1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <linux/err.h> 4 #include <inttypes.h> 5 #include <math.h> 6 #include <string.h> 7 #include "counts.h" 8 #include "cpumap.h" 9 #include "debug.h" 10 #include "header.h" 11 #include "stat.h" 12 #include "session.h" 13 #include "target.h" 14 #include "evlist.h" 15 #include "evsel.h" 16 #include "thread_map.h" 17 #include "util/hashmap.h" 18 #include <linux/zalloc.h> 19 20 void update_stats(struct stats *stats, u64 val) 21 { 22 double delta; 23 24 stats->n++; 25 delta = val - stats->mean; 26 stats->mean += delta / stats->n; 27 stats->M2 += delta*(val - stats->mean); 28 29 if (val > stats->max) 30 stats->max = val; 31 32 if (val < stats->min) 33 stats->min = val; 34 } 35 36 double avg_stats(struct stats *stats) 37 { 38 return stats->mean; 39 } 40 41 /* 42 * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance 43 * 44 * (\Sum n_i^2) - ((\Sum n_i)^2)/n 45 * s^2 = ------------------------------- 46 * n - 1 47 * 48 * http://en.wikipedia.org/wiki/Stddev 49 * 50 * The std dev of the mean is related to the std dev by: 51 * 52 * s 53 * s_mean = ------- 54 * sqrt(n) 55 * 56 */ 57 double stddev_stats(struct stats *stats) 58 { 59 double variance, variance_mean; 60 61 if (stats->n < 2) 62 return 0.0; 63 64 variance = stats->M2 / (stats->n - 1); 65 variance_mean = variance / stats->n; 66 67 return sqrt(variance_mean); 68 } 69 70 double rel_stddev_stats(double stddev, double avg) 71 { 72 double pct = 0.0; 73 74 if (avg) 75 pct = 100.0 * stddev/avg; 76 77 return pct; 78 } 79 80 static void evsel__reset_aggr_stats(struct evsel *evsel) 81 { 82 struct perf_stat_evsel *ps = evsel->stats; 83 struct perf_stat_aggr *aggr = ps->aggr; 84 85 if (aggr) 86 memset(aggr, 0, sizeof(*aggr) * ps->nr_aggr); 87 } 88 89 static void evsel__reset_stat_priv(struct evsel *evsel) 90 { 91 struct perf_stat_evsel *ps = evsel->stats; 92 93 init_stats(&ps->res_stats); 94 evsel__reset_aggr_stats(evsel); 95 } 96 97 static int evsel__alloc_aggr_stats(struct evsel *evsel, int nr_aggr) 98 { 99 struct perf_stat_evsel *ps = evsel->stats; 100 101 if (ps == NULL) 102 return 0; 103 104 ps->nr_aggr = nr_aggr; 105 ps->aggr = calloc(nr_aggr, sizeof(*ps->aggr)); 106 if (ps->aggr == NULL) 107 return -ENOMEM; 108 109 return 0; 110 } 111 112 int evlist__alloc_aggr_stats(struct evlist *evlist, int nr_aggr) 113 { 114 struct evsel *evsel; 115 116 evlist__for_each_entry(evlist, evsel) { 117 if (evsel__alloc_aggr_stats(evsel, nr_aggr) < 0) 118 return -1; 119 } 120 return 0; 121 } 122 123 static int evsel__alloc_stat_priv(struct evsel *evsel, int nr_aggr) 124 { 125 struct perf_stat_evsel *ps; 126 127 ps = zalloc(sizeof(*ps)); 128 if (ps == NULL) 129 return -ENOMEM; 130 131 evsel->stats = ps; 132 133 if (nr_aggr && evsel__alloc_aggr_stats(evsel, nr_aggr) < 0) { 134 evsel->stats = NULL; 135 free(ps); 136 return -ENOMEM; 137 } 138 139 evsel__reset_stat_priv(evsel); 140 return 0; 141 } 142 143 static void evsel__free_stat_priv(struct evsel *evsel) 144 { 145 struct perf_stat_evsel *ps = evsel->stats; 146 147 if (ps) { 148 zfree(&ps->aggr); 149 zfree(&ps->group_data); 150 } 151 zfree(&evsel->stats); 152 } 153 154 static int evsel__alloc_prev_raw_counts(struct evsel *evsel) 155 { 156 int cpu_map_nr = evsel__nr_cpus(evsel); 157 int nthreads = perf_thread_map__nr(evsel->core.threads); 158 struct perf_counts *counts; 159 160 counts = perf_counts__new(cpu_map_nr, nthreads); 161 if (counts) 162 evsel->prev_raw_counts = counts; 163 164 return counts ? 0 : -ENOMEM; 165 } 166 167 static void evsel__free_prev_raw_counts(struct evsel *evsel) 168 { 169 perf_counts__delete(evsel->prev_raw_counts); 170 evsel->prev_raw_counts = NULL; 171 } 172 173 static void evsel__reset_prev_raw_counts(struct evsel *evsel) 174 { 175 if (evsel->prev_raw_counts) 176 perf_counts__reset(evsel->prev_raw_counts); 177 } 178 179 static int evsel__alloc_stats(struct evsel *evsel, int nr_aggr, bool alloc_raw) 180 { 181 if (evsel__alloc_stat_priv(evsel, nr_aggr) < 0 || 182 evsel__alloc_counts(evsel) < 0 || 183 (alloc_raw && evsel__alloc_prev_raw_counts(evsel) < 0)) 184 return -ENOMEM; 185 186 return 0; 187 } 188 189 int evlist__alloc_stats(struct perf_stat_config *config, 190 struct evlist *evlist, bool alloc_raw) 191 { 192 struct evsel *evsel; 193 int nr_aggr = 0; 194 195 if (config && config->aggr_map) 196 nr_aggr = config->aggr_map->nr; 197 198 evlist__for_each_entry(evlist, evsel) { 199 if (evsel__alloc_stats(evsel, nr_aggr, alloc_raw)) 200 goto out_free; 201 } 202 203 return 0; 204 205 out_free: 206 evlist__free_stats(evlist); 207 return -1; 208 } 209 210 void evlist__free_stats(struct evlist *evlist) 211 { 212 struct evsel *evsel; 213 214 evlist__for_each_entry(evlist, evsel) { 215 evsel__free_stat_priv(evsel); 216 evsel__free_counts(evsel); 217 evsel__free_prev_raw_counts(evsel); 218 } 219 } 220 221 void evlist__reset_stats(struct evlist *evlist) 222 { 223 struct evsel *evsel; 224 225 evlist__for_each_entry(evlist, evsel) { 226 evsel__reset_stat_priv(evsel); 227 evsel__reset_counts(evsel); 228 } 229 } 230 231 void evlist__reset_aggr_stats(struct evlist *evlist) 232 { 233 struct evsel *evsel; 234 235 evlist__for_each_entry(evlist, evsel) 236 evsel__reset_aggr_stats(evsel); 237 } 238 239 void evlist__reset_prev_raw_counts(struct evlist *evlist) 240 { 241 struct evsel *evsel; 242 243 evlist__for_each_entry(evlist, evsel) 244 evsel__reset_prev_raw_counts(evsel); 245 } 246 247 static void evsel__copy_prev_raw_counts(struct evsel *evsel) 248 { 249 int idx, nthreads = perf_thread_map__nr(evsel->core.threads); 250 251 for (int thread = 0; thread < nthreads; thread++) { 252 perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) { 253 *perf_counts(evsel->counts, idx, thread) = 254 *perf_counts(evsel->prev_raw_counts, idx, thread); 255 } 256 } 257 } 258 259 void evlist__copy_prev_raw_counts(struct evlist *evlist) 260 { 261 struct evsel *evsel; 262 263 evlist__for_each_entry(evlist, evsel) 264 evsel__copy_prev_raw_counts(evsel); 265 } 266 267 static size_t pkg_id_hash(long __key, void *ctx __maybe_unused) 268 { 269 uint64_t *key = (uint64_t *) __key; 270 271 return *key & 0xffffffff; 272 } 273 274 static bool pkg_id_equal(long __key1, long __key2, void *ctx __maybe_unused) 275 { 276 uint64_t *key1 = (uint64_t *) __key1; 277 uint64_t *key2 = (uint64_t *) __key2; 278 279 return *key1 == *key2; 280 } 281 282 static int check_per_pkg(struct evsel *counter, struct perf_counts_values *vals, 283 int cpu_map_idx, bool *skip) 284 { 285 struct hashmap *mask = counter->per_pkg_mask; 286 struct perf_cpu_map *cpus = evsel__cpus(counter); 287 struct perf_cpu cpu = perf_cpu_map__cpu(cpus, cpu_map_idx); 288 int s, d, ret = 0; 289 uint64_t *key; 290 291 *skip = false; 292 293 if (!counter->per_pkg) 294 return 0; 295 296 if (perf_cpu_map__empty(cpus)) 297 return 0; 298 299 if (!mask) { 300 mask = hashmap__new(pkg_id_hash, pkg_id_equal, NULL); 301 if (IS_ERR(mask)) 302 return -ENOMEM; 303 304 counter->per_pkg_mask = mask; 305 } 306 307 /* 308 * we do not consider an event that has not run as a good 309 * instance to mark a package as used (skip=1). Otherwise 310 * we may run into a situation where the first CPU in a package 311 * is not running anything, yet the second is, and this function 312 * would mark the package as used after the first CPU and would 313 * not read the values from the second CPU. 314 */ 315 if (!(vals->run && vals->ena)) 316 return 0; 317 318 s = cpu__get_socket_id(cpu); 319 if (s < 0) 320 return -1; 321 322 /* 323 * On multi-die system, die_id > 0. On no-die system, die_id = 0. 324 * We use hashmap(socket, die) to check the used socket+die pair. 325 */ 326 d = cpu__get_die_id(cpu); 327 if (d < 0) 328 return -1; 329 330 key = malloc(sizeof(*key)); 331 if (!key) 332 return -ENOMEM; 333 334 *key = (uint64_t)d << 32 | s; 335 if (hashmap__find(mask, key, NULL)) { 336 *skip = true; 337 free(key); 338 } else 339 ret = hashmap__add(mask, key, 1); 340 341 return ret; 342 } 343 344 static bool evsel__count_has_error(struct evsel *evsel, 345 struct perf_counts_values *count, 346 struct perf_stat_config *config) 347 { 348 /* the evsel was failed already */ 349 if (evsel->err || evsel->counts->scaled == -1) 350 return true; 351 352 /* this is meaningful for CPU aggregation modes only */ 353 if (config->aggr_mode == AGGR_GLOBAL) 354 return false; 355 356 /* it's considered ok when it actually ran */ 357 if (count->ena != 0 && count->run != 0) 358 return false; 359 360 return true; 361 } 362 363 static int 364 process_counter_values(struct perf_stat_config *config, struct evsel *evsel, 365 int cpu_map_idx, int thread, 366 struct perf_counts_values *count) 367 { 368 struct perf_stat_evsel *ps = evsel->stats; 369 static struct perf_counts_values zero; 370 bool skip = false; 371 372 if (check_per_pkg(evsel, count, cpu_map_idx, &skip)) { 373 pr_err("failed to read per-pkg counter\n"); 374 return -1; 375 } 376 377 if (skip) 378 count = &zero; 379 380 if (!evsel->snapshot) 381 evsel__compute_deltas(evsel, cpu_map_idx, thread, count); 382 perf_counts_values__scale(count, config->scale, NULL); 383 384 if (config->aggr_mode == AGGR_THREAD) { 385 struct perf_counts_values *aggr_counts = &ps->aggr[thread].counts; 386 387 /* 388 * Skip value 0 when enabling --per-thread globally, 389 * otherwise too many 0 output. 390 */ 391 if (count->val == 0 && config->system_wide) 392 return 0; 393 394 ps->aggr[thread].nr++; 395 396 aggr_counts->val += count->val; 397 aggr_counts->ena += count->ena; 398 aggr_counts->run += count->run; 399 return 0; 400 } 401 402 if (ps->aggr) { 403 struct perf_cpu cpu = perf_cpu_map__cpu(evsel->core.cpus, cpu_map_idx); 404 struct aggr_cpu_id aggr_id = config->aggr_get_id(config, cpu); 405 struct perf_stat_aggr *ps_aggr; 406 int i; 407 408 for (i = 0; i < ps->nr_aggr; i++) { 409 if (!aggr_cpu_id__equal(&aggr_id, &config->aggr_map->map[i])) 410 continue; 411 412 ps_aggr = &ps->aggr[i]; 413 ps_aggr->nr++; 414 415 /* 416 * When any result is bad, make them all to give consistent output 417 * in interval mode. But per-task counters can have 0 enabled time 418 * when some tasks are idle. 419 */ 420 if (evsel__count_has_error(evsel, count, config) && !ps_aggr->failed) { 421 ps_aggr->counts.val = 0; 422 ps_aggr->counts.ena = 0; 423 ps_aggr->counts.run = 0; 424 ps_aggr->failed = true; 425 } 426 427 if (!ps_aggr->failed) { 428 ps_aggr->counts.val += count->val; 429 ps_aggr->counts.ena += count->ena; 430 ps_aggr->counts.run += count->run; 431 } 432 break; 433 } 434 } 435 436 return 0; 437 } 438 439 static int process_counter_maps(struct perf_stat_config *config, 440 struct evsel *counter) 441 { 442 int nthreads = perf_thread_map__nr(counter->core.threads); 443 int ncpus = evsel__nr_cpus(counter); 444 int idx, thread; 445 446 for (thread = 0; thread < nthreads; thread++) { 447 for (idx = 0; idx < ncpus; idx++) { 448 if (process_counter_values(config, counter, idx, thread, 449 perf_counts(counter->counts, idx, thread))) 450 return -1; 451 } 452 } 453 454 return 0; 455 } 456 457 int perf_stat_process_counter(struct perf_stat_config *config, 458 struct evsel *counter) 459 { 460 struct perf_stat_evsel *ps = counter->stats; 461 u64 *count; 462 int ret; 463 464 if (counter->per_pkg) 465 evsel__zero_per_pkg(counter); 466 467 ret = process_counter_maps(config, counter); 468 if (ret) 469 return ret; 470 471 if (config->aggr_mode != AGGR_GLOBAL) 472 return 0; 473 474 /* 475 * GLOBAL aggregation mode only has a single aggr counts, 476 * so we can use ps->aggr[0] as the actual output. 477 */ 478 count = ps->aggr[0].counts.values; 479 update_stats(&ps->res_stats, *count); 480 481 if (verbose > 0) { 482 fprintf(config->output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", 483 evsel__name(counter), count[0], count[1], count[2]); 484 } 485 486 return 0; 487 } 488 489 static int evsel__merge_aggr_counters(struct evsel *evsel, struct evsel *alias) 490 { 491 struct perf_stat_evsel *ps_a = evsel->stats; 492 struct perf_stat_evsel *ps_b = alias->stats; 493 int i; 494 495 if (ps_a->aggr == NULL && ps_b->aggr == NULL) 496 return 0; 497 498 if (ps_a->nr_aggr != ps_b->nr_aggr) { 499 pr_err("Unmatched aggregation mode between aliases\n"); 500 return -1; 501 } 502 503 for (i = 0; i < ps_a->nr_aggr; i++) { 504 struct perf_counts_values *aggr_counts_a = &ps_a->aggr[i].counts; 505 struct perf_counts_values *aggr_counts_b = &ps_b->aggr[i].counts; 506 507 /* NB: don't increase aggr.nr for aliases */ 508 509 aggr_counts_a->val += aggr_counts_b->val; 510 aggr_counts_a->ena += aggr_counts_b->ena; 511 aggr_counts_a->run += aggr_counts_b->run; 512 } 513 514 return 0; 515 } 516 /* events should have the same name, scale, unit, cgroup but on different PMUs */ 517 static bool evsel__is_alias(struct evsel *evsel_a, struct evsel *evsel_b) 518 { 519 if (strcmp(evsel__name(evsel_a), evsel__name(evsel_b))) 520 return false; 521 522 if (evsel_a->scale != evsel_b->scale) 523 return false; 524 525 if (evsel_a->cgrp != evsel_b->cgrp) 526 return false; 527 528 if (strcmp(evsel_a->unit, evsel_b->unit)) 529 return false; 530 531 if (evsel__is_clock(evsel_a) != evsel__is_clock(evsel_b)) 532 return false; 533 534 return !!strcmp(evsel_a->pmu_name, evsel_b->pmu_name); 535 } 536 537 static void evsel__merge_aliases(struct evsel *evsel) 538 { 539 struct evlist *evlist = evsel->evlist; 540 struct evsel *alias; 541 542 alias = list_prepare_entry(evsel, &(evlist->core.entries), core.node); 543 list_for_each_entry_continue(alias, &evlist->core.entries, core.node) { 544 /* Merge the same events on different PMUs. */ 545 if (evsel__is_alias(evsel, alias)) { 546 evsel__merge_aggr_counters(evsel, alias); 547 alias->merged_stat = true; 548 } 549 } 550 } 551 552 static bool evsel__should_merge_hybrid(const struct evsel *evsel, 553 const struct perf_stat_config *config) 554 { 555 return config->hybrid_merge && evsel__is_hybrid(evsel); 556 } 557 558 static void evsel__merge_stats(struct evsel *evsel, struct perf_stat_config *config) 559 { 560 /* this evsel is already merged */ 561 if (evsel->merged_stat) 562 return; 563 564 if (evsel->auto_merge_stats || evsel__should_merge_hybrid(evsel, config)) 565 evsel__merge_aliases(evsel); 566 } 567 568 /* merge the same uncore and hybrid events if requested */ 569 void perf_stat_merge_counters(struct perf_stat_config *config, struct evlist *evlist) 570 { 571 struct evsel *evsel; 572 573 if (config->no_merge) 574 return; 575 576 evlist__for_each_entry(evlist, evsel) 577 evsel__merge_stats(evsel, config); 578 } 579 580 static void evsel__update_percore_stats(struct evsel *evsel, struct aggr_cpu_id *core_id) 581 { 582 struct perf_stat_evsel *ps = evsel->stats; 583 struct perf_counts_values counts = { 0, }; 584 struct aggr_cpu_id id; 585 struct perf_cpu cpu; 586 int idx; 587 588 /* collect per-core counts */ 589 perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) { 590 struct perf_stat_aggr *aggr = &ps->aggr[idx]; 591 592 id = aggr_cpu_id__core(cpu, NULL); 593 if (!aggr_cpu_id__equal(core_id, &id)) 594 continue; 595 596 counts.val += aggr->counts.val; 597 counts.ena += aggr->counts.ena; 598 counts.run += aggr->counts.run; 599 } 600 601 /* update aggregated per-core counts for each CPU */ 602 perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) { 603 struct perf_stat_aggr *aggr = &ps->aggr[idx]; 604 605 id = aggr_cpu_id__core(cpu, NULL); 606 if (!aggr_cpu_id__equal(core_id, &id)) 607 continue; 608 609 aggr->counts.val = counts.val; 610 aggr->counts.ena = counts.ena; 611 aggr->counts.run = counts.run; 612 613 aggr->used = true; 614 } 615 } 616 617 /* we have an aggr_map for cpu, but want to aggregate the counters per-core */ 618 static void evsel__process_percore(struct evsel *evsel) 619 { 620 struct perf_stat_evsel *ps = evsel->stats; 621 struct aggr_cpu_id core_id; 622 struct perf_cpu cpu; 623 int idx; 624 625 if (!evsel->percore) 626 return; 627 628 perf_cpu_map__for_each_cpu(cpu, idx, evsel->core.cpus) { 629 struct perf_stat_aggr *aggr = &ps->aggr[idx]; 630 631 if (aggr->used) 632 continue; 633 634 core_id = aggr_cpu_id__core(cpu, NULL); 635 evsel__update_percore_stats(evsel, &core_id); 636 } 637 } 638 639 /* process cpu stats on per-core events */ 640 void perf_stat_process_percore(struct perf_stat_config *config, struct evlist *evlist) 641 { 642 struct evsel *evsel; 643 644 if (config->aggr_mode != AGGR_NONE) 645 return; 646 647 evlist__for_each_entry(evlist, evsel) 648 evsel__process_percore(evsel); 649 } 650 651 int perf_event__process_stat_event(struct perf_session *session, 652 union perf_event *event) 653 { 654 struct perf_counts_values count, *ptr; 655 struct perf_record_stat *st = &event->stat; 656 struct evsel *counter; 657 int cpu_map_idx; 658 659 count.val = st->val; 660 count.ena = st->ena; 661 count.run = st->run; 662 663 counter = evlist__id2evsel(session->evlist, st->id); 664 if (!counter) { 665 pr_err("Failed to resolve counter for stat event.\n"); 666 return -EINVAL; 667 } 668 cpu_map_idx = perf_cpu_map__idx(evsel__cpus(counter), (struct perf_cpu){.cpu = st->cpu}); 669 if (cpu_map_idx == -1) { 670 pr_err("Invalid CPU %d for event %s.\n", st->cpu, evsel__name(counter)); 671 return -EINVAL; 672 } 673 ptr = perf_counts(counter->counts, cpu_map_idx, st->thread); 674 if (ptr == NULL) { 675 pr_err("Failed to find perf count for CPU %d thread %d on event %s.\n", 676 st->cpu, st->thread, evsel__name(counter)); 677 return -EINVAL; 678 } 679 *ptr = count; 680 counter->supported = true; 681 return 0; 682 } 683 684 size_t perf_event__fprintf_stat(union perf_event *event, FILE *fp) 685 { 686 struct perf_record_stat *st = (struct perf_record_stat *)event; 687 size_t ret; 688 689 ret = fprintf(fp, "\n... id %" PRI_lu64 ", cpu %d, thread %d\n", 690 st->id, st->cpu, st->thread); 691 ret += fprintf(fp, "... value %" PRI_lu64 ", enabled %" PRI_lu64 ", running %" PRI_lu64 "\n", 692 st->val, st->ena, st->run); 693 694 return ret; 695 } 696 697 size_t perf_event__fprintf_stat_round(union perf_event *event, FILE *fp) 698 { 699 struct perf_record_stat_round *rd = (struct perf_record_stat_round *)event; 700 size_t ret; 701 702 ret = fprintf(fp, "\n... time %" PRI_lu64 ", type %s\n", rd->time, 703 rd->type == PERF_STAT_ROUND_TYPE__FINAL ? "FINAL" : "INTERVAL"); 704 705 return ret; 706 } 707 708 size_t perf_event__fprintf_stat_config(union perf_event *event, FILE *fp) 709 { 710 struct perf_stat_config sc; 711 size_t ret; 712 713 perf_event__read_stat_config(&sc, &event->stat_config); 714 715 ret = fprintf(fp, "\n"); 716 ret += fprintf(fp, "... aggr_mode %d\n", sc.aggr_mode); 717 ret += fprintf(fp, "... scale %d\n", sc.scale); 718 ret += fprintf(fp, "... interval %u\n", sc.interval); 719 720 return ret; 721 } 722 723 int create_perf_stat_counter(struct evsel *evsel, 724 struct perf_stat_config *config, 725 struct target *target, 726 int cpu_map_idx) 727 { 728 struct perf_event_attr *attr = &evsel->core.attr; 729 struct evsel *leader = evsel__leader(evsel); 730 731 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | 732 PERF_FORMAT_TOTAL_TIME_RUNNING; 733 734 /* 735 * The event is part of non trivial group, let's enable 736 * the group read (for leader) and ID retrieval for all 737 * members. 738 */ 739 if (leader->core.nr_members > 1) 740 attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP; 741 742 attr->inherit = !config->no_inherit && list_empty(&evsel->bpf_counter_list); 743 744 /* 745 * Some events get initialized with sample_(period/type) set, 746 * like tracepoints. Clear it up for counting. 747 */ 748 attr->sample_period = 0; 749 750 if (config->identifier) 751 attr->sample_type = PERF_SAMPLE_IDENTIFIER; 752 753 if (config->all_user) { 754 attr->exclude_kernel = 1; 755 attr->exclude_user = 0; 756 } 757 758 if (config->all_kernel) { 759 attr->exclude_kernel = 0; 760 attr->exclude_user = 1; 761 } 762 763 /* 764 * Disabling all counters initially, they will be enabled 765 * either manually by us or by kernel via enable_on_exec 766 * set later. 767 */ 768 if (evsel__is_group_leader(evsel)) { 769 attr->disabled = 1; 770 771 if (target__enable_on_exec(target)) 772 attr->enable_on_exec = 1; 773 } 774 775 if (target__has_cpu(target) && !target__has_per_thread(target)) 776 return evsel__open_per_cpu(evsel, evsel__cpus(evsel), cpu_map_idx); 777 778 return evsel__open_per_thread(evsel, evsel->core.threads); 779 } 780