xref: /linux/tools/perf/util/session.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 #define _FILE_OFFSET_BITS 64
2 
3 #include <linux/kernel.h>
4 
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9 
10 #include "session.h"
11 #include "sort.h"
12 #include "util.h"
13 
14 static int perf_session__open(struct perf_session *self, bool force)
15 {
16 	struct stat input_stat;
17 
18 	if (!strcmp(self->filename, "-")) {
19 		self->fd_pipe = true;
20 		self->fd = STDIN_FILENO;
21 
22 		if (perf_header__read(self, self->fd) < 0)
23 			pr_err("incompatible file format");
24 
25 		return 0;
26 	}
27 
28 	self->fd = open(self->filename, O_RDONLY);
29 	if (self->fd < 0) {
30 		pr_err("failed to open file: %s", self->filename);
31 		if (!strcmp(self->filename, "perf.data"))
32 			pr_err("  (try 'perf record' first)");
33 		pr_err("\n");
34 		return -errno;
35 	}
36 
37 	if (fstat(self->fd, &input_stat) < 0)
38 		goto out_close;
39 
40 	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
41 		pr_err("file %s not owned by current user or root\n",
42 		       self->filename);
43 		goto out_close;
44 	}
45 
46 	if (!input_stat.st_size) {
47 		pr_info("zero-sized file (%s), nothing to do!\n",
48 			self->filename);
49 		goto out_close;
50 	}
51 
52 	if (perf_header__read(self, self->fd) < 0) {
53 		pr_err("incompatible file format");
54 		goto out_close;
55 	}
56 
57 	self->size = input_stat.st_size;
58 	return 0;
59 
60 out_close:
61 	close(self->fd);
62 	self->fd = -1;
63 	return -1;
64 }
65 
66 void perf_session__update_sample_type(struct perf_session *self)
67 {
68 	self->sample_type = perf_header__sample_type(&self->header);
69 }
70 
71 int perf_session__create_kernel_maps(struct perf_session *self)
72 {
73 	int ret = machine__create_kernel_maps(&self->host_machine);
74 
75 	if (ret >= 0)
76 		ret = machines__create_guest_kernel_maps(&self->machines);
77 	return ret;
78 }
79 
80 struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
81 {
82 	size_t len = filename ? strlen(filename) + 1 : 0;
83 	struct perf_session *self = zalloc(sizeof(*self) + len);
84 
85 	if (self == NULL)
86 		goto out;
87 
88 	if (perf_header__init(&self->header) < 0)
89 		goto out_free;
90 
91 	memcpy(self->filename, filename, len);
92 	self->threads = RB_ROOT;
93 	self->hists_tree = RB_ROOT;
94 	self->last_match = NULL;
95 	self->mmap_window = 32;
96 	self->cwd = NULL;
97 	self->cwdlen = 0;
98 	self->machines = RB_ROOT;
99 	self->repipe = repipe;
100 	INIT_LIST_HEAD(&self->ordered_samples.samples_head);
101 	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
102 
103 	if (mode == O_RDONLY) {
104 		if (perf_session__open(self, force) < 0)
105 			goto out_delete;
106 	} else if (mode == O_WRONLY) {
107 		/*
108 		 * In O_RDONLY mode this will be performed when reading the
109 		 * kernel MMAP event, in event__process_mmap().
110 		 */
111 		if (perf_session__create_kernel_maps(self) < 0)
112 			goto out_delete;
113 	}
114 
115 	perf_session__update_sample_type(self);
116 out:
117 	return self;
118 out_free:
119 	free(self);
120 	return NULL;
121 out_delete:
122 	perf_session__delete(self);
123 	return NULL;
124 }
125 
126 void perf_session__delete(struct perf_session *self)
127 {
128 	perf_header__exit(&self->header);
129 	close(self->fd);
130 	free(self->cwd);
131 	free(self);
132 }
133 
134 static bool symbol__match_parent_regex(struct symbol *sym)
135 {
136 	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
137 		return 1;
138 
139 	return 0;
140 }
141 
142 struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
143 						   struct thread *thread,
144 						   struct ip_callchain *chain,
145 						   struct symbol **parent)
146 {
147 	u8 cpumode = PERF_RECORD_MISC_USER;
148 	unsigned int i;
149 	struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
150 
151 	if (!syms)
152 		return NULL;
153 
154 	for (i = 0; i < chain->nr; i++) {
155 		u64 ip = chain->ips[i];
156 		struct addr_location al;
157 
158 		if (ip >= PERF_CONTEXT_MAX) {
159 			switch (ip) {
160 			case PERF_CONTEXT_HV:
161 				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
162 			case PERF_CONTEXT_KERNEL:
163 				cpumode = PERF_RECORD_MISC_KERNEL;	break;
164 			case PERF_CONTEXT_USER:
165 				cpumode = PERF_RECORD_MISC_USER;	break;
166 			default:
167 				break;
168 			}
169 			continue;
170 		}
171 
172 		al.filtered = false;
173 		thread__find_addr_location(thread, self, cpumode,
174 				MAP__FUNCTION, thread->pid, ip, &al, NULL);
175 		if (al.sym != NULL) {
176 			if (sort__has_parent && !*parent &&
177 			    symbol__match_parent_regex(al.sym))
178 				*parent = al.sym;
179 			if (!symbol_conf.use_callchain)
180 				break;
181 			syms[i].map = al.map;
182 			syms[i].sym = al.sym;
183 		}
184 	}
185 
186 	return syms;
187 }
188 
189 static int process_event_stub(event_t *event __used,
190 			      struct perf_session *session __used)
191 {
192 	dump_printf(": unhandled!\n");
193 	return 0;
194 }
195 
196 static int process_finished_round_stub(event_t *event __used,
197 				       struct perf_session *session __used,
198 				       struct perf_event_ops *ops __used)
199 {
200 	dump_printf(": unhandled!\n");
201 	return 0;
202 }
203 
204 static int process_finished_round(event_t *event,
205 				  struct perf_session *session,
206 				  struct perf_event_ops *ops);
207 
208 static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
209 {
210 	if (handler->sample == NULL)
211 		handler->sample = process_event_stub;
212 	if (handler->mmap == NULL)
213 		handler->mmap = process_event_stub;
214 	if (handler->comm == NULL)
215 		handler->comm = process_event_stub;
216 	if (handler->fork == NULL)
217 		handler->fork = process_event_stub;
218 	if (handler->exit == NULL)
219 		handler->exit = process_event_stub;
220 	if (handler->lost == NULL)
221 		handler->lost = process_event_stub;
222 	if (handler->read == NULL)
223 		handler->read = process_event_stub;
224 	if (handler->throttle == NULL)
225 		handler->throttle = process_event_stub;
226 	if (handler->unthrottle == NULL)
227 		handler->unthrottle = process_event_stub;
228 	if (handler->attr == NULL)
229 		handler->attr = process_event_stub;
230 	if (handler->event_type == NULL)
231 		handler->event_type = process_event_stub;
232 	if (handler->tracing_data == NULL)
233 		handler->tracing_data = process_event_stub;
234 	if (handler->build_id == NULL)
235 		handler->build_id = process_event_stub;
236 	if (handler->finished_round == NULL) {
237 		if (handler->ordered_samples)
238 			handler->finished_round = process_finished_round;
239 		else
240 			handler->finished_round = process_finished_round_stub;
241 	}
242 }
243 
244 void mem_bswap_64(void *src, int byte_size)
245 {
246 	u64 *m = src;
247 
248 	while (byte_size > 0) {
249 		*m = bswap_64(*m);
250 		byte_size -= sizeof(u64);
251 		++m;
252 	}
253 }
254 
255 static void event__all64_swap(event_t *self)
256 {
257 	struct perf_event_header *hdr = &self->header;
258 	mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
259 }
260 
261 static void event__comm_swap(event_t *self)
262 {
263 	self->comm.pid = bswap_32(self->comm.pid);
264 	self->comm.tid = bswap_32(self->comm.tid);
265 }
266 
267 static void event__mmap_swap(event_t *self)
268 {
269 	self->mmap.pid	 = bswap_32(self->mmap.pid);
270 	self->mmap.tid	 = bswap_32(self->mmap.tid);
271 	self->mmap.start = bswap_64(self->mmap.start);
272 	self->mmap.len	 = bswap_64(self->mmap.len);
273 	self->mmap.pgoff = bswap_64(self->mmap.pgoff);
274 }
275 
276 static void event__task_swap(event_t *self)
277 {
278 	self->fork.pid	= bswap_32(self->fork.pid);
279 	self->fork.tid	= bswap_32(self->fork.tid);
280 	self->fork.ppid	= bswap_32(self->fork.ppid);
281 	self->fork.ptid	= bswap_32(self->fork.ptid);
282 	self->fork.time	= bswap_64(self->fork.time);
283 }
284 
285 static void event__read_swap(event_t *self)
286 {
287 	self->read.pid		= bswap_32(self->read.pid);
288 	self->read.tid		= bswap_32(self->read.tid);
289 	self->read.value	= bswap_64(self->read.value);
290 	self->read.time_enabled	= bswap_64(self->read.time_enabled);
291 	self->read.time_running	= bswap_64(self->read.time_running);
292 	self->read.id		= bswap_64(self->read.id);
293 }
294 
295 static void event__attr_swap(event_t *self)
296 {
297 	size_t size;
298 
299 	self->attr.attr.type		= bswap_32(self->attr.attr.type);
300 	self->attr.attr.size		= bswap_32(self->attr.attr.size);
301 	self->attr.attr.config		= bswap_64(self->attr.attr.config);
302 	self->attr.attr.sample_period	= bswap_64(self->attr.attr.sample_period);
303 	self->attr.attr.sample_type	= bswap_64(self->attr.attr.sample_type);
304 	self->attr.attr.read_format	= bswap_64(self->attr.attr.read_format);
305 	self->attr.attr.wakeup_events	= bswap_32(self->attr.attr.wakeup_events);
306 	self->attr.attr.bp_type		= bswap_32(self->attr.attr.bp_type);
307 	self->attr.attr.bp_addr		= bswap_64(self->attr.attr.bp_addr);
308 	self->attr.attr.bp_len		= bswap_64(self->attr.attr.bp_len);
309 
310 	size = self->header.size;
311 	size -= (void *)&self->attr.id - (void *)self;
312 	mem_bswap_64(self->attr.id, size);
313 }
314 
315 static void event__event_type_swap(event_t *self)
316 {
317 	self->event_type.event_type.event_id =
318 		bswap_64(self->event_type.event_type.event_id);
319 }
320 
321 static void event__tracing_data_swap(event_t *self)
322 {
323 	self->tracing_data.size = bswap_32(self->tracing_data.size);
324 }
325 
326 typedef void (*event__swap_op)(event_t *self);
327 
328 static event__swap_op event__swap_ops[] = {
329 	[PERF_RECORD_MMAP]   = event__mmap_swap,
330 	[PERF_RECORD_COMM]   = event__comm_swap,
331 	[PERF_RECORD_FORK]   = event__task_swap,
332 	[PERF_RECORD_EXIT]   = event__task_swap,
333 	[PERF_RECORD_LOST]   = event__all64_swap,
334 	[PERF_RECORD_READ]   = event__read_swap,
335 	[PERF_RECORD_SAMPLE] = event__all64_swap,
336 	[PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
337 	[PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
338 	[PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
339 	[PERF_RECORD_HEADER_BUILD_ID]   = NULL,
340 	[PERF_RECORD_HEADER_MAX]    = NULL,
341 };
342 
343 struct sample_queue {
344 	u64			timestamp;
345 	struct sample_event	*event;
346 	struct list_head	list;
347 };
348 
349 static void flush_sample_queue(struct perf_session *s,
350 			       struct perf_event_ops *ops)
351 {
352 	struct list_head *head = &s->ordered_samples.samples_head;
353 	u64 limit = s->ordered_samples.next_flush;
354 	struct sample_queue *tmp, *iter;
355 
356 	if (!ops->ordered_samples || !limit)
357 		return;
358 
359 	list_for_each_entry_safe(iter, tmp, head, list) {
360 		if (iter->timestamp > limit)
361 			return;
362 
363 		if (iter == s->ordered_samples.last_inserted)
364 			s->ordered_samples.last_inserted = NULL;
365 
366 		ops->sample((event_t *)iter->event, s);
367 
368 		s->ordered_samples.last_flush = iter->timestamp;
369 		list_del(&iter->list);
370 		free(iter->event);
371 		free(iter);
372 	}
373 }
374 
375 /*
376  * When perf record finishes a pass on every buffers, it records this pseudo
377  * event.
378  * We record the max timestamp t found in the pass n.
379  * Assuming these timestamps are monotonic across cpus, we know that if
380  * a buffer still has events with timestamps below t, they will be all
381  * available and then read in the pass n + 1.
382  * Hence when we start to read the pass n + 2, we can safely flush every
383  * events with timestamps below t.
384  *
385  *    ============ PASS n =================
386  *       CPU 0         |   CPU 1
387  *                     |
388  *    cnt1 timestamps  |   cnt2 timestamps
389  *          1          |         2
390  *          2          |         3
391  *          -          |         4  <--- max recorded
392  *
393  *    ============ PASS n + 1 ==============
394  *       CPU 0         |   CPU 1
395  *                     |
396  *    cnt1 timestamps  |   cnt2 timestamps
397  *          3          |         5
398  *          4          |         6
399  *          5          |         7 <---- max recorded
400  *
401  *      Flush every events below timestamp 4
402  *
403  *    ============ PASS n + 2 ==============
404  *       CPU 0         |   CPU 1
405  *                     |
406  *    cnt1 timestamps  |   cnt2 timestamps
407  *          6          |         8
408  *          7          |         9
409  *          -          |         10
410  *
411  *      Flush every events below timestamp 7
412  *      etc...
413  */
414 static int process_finished_round(event_t *event __used,
415 				  struct perf_session *session,
416 				  struct perf_event_ops *ops)
417 {
418 	flush_sample_queue(session, ops);
419 	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
420 
421 	return 0;
422 }
423 
424 static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
425 {
426 	struct sample_queue *iter;
427 
428 	list_for_each_entry_reverse(iter, head, list) {
429 		if (iter->timestamp < new->timestamp) {
430 			list_add(&new->list, &iter->list);
431 			return;
432 		}
433 	}
434 
435 	list_add(&new->list, head);
436 }
437 
438 static void __queue_sample_before(struct sample_queue *new,
439 				  struct sample_queue *iter,
440 				  struct list_head *head)
441 {
442 	list_for_each_entry_continue_reverse(iter, head, list) {
443 		if (iter->timestamp < new->timestamp) {
444 			list_add(&new->list, &iter->list);
445 			return;
446 		}
447 	}
448 
449 	list_add(&new->list, head);
450 }
451 
452 static void __queue_sample_after(struct sample_queue *new,
453 				 struct sample_queue *iter,
454 				 struct list_head *head)
455 {
456 	list_for_each_entry_continue(iter, head, list) {
457 		if (iter->timestamp > new->timestamp) {
458 			list_add_tail(&new->list, &iter->list);
459 			return;
460 		}
461 	}
462 	list_add_tail(&new->list, head);
463 }
464 
465 /* The queue is ordered by time */
466 static void __queue_sample_event(struct sample_queue *new,
467 				 struct perf_session *s)
468 {
469 	struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
470 	struct list_head *head = &s->ordered_samples.samples_head;
471 
472 
473 	if (!last_inserted) {
474 		__queue_sample_end(new, head);
475 		return;
476 	}
477 
478 	/*
479 	 * Most of the time the current event has a timestamp
480 	 * very close to the last event inserted, unless we just switched
481 	 * to another event buffer. Having a sorting based on a list and
482 	 * on the last inserted event that is close to the current one is
483 	 * probably more efficient than an rbtree based sorting.
484 	 */
485 	if (last_inserted->timestamp >= new->timestamp)
486 		__queue_sample_before(new, last_inserted, head);
487 	else
488 		__queue_sample_after(new, last_inserted, head);
489 }
490 
491 static int queue_sample_event(event_t *event, struct sample_data *data,
492 			      struct perf_session *s)
493 {
494 	u64 timestamp = data->time;
495 	struct sample_queue *new;
496 
497 
498 	if (timestamp < s->ordered_samples.last_flush) {
499 		printf("Warning: Timestamp below last timeslice flush\n");
500 		return -EINVAL;
501 	}
502 
503 	new = malloc(sizeof(*new));
504 	if (!new)
505 		return -ENOMEM;
506 
507 	new->timestamp = timestamp;
508 
509 	new->event = malloc(event->header.size);
510 	if (!new->event) {
511 		free(new);
512 		return -ENOMEM;
513 	}
514 
515 	memcpy(new->event, event, event->header.size);
516 
517 	__queue_sample_event(new, s);
518 	s->ordered_samples.last_inserted = new;
519 
520 	if (new->timestamp > s->ordered_samples.max_timestamp)
521 		s->ordered_samples.max_timestamp = new->timestamp;
522 
523 	return 0;
524 }
525 
526 static int perf_session__process_sample(event_t *event, struct perf_session *s,
527 					struct perf_event_ops *ops)
528 {
529 	struct sample_data data;
530 
531 	if (!ops->ordered_samples)
532 		return ops->sample(event, s);
533 
534 	bzero(&data, sizeof(struct sample_data));
535 	event__parse_sample(event, s->sample_type, &data);
536 
537 	queue_sample_event(event, &data, s);
538 
539 	return 0;
540 }
541 
542 static int perf_session__process_event(struct perf_session *self,
543 				       event_t *event,
544 				       struct perf_event_ops *ops,
545 				       u64 offset, u64 head)
546 {
547 	trace_event(event);
548 
549 	if (event->header.type < PERF_RECORD_HEADER_MAX) {
550 		dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
551 			    offset + head, event->header.size,
552 			    event__name[event->header.type]);
553 		hists__inc_nr_events(&self->hists, event->header.type);
554 	}
555 
556 	if (self->header.needs_swap && event__swap_ops[event->header.type])
557 		event__swap_ops[event->header.type](event);
558 
559 	switch (event->header.type) {
560 	case PERF_RECORD_SAMPLE:
561 		return perf_session__process_sample(event, self, ops);
562 	case PERF_RECORD_MMAP:
563 		return ops->mmap(event, self);
564 	case PERF_RECORD_COMM:
565 		return ops->comm(event, self);
566 	case PERF_RECORD_FORK:
567 		return ops->fork(event, self);
568 	case PERF_RECORD_EXIT:
569 		return ops->exit(event, self);
570 	case PERF_RECORD_LOST:
571 		return ops->lost(event, self);
572 	case PERF_RECORD_READ:
573 		return ops->read(event, self);
574 	case PERF_RECORD_THROTTLE:
575 		return ops->throttle(event, self);
576 	case PERF_RECORD_UNTHROTTLE:
577 		return ops->unthrottle(event, self);
578 	case PERF_RECORD_HEADER_ATTR:
579 		return ops->attr(event, self);
580 	case PERF_RECORD_HEADER_EVENT_TYPE:
581 		return ops->event_type(event, self);
582 	case PERF_RECORD_HEADER_TRACING_DATA:
583 		/* setup for reading amidst mmap */
584 		lseek(self->fd, offset + head, SEEK_SET);
585 		return ops->tracing_data(event, self);
586 	case PERF_RECORD_HEADER_BUILD_ID:
587 		return ops->build_id(event, self);
588 	case PERF_RECORD_FINISHED_ROUND:
589 		return ops->finished_round(event, self, ops);
590 	default:
591 		++self->hists.stats.nr_unknown_events;
592 		return -1;
593 	}
594 }
595 
596 void perf_event_header__bswap(struct perf_event_header *self)
597 {
598 	self->type = bswap_32(self->type);
599 	self->misc = bswap_16(self->misc);
600 	self->size = bswap_16(self->size);
601 }
602 
603 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
604 {
605 	struct thread *thread = perf_session__findnew(self, 0);
606 
607 	if (thread == NULL || thread__set_comm(thread, "swapper")) {
608 		pr_err("problem inserting idle task.\n");
609 		thread = NULL;
610 	}
611 
612 	return thread;
613 }
614 
615 int do_read(int fd, void *buf, size_t size)
616 {
617 	void *buf_start = buf;
618 
619 	while (size) {
620 		int ret = read(fd, buf, size);
621 
622 		if (ret <= 0)
623 			return ret;
624 
625 		size -= ret;
626 		buf += ret;
627 	}
628 
629 	return buf - buf_start;
630 }
631 
632 #define session_done()	(*(volatile int *)(&session_done))
633 volatile int session_done;
634 
635 static int __perf_session__process_pipe_events(struct perf_session *self,
636 					       struct perf_event_ops *ops)
637 {
638 	event_t event;
639 	uint32_t size;
640 	int skip = 0;
641 	u64 head;
642 	int err;
643 	void *p;
644 
645 	perf_event_ops__fill_defaults(ops);
646 
647 	head = 0;
648 more:
649 	err = do_read(self->fd, &event, sizeof(struct perf_event_header));
650 	if (err <= 0) {
651 		if (err == 0)
652 			goto done;
653 
654 		pr_err("failed to read event header\n");
655 		goto out_err;
656 	}
657 
658 	if (self->header.needs_swap)
659 		perf_event_header__bswap(&event.header);
660 
661 	size = event.header.size;
662 	if (size == 0)
663 		size = 8;
664 
665 	p = &event;
666 	p += sizeof(struct perf_event_header);
667 
668 	if (size - sizeof(struct perf_event_header)) {
669 		err = do_read(self->fd, p,
670 			      size - sizeof(struct perf_event_header));
671 		if (err <= 0) {
672 			if (err == 0) {
673 				pr_err("unexpected end of event stream\n");
674 				goto done;
675 			}
676 
677 			pr_err("failed to read event data\n");
678 			goto out_err;
679 		}
680 	}
681 
682 	if (size == 0 ||
683 	    (skip = perf_session__process_event(self, &event, ops,
684 						0, head)) < 0) {
685 		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
686 			    head, event.header.size, event.header.type);
687 		/*
688 		 * assume we lost track of the stream, check alignment, and
689 		 * increment a single u64 in the hope to catch on again 'soon'.
690 		 */
691 		if (unlikely(head & 7))
692 			head &= ~7ULL;
693 
694 		size = 8;
695 	}
696 
697 	head += size;
698 
699 	dump_printf("\n%#Lx [%#x]: event: %d\n",
700 		    head, event.header.size, event.header.type);
701 
702 	if (skip > 0)
703 		head += skip;
704 
705 	if (!session_done())
706 		goto more;
707 done:
708 	err = 0;
709 out_err:
710 	return err;
711 }
712 
713 int __perf_session__process_events(struct perf_session *self,
714 				   u64 data_offset, u64 data_size,
715 				   u64 file_size, struct perf_event_ops *ops)
716 {
717 	int err, mmap_prot, mmap_flags;
718 	u64 head, shift;
719 	u64 offset = 0;
720 	size_t	page_size;
721 	event_t *event;
722 	uint32_t size;
723 	char *buf;
724 	struct ui_progress *progress = ui_progress__new("Processing events...",
725 							self->size);
726 	if (progress == NULL)
727 		return -1;
728 
729 	perf_event_ops__fill_defaults(ops);
730 
731 	page_size = sysconf(_SC_PAGESIZE);
732 
733 	head = data_offset;
734 	shift = page_size * (head / page_size);
735 	offset += shift;
736 	head -= shift;
737 
738 	mmap_prot  = PROT_READ;
739 	mmap_flags = MAP_SHARED;
740 
741 	if (self->header.needs_swap) {
742 		mmap_prot  |= PROT_WRITE;
743 		mmap_flags = MAP_PRIVATE;
744 	}
745 remap:
746 	buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
747 		   mmap_flags, self->fd, offset);
748 	if (buf == MAP_FAILED) {
749 		pr_err("failed to mmap file\n");
750 		err = -errno;
751 		goto out_err;
752 	}
753 
754 more:
755 	event = (event_t *)(buf + head);
756 	ui_progress__update(progress, offset);
757 
758 	if (self->header.needs_swap)
759 		perf_event_header__bswap(&event->header);
760 	size = event->header.size;
761 	if (size == 0)
762 		size = 8;
763 
764 	if (head + event->header.size >= page_size * self->mmap_window) {
765 		int munmap_ret;
766 
767 		shift = page_size * (head / page_size);
768 
769 		munmap_ret = munmap(buf, page_size * self->mmap_window);
770 		assert(munmap_ret == 0);
771 
772 		offset += shift;
773 		head -= shift;
774 		goto remap;
775 	}
776 
777 	size = event->header.size;
778 
779 	dump_printf("\n%#Lx [%#x]: event: %d\n",
780 		    offset + head, event->header.size, event->header.type);
781 
782 	if (size == 0 ||
783 	    perf_session__process_event(self, event, ops, offset, head) < 0) {
784 		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
785 			    offset + head, event->header.size,
786 			    event->header.type);
787 		/*
788 		 * assume we lost track of the stream, check alignment, and
789 		 * increment a single u64 in the hope to catch on again 'soon'.
790 		 */
791 		if (unlikely(head & 7))
792 			head &= ~7ULL;
793 
794 		size = 8;
795 	}
796 
797 	head += size;
798 
799 	if (offset + head >= data_offset + data_size)
800 		goto done;
801 
802 	if (offset + head < file_size)
803 		goto more;
804 done:
805 	err = 0;
806 	/* do the final flush for ordered samples */
807 	self->ordered_samples.next_flush = ULLONG_MAX;
808 	flush_sample_queue(self, ops);
809 out_err:
810 	ui_progress__delete(progress);
811 	return err;
812 }
813 
814 int perf_session__process_events(struct perf_session *self,
815 				 struct perf_event_ops *ops)
816 {
817 	int err;
818 
819 	if (perf_session__register_idle_thread(self) == NULL)
820 		return -ENOMEM;
821 
822 	if (!symbol_conf.full_paths) {
823 		char bf[PATH_MAX];
824 
825 		if (getcwd(bf, sizeof(bf)) == NULL) {
826 			err = -errno;
827 out_getcwd_err:
828 			pr_err("failed to get the current directory\n");
829 			goto out_err;
830 		}
831 		self->cwd = strdup(bf);
832 		if (self->cwd == NULL) {
833 			err = -ENOMEM;
834 			goto out_getcwd_err;
835 		}
836 		self->cwdlen = strlen(self->cwd);
837 	}
838 
839 	if (!self->fd_pipe)
840 		err = __perf_session__process_events(self,
841 						     self->header.data_offset,
842 						     self->header.data_size,
843 						     self->size, ops);
844 	else
845 		err = __perf_session__process_pipe_events(self, ops);
846 out_err:
847 	return err;
848 }
849 
850 bool perf_session__has_traces(struct perf_session *self, const char *msg)
851 {
852 	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
853 		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
854 		return false;
855 	}
856 
857 	return true;
858 }
859 
860 int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
861 					     const char *symbol_name,
862 					     u64 addr)
863 {
864 	char *bracket;
865 	enum map_type i;
866 	struct ref_reloc_sym *ref;
867 
868 	ref = zalloc(sizeof(struct ref_reloc_sym));
869 	if (ref == NULL)
870 		return -ENOMEM;
871 
872 	ref->name = strdup(symbol_name);
873 	if (ref->name == NULL) {
874 		free(ref);
875 		return -ENOMEM;
876 	}
877 
878 	bracket = strchr(ref->name, ']');
879 	if (bracket)
880 		*bracket = '\0';
881 
882 	ref->addr = addr;
883 
884 	for (i = 0; i < MAP__NR_TYPES; ++i) {
885 		struct kmap *kmap = map__kmap(maps[i]);
886 		kmap->ref_reloc_sym = ref;
887 	}
888 
889 	return 0;
890 }
891 
892 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
893 {
894 	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
895 	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
896 	       machines__fprintf_dsos(&self->machines, fp);
897 }
898 
899 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
900 					  bool with_hits)
901 {
902 	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
903 	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
904 }
905