps_aggr->counts.run += count->run;
453 			}
454 			break;
455 		}
456 	}
457 
458 	return 0;
459 }
460 
461 static int process_counter_maps(struct perf_stat_config *config,
462 				struct evsel *counter)
463 {
464 	int nthreads = perf_thread_map__nr(counter->core.threads);
465 	int ncpus = evsel__nr_cpus(counter);
466 	int idx, thread;
467 
468 	for (thread = 0; thread < nthreads; thread++) {
469 		for (idx = 0; idx < ncpus; idx++) {
470 			if (process_counter_values(config, counter, idx, thread,
471 						   perf_counts(counter->counts, idx, thread)))
472 				return -1;
473 		}
474 	}
475 
476 	return 0;
477 }
478 
479 int perf_stat_process_counter(struct perf_stat_config *config,
480 			      struct evsel *counter)
481 {
482 	struct perf_stat_evsel *ps = counter->stats;
483 	u64 *count;
484 	int ret;
485 
486 	if (counter->per_pkg)
487 		evsel__zero_per_pkg(counter);
488 
489 	ret = process_counter_maps(config, counter);
490 	if (ret)
491 		return ret;
492 
493 	if (config->aggr_mode != AGGR_GLOBAL)
494 		return 0;
495 
496 	/*
497 	 * GLOBAL aggregation mode only has a single aggr counts,
498 	 * so we can use ps->aggr[0] as the actual output.
499 	 */
500 	count = ps->aggr[0].counts.values;
501 	update_stats(&ps->res_stats, *count);
502 
503 	if (verbose > 0) {
504 		fprintf(config->output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
505 			evsel__name(counter), count[0], count[1], count[2]);
506 	}
507 
508 	return 0;
509 }
510 
511 static int evsel__merge_aggr_counters(struct evsel *evsel, struct evsel *alias)
512 {
513 	struct perf_stat_evsel *ps_a = evsel->stats;
514 	struct perf_stat_evsel *ps_b = alias->stats;
515 	int i;
516 
517 	if (ps_a->aggr == NULL && ps_b->aggr == NULL)
518 		return 0;
519 
520 	if (ps_a->nr_aggr != ps_b->nr_aggr) {
521 		pr_err("Unmatched aggregation mode between aliases\n");
522 		return -1;
523 	}
524 
525 	for (i = 0; i < ps_a->nr_aggr; i++) {
526 		struct perf_counts_values *aggr_counts_a = &ps_a->aggr[i].counts;
527 		struct perf_counts_values *aggr_counts_b = &ps_b->aggr[i].counts;
528 
529 		/* NB: don't increase aggr.nr for aliases */
530 
531 		aggr_counts_a->val += aggr_counts_b->val;
532 		aggr_counts_a->ena += aggr_counts_b->ena;
533 		aggr_counts_a->run += aggr_counts_b->run;
534 	}
535 
536 	return 0;
537 }
538 /* events should have the same name, scale, unit, cgroup but on different PMUs */
539 static bool evsel__is_alias(struct evsel *evsel_a, struct evsel *evsel_b)
540 {
541 	if (strcmp(evsel__name(evsel_a), evsel__name(evsel_b)))
542 		return false;
543 
544 	if (evsel_a->scale != evsel_b->scale)
545 		return false;
546 
547 	if (evsel_a->cgrp != evsel_b->cgrp)
548 		return false;
549 
550 	if (strcmp(evsel_a->unit, evsel_b->unit))
551 		return false;
552 
553 	if (evsel__is_clock(evsel_a) != evsel__is_clock(evsel_b))
554 		return false;
555 
556 	return !!strcmp(evsel_a->pmu_name, evsel_b->pmu_name);
557 }
558 
559 static void evsel__merge_aliases(struct evsel *evsel)
560 {
561 	struct evlist *evlist = evsel->evlist;
562 	struct evsel *alias;
563 
564 	alias = list_prepare_entry(evsel, &(evlist->core.entries), core.node);
565 	list_for_each_entry_continue(alias, &evlist->core.entries, core.node) {
566 		/* Merge the same events on different PMUs. */
567 		if (evsel__is_alias(evsel, alias)) {
568 			evsel__merge_aggr_counters(evsel, alias);
569 			alias->merged_stat = true;
570 		}
571 	}
572 }
573 
574 static bool evsel__should_merge_hybrid(const struct evsel *evsel,
575 				       const struct perf_stat_config *config)
576 {
577 	return config->hybrid_merge && evsel__is_hybrid(evsel);
578 }
579 
580 static void evsel__merge_stats(struct evsel *evsel, struct perf_stat_config *config)
581 {
582 	/* this evsel is already merged */
583 	if (evsel->merged_stat)
584 		return;
585 
586 	if (evsel->auto_merge_stats || evsel__should_merge_hybrid(evsel, config))
587 		evsel__merge_aliases(evsel);
588 }
589 
590 /* merge the same uncore and hybrid events if requested */
591 void perf_stat_merge_counters(struct perf_stat_config *config, struct evlist *evlist)
592 {
593 	struct evsel *evsel;
594 
595 	if (config->aggr_mode == AGGR_NONE)
596 		return;
597 
598 	evlist__for_each_entry(evlist, evsel)
599 		evsel__merge_stats(evsel, config);
600 }
601 
602 static void evsel__update_percore_stats(struct evsel *evsel, struct aggr_cpu_id *core_id)
603 {
604 	struct perf_stat_evsel *ps = evsel->stats;
605 	struct perf_counts_values counts = { 0, };
606 	struct aggr_cpu_id id;
607 	struct perf_cpu cpu;
608 	int idx;
609 
610 	/* collect per-core counts */
611 	perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
612 		struct perf_stat_aggr *aggr = &ps->aggr[idx];
613 
614 		id = aggr_cpu_id__core(cpu, NULL);
615 		if (!aggr_cpu_id__equal(core_id, &id))
616 			continue;
617 
618 		counts.val += aggr->counts.val;
619 		counts.ena += aggr->counts.ena;
620 		counts.run += aggr->counts.run;
621 	}
622 
623 	/* update aggregated per-core counts for each CPU */
624 	perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
625 		struct perf_stat_aggr *aggr = &ps->aggr[idx];
626 
627 		id = aggr_cpu_id__core(cpu, NULL);
628 		if (!aggr_cpu_id__equal(core_id, &id))
629 			continue;
630 
631 		aggr->counts.val = counts.val;
632 		aggr->counts.ena = counts.ena;
633 		aggr->counts.run = counts.run;
634 
635 		aggr->used = true;
636 	}
637 }
638 
639 /* we have an aggr_map for cpu, but want to aggregate the counters per-core */
640 static void evsel__process_percore(struct evsel *evsel)
641 {
642 	struct perf_stat_evsel *ps = evsel->stats;
643 	struct aggr_cpu_id core_id;
644 	struct perf_cpu cpu;
645 	int idx;
646 
647 	if (!evsel->percore)
648 		return;
649 
650 	perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) {
651 		struct perf_stat_aggr *aggr = &ps->aggr[idx];
652 
653 		if (aggr->used)
654 			continue;
655 
656 		core_id = aggr_cpu_id__core(cpu, NULL);
657 		evsel__update_percore_stats(evsel, &core_id);
658 	}
659 }
660 
661 /* process cpu stats on per-core events */
662 void perf_stat_process_percore(struct perf_stat_config *config, struct evlist *evlist)
663 {
664 	struct evsel *evsel;
665 
666 	if (config->aggr_mode != AGGR_NONE)
667 		return;
668 
669 	evlist__for_each_entry(evlist, evsel)
670 		evsel__process_percore(evsel);
671 }
672 
673 int perf_event__process_stat_event(struct perf_session *session,
674 				   union perf_event *event)
675 {
676 	struct perf_counts_values count, *ptr;
677 	struct perf_record_stat *st = &event->stat;
678 	struct evsel *counter;
679 	int cpu_map_idx;
680 
681 	count.val = st->val;
682 	count.ena = st->ena;
683 	count.run = st->run;
684 
685 	counter = evlist__id2evsel(session->evlist, st->id);
686 	if (!counter) {
687 		pr_err("Failed to resolve counter for stat event.\n");
688 		return -EINVAL;
689 	}
690 	cpu_map_idx = perf_cpu_map__idx(evsel__cpus(counter), (struct perf_cpu){.cpu = st->cpu});
691 	if (cpu_map_idx == -1) {
692 		pr_err("Invalid CPU %d for event %s.\n", st->cpu, evsel__name(counter));
693 		return -EINVAL;
694 	}
695 	ptr = perf_counts(counter->counts, cpu_map_idx, st->thread);
696 	if (ptr == NULL) {
697 		pr_err("Failed to find perf count for CPU %d thread %d on event %s.\n",
698 			st->cpu, st->thread, evsel__name(counter));
699 		return -EINVAL;
700 	}
701 	*ptr = count;
702 	counter->supported = true;
703 	return 0;
704 }
705 
706 size_t perf_event__fprintf_stat(union perf_event *event, FILE *fp)
707 {
708 	struct perf_record_stat *st = (struct perf_record_stat *)event;
709 	size_t ret;
710 
711 	ret  = fprintf(fp, "\n... id %" PRI_lu64 ", cpu %d, thread %d\n",
712 		       st->id, st->cpu, st->thread);
713 	ret += fprintf(fp, "... value %" PRI_lu64 ", enabled %" PRI_lu64 ", running %" PRI_lu64 "\n",
714 		       st->val, st->ena, st->run);
715 
716 	return ret;
717 }
718 
719 size_t perf_event__fprintf_stat_round(union perf_event *event, FILE *fp)
720 {
721 	struct perf_record_stat_round *rd = (struct perf_record_stat_round *)event;
722 	size_t ret;
723 
724 	ret = fprintf(fp, "\n... time %" PRI_lu64 ", type %s\n", rd->time,
725 		      rd->type == PERF_STAT_ROUND_TYPE__FINAL ? "FINAL" : "INTERVAL");
726 
727 	return ret;
728 }
729 
730 size_t perf_event__fprintf_stat_config(union perf_event *event, FILE *fp)
731 {
732 	struct perf_stat_config sc = {};
733 	size_t ret;
734 
735 	perf_event__read_stat_config(&sc, &event->stat_config);
736 
737 	ret  = fprintf(fp, "\n");
738 	ret += fprintf(fp, "... aggr_mode %d\n", sc.aggr_mode);
739 	ret += fprintf(fp, "... scale     %d\n", sc.scale);
740 	ret += fprintf(fp, "... interval  %u\n", sc.interval);
741 
742 	return ret;
743 }
744 
745 int create_perf_stat_counter(struct evsel *evsel,
746 			     struct perf_stat_config *config,
747 			     struct target *target,
748 			     int cpu_map_idx)
749 {
750 	struct perf_event_attr *attr = &evsel->core.attr;
751 	struct evsel *leader = evsel__leader(evsel);
752 
753 	attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
754 			    PERF_FORMAT_TOTAL_TIME_RUNNING;
755 
756 	/*
757 	 * The event is part of non trivial group, let's enable
758 	 * the group read (for leader) and ID retrieval for all
759 	 * members.
760 	 */
761 	if (leader->core.nr_members > 1)
762 		attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP;
763 
764 	attr->inherit = !config->no_inherit && list_empty(&evsel->bpf_counter_list);
765 
766 	/*
767 	 * Some events get initialized with sample_(period/type) set,
768 	 * like tracepoints. Clear it up for counting.
769 	 */
770 	attr->sample_period = 0;
771 
772 	if (config->identifier)
773 		attr->sample_type = PERF_SAMPLE_IDENTIFIER;
774 
775 	if (config->all_user) {
776 		attr->exclude_kernel = 1;
777 		attr->exclude_user   = 0;
778 	}
779 
780 	if (config->all_kernel) {
781 		attr->exclude_kernel = 0;
782 		attr->exclude_user   = 1;
783 	}
784 
785 	/*
786 	 * Disabling all counters initially, they will be enabled
787 	 * either manually by us or by kernel via enable_on_exec
788 	 * set later.
789 	 */
790 	if (evsel__is_group_leader(evsel)) {
791 		attr->disabled = 1;
792 
793 		if (target__enable_on_exec(target))
794 			attr->enable_on_exec = 1;
795 	}
796 
797 	if (target__has_cpu(target) && !target__has_per_thread(target))
798 		return evsel__open_per_cpu(evsel, evsel__cpus(evsel), cpu_map_idx);
799 
800 	return evsel__open_per_thread(evsel, evsel->core.threads);
801 }
802