xref: /linux/tools/perf/util/session.c (revision 67f49869106f78882a8a09b736d4884be85aba18)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <signal.h>
4 #include <inttypes.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/zalloc.h>
8 #include <api/fs/fs.h>
9 
10 #include <byteswap.h>
11 #include <unistd.h>
12 #include <sys/types.h>
13 #include <sys/mman.h>
14 #include <perf/cpumap.h>
15 
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "debug.h"
19 #include "env.h"
20 #include "evlist.h"
21 #include "evsel.h"
22 #include "memswap.h"
23 #include "map.h"
24 #include "symbol.h"
25 #include "session.h"
26 #include "tool.h"
27 #include "perf_regs.h"
28 #include "asm/bug.h"
29 #include "auxtrace.h"
30 #include "thread.h"
31 #include "thread-stack.h"
32 #include "sample-raw.h"
33 #include "stat.h"
34 #include "tsc.h"
35 #include "ui/progress.h"
36 #include "../perf.h"
37 #include "arch/common.h"
38 #include "units.h"
39 #include <internal/lib.h>
40 
41 #ifdef HAVE_ZSTD_SUPPORT
42 static int perf_session__process_compressed_event(struct perf_session *session,
43 						  union perf_event *event, u64 file_offset,
44 						  const char *file_path)
45 {
46 	void *src;
47 	size_t decomp_size, src_size;
48 	u64 decomp_last_rem = 0;
49 	size_t mmap_len, decomp_len = session->header.env.comp_mmap_len;
50 	struct decomp *decomp, *decomp_last = session->active_decomp->decomp_last;
51 
52 	if (decomp_last) {
53 		decomp_last_rem = decomp_last->size - decomp_last->head;
54 		decomp_len += decomp_last_rem;
55 	}
56 
57 	mmap_len = sizeof(struct decomp) + decomp_len;
58 	decomp = mmap(NULL, mmap_len, PROT_READ|PROT_WRITE,
59 		      MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
60 	if (decomp == MAP_FAILED) {
61 		pr_err("Couldn't allocate memory for decompression\n");
62 		return -1;
63 	}
64 
65 	decomp->file_pos = file_offset;
66 	decomp->file_path = file_path;
67 	decomp->mmap_len = mmap_len;
68 	decomp->head = 0;
69 
70 	if (decomp_last_rem) {
71 		memcpy(decomp->data, &(decomp_last->data[decomp_last->head]), decomp_last_rem);
72 		decomp->size = decomp_last_rem;
73 	}
74 
75 	src = (void *)event + sizeof(struct perf_record_compressed);
76 	src_size = event->pack.header.size - sizeof(struct perf_record_compressed);
77 
78 	decomp_size = zstd_decompress_stream(session->active_decomp->zstd_decomp, src, src_size,
79 				&(decomp->data[decomp_last_rem]), decomp_len - decomp_last_rem);
80 	if (!decomp_size) {
81 		munmap(decomp, mmap_len);
82 		pr_err("Couldn't decompress data\n");
83 		return -1;
84 	}
85 
86 	decomp->size += decomp_size;
87 
88 	if (session->active_decomp->decomp == NULL)
89 		session->active_decomp->decomp = decomp;
90 	else
91 		session->active_decomp->decomp_last->next = decomp;
92 
93 	session->active_decomp->decomp_last = decomp;
94 
95 	pr_debug("decomp (B): %zd to %zd\n", src_size, decomp_size);
96 
97 	return 0;
98 }
99 #else /* !HAVE_ZSTD_SUPPORT */
100 #define perf_session__process_compressed_event perf_session__process_compressed_event_stub
101 #endif
102 
103 static int perf_session__deliver_event(struct perf_session *session,
104 				       union perf_event *event,
105 				       struct perf_tool *tool,
106 				       u64 file_offset,
107 				       const char *file_path);
108 
109 static int perf_session__open(struct perf_session *session, int repipe_fd)
110 {
111 	struct perf_data *data = session->data;
112 
113 	if (perf_session__read_header(session, repipe_fd) < 0) {
114 		pr_err("incompatible file format (rerun with -v to learn more)\n");
115 		return -1;
116 	}
117 
118 	if (perf_data__is_pipe(data))
119 		return 0;
120 
121 	if (perf_header__has_feat(&session->header, HEADER_STAT))
122 		return 0;
123 
124 	if (!evlist__valid_sample_type(session->evlist)) {
125 		pr_err("non matching sample_type\n");
126 		return -1;
127 	}
128 
129 	if (!evlist__valid_sample_id_all(session->evlist)) {
130 		pr_err("non matching sample_id_all\n");
131 		return -1;
132 	}
133 
134 	if (!evlist__valid_read_format(session->evlist)) {
135 		pr_err("non matching read_format\n");
136 		return -1;
137 	}
138 
139 	return 0;
140 }
141 
142 void perf_session__set_id_hdr_size(struct perf_session *session)
143 {
144 	u16 id_hdr_size = evlist__id_hdr_size(session->evlist);
145 
146 	machines__set_id_hdr_size(&session->machines, id_hdr_size);
147 }
148 
149 int perf_session__create_kernel_maps(struct perf_session *session)
150 {
151 	int ret = machine__create_kernel_maps(&session->machines.host);
152 
153 	if (ret >= 0)
154 		ret = machines__create_guest_kernel_maps(&session->machines);
155 	return ret;
156 }
157 
158 static void perf_session__destroy_kernel_maps(struct perf_session *session)
159 {
160 	machines__destroy_kernel_maps(&session->machines);
161 }
162 
163 static bool perf_session__has_comm_exec(struct perf_session *session)
164 {
165 	struct evsel *evsel;
166 
167 	evlist__for_each_entry(session->evlist, evsel) {
168 		if (evsel->core.attr.comm_exec)
169 			return true;
170 	}
171 
172 	return false;
173 }
174 
175 static void perf_session__set_comm_exec(struct perf_session *session)
176 {
177 	bool comm_exec = perf_session__has_comm_exec(session);
178 
179 	machines__set_comm_exec(&session->machines, comm_exec);
180 }
181 
182 static int ordered_events__deliver_event(struct ordered_events *oe,
183 					 struct ordered_event *event)
184 {
185 	struct perf_session *session = container_of(oe, struct perf_session,
186 						    ordered_events);
187 
188 	return perf_session__deliver_event(session, event->event,
189 					   session->tool, event->file_offset,
190 					   event->file_path);
191 }
192 
193 struct perf_session *__perf_session__new(struct perf_data *data,
194 					 bool repipe, int repipe_fd,
195 					 struct perf_tool *tool)
196 {
197 	int ret = -ENOMEM;
198 	struct perf_session *session = zalloc(sizeof(*session));
199 
200 	if (!session)
201 		goto out;
202 
203 	session->repipe = repipe;
204 	session->tool   = tool;
205 	session->decomp_data.zstd_decomp = &session->zstd_data;
206 	session->active_decomp = &session->decomp_data;
207 	INIT_LIST_HEAD(&session->auxtrace_index);
208 	machines__init(&session->machines);
209 	ordered_events__init(&session->ordered_events,
210 			     ordered_events__deliver_event, NULL);
211 
212 	perf_env__init(&session->header.env);
213 	if (data) {
214 		ret = perf_data__open(data);
215 		if (ret < 0)
216 			goto out_delete;
217 
218 		session->data = data;
219 
220 		if (perf_data__is_read(data)) {
221 			ret = perf_session__open(session, repipe_fd);
222 			if (ret < 0)
223 				goto out_delete;
224 
225 			/*
226 			 * set session attributes that are present in perf.data
227 			 * but not in pipe-mode.
228 			 */
229 			if (!data->is_pipe) {
230 				perf_session__set_id_hdr_size(session);
231 				perf_session__set_comm_exec(session);
232 			}
233 
234 			evlist__init_trace_event_sample_raw(session->evlist);
235 
236 			/* Open the directory data. */
237 			if (data->is_dir) {
238 				ret = perf_data__open_dir(data);
239 				if (ret)
240 					goto out_delete;
241 			}
242 
243 			if (!symbol_conf.kallsyms_name &&
244 			    !symbol_conf.vmlinux_name)
245 				symbol_conf.kallsyms_name = perf_data__kallsyms_name(data);
246 		}
247 	} else  {
248 		session->machines.host.env = &perf_env;
249 	}
250 
251 	session->machines.host.single_address_space =
252 		perf_env__single_address_space(session->machines.host.env);
253 
254 	if (!data || perf_data__is_write(data)) {
255 		/*
256 		 * In O_RDONLY mode this will be performed when reading the
257 		 * kernel MMAP event, in perf_event__process_mmap().
258 		 */
259 		if (perf_session__create_kernel_maps(session) < 0)
260 			pr_warning("Cannot read kernel map\n");
261 	}
262 
263 	/*
264 	 * In pipe-mode, evlist is empty until PERF_RECORD_HEADER_ATTR is
265 	 * processed, so evlist__sample_id_all is not meaningful here.
266 	 */
267 	if ((!data || !data->is_pipe) && tool && tool->ordering_requires_timestamps &&
268 	    tool->ordered_events && !evlist__sample_id_all(session->evlist)) {
269 		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
270 		tool->ordered_events = false;
271 	}
272 
273 	return session;
274 
275  out_delete:
276 	perf_session__delete(session);
277  out:
278 	return ERR_PTR(ret);
279 }
280 
281 static void perf_session__delete_threads(struct perf_session *session)
282 {
283 	machine__delete_threads(&session->machines.host);
284 }
285 
286 static void perf_decomp__release_events(struct decomp *next)
287 {
288 	struct decomp *decomp;
289 	size_t mmap_len;
290 
291 	do {
292 		decomp = next;
293 		if (decomp == NULL)
294 			break;
295 		next = decomp->next;
296 		mmap_len = decomp->mmap_len;
297 		munmap(decomp, mmap_len);
298 	} while (1);
299 }
300 
301 void perf_session__delete(struct perf_session *session)
302 {
303 	if (session == NULL)
304 		return;
305 	auxtrace__free(session);
306 	auxtrace_index__free(&session->auxtrace_index);
307 	perf_session__destroy_kernel_maps(session);
308 	perf_session__delete_threads(session);
309 	perf_decomp__release_events(session->decomp_data.decomp);
310 	perf_env__exit(&session->header.env);
311 	machines__exit(&session->machines);
312 	if (session->data) {
313 		if (perf_data__is_read(session->data))
314 			evlist__delete(session->evlist);
315 		perf_data__close(session->data);
316 	}
317 #ifdef HAVE_LIBTRACEEVENT
318 	trace_event__cleanup(&session->tevent);
319 #endif
320 	free(session);
321 }
322 
323 static int process_event_synth_tracing_data_stub(struct perf_session *session
324 						 __maybe_unused,
325 						 union perf_event *event
326 						 __maybe_unused)
327 {
328 	dump_printf(": unhandled!\n");
329 	return 0;
330 }
331 
332 static int process_event_synth_attr_stub(struct perf_tool *tool __maybe_unused,
333 					 union perf_event *event __maybe_unused,
334 					 struct evlist **pevlist
335 					 __maybe_unused)
336 {
337 	dump_printf(": unhandled!\n");
338 	return 0;
339 }
340 
341 static int process_event_synth_event_update_stub(struct perf_tool *tool __maybe_unused,
342 						 union perf_event *event __maybe_unused,
343 						 struct evlist **pevlist
344 						 __maybe_unused)
345 {
346 	if (dump_trace)
347 		perf_event__fprintf_event_update(event, stdout);
348 
349 	dump_printf(": unhandled!\n");
350 	return 0;
351 }
352 
353 static int process_event_sample_stub(struct perf_tool *tool __maybe_unused,
354 				     union perf_event *event __maybe_unused,
355 				     struct perf_sample *sample __maybe_unused,
356 				     struct evsel *evsel __maybe_unused,
357 				     struct machine *machine __maybe_unused)
358 {
359 	dump_printf(": unhandled!\n");
360 	return 0;
361 }
362 
363 static int process_event_stub(struct perf_tool *tool __maybe_unused,
364 			      union perf_event *event __maybe_unused,
365 			      struct perf_sample *sample __maybe_unused,
366 			      struct machine *machine __maybe_unused)
367 {
368 	dump_printf(": unhandled!\n");
369 	return 0;
370 }
371 
372 static int process_finished_round_stub(struct perf_tool *tool __maybe_unused,
373 				       union perf_event *event __maybe_unused,
374 				       struct ordered_events *oe __maybe_unused)
375 {
376 	dump_printf(": unhandled!\n");
377 	return 0;
378 }
379 
380 static int skipn(int fd, off_t n)
381 {
382 	char buf[4096];
383 	ssize_t ret;
384 
385 	while (n > 0) {
386 		ret = read(fd, buf, min(n, (off_t)sizeof(buf)));
387 		if (ret <= 0)
388 			return ret;
389 		n -= ret;
390 	}
391 
392 	return 0;
393 }
394 
395 static s64 process_event_auxtrace_stub(struct perf_session *session __maybe_unused,
396 				       union perf_event *event)
397 {
398 	dump_printf(": unhandled!\n");
399 	if (perf_data__is_pipe(session->data))
400 		skipn(perf_data__fd(session->data), event->auxtrace.size);
401 	return event->auxtrace.size;
402 }
403 
404 static int process_event_op2_stub(struct perf_session *session __maybe_unused,
405 				  union perf_event *event __maybe_unused)
406 {
407 	dump_printf(": unhandled!\n");
408 	return 0;
409 }
410 
411 
412 static
413 int process_event_thread_map_stub(struct perf_session *session __maybe_unused,
414 				  union perf_event *event __maybe_unused)
415 {
416 	if (dump_trace)
417 		perf_event__fprintf_thread_map(event, stdout);
418 
419 	dump_printf(": unhandled!\n");
420 	return 0;
421 }
422 
423 static
424 int process_event_cpu_map_stub(struct perf_session *session __maybe_unused,
425 			       union perf_event *event __maybe_unused)
426 {
427 	if (dump_trace)
428 		perf_event__fprintf_cpu_map(event, stdout);
429 
430 	dump_printf(": unhandled!\n");
431 	return 0;
432 }
433 
434 static
435 int process_event_stat_config_stub(struct perf_session *session __maybe_unused,
436 				   union perf_event *event __maybe_unused)
437 {
438 	if (dump_trace)
439 		perf_event__fprintf_stat_config(event, stdout);
440 
441 	dump_printf(": unhandled!\n");
442 	return 0;
443 }
444 
445 static int process_stat_stub(struct perf_session *perf_session __maybe_unused,
446 			     union perf_event *event)
447 {
448 	if (dump_trace)
449 		perf_event__fprintf_stat(event, stdout);
450 
451 	dump_printf(": unhandled!\n");
452 	return 0;
453 }
454 
455 static int process_stat_round_stub(struct perf_session *perf_session __maybe_unused,
456 				   union perf_event *event)
457 {
458 	if (dump_trace)
459 		perf_event__fprintf_stat_round(event, stdout);
460 
461 	dump_printf(": unhandled!\n");
462 	return 0;
463 }
464 
465 static int process_event_time_conv_stub(struct perf_session *perf_session __maybe_unused,
466 					union perf_event *event)
467 {
468 	if (dump_trace)
469 		perf_event__fprintf_time_conv(event, stdout);
470 
471 	dump_printf(": unhandled!\n");
472 	return 0;
473 }
474 
475 static int perf_session__process_compressed_event_stub(struct perf_session *session __maybe_unused,
476 						       union perf_event *event __maybe_unused,
477 						       u64 file_offset __maybe_unused,
478 						       const char *file_path __maybe_unused)
479 {
480        dump_printf(": unhandled!\n");
481        return 0;
482 }
483 
484 void perf_tool__fill_defaults(struct perf_tool *tool)
485 {
486 	if (tool->sample == NULL)
487 		tool->sample = process_event_sample_stub;
488 	if (tool->mmap == NULL)
489 		tool->mmap = process_event_stub;
490 	if (tool->mmap2 == NULL)
491 		tool->mmap2 = process_event_stub;
492 	if (tool->comm == NULL)
493 		tool->comm = process_event_stub;
494 	if (tool->namespaces == NULL)
495 		tool->namespaces = process_event_stub;
496 	if (tool->cgroup == NULL)
497 		tool->cgroup = process_event_stub;
498 	if (tool->fork == NULL)
499 		tool->fork = process_event_stub;
500 	if (tool->exit == NULL)
501 		tool->exit = process_event_stub;
502 	if (tool->lost == NULL)
503 		tool->lost = perf_event__process_lost;
504 	if (tool->lost_samples == NULL)
505 		tool->lost_samples = perf_event__process_lost_samples;
506 	if (tool->aux == NULL)
507 		tool->aux = perf_event__process_aux;
508 	if (tool->itrace_start == NULL)
509 		tool->itrace_start = perf_event__process_itrace_start;
510 	if (tool->context_switch == NULL)
511 		tool->context_switch = perf_event__process_switch;
512 	if (tool->ksymbol == NULL)
513 		tool->ksymbol = perf_event__process_ksymbol;
514 	if (tool->bpf == NULL)
515 		tool->bpf = perf_event__process_bpf;
516 	if (tool->text_poke == NULL)
517 		tool->text_poke = perf_event__process_text_poke;
518 	if (tool->aux_output_hw_id == NULL)
519 		tool->aux_output_hw_id = perf_event__process_aux_output_hw_id;
520 	if (tool->read == NULL)
521 		tool->read = process_event_sample_stub;
522 	if (tool->throttle == NULL)
523 		tool->throttle = process_event_stub;
524 	if (tool->unthrottle == NULL)
525 		tool->unthrottle = process_event_stub;
526 	if (tool->attr == NULL)
527 		tool->attr = process_event_synth_attr_stub;
528 	if (tool->event_update == NULL)
529 		tool->event_update = process_event_synth_event_update_stub;
530 	if (tool->tracing_data == NULL)
531 		tool->tracing_data = process_event_synth_tracing_data_stub;
532 	if (tool->build_id == NULL)
533 		tool->build_id = process_event_op2_stub;
534 	if (tool->finished_round == NULL) {
535 		if (tool->ordered_events)
536 			tool->finished_round = perf_event__process_finished_round;
537 		else
538 			tool->finished_round = process_finished_round_stub;
539 	}
540 	if (tool->id_index == NULL)
541 		tool->id_index = process_event_op2_stub;
542 	if (tool->auxtrace_info == NULL)
543 		tool->auxtrace_info = process_event_op2_stub;
544 	if (tool->auxtrace == NULL)
545 		tool->auxtrace = process_event_auxtrace_stub;
546 	if (tool->auxtrace_error == NULL)
547 		tool->auxtrace_error = process_event_op2_stub;
548 	if (tool->thread_map == NULL)
549 		tool->thread_map = process_event_thread_map_stub;
550 	if (tool->cpu_map == NULL)
551 		tool->cpu_map = process_event_cpu_map_stub;
552 	if (tool->stat_config == NULL)
553 		tool->stat_config = process_event_stat_config_stub;
554 	if (tool->stat == NULL)
555 		tool->stat = process_stat_stub;
556 	if (tool->stat_round == NULL)
557 		tool->stat_round = process_stat_round_stub;
558 	if (tool->time_conv == NULL)
559 		tool->time_conv = process_event_time_conv_stub;
560 	if (tool->feature == NULL)
561 		tool->feature = process_event_op2_stub;
562 	if (tool->compressed == NULL)
563 		tool->compressed = perf_session__process_compressed_event;
564 	if (tool->finished_init == NULL)
565 		tool->finished_init = process_event_op2_stub;
566 }
567 
568 static void swap_sample_id_all(union perf_event *event, void *data)
569 {
570 	void *end = (void *) event + event->header.size;
571 	int size = end - data;
572 
573 	BUG_ON(size % sizeof(u64));
574 	mem_bswap_64(data, size);
575 }
576 
577 static void perf_event__all64_swap(union perf_event *event,
578 				   bool sample_id_all __maybe_unused)
579 {
580 	struct perf_event_header *hdr = &event->header;
581 	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
582 }
583 
584 static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
585 {
586 	event->comm.pid = bswap_32(event->comm.pid);
587 	event->comm.tid = bswap_32(event->comm.tid);
588 
589 	if (sample_id_all) {
590 		void *data = &event->comm.comm;
591 
592 		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
593 		swap_sample_id_all(event, data);
594 	}
595 }
596 
597 static void perf_event__mmap_swap(union perf_event *event,
598 				  bool sample_id_all)
599 {
600 	event->mmap.pid	  = bswap_32(event->mmap.pid);
601 	event->mmap.tid	  = bswap_32(event->mmap.tid);
602 	event->mmap.start = bswap_64(event->mmap.start);
603 	event->mmap.len	  = bswap_64(event->mmap.len);
604 	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
605 
606 	if (sample_id_all) {
607 		void *data = &event->mmap.filename;
608 
609 		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
610 		swap_sample_id_all(event, data);
611 	}
612 }
613 
614 static void perf_event__mmap2_swap(union perf_event *event,
615 				  bool sample_id_all)
616 {
617 	event->mmap2.pid   = bswap_32(event->mmap2.pid);
618 	event->mmap2.tid   = bswap_32(event->mmap2.tid);
619 	event->mmap2.start = bswap_64(event->mmap2.start);
620 	event->mmap2.len   = bswap_64(event->mmap2.len);
621 	event->mmap2.pgoff = bswap_64(event->mmap2.pgoff);
622 
623 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID)) {
624 		event->mmap2.maj   = bswap_32(event->mmap2.maj);
625 		event->mmap2.min   = bswap_32(event->mmap2.min);
626 		event->mmap2.ino   = bswap_64(event->mmap2.ino);
627 		event->mmap2.ino_generation = bswap_64(event->mmap2.ino_generation);
628 	}
629 
630 	if (sample_id_all) {
631 		void *data = &event->mmap2.filename;
632 
633 		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
634 		swap_sample_id_all(event, data);
635 	}
636 }
637 static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
638 {
639 	event->fork.pid	 = bswap_32(event->fork.pid);
640 	event->fork.tid	 = bswap_32(event->fork.tid);
641 	event->fork.ppid = bswap_32(event->fork.ppid);
642 	event->fork.ptid = bswap_32(event->fork.ptid);
643 	event->fork.time = bswap_64(event->fork.time);
644 
645 	if (sample_id_all)
646 		swap_sample_id_all(event, &event->fork + 1);
647 }
648 
649 static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
650 {
651 	event->read.pid		 = bswap_32(event->read.pid);
652 	event->read.tid		 = bswap_32(event->read.tid);
653 	event->read.value	 = bswap_64(event->read.value);
654 	event->read.time_enabled = bswap_64(event->read.time_enabled);
655 	event->read.time_running = bswap_64(event->read.time_running);
656 	event->read.id		 = bswap_64(event->read.id);
657 
658 	if (sample_id_all)
659 		swap_sample_id_all(event, &event->read + 1);
660 }
661 
662 static void perf_event__aux_swap(union perf_event *event, bool sample_id_all)
663 {
664 	event->aux.aux_offset = bswap_64(event->aux.aux_offset);
665 	event->aux.aux_size   = bswap_64(event->aux.aux_size);
666 	event->aux.flags      = bswap_64(event->aux.flags);
667 
668 	if (sample_id_all)
669 		swap_sample_id_all(event, &event->aux + 1);
670 }
671 
672 static void perf_event__itrace_start_swap(union perf_event *event,
673 					  bool sample_id_all)
674 {
675 	event->itrace_start.pid	 = bswap_32(event->itrace_start.pid);
676 	event->itrace_start.tid	 = bswap_32(event->itrace_start.tid);
677 
678 	if (sample_id_all)
679 		swap_sample_id_all(event, &event->itrace_start + 1);
680 }
681 
682 static void perf_event__switch_swap(union perf_event *event, bool sample_id_all)
683 {
684 	if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) {
685 		event->context_switch.next_prev_pid =
686 				bswap_32(event->context_switch.next_prev_pid);
687 		event->context_switch.next_prev_tid =
688 				bswap_32(event->context_switch.next_prev_tid);
689 	}
690 
691 	if (sample_id_all)
692 		swap_sample_id_all(event, &event->context_switch + 1);
693 }
694 
695 static void perf_event__text_poke_swap(union perf_event *event, bool sample_id_all)
696 {
697 	event->text_poke.addr    = bswap_64(event->text_poke.addr);
698 	event->text_poke.old_len = bswap_16(event->text_poke.old_len);
699 	event->text_poke.new_len = bswap_16(event->text_poke.new_len);
700 
701 	if (sample_id_all) {
702 		size_t len = sizeof(event->text_poke.old_len) +
703 			     sizeof(event->text_poke.new_len) +
704 			     event->text_poke.old_len +
705 			     event->text_poke.new_len;
706 		void *data = &event->text_poke.old_len;
707 
708 		data += PERF_ALIGN(len, sizeof(u64));
709 		swap_sample_id_all(event, data);
710 	}
711 }
712 
713 static void perf_event__throttle_swap(union perf_event *event,
714 				      bool sample_id_all)
715 {
716 	event->throttle.time	  = bswap_64(event->throttle.time);
717 	event->throttle.id	  = bswap_64(event->throttle.id);
718 	event->throttle.stream_id = bswap_64(event->throttle.stream_id);
719 
720 	if (sample_id_all)
721 		swap_sample_id_all(event, &event->throttle + 1);
722 }
723 
724 static void perf_event__namespaces_swap(union perf_event *event,
725 					bool sample_id_all)
726 {
727 	u64 i;
728 
729 	event->namespaces.pid		= bswap_32(event->namespaces.pid);
730 	event->namespaces.tid		= bswap_32(event->namespaces.tid);
731 	event->namespaces.nr_namespaces	= bswap_64(event->namespaces.nr_namespaces);
732 
733 	for (i = 0; i < event->namespaces.nr_namespaces; i++) {
734 		struct perf_ns_link_info *ns = &event->namespaces.link_info[i];
735 
736 		ns->dev = bswap_64(ns->dev);
737 		ns->ino = bswap_64(ns->ino);
738 	}
739 
740 	if (sample_id_all)
741 		swap_sample_id_all(event, &event->namespaces.link_info[i]);
742 }
743 
744 static void perf_event__cgroup_swap(union perf_event *event, bool sample_id_all)
745 {
746 	event->cgroup.id = bswap_64(event->cgroup.id);
747 
748 	if (sample_id_all) {
749 		void *data = &event->cgroup.path;
750 
751 		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
752 		swap_sample_id_all(event, data);
753 	}
754 }
755 
756 static u8 revbyte(u8 b)
757 {
758 	int rev = (b >> 4) | ((b & 0xf) << 4);
759 	rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
760 	rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
761 	return (u8) rev;
762 }
763 
764 /*
765  * XXX this is hack in attempt to carry flags bitfield
766  * through endian village. ABI says:
767  *
768  * Bit-fields are allocated from right to left (least to most significant)
769  * on little-endian implementations and from left to right (most to least
770  * significant) on big-endian implementations.
771  *
772  * The above seems to be byte specific, so we need to reverse each
773  * byte of the bitfield. 'Internet' also says this might be implementation
774  * specific and we probably need proper fix and carry perf_event_attr
775  * bitfield flags in separate data file FEAT_ section. Thought this seems
776  * to work for now.
777  */
778 static void swap_bitfield(u8 *p, unsigned len)
779 {
780 	unsigned i;
781 
782 	for (i = 0; i < len; i++) {
783 		*p = revbyte(*p);
784 		p++;
785 	}
786 }
787 
788 /* exported for swapping attributes in file header */
789 void perf_event__attr_swap(struct perf_event_attr *attr)
790 {
791 	attr->type		= bswap_32(attr->type);
792 	attr->size		= bswap_32(attr->size);
793 
794 #define bswap_safe(f, n) 					\
795 	(attr->size > (offsetof(struct perf_event_attr, f) + 	\
796 		       sizeof(attr->f) * (n)))
797 #define bswap_field(f, sz) 			\
798 do { 						\
799 	if (bswap_safe(f, 0))			\
800 		attr->f = bswap_##sz(attr->f);	\
801 } while(0)
802 #define bswap_field_16(f) bswap_field(f, 16)
803 #define bswap_field_32(f) bswap_field(f, 32)
804 #define bswap_field_64(f) bswap_field(f, 64)
805 
806 	bswap_field_64(config);
807 	bswap_field_64(sample_period);
808 	bswap_field_64(sample_type);
809 	bswap_field_64(read_format);
810 	bswap_field_32(wakeup_events);
811 	bswap_field_32(bp_type);
812 	bswap_field_64(bp_addr);
813 	bswap_field_64(bp_len);
814 	bswap_field_64(branch_sample_type);
815 	bswap_field_64(sample_regs_user);
816 	bswap_field_32(sample_stack_user);
817 	bswap_field_32(aux_watermark);
818 	bswap_field_16(sample_max_stack);
819 	bswap_field_32(aux_sample_size);
820 
821 	/*
822 	 * After read_format are bitfields. Check read_format because
823 	 * we are unable to use offsetof on bitfield.
824 	 */
825 	if (bswap_safe(read_format, 1))
826 		swap_bitfield((u8 *) (&attr->read_format + 1),
827 			      sizeof(u64));
828 #undef bswap_field_64
829 #undef bswap_field_32
830 #undef bswap_field
831 #undef bswap_safe
832 }
833 
834 static void perf_event__hdr_attr_swap(union perf_event *event,
835 				      bool sample_id_all __maybe_unused)
836 {
837 	size_t size;
838 
839 	perf_event__attr_swap(&event->attr.attr);
840 
841 	size = event->header.size;
842 	size -= (void *)&event->attr.id - (void *)event;
843 	mem_bswap_64(event->attr.id, size);
844 }
845 
846 static void perf_event__event_update_swap(union perf_event *event,
847 					  bool sample_id_all __maybe_unused)
848 {
849 	event->event_update.type = bswap_64(event->event_update.type);
850 	event->event_update.id   = bswap_64(event->event_update.id);
851 }
852 
853 static void perf_event__event_type_swap(union perf_event *event,
854 					bool sample_id_all __maybe_unused)
855 {
856 	event->event_type.event_type.event_id =
857 		bswap_64(event->event_type.event_type.event_id);
858 }
859 
860 static void perf_event__tracing_data_swap(union perf_event *event,
861 					  bool sample_id_all __maybe_unused)
862 {
863 	event->tracing_data.size = bswap_32(event->tracing_data.size);
864 }
865 
866 static void perf_event__auxtrace_info_swap(union perf_event *event,
867 					   bool sample_id_all __maybe_unused)
868 {
869 	size_t size;
870 
871 	event->auxtrace_info.type = bswap_32(event->auxtrace_info.type);
872 
873 	size = event->header.size;
874 	size -= (void *)&event->auxtrace_info.priv - (void *)event;
875 	mem_bswap_64(event->auxtrace_info.priv, size);
876 }
877 
878 static void perf_event__auxtrace_swap(union perf_event *event,
879 				      bool sample_id_all __maybe_unused)
880 {
881 	event->auxtrace.size      = bswap_64(event->auxtrace.size);
882 	event->auxtrace.offset    = bswap_64(event->auxtrace.offset);
883 	event->auxtrace.reference = bswap_64(event->auxtrace.reference);
884 	event->auxtrace.idx       = bswap_32(event->auxtrace.idx);
885 	event->auxtrace.tid       = bswap_32(event->auxtrace.tid);
886 	event->auxtrace.cpu       = bswap_32(event->auxtrace.cpu);
887 }
888 
889 static void perf_event__auxtrace_error_swap(union perf_event *event,
890 					    bool sample_id_all __maybe_unused)
891 {
892 	event->auxtrace_error.type = bswap_32(event->auxtrace_error.type);
893 	event->auxtrace_error.code = bswap_32(event->auxtrace_error.code);
894 	event->auxtrace_error.cpu  = bswap_32(event->auxtrace_error.cpu);
895 	event->auxtrace_error.pid  = bswap_32(event->auxtrace_error.pid);
896 	event->auxtrace_error.tid  = bswap_32(event->auxtrace_error.tid);
897 	event->auxtrace_error.fmt  = bswap_32(event->auxtrace_error.fmt);
898 	event->auxtrace_error.ip   = bswap_64(event->auxtrace_error.ip);
899 	if (event->auxtrace_error.fmt)
900 		event->auxtrace_error.time = bswap_64(event->auxtrace_error.time);
901 	if (event->auxtrace_error.fmt >= 2) {
902 		event->auxtrace_error.machine_pid = bswap_32(event->auxtrace_error.machine_pid);
903 		event->auxtrace_error.vcpu = bswap_32(event->auxtrace_error.vcpu);
904 	}
905 }
906 
907 static void perf_event__thread_map_swap(union perf_event *event,
908 					bool sample_id_all __maybe_unused)
909 {
910 	unsigned i;
911 
912 	event->thread_map.nr = bswap_64(event->thread_map.nr);
913 
914 	for (i = 0; i < event->thread_map.nr; i++)
915 		event->thread_map.entries[i].pid = bswap_64(event->thread_map.entries[i].pid);
916 }
917 
918 static void perf_event__cpu_map_swap(union perf_event *event,
919 				     bool sample_id_all __maybe_unused)
920 {
921 	struct perf_record_cpu_map_data *data = &event->cpu_map.data;
922 
923 	data->type = bswap_16(data->type);
924 
925 	switch (data->type) {
926 	case PERF_CPU_MAP__CPUS:
927 		data->cpus_data.nr = bswap_16(data->cpus_data.nr);
928 
929 		for (unsigned i = 0; i < data->cpus_data.nr; i++)
930 			data->cpus_data.cpu[i] = bswap_16(data->cpus_data.cpu[i]);
931 		break;
932 	case PERF_CPU_MAP__MASK:
933 		data->mask32_data.long_size = bswap_16(data->mask32_data.long_size);
934 
935 		switch (data->mask32_data.long_size) {
936 		case 4:
937 			data->mask32_data.nr = bswap_16(data->mask32_data.nr);
938 			for (unsigned i = 0; i < data->mask32_data.nr; i++)
939 				data->mask32_data.mask[i] = bswap_32(data->mask32_data.mask[i]);
940 			break;
941 		case 8:
942 			data->mask64_data.nr = bswap_16(data->mask64_data.nr);
943 			for (unsigned i = 0; i < data->mask64_data.nr; i++)
944 				data->mask64_data.mask[i] = bswap_64(data->mask64_data.mask[i]);
945 			break;
946 		default:
947 			pr_err("cpu_map swap: unsupported long size\n");
948 		}
949 		break;
950 	case PERF_CPU_MAP__RANGE_CPUS:
951 		data->range_cpu_data.start_cpu = bswap_16(data->range_cpu_data.start_cpu);
952 		data->range_cpu_data.end_cpu = bswap_16(data->range_cpu_data.end_cpu);
953 		break;
954 	default:
955 		break;
956 	}
957 }
958 
959 static void perf_event__stat_config_swap(union perf_event *event,
960 					 bool sample_id_all __maybe_unused)
961 {
962 	u64 size;
963 
964 	size  = bswap_64(event->stat_config.nr) * sizeof(event->stat_config.data[0]);
965 	size += 1; /* nr item itself */
966 	mem_bswap_64(&event->stat_config.nr, size);
967 }
968 
969 static void perf_event__stat_swap(union perf_event *event,
970 				  bool sample_id_all __maybe_unused)
971 {
972 	event->stat.id     = bswap_64(event->stat.id);
973 	event->stat.thread = bswap_32(event->stat.thread);
974 	event->stat.cpu    = bswap_32(event->stat.cpu);
975 	event->stat.val    = bswap_64(event->stat.val);
976 	event->stat.ena    = bswap_64(event->stat.ena);
977 	event->stat.run    = bswap_64(event->stat.run);
978 }
979 
980 static void perf_event__stat_round_swap(union perf_event *event,
981 					bool sample_id_all __maybe_unused)
982 {
983 	event->stat_round.type = bswap_64(event->stat_round.type);
984 	event->stat_round.time = bswap_64(event->stat_round.time);
985 }
986 
987 static void perf_event__time_conv_swap(union perf_event *event,
988 				       bool sample_id_all __maybe_unused)
989 {
990 	event->time_conv.time_shift = bswap_64(event->time_conv.time_shift);
991 	event->time_conv.time_mult  = bswap_64(event->time_conv.time_mult);
992 	event->time_conv.time_zero  = bswap_64(event->time_conv.time_zero);
993 
994 	if (event_contains(event->time_conv, time_cycles)) {
995 		event->time_conv.time_cycles = bswap_64(event->time_conv.time_cycles);
996 		event->time_conv.time_mask = bswap_64(event->time_conv.time_mask);
997 	}
998 }
999 
1000 typedef void (*perf_event__swap_op)(union perf_event *event,
1001 				    bool sample_id_all);
1002 
1003 static perf_event__swap_op perf_event__swap_ops[] = {
1004 	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
1005 	[PERF_RECORD_MMAP2]		  = perf_event__mmap2_swap,
1006 	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
1007 	[PERF_RECORD_FORK]		  = perf_event__task_swap,
1008 	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
1009 	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
1010 	[PERF_RECORD_READ]		  = perf_event__read_swap,
1011 	[PERF_RECORD_THROTTLE]		  = perf_event__throttle_swap,
1012 	[PERF_RECORD_UNTHROTTLE]	  = perf_event__throttle_swap,
1013 	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
1014 	[PERF_RECORD_AUX]		  = perf_event__aux_swap,
1015 	[PERF_RECORD_ITRACE_START]	  = perf_event__itrace_start_swap,
1016 	[PERF_RECORD_LOST_SAMPLES]	  = perf_event__all64_swap,
1017 	[PERF_RECORD_SWITCH]		  = perf_event__switch_swap,
1018 	[PERF_RECORD_SWITCH_CPU_WIDE]	  = perf_event__switch_swap,
1019 	[PERF_RECORD_NAMESPACES]	  = perf_event__namespaces_swap,
1020 	[PERF_RECORD_CGROUP]		  = perf_event__cgroup_swap,
1021 	[PERF_RECORD_TEXT_POKE]		  = perf_event__text_poke_swap,
1022 	[PERF_RECORD_AUX_OUTPUT_HW_ID]	  = perf_event__all64_swap,
1023 	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
1024 	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
1025 	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
1026 	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
1027 	[PERF_RECORD_ID_INDEX]		  = perf_event__all64_swap,
1028 	[PERF_RECORD_AUXTRACE_INFO]	  = perf_event__auxtrace_info_swap,
1029 	[PERF_RECORD_AUXTRACE]		  = perf_event__auxtrace_swap,
1030 	[PERF_RECORD_AUXTRACE_ERROR]	  = perf_event__auxtrace_error_swap,
1031 	[PERF_RECORD_THREAD_MAP]	  = perf_event__thread_map_swap,
1032 	[PERF_RECORD_CPU_MAP]		  = perf_event__cpu_map_swap,
1033 	[PERF_RECORD_STAT_CONFIG]	  = perf_event__stat_config_swap,
1034 	[PERF_RECORD_STAT]		  = perf_event__stat_swap,
1035 	[PERF_RECORD_STAT_ROUND]	  = perf_event__stat_round_swap,
1036 	[PERF_RECORD_EVENT_UPDATE]	  = perf_event__event_update_swap,
1037 	[PERF_RECORD_TIME_CONV]		  = perf_event__time_conv_swap,
1038 	[PERF_RECORD_HEADER_MAX]	  = NULL,
1039 };
1040 
1041 /*
1042  * When perf record finishes a pass on every buffers, it records this pseudo
1043  * event.
1044  * We record the max timestamp t found in the pass n.
1045  * Assuming these timestamps are monotonic across cpus, we know that if
1046  * a buffer still has events with timestamps below t, they will be all
1047  * available and then read in the pass n + 1.
1048  * Hence when we start to read the pass n + 2, we can safely flush every
1049  * events with timestamps below t.
1050  *
1051  *    ============ PASS n =================
1052  *       CPU 0         |   CPU 1
1053  *                     |
1054  *    cnt1 timestamps  |   cnt2 timestamps
1055  *          1          |         2
1056  *          2          |         3
1057  *          -          |         4  <--- max recorded
1058  *
1059  *    ============ PASS n + 1 ==============
1060  *       CPU 0         |   CPU 1
1061  *                     |
1062  *    cnt1 timestamps  |   cnt2 timestamps
1063  *          3          |         5
1064  *          4          |         6
1065  *          5          |         7 <---- max recorded
1066  *
1067  *      Flush every events below timestamp 4
1068  *
1069  *    ============ PASS n + 2 ==============
1070  *       CPU 0         |   CPU 1
1071  *                     |
1072  *    cnt1 timestamps  |   cnt2 timestamps
1073  *          6          |         8
1074  *          7          |         9
1075  *          -          |         10
1076  *
1077  *      Flush every events below timestamp 7
1078  *      etc...
1079  */
1080 int perf_event__process_finished_round(struct perf_tool *tool __maybe_unused,
1081 				       union perf_event *event __maybe_unused,
1082 				       struct ordered_events *oe)
1083 {
1084 	if (dump_trace)
1085 		fprintf(stdout, "\n");
1086 	return ordered_events__flush(oe, OE_FLUSH__ROUND);
1087 }
1088 
1089 int perf_session__queue_event(struct perf_session *s, union perf_event *event,
1090 			      u64 timestamp, u64 file_offset, const char *file_path)
1091 {
1092 	return ordered_events__queue(&s->ordered_events, event, timestamp, file_offset, file_path);
1093 }
1094 
1095 static void callchain__lbr_callstack_printf(struct perf_sample *sample)
1096 {
1097 	struct ip_callchain *callchain = sample->callchain;
1098 	struct branch_stack *lbr_stack = sample->branch_stack;
1099 	struct branch_entry *entries = perf_sample__branch_entries(sample);
1100 	u64 kernel_callchain_nr = callchain->nr;
1101 	unsigned int i;
1102 
1103 	for (i = 0; i < kernel_callchain_nr; i++) {
1104 		if (callchain->ips[i] == PERF_CONTEXT_USER)
1105 			break;
1106 	}
1107 
1108 	if ((i != kernel_callchain_nr) && lbr_stack->nr) {
1109 		u64 total_nr;
1110 		/*
1111 		 * LBR callstack can only get user call chain,
1112 		 * i is kernel call chain number,
1113 		 * 1 is PERF_CONTEXT_USER.
1114 		 *
1115 		 * The user call chain is stored in LBR registers.
1116 		 * LBR are pair registers. The caller is stored
1117 		 * in "from" register, while the callee is stored
1118 		 * in "to" register.
1119 		 * For example, there is a call stack
1120 		 * "A"->"B"->"C"->"D".
1121 		 * The LBR registers will be recorded like
1122 		 * "C"->"D", "B"->"C", "A"->"B".
1123 		 * So only the first "to" register and all "from"
1124 		 * registers are needed to construct the whole stack.
1125 		 */
1126 		total_nr = i + 1 + lbr_stack->nr + 1;
1127 		kernel_callchain_nr = i + 1;
1128 
1129 		printf("... LBR call chain: nr:%" PRIu64 "\n", total_nr);
1130 
1131 		for (i = 0; i < kernel_callchain_nr; i++)
1132 			printf("..... %2d: %016" PRIx64 "\n",
1133 			       i, callchain->ips[i]);
1134 
1135 		printf("..... %2d: %016" PRIx64 "\n",
1136 		       (int)(kernel_callchain_nr), entries[0].to);
1137 		for (i = 0; i < lbr_stack->nr; i++)
1138 			printf("..... %2d: %016" PRIx64 "\n",
1139 			       (int)(i + kernel_callchain_nr + 1), entries[i].from);
1140 	}
1141 }
1142 
1143 static void callchain__printf(struct evsel *evsel,
1144 			      struct perf_sample *sample)
1145 {
1146 	unsigned int i;
1147 	struct ip_callchain *callchain = sample->callchain;
1148 
1149 	if (evsel__has_branch_callstack(evsel))
1150 		callchain__lbr_callstack_printf(sample);
1151 
1152 	printf("... FP chain: nr:%" PRIu64 "\n", callchain->nr);
1153 
1154 	for (i = 0; i < callchain->nr; i++)
1155 		printf("..... %2d: %016" PRIx64 "\n",
1156 		       i, callchain->ips[i]);
1157 }
1158 
1159 static void branch_stack__printf(struct perf_sample *sample, bool callstack)
1160 {
1161 	struct branch_entry *entries = perf_sample__branch_entries(sample);
1162 	uint64_t i;
1163 
1164 	if (!callstack) {
1165 		printf("%s: nr:%" PRIu64 "\n", "... branch stack", sample->branch_stack->nr);
1166 	} else {
1167 		/* the reason of adding 1 to nr is because after expanding
1168 		 * branch stack it generates nr + 1 callstack records. e.g.,
1169 		 *         B()->C()
1170 		 *         A()->B()
1171 		 * the final callstack should be:
1172 		 *         C()
1173 		 *         B()
1174 		 *         A()
1175 		 */
1176 		printf("%s: nr:%" PRIu64 "\n", "... branch callstack", sample->branch_stack->nr+1);
1177 	}
1178 
1179 	for (i = 0; i < sample->branch_stack->nr; i++) {
1180 		struct branch_entry *e = &entries[i];
1181 
1182 		if (!callstack) {
1183 			printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 " %hu cycles %s%s%s%s %x %s\n",
1184 				i, e->from, e->to,
1185 				(unsigned short)e->flags.cycles,
1186 				e->flags.mispred ? "M" : " ",
1187 				e->flags.predicted ? "P" : " ",
1188 				e->flags.abort ? "A" : " ",
1189 				e->flags.in_tx ? "T" : " ",
1190 				(unsigned)e->flags.reserved,
1191 				get_branch_type(e));
1192 		} else {
1193 			if (i == 0) {
1194 				printf("..... %2"PRIu64": %016" PRIx64 "\n"
1195 				       "..... %2"PRIu64": %016" PRIx64 "\n",
1196 						i, e->to, i+1, e->from);
1197 			} else {
1198 				printf("..... %2"PRIu64": %016" PRIx64 "\n", i+1, e->from);
1199 			}
1200 		}
1201 	}
1202 }
1203 
1204 static void regs_dump__printf(u64 mask, u64 *regs, const char *arch)
1205 {
1206 	unsigned rid, i = 0;
1207 
1208 	for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) {
1209 		u64 val = regs[i++];
1210 
1211 		printf(".... %-5s 0x%016" PRIx64 "\n",
1212 		       perf_reg_name(rid, arch), val);
1213 	}
1214 }
1215 
1216 static const char *regs_abi[] = {
1217 	[PERF_SAMPLE_REGS_ABI_NONE] = "none",
1218 	[PERF_SAMPLE_REGS_ABI_32] = "32-bit",
1219 	[PERF_SAMPLE_REGS_ABI_64] = "64-bit",
1220 };
1221 
1222 static inline const char *regs_dump_abi(struct regs_dump *d)
1223 {
1224 	if (d->abi > PERF_SAMPLE_REGS_ABI_64)
1225 		return "unknown";
1226 
1227 	return regs_abi[d->abi];
1228 }
1229 
1230 static void regs__printf(const char *type, struct regs_dump *regs, const char *arch)
1231 {
1232 	u64 mask = regs->mask;
1233 
1234 	printf("... %s regs: mask 0x%" PRIx64 " ABI %s\n",
1235 	       type,
1236 	       mask,
1237 	       regs_dump_abi(regs));
1238 
1239 	regs_dump__printf(mask, regs->regs, arch);
1240 }
1241 
1242 static void regs_user__printf(struct perf_sample *sample, const char *arch)
1243 {
1244 	struct regs_dump *user_regs = &sample->user_regs;
1245 
1246 	if (user_regs->regs)
1247 		regs__printf("user", user_regs, arch);
1248 }
1249 
1250 static void regs_intr__printf(struct perf_sample *sample, const char *arch)
1251 {
1252 	struct regs_dump *intr_regs = &sample->intr_regs;
1253 
1254 	if (intr_regs->regs)
1255 		regs__printf("intr", intr_regs, arch);
1256 }
1257 
1258 static void stack_user__printf(struct stack_dump *dump)
1259 {
1260 	printf("... ustack: size %" PRIu64 ", offset 0x%x\n",
1261 	       dump->size, dump->offset);
1262 }
1263 
1264 static void evlist__print_tstamp(struct evlist *evlist, union perf_event *event, struct perf_sample *sample)
1265 {
1266 	u64 sample_type = __evlist__combined_sample_type(evlist);
1267 
1268 	if (event->header.type != PERF_RECORD_SAMPLE &&
1269 	    !evlist__sample_id_all(evlist)) {
1270 		fputs("-1 -1 ", stdout);
1271 		return;
1272 	}
1273 
1274 	if ((sample_type & PERF_SAMPLE_CPU))
1275 		printf("%u ", sample->cpu);
1276 
1277 	if (sample_type & PERF_SAMPLE_TIME)
1278 		printf("%" PRIu64 " ", sample->time);
1279 }
1280 
1281 static void sample_read__printf(struct perf_sample *sample, u64 read_format)
1282 {
1283 	printf("... sample_read:\n");
1284 
1285 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1286 		printf("...... time enabled %016" PRIx64 "\n",
1287 		       sample->read.time_enabled);
1288 
1289 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1290 		printf("...... time running %016" PRIx64 "\n",
1291 		       sample->read.time_running);
1292 
1293 	if (read_format & PERF_FORMAT_GROUP) {
1294 		struct sample_read_value *value = sample->read.group.values;
1295 
1296 		printf(".... group nr %" PRIu64 "\n", sample->read.group.nr);
1297 
1298 		sample_read_group__for_each(value, sample->read.group.nr, read_format) {
1299 			printf("..... id %016" PRIx64
1300 			       ", value %016" PRIx64,
1301 			       value->id, value->value);
1302 			if (read_format & PERF_FORMAT_LOST)
1303 				printf(", lost %" PRIu64, value->lost);
1304 			printf("\n");
1305 		}
1306 	} else {
1307 		printf("..... id %016" PRIx64 ", value %016" PRIx64,
1308 			sample->read.one.id, sample->read.one.value);
1309 		if (read_format & PERF_FORMAT_LOST)
1310 			printf(", lost %" PRIu64, sample->read.one.lost);
1311 		printf("\n");
1312 	}
1313 }
1314 
1315 static void dump_event(struct evlist *evlist, union perf_event *event,
1316 		       u64 file_offset, struct perf_sample *sample,
1317 		       const char *file_path)
1318 {
1319 	if (!dump_trace)
1320 		return;
1321 
1322 	printf("\n%#" PRIx64 "@%s [%#x]: event: %d\n",
1323 	       file_offset, file_path, event->header.size, event->header.type);
1324 
1325 	trace_event(event);
1326 	if (event->header.type == PERF_RECORD_SAMPLE && evlist->trace_event_sample_raw)
1327 		evlist->trace_event_sample_raw(evlist, event, sample);
1328 
1329 	if (sample)
1330 		evlist__print_tstamp(evlist, event, sample);
1331 
1332 	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
1333 	       event->header.size, perf_event__name(event->header.type));
1334 }
1335 
1336 char *get_page_size_name(u64 size, char *str)
1337 {
1338 	if (!size || !unit_number__scnprintf(str, PAGE_SIZE_NAME_LEN, size))
1339 		snprintf(str, PAGE_SIZE_NAME_LEN, "%s", "N/A");
1340 
1341 	return str;
1342 }
1343 
1344 static void dump_sample(struct evsel *evsel, union perf_event *event,
1345 			struct perf_sample *sample, const char *arch)
1346 {
1347 	u64 sample_type;
1348 	char str[PAGE_SIZE_NAME_LEN];
1349 
1350 	if (!dump_trace)
1351 		return;
1352 
1353 	printf("(IP, 0x%x): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
1354 	       event->header.misc, sample->pid, sample->tid, sample->ip,
1355 	       sample->period, sample->addr);
1356 
1357 	sample_type = evsel->core.attr.sample_type;
1358 
1359 	if (evsel__has_callchain(evsel))
1360 		callchain__printf(evsel, sample);
1361 
1362 	if (evsel__has_br_stack(evsel))
1363 		branch_stack__printf(sample, evsel__has_branch_callstack(evsel));
1364 
1365 	if (sample_type & PERF_SAMPLE_REGS_USER)
1366 		regs_user__printf(sample, arch);
1367 
1368 	if (sample_type & PERF_SAMPLE_REGS_INTR)
1369 		regs_intr__printf(sample, arch);
1370 
1371 	if (sample_type & PERF_SAMPLE_STACK_USER)
1372 		stack_user__printf(&sample->user_stack);
1373 
1374 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1375 		printf("... weight: %" PRIu64 "", sample->weight);
1376 			if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
1377 				printf(",0x%"PRIx16"", sample->ins_lat);
1378 				printf(",0x%"PRIx16"", sample->p_stage_cyc);
1379 			}
1380 		printf("\n");
1381 	}
1382 
1383 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1384 		printf(" . data_src: 0x%"PRIx64"\n", sample->data_src);
1385 
1386 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1387 		printf(" .. phys_addr: 0x%"PRIx64"\n", sample->phys_addr);
1388 
1389 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1390 		printf(" .. data page size: %s\n", get_page_size_name(sample->data_page_size, str));
1391 
1392 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1393 		printf(" .. code page size: %s\n", get_page_size_name(sample->code_page_size, str));
1394 
1395 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1396 		printf("... transaction: %" PRIx64 "\n", sample->transaction);
1397 
1398 	if (sample_type & PERF_SAMPLE_READ)
1399 		sample_read__printf(sample, evsel->core.attr.read_format);
1400 }
1401 
1402 static void dump_read(struct evsel *evsel, union perf_event *event)
1403 {
1404 	struct perf_record_read *read_event = &event->read;
1405 	u64 read_format;
1406 
1407 	if (!dump_trace)
1408 		return;
1409 
1410 	printf(": %d %d %s %" PRI_lu64 "\n", event->read.pid, event->read.tid,
1411 	       evsel__name(evsel), event->read.value);
1412 
1413 	if (!evsel)
1414 		return;
1415 
1416 	read_format = evsel->core.attr.read_format;
1417 
1418 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1419 		printf("... time enabled : %" PRI_lu64 "\n", read_event->time_enabled);
1420 
1421 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1422 		printf("... time running : %" PRI_lu64 "\n", read_event->time_running);
1423 
1424 	if (read_format & PERF_FORMAT_ID)
1425 		printf("... id           : %" PRI_lu64 "\n", read_event->id);
1426 
1427 	if (read_format & PERF_FORMAT_LOST)
1428 		printf("... lost         : %" PRI_lu64 "\n", read_event->lost);
1429 }
1430 
1431 static struct machine *machines__find_for_cpumode(struct machines *machines,
1432 					       union perf_event *event,
1433 					       struct perf_sample *sample)
1434 {
1435 	if (perf_guest &&
1436 	    ((sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL) ||
1437 	     (sample->cpumode == PERF_RECORD_MISC_GUEST_USER))) {
1438 		u32 pid;
1439 
1440 		if (sample->machine_pid)
1441 			pid = sample->machine_pid;
1442 		else if (event->header.type == PERF_RECORD_MMAP
1443 		    || event->header.type == PERF_RECORD_MMAP2)
1444 			pid = event->mmap.pid;
1445 		else
1446 			pid = sample->pid;
1447 
1448 		/*
1449 		 * Guest code machine is created as needed and does not use
1450 		 * DEFAULT_GUEST_KERNEL_ID.
1451 		 */
1452 		if (symbol_conf.guest_code)
1453 			return machines__findnew(machines, pid);
1454 
1455 		return machines__find_guest(machines, pid);
1456 	}
1457 
1458 	return &machines->host;
1459 }
1460 
1461 static int deliver_sample_value(struct evlist *evlist,
1462 				struct perf_tool *tool,
1463 				union perf_event *event,
1464 				struct perf_sample *sample,
1465 				struct sample_read_value *v,
1466 				struct machine *machine)
1467 {
1468 	struct perf_sample_id *sid = evlist__id2sid(evlist, v->id);
1469 	struct evsel *evsel;
1470 
1471 	if (sid) {
1472 		sample->id     = v->id;
1473 		sample->period = v->value - sid->period;
1474 		sid->period    = v->value;
1475 	}
1476 
1477 	if (!sid || sid->evsel == NULL) {
1478 		++evlist->stats.nr_unknown_id;
1479 		return 0;
1480 	}
1481 
1482 	/*
1483 	 * There's no reason to deliver sample
1484 	 * for zero period, bail out.
1485 	 */
1486 	if (!sample->period)
1487 		return 0;
1488 
1489 	evsel = container_of(sid->evsel, struct evsel, core);
1490 	return tool->sample(tool, event, sample, evsel, machine);
1491 }
1492 
1493 static int deliver_sample_group(struct evlist *evlist,
1494 				struct perf_tool *tool,
1495 				union  perf_event *event,
1496 				struct perf_sample *sample,
1497 				struct machine *machine,
1498 				u64 read_format)
1499 {
1500 	int ret = -EINVAL;
1501 	struct sample_read_value *v = sample->read.group.values;
1502 
1503 	sample_read_group__for_each(v, sample->read.group.nr, read_format) {
1504 		ret = deliver_sample_value(evlist, tool, event, sample, v,
1505 					   machine);
1506 		if (ret)
1507 			break;
1508 	}
1509 
1510 	return ret;
1511 }
1512 
1513 static int evlist__deliver_sample(struct evlist *evlist, struct perf_tool *tool,
1514 				  union  perf_event *event, struct perf_sample *sample,
1515 				  struct evsel *evsel, struct machine *machine)
1516 {
1517 	/* We know evsel != NULL. */
1518 	u64 sample_type = evsel->core.attr.sample_type;
1519 	u64 read_format = evsel->core.attr.read_format;
1520 
1521 	/* Standard sample delivery. */
1522 	if (!(sample_type & PERF_SAMPLE_READ))
1523 		return tool->sample(tool, event, sample, evsel, machine);
1524 
1525 	/* For PERF_SAMPLE_READ we have either single or group mode. */
1526 	if (read_format & PERF_FORMAT_GROUP)
1527 		return deliver_sample_group(evlist, tool, event, sample,
1528 					    machine, read_format);
1529 	else
1530 		return deliver_sample_value(evlist, tool, event, sample,
1531 					    &sample->read.one, machine);
1532 }
1533 
1534 static int machines__deliver_event(struct machines *machines,
1535 				   struct evlist *evlist,
1536 				   union perf_event *event,
1537 				   struct perf_sample *sample,
1538 				   struct perf_tool *tool, u64 file_offset,
1539 				   const char *file_path)
1540 {
1541 	struct evsel *evsel;
1542 	struct machine *machine;
1543 
1544 	dump_event(evlist, event, file_offset, sample, file_path);
1545 
1546 	evsel = evlist__id2evsel(evlist, sample->id);
1547 
1548 	machine = machines__find_for_cpumode(machines, event, sample);
1549 
1550 	switch (event->header.type) {
1551 	case PERF_RECORD_SAMPLE:
1552 		if (evsel == NULL) {
1553 			++evlist->stats.nr_unknown_id;
1554 			return 0;
1555 		}
1556 		if (machine == NULL) {
1557 			++evlist->stats.nr_unprocessable_samples;
1558 			dump_sample(evsel, event, sample, perf_env__arch(NULL));
1559 			return 0;
1560 		}
1561 		dump_sample(evsel, event, sample, perf_env__arch(machine->env));
1562 		return evlist__deliver_sample(evlist, tool, event, sample, evsel, machine);
1563 	case PERF_RECORD_MMAP:
1564 		return tool->mmap(tool, event, sample, machine);
1565 	case PERF_RECORD_MMAP2:
1566 		if (event->header.misc & PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT)
1567 			++evlist->stats.nr_proc_map_timeout;
1568 		return tool->mmap2(tool, event, sample, machine);
1569 	case PERF_RECORD_COMM:
1570 		return tool->comm(tool, event, sample, machine);
1571 	case PERF_RECORD_NAMESPACES:
1572 		return tool->namespaces(tool, event, sample, machine);
1573 	case PERF_RECORD_CGROUP:
1574 		return tool->cgroup(tool, event, sample, machine);
1575 	case PERF_RECORD_FORK:
1576 		return tool->fork(tool, event, sample, machine);
1577 	case PERF_RECORD_EXIT:
1578 		return tool->exit(tool, event, sample, machine);
1579 	case PERF_RECORD_LOST:
1580 		if (tool->lost == perf_event__process_lost)
1581 			evlist->stats.total_lost += event->lost.lost;
1582 		return tool->lost(tool, event, sample, machine);
1583 	case PERF_RECORD_LOST_SAMPLES:
1584 		if (tool->lost_samples == perf_event__process_lost_samples)
1585 			evlist->stats.total_lost_samples += event->lost_samples.lost;
1586 		return tool->lost_samples(tool, event, sample, machine);
1587 	case PERF_RECORD_READ:
1588 		dump_read(evsel, event);
1589 		return tool->read(tool, event, sample, evsel, machine);
1590 	case PERF_RECORD_THROTTLE:
1591 		return tool->throttle(tool, event, sample, machine);
1592 	case PERF_RECORD_UNTHROTTLE:
1593 		return tool->unthrottle(tool, event, sample, machine);
1594 	case PERF_RECORD_AUX:
1595 		if (tool->aux == perf_event__process_aux) {
1596 			if (event->aux.flags & PERF_AUX_FLAG_TRUNCATED)
1597 				evlist->stats.total_aux_lost += 1;
1598 			if (event->aux.flags & PERF_AUX_FLAG_PARTIAL)
1599 				evlist->stats.total_aux_partial += 1;
1600 			if (event->aux.flags & PERF_AUX_FLAG_COLLISION)
1601 				evlist->stats.total_aux_collision += 1;
1602 		}
1603 		return tool->aux(tool, event, sample, machine);
1604 	case PERF_RECORD_ITRACE_START:
1605 		return tool->itrace_start(tool, event, sample, machine);
1606 	case PERF_RECORD_SWITCH:
1607 	case PERF_RECORD_SWITCH_CPU_WIDE:
1608 		return tool->context_switch(tool, event, sample, machine);
1609 	case PERF_RECORD_KSYMBOL:
1610 		return tool->ksymbol(tool, event, sample, machine);
1611 	case PERF_RECORD_BPF_EVENT:
1612 		return tool->bpf(tool, event, sample, machine);
1613 	case PERF_RECORD_TEXT_POKE:
1614 		return tool->text_poke(tool, event, sample, machine);
1615 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
1616 		return tool->aux_output_hw_id(tool, event, sample, machine);
1617 	default:
1618 		++evlist->stats.nr_unknown_events;
1619 		return -1;
1620 	}
1621 }
1622 
1623 static int perf_session__deliver_event(struct perf_session *session,
1624 				       union perf_event *event,
1625 				       struct perf_tool *tool,
1626 				       u64 file_offset,
1627 				       const char *file_path)
1628 {
1629 	struct perf_sample sample;
1630 	int ret = evlist__parse_sample(session->evlist, event, &sample);
1631 
1632 	if (ret) {
1633 		pr_err("Can't parse sample, err = %d\n", ret);
1634 		return ret;
1635 	}
1636 
1637 	ret = auxtrace__process_event(session, event, &sample, tool);
1638 	if (ret < 0)
1639 		return ret;
1640 	if (ret > 0)
1641 		return 0;
1642 
1643 	ret = machines__deliver_event(&session->machines, session->evlist,
1644 				      event, &sample, tool, file_offset, file_path);
1645 
1646 	if (dump_trace && sample.aux_sample.size)
1647 		auxtrace__dump_auxtrace_sample(session, &sample);
1648 
1649 	return ret;
1650 }
1651 
1652 static s64 perf_session__process_user_event(struct perf_session *session,
1653 					    union perf_event *event,
1654 					    u64 file_offset,
1655 					    const char *file_path)
1656 {
1657 	struct ordered_events *oe = &session->ordered_events;
1658 	struct perf_tool *tool = session->tool;
1659 	struct perf_sample sample = { .time = 0, };
1660 	int fd = perf_data__fd(session->data);
1661 	int err;
1662 
1663 	if (event->header.type != PERF_RECORD_COMPRESSED ||
1664 	    tool->compressed == perf_session__process_compressed_event_stub)
1665 		dump_event(session->evlist, event, file_offset, &sample, file_path);
1666 
1667 	/* These events are processed right away */
1668 	switch (event->header.type) {
1669 	case PERF_RECORD_HEADER_ATTR:
1670 		err = tool->attr(tool, event, &session->evlist);
1671 		if (err == 0) {
1672 			perf_session__set_id_hdr_size(session);
1673 			perf_session__set_comm_exec(session);
1674 		}
1675 		return err;
1676 	case PERF_RECORD_EVENT_UPDATE:
1677 		return tool->event_update(tool, event, &session->evlist);
1678 	case PERF_RECORD_HEADER_EVENT_TYPE:
1679 		/*
1680 		 * Deprecated, but we need to handle it for sake
1681 		 * of old data files create in pipe mode.
1682 		 */
1683 		return 0;
1684 	case PERF_RECORD_HEADER_TRACING_DATA:
1685 		/*
1686 		 * Setup for reading amidst mmap, but only when we
1687 		 * are in 'file' mode. The 'pipe' fd is in proper
1688 		 * place already.
1689 		 */
1690 		if (!perf_data__is_pipe(session->data))
1691 			lseek(fd, file_offset, SEEK_SET);
1692 		return tool->tracing_data(session, event);
1693 	case PERF_RECORD_HEADER_BUILD_ID:
1694 		return tool->build_id(session, event);
1695 	case PERF_RECORD_FINISHED_ROUND:
1696 		return tool->finished_round(tool, event, oe);
1697 	case PERF_RECORD_ID_INDEX:
1698 		return tool->id_index(session, event);
1699 	case PERF_RECORD_AUXTRACE_INFO:
1700 		return tool->auxtrace_info(session, event);
1701 	case PERF_RECORD_AUXTRACE:
1702 		/* setup for reading amidst mmap */
1703 		lseek(fd, file_offset + event->header.size, SEEK_SET);
1704 		return tool->auxtrace(session, event);
1705 	case PERF_RECORD_AUXTRACE_ERROR:
1706 		perf_session__auxtrace_error_inc(session, event);
1707 		return tool->auxtrace_error(session, event);
1708 	case PERF_RECORD_THREAD_MAP:
1709 		return tool->thread_map(session, event);
1710 	case PERF_RECORD_CPU_MAP:
1711 		return tool->cpu_map(session, event);
1712 	case PERF_RECORD_STAT_CONFIG:
1713 		return tool->stat_config(session, event);
1714 	case PERF_RECORD_STAT:
1715 		return tool->stat(session, event);
1716 	case PERF_RECORD_STAT_ROUND:
1717 		return tool->stat_round(session, event);
1718 	case PERF_RECORD_TIME_CONV:
1719 		session->time_conv = event->time_conv;
1720 		return tool->time_conv(session, event);
1721 	case PERF_RECORD_HEADER_FEATURE:
1722 		return tool->feature(session, event);
1723 	case PERF_RECORD_COMPRESSED:
1724 		err = tool->compressed(session, event, file_offset, file_path);
1725 		if (err)
1726 			dump_event(session->evlist, event, file_offset, &sample, file_path);
1727 		return err;
1728 	case PERF_RECORD_FINISHED_INIT:
1729 		return tool->finished_init(session, event);
1730 	default:
1731 		return -EINVAL;
1732 	}
1733 }
1734 
1735 int perf_session__deliver_synth_event(struct perf_session *session,
1736 				      union perf_event *event,
1737 				      struct perf_sample *sample)
1738 {
1739 	struct evlist *evlist = session->evlist;
1740 	struct perf_tool *tool = session->tool;
1741 
1742 	events_stats__inc(&evlist->stats, event->header.type);
1743 
1744 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1745 		return perf_session__process_user_event(session, event, 0, NULL);
1746 
1747 	return machines__deliver_event(&session->machines, evlist, event, sample, tool, 0, NULL);
1748 }
1749 
1750 static void event_swap(union perf_event *event, bool sample_id_all)
1751 {
1752 	perf_event__swap_op swap;
1753 
1754 	swap = perf_event__swap_ops[event->header.type];
1755 	if (swap)
1756 		swap(event, sample_id_all);
1757 }
1758 
1759 int perf_session__peek_event(struct perf_session *session, off_t file_offset,
1760 			     void *buf, size_t buf_sz,
1761 			     union perf_event **event_ptr,
1762 			     struct perf_sample *sample)
1763 {
1764 	union perf_event *event;
1765 	size_t hdr_sz, rest;
1766 	int fd;
1767 
1768 	if (session->one_mmap && !session->header.needs_swap) {
1769 		event = file_offset - session->one_mmap_offset +
1770 			session->one_mmap_addr;
1771 		goto out_parse_sample;
1772 	}
1773 
1774 	if (perf_data__is_pipe(session->data))
1775 		return -1;
1776 
1777 	fd = perf_data__fd(session->data);
1778 	hdr_sz = sizeof(struct perf_event_header);
1779 
1780 	if (buf_sz < hdr_sz)
1781 		return -1;
1782 
1783 	if (lseek(fd, file_offset, SEEK_SET) == (off_t)-1 ||
1784 	    readn(fd, buf, hdr_sz) != (ssize_t)hdr_sz)
1785 		return -1;
1786 
1787 	event = (union perf_event *)buf;
1788 
1789 	if (session->header.needs_swap)
1790 		perf_event_header__bswap(&event->header);
1791 
1792 	if (event->header.size < hdr_sz || event->header.size > buf_sz)
1793 		return -1;
1794 
1795 	buf += hdr_sz;
1796 	rest = event->header.size - hdr_sz;
1797 
1798 	if (readn(fd, buf, rest) != (ssize_t)rest)
1799 		return -1;
1800 
1801 	if (session->header.needs_swap)
1802 		event_swap(event, evlist__sample_id_all(session->evlist));
1803 
1804 out_parse_sample:
1805 
1806 	if (sample && event->header.type < PERF_RECORD_USER_TYPE_START &&
1807 	    evlist__parse_sample(session->evlist, event, sample))
1808 		return -1;
1809 
1810 	*event_ptr = event;
1811 
1812 	return 0;
1813 }
1814 
1815 int perf_session__peek_events(struct perf_session *session, u64 offset,
1816 			      u64 size, peek_events_cb_t cb, void *data)
1817 {
1818 	u64 max_offset = offset + size;
1819 	char buf[PERF_SAMPLE_MAX_SIZE];
1820 	union perf_event *event;
1821 	int err;
1822 
1823 	do {
1824 		err = perf_session__peek_event(session, offset, buf,
1825 					       PERF_SAMPLE_MAX_SIZE, &event,
1826 					       NULL);
1827 		if (err)
1828 			return err;
1829 
1830 		err = cb(session, event, offset, data);
1831 		if (err)
1832 			return err;
1833 
1834 		offset += event->header.size;
1835 		if (event->header.type == PERF_RECORD_AUXTRACE)
1836 			offset += event->auxtrace.size;
1837 
1838 	} while (offset < max_offset);
1839 
1840 	return err;
1841 }
1842 
1843 static s64 perf_session__process_event(struct perf_session *session,
1844 				       union perf_event *event, u64 file_offset,
1845 				       const char *file_path)
1846 {
1847 	struct evlist *evlist = session->evlist;
1848 	struct perf_tool *tool = session->tool;
1849 	int ret;
1850 
1851 	if (session->header.needs_swap)
1852 		event_swap(event, evlist__sample_id_all(evlist));
1853 
1854 	if (event->header.type >= PERF_RECORD_HEADER_MAX)
1855 		return -EINVAL;
1856 
1857 	events_stats__inc(&evlist->stats, event->header.type);
1858 
1859 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1860 		return perf_session__process_user_event(session, event, file_offset, file_path);
1861 
1862 	if (tool->ordered_events) {
1863 		u64 timestamp = -1ULL;
1864 
1865 		ret = evlist__parse_sample_timestamp(evlist, event, &timestamp);
1866 		if (ret && ret != -1)
1867 			return ret;
1868 
1869 		ret = perf_session__queue_event(session, event, timestamp, file_offset, file_path);
1870 		if (ret != -ETIME)
1871 			return ret;
1872 	}
1873 
1874 	return perf_session__deliver_event(session, event, tool, file_offset, file_path);
1875 }
1876 
1877 void perf_event_header__bswap(struct perf_event_header *hdr)
1878 {
1879 	hdr->type = bswap_32(hdr->type);
1880 	hdr->misc = bswap_16(hdr->misc);
1881 	hdr->size = bswap_16(hdr->size);
1882 }
1883 
1884 struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
1885 {
1886 	return machine__findnew_thread(&session->machines.host, -1, pid);
1887 }
1888 
1889 int perf_session__register_idle_thread(struct perf_session *session)
1890 {
1891 	struct thread *thread = machine__idle_thread(&session->machines.host);
1892 
1893 	/* machine__idle_thread() got the thread, so put it */
1894 	thread__put(thread);
1895 	return thread ? 0 : -1;
1896 }
1897 
1898 static void
1899 perf_session__warn_order(const struct perf_session *session)
1900 {
1901 	const struct ordered_events *oe = &session->ordered_events;
1902 	struct evsel *evsel;
1903 	bool should_warn = true;
1904 
1905 	evlist__for_each_entry(session->evlist, evsel) {
1906 		if (evsel->core.attr.write_backward)
1907 			should_warn = false;
1908 	}
1909 
1910 	if (!should_warn)
1911 		return;
1912 	if (oe->nr_unordered_events != 0)
1913 		ui__warning("%u out of order events recorded.\n", oe->nr_unordered_events);
1914 }
1915 
1916 static void perf_session__warn_about_errors(const struct perf_session *session)
1917 {
1918 	const struct events_stats *stats = &session->evlist->stats;
1919 
1920 	if (session->tool->lost == perf_event__process_lost &&
1921 	    stats->nr_events[PERF_RECORD_LOST] != 0) {
1922 		ui__warning("Processed %d events and lost %d chunks!\n\n"
1923 			    "Check IO/CPU overload!\n\n",
1924 			    stats->nr_events[0],
1925 			    stats->nr_events[PERF_RECORD_LOST]);
1926 	}
1927 
1928 	if (session->tool->lost_samples == perf_event__process_lost_samples) {
1929 		double drop_rate;
1930 
1931 		drop_rate = (double)stats->total_lost_samples /
1932 			    (double) (stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples);
1933 		if (drop_rate > 0.05) {
1934 			ui__warning("Processed %" PRIu64 " samples and lost %3.2f%%!\n\n",
1935 				    stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples,
1936 				    drop_rate * 100.0);
1937 		}
1938 	}
1939 
1940 	if (session->tool->aux == perf_event__process_aux &&
1941 	    stats->total_aux_lost != 0) {
1942 		ui__warning("AUX data lost %" PRIu64 " times out of %u!\n\n",
1943 			    stats->total_aux_lost,
1944 			    stats->nr_events[PERF_RECORD_AUX]);
1945 	}
1946 
1947 	if (session->tool->aux == perf_event__process_aux &&
1948 	    stats->total_aux_partial != 0) {
1949 		bool vmm_exclusive = false;
1950 
1951 		(void)sysfs__read_bool("module/kvm_intel/parameters/vmm_exclusive",
1952 		                       &vmm_exclusive);
1953 
1954 		ui__warning("AUX data had gaps in it %" PRIu64 " times out of %u!\n\n"
1955 		            "Are you running a KVM guest in the background?%s\n\n",
1956 			    stats->total_aux_partial,
1957 			    stats->nr_events[PERF_RECORD_AUX],
1958 			    vmm_exclusive ?
1959 			    "\nReloading kvm_intel module with vmm_exclusive=0\n"
1960 			    "will reduce the gaps to only guest's timeslices." :
1961 			    "");
1962 	}
1963 
1964 	if (session->tool->aux == perf_event__process_aux &&
1965 	    stats->total_aux_collision != 0) {
1966 		ui__warning("AUX data detected collision  %" PRIu64 " times out of %u!\n\n",
1967 			    stats->total_aux_collision,
1968 			    stats->nr_events[PERF_RECORD_AUX]);
1969 	}
1970 
1971 	if (stats->nr_unknown_events != 0) {
1972 		ui__warning("Found %u unknown events!\n\n"
1973 			    "Is this an older tool processing a perf.data "
1974 			    "file generated by a more recent tool?\n\n"
1975 			    "If that is not the case, consider "
1976 			    "reporting to linux-kernel@vger.kernel.org.\n\n",
1977 			    stats->nr_unknown_events);
1978 	}
1979 
1980 	if (stats->nr_unknown_id != 0) {
1981 		ui__warning("%u samples with id not present in the header\n",
1982 			    stats->nr_unknown_id);
1983 	}
1984 
1985 	if (stats->nr_invalid_chains != 0) {
1986 		ui__warning("Found invalid callchains!\n\n"
1987 			    "%u out of %u events were discarded for this reason.\n\n"
1988 			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
1989 			    stats->nr_invalid_chains,
1990 			    stats->nr_events[PERF_RECORD_SAMPLE]);
1991 	}
1992 
1993 	if (stats->nr_unprocessable_samples != 0) {
1994 		ui__warning("%u unprocessable samples recorded.\n"
1995 			    "Do you have a KVM guest running and not using 'perf kvm'?\n",
1996 			    stats->nr_unprocessable_samples);
1997 	}
1998 
1999 	perf_session__warn_order(session);
2000 
2001 	events_stats__auxtrace_error_warn(stats);
2002 
2003 	if (stats->nr_proc_map_timeout != 0) {
2004 		ui__warning("%d map information files for pre-existing threads were\n"
2005 			    "not processed, if there are samples for addresses they\n"
2006 			    "will not be resolved, you may find out which are these\n"
2007 			    "threads by running with -v and redirecting the output\n"
2008 			    "to a file.\n"
2009 			    "The time limit to process proc map is too short?\n"
2010 			    "Increase it by --proc-map-timeout\n",
2011 			    stats->nr_proc_map_timeout);
2012 	}
2013 }
2014 
2015 static int perf_session__flush_thread_stack(struct thread *thread,
2016 					    void *p __maybe_unused)
2017 {
2018 	return thread_stack__flush(thread);
2019 }
2020 
2021 static int perf_session__flush_thread_stacks(struct perf_session *session)
2022 {
2023 	return machines__for_each_thread(&session->machines,
2024 					 perf_session__flush_thread_stack,
2025 					 NULL);
2026 }
2027 
2028 volatile sig_atomic_t session_done;
2029 
2030 static int __perf_session__process_decomp_events(struct perf_session *session);
2031 
2032 static int __perf_session__process_pipe_events(struct perf_session *session)
2033 {
2034 	struct ordered_events *oe = &session->ordered_events;
2035 	struct perf_tool *tool = session->tool;
2036 	union perf_event *event;
2037 	uint32_t size, cur_size = 0;
2038 	void *buf = NULL;
2039 	s64 skip = 0;
2040 	u64 head;
2041 	ssize_t err;
2042 	void *p;
2043 
2044 	perf_tool__fill_defaults(tool);
2045 
2046 	head = 0;
2047 	cur_size = sizeof(union perf_event);
2048 
2049 	buf = malloc(cur_size);
2050 	if (!buf)
2051 		return -errno;
2052 	ordered_events__set_copy_on_queue(oe, true);
2053 more:
2054 	event = buf;
2055 	err = perf_data__read(session->data, event,
2056 			      sizeof(struct perf_event_header));
2057 	if (err <= 0) {
2058 		if (err == 0)
2059 			goto done;
2060 
2061 		pr_err("failed to read event header\n");
2062 		goto out_err;
2063 	}
2064 
2065 	if (session->header.needs_swap)
2066 		perf_event_header__bswap(&event->header);
2067 
2068 	size = event->header.size;
2069 	if (size < sizeof(struct perf_event_header)) {
2070 		pr_err("bad event header size\n");
2071 		goto out_err;
2072 	}
2073 
2074 	if (size > cur_size) {
2075 		void *new = realloc(buf, size);
2076 		if (!new) {
2077 			pr_err("failed to allocate memory to read event\n");
2078 			goto out_err;
2079 		}
2080 		buf = new;
2081 		cur_size = size;
2082 		event = buf;
2083 	}
2084 	p = event;
2085 	p += sizeof(struct perf_event_header);
2086 
2087 	if (size - sizeof(struct perf_event_header)) {
2088 		err = perf_data__read(session->data, p,
2089 				      size - sizeof(struct perf_event_header));
2090 		if (err <= 0) {
2091 			if (err == 0) {
2092 				pr_err("unexpected end of event stream\n");
2093 				goto done;
2094 			}
2095 
2096 			pr_err("failed to read event data\n");
2097 			goto out_err;
2098 		}
2099 	}
2100 
2101 	if ((skip = perf_session__process_event(session, event, head, "pipe")) < 0) {
2102 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
2103 		       head, event->header.size, event->header.type);
2104 		err = -EINVAL;
2105 		goto out_err;
2106 	}
2107 
2108 	head += size;
2109 
2110 	if (skip > 0)
2111 		head += skip;
2112 
2113 	err = __perf_session__process_decomp_events(session);
2114 	if (err)
2115 		goto out_err;
2116 
2117 	if (!session_done())
2118 		goto more;
2119 done:
2120 	/* do the final flush for ordered samples */
2121 	err = ordered_events__flush(oe, OE_FLUSH__FINAL);
2122 	if (err)
2123 		goto out_err;
2124 	err = auxtrace__flush_events(session, tool);
2125 	if (err)
2126 		goto out_err;
2127 	err = perf_session__flush_thread_stacks(session);
2128 out_err:
2129 	free(buf);
2130 	if (!tool->no_warn)
2131 		perf_session__warn_about_errors(session);
2132 	ordered_events__free(&session->ordered_events);
2133 	auxtrace__free_events(session);
2134 	return err;
2135 }
2136 
2137 static union perf_event *
2138 prefetch_event(char *buf, u64 head, size_t mmap_size,
2139 	       bool needs_swap, union perf_event *error)
2140 {
2141 	union perf_event *event;
2142 	u16 event_size;
2143 
2144 	/*
2145 	 * Ensure we have enough space remaining to read
2146 	 * the size of the event in the headers.
2147 	 */
2148 	if (head + sizeof(event->header) > mmap_size)
2149 		return NULL;
2150 
2151 	event = (union perf_event *)(buf + head);
2152 	if (needs_swap)
2153 		perf_event_header__bswap(&event->header);
2154 
2155 	event_size = event->header.size;
2156 	if (head + event_size <= mmap_size)
2157 		return event;
2158 
2159 	/* We're not fetching the event so swap back again */
2160 	if (needs_swap)
2161 		perf_event_header__bswap(&event->header);
2162 
2163 	/* Check if the event fits into the next mmapped buf. */
2164 	if (event_size <= mmap_size - head % page_size) {
2165 		/* Remap buf and fetch again. */
2166 		return NULL;
2167 	}
2168 
2169 	/* Invalid input. Event size should never exceed mmap_size. */
2170 	pr_debug("%s: head=%#" PRIx64 " event->header.size=%#x, mmap_size=%#zx:"
2171 		 " fuzzed or compressed perf.data?\n", __func__, head, event_size, mmap_size);
2172 
2173 	return error;
2174 }
2175 
2176 static union perf_event *
2177 fetch_mmaped_event(u64 head, size_t mmap_size, char *buf, bool needs_swap)
2178 {
2179 	return prefetch_event(buf, head, mmap_size, needs_swap, ERR_PTR(-EINVAL));
2180 }
2181 
2182 static union perf_event *
2183 fetch_decomp_event(u64 head, size_t mmap_size, char *buf, bool needs_swap)
2184 {
2185 	return prefetch_event(buf, head, mmap_size, needs_swap, NULL);
2186 }
2187 
2188 static int __perf_session__process_decomp_events(struct perf_session *session)
2189 {
2190 	s64 skip;
2191 	u64 size;
2192 	struct decomp *decomp = session->active_decomp->decomp_last;
2193 
2194 	if (!decomp)
2195 		return 0;
2196 
2197 	while (decomp->head < decomp->size && !session_done()) {
2198 		union perf_event *event = fetch_decomp_event(decomp->head, decomp->size, decomp->data,
2199 							     session->header.needs_swap);
2200 
2201 		if (!event)
2202 			break;
2203 
2204 		size = event->header.size;
2205 
2206 		if (size < sizeof(struct perf_event_header) ||
2207 		    (skip = perf_session__process_event(session, event, decomp->file_pos,
2208 							decomp->file_path)) < 0) {
2209 			pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
2210 				decomp->file_pos + decomp->head, event->header.size, event->header.type);
2211 			return -EINVAL;
2212 		}
2213 
2214 		if (skip)
2215 			size += skip;
2216 
2217 		decomp->head += size;
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 /*
2224  * On 64bit we can mmap the data file in one go. No need for tiny mmap
2225  * slices. On 32bit we use 32MB.
2226  */
2227 #if BITS_PER_LONG == 64
2228 #define MMAP_SIZE ULLONG_MAX
2229 #define NUM_MMAPS 1
2230 #else
2231 #define MMAP_SIZE (32 * 1024 * 1024ULL)
2232 #define NUM_MMAPS 128
2233 #endif
2234 
2235 struct reader;
2236 
2237 typedef s64 (*reader_cb_t)(struct perf_session *session,
2238 			   union perf_event *event,
2239 			   u64 file_offset,
2240 			   const char *file_path);
2241 
2242 struct reader {
2243 	int		 fd;
2244 	const char	 *path;
2245 	u64		 data_size;
2246 	u64		 data_offset;
2247 	reader_cb_t	 process;
2248 	bool		 in_place_update;
2249 	char		 *mmaps[NUM_MMAPS];
2250 	size_t		 mmap_size;
2251 	int		 mmap_idx;
2252 	char		 *mmap_cur;
2253 	u64		 file_pos;
2254 	u64		 file_offset;
2255 	u64		 head;
2256 	u64		 size;
2257 	bool		 done;
2258 	struct zstd_data   zstd_data;
2259 	struct decomp_data decomp_data;
2260 };
2261 
2262 static int
2263 reader__init(struct reader *rd, bool *one_mmap)
2264 {
2265 	u64 data_size = rd->data_size;
2266 	char **mmaps = rd->mmaps;
2267 
2268 	rd->head = rd->data_offset;
2269 	data_size += rd->data_offset;
2270 
2271 	rd->mmap_size = MMAP_SIZE;
2272 	if (rd->mmap_size > data_size) {
2273 		rd->mmap_size = data_size;
2274 		if (one_mmap)
2275 			*one_mmap = true;
2276 	}
2277 
2278 	memset(mmaps, 0, sizeof(rd->mmaps));
2279 
2280 	if (zstd_init(&rd->zstd_data, 0))
2281 		return -1;
2282 	rd->decomp_data.zstd_decomp = &rd->zstd_data;
2283 
2284 	return 0;
2285 }
2286 
2287 static void
2288 reader__release_decomp(struct reader *rd)
2289 {
2290 	perf_decomp__release_events(rd->decomp_data.decomp);
2291 	zstd_fini(&rd->zstd_data);
2292 }
2293 
2294 static int
2295 reader__mmap(struct reader *rd, struct perf_session *session)
2296 {
2297 	int mmap_prot, mmap_flags;
2298 	char *buf, **mmaps = rd->mmaps;
2299 	u64 page_offset;
2300 
2301 	mmap_prot  = PROT_READ;
2302 	mmap_flags = MAP_SHARED;
2303 
2304 	if (rd->in_place_update) {
2305 		mmap_prot  |= PROT_WRITE;
2306 	} else if (session->header.needs_swap) {
2307 		mmap_prot  |= PROT_WRITE;
2308 		mmap_flags = MAP_PRIVATE;
2309 	}
2310 
2311 	if (mmaps[rd->mmap_idx]) {
2312 		munmap(mmaps[rd->mmap_idx], rd->mmap_size);
2313 		mmaps[rd->mmap_idx] = NULL;
2314 	}
2315 
2316 	page_offset = page_size * (rd->head / page_size);
2317 	rd->file_offset += page_offset;
2318 	rd->head -= page_offset;
2319 
2320 	buf = mmap(NULL, rd->mmap_size, mmap_prot, mmap_flags, rd->fd,
2321 		   rd->file_offset);
2322 	if (buf == MAP_FAILED) {
2323 		pr_err("failed to mmap file\n");
2324 		return -errno;
2325 	}
2326 	mmaps[rd->mmap_idx] = rd->mmap_cur = buf;
2327 	rd->mmap_idx = (rd->mmap_idx + 1) & (ARRAY_SIZE(rd->mmaps) - 1);
2328 	rd->file_pos = rd->file_offset + rd->head;
2329 	if (session->one_mmap) {
2330 		session->one_mmap_addr = buf;
2331 		session->one_mmap_offset = rd->file_offset;
2332 	}
2333 
2334 	return 0;
2335 }
2336 
2337 enum {
2338 	READER_OK,
2339 	READER_NODATA,
2340 };
2341 
2342 static int
2343 reader__read_event(struct reader *rd, struct perf_session *session,
2344 		   struct ui_progress *prog)
2345 {
2346 	u64 size;
2347 	int err = READER_OK;
2348 	union perf_event *event;
2349 	s64 skip;
2350 
2351 	event = fetch_mmaped_event(rd->head, rd->mmap_size, rd->mmap_cur,
2352 				   session->header.needs_swap);
2353 	if (IS_ERR(event))
2354 		return PTR_ERR(event);
2355 
2356 	if (!event)
2357 		return READER_NODATA;
2358 
2359 	size = event->header.size;
2360 
2361 	skip = -EINVAL;
2362 
2363 	if (size < sizeof(struct perf_event_header) ||
2364 	    (skip = rd->process(session, event, rd->file_pos, rd->path)) < 0) {
2365 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d [%s]\n",
2366 		       rd->file_offset + rd->head, event->header.size,
2367 		       event->header.type, strerror(-skip));
2368 		err = skip;
2369 		goto out;
2370 	}
2371 
2372 	if (skip)
2373 		size += skip;
2374 
2375 	rd->size += size;
2376 	rd->head += size;
2377 	rd->file_pos += size;
2378 
2379 	err = __perf_session__process_decomp_events(session);
2380 	if (err)
2381 		goto out;
2382 
2383 	ui_progress__update(prog, size);
2384 
2385 out:
2386 	return err;
2387 }
2388 
2389 static inline bool
2390 reader__eof(struct reader *rd)
2391 {
2392 	return (rd->file_pos >= rd->data_size + rd->data_offset);
2393 }
2394 
2395 static int
2396 reader__process_events(struct reader *rd, struct perf_session *session,
2397 		       struct ui_progress *prog)
2398 {
2399 	int err;
2400 
2401 	err = reader__init(rd, &session->one_mmap);
2402 	if (err)
2403 		goto out;
2404 
2405 	session->active_decomp = &rd->decomp_data;
2406 
2407 remap:
2408 	err = reader__mmap(rd, session);
2409 	if (err)
2410 		goto out;
2411 
2412 more:
2413 	err = reader__read_event(rd, session, prog);
2414 	if (err < 0)
2415 		goto out;
2416 	else if (err == READER_NODATA)
2417 		goto remap;
2418 
2419 	if (session_done())
2420 		goto out;
2421 
2422 	if (!reader__eof(rd))
2423 		goto more;
2424 
2425 out:
2426 	session->active_decomp = &session->decomp_data;
2427 	return err;
2428 }
2429 
2430 static s64 process_simple(struct perf_session *session,
2431 			  union perf_event *event,
2432 			  u64 file_offset,
2433 			  const char *file_path)
2434 {
2435 	return perf_session__process_event(session, event, file_offset, file_path);
2436 }
2437 
2438 static int __perf_session__process_events(struct perf_session *session)
2439 {
2440 	struct reader rd = {
2441 		.fd		= perf_data__fd(session->data),
2442 		.path		= session->data->file.path,
2443 		.data_size	= session->header.data_size,
2444 		.data_offset	= session->header.data_offset,
2445 		.process	= process_simple,
2446 		.in_place_update = session->data->in_place_update,
2447 	};
2448 	struct ordered_events *oe = &session->ordered_events;
2449 	struct perf_tool *tool = session->tool;
2450 	struct ui_progress prog;
2451 	int err;
2452 
2453 	perf_tool__fill_defaults(tool);
2454 
2455 	if (rd.data_size == 0)
2456 		return -1;
2457 
2458 	ui_progress__init_size(&prog, rd.data_size, "Processing events...");
2459 
2460 	err = reader__process_events(&rd, session, &prog);
2461 	if (err)
2462 		goto out_err;
2463 	/* do the final flush for ordered samples */
2464 	err = ordered_events__flush(oe, OE_FLUSH__FINAL);
2465 	if (err)
2466 		goto out_err;
2467 	err = auxtrace__flush_events(session, tool);
2468 	if (err)
2469 		goto out_err;
2470 	err = perf_session__flush_thread_stacks(session);
2471 out_err:
2472 	ui_progress__finish();
2473 	if (!tool->no_warn)
2474 		perf_session__warn_about_errors(session);
2475 	/*
2476 	 * We may switching perf.data output, make ordered_events
2477 	 * reusable.
2478 	 */
2479 	ordered_events__reinit(&session->ordered_events);
2480 	auxtrace__free_events(session);
2481 	reader__release_decomp(&rd);
2482 	session->one_mmap = false;
2483 	return err;
2484 }
2485 
2486 /*
2487  * Processing 2 MB of data from each reader in sequence,
2488  * because that's the way the ordered events sorting works
2489  * most efficiently.
2490  */
2491 #define READER_MAX_SIZE (2 * 1024 * 1024)
2492 
2493 /*
2494  * This function reads, merge and process directory data.
2495  * It assumens the version 1 of directory data, where each
2496  * data file holds per-cpu data, already sorted by kernel.
2497  */
2498 static int __perf_session__process_dir_events(struct perf_session *session)
2499 {
2500 	struct perf_data *data = session->data;
2501 	struct perf_tool *tool = session->tool;
2502 	int i, ret, readers, nr_readers;
2503 	struct ui_progress prog;
2504 	u64 total_size = perf_data__size(session->data);
2505 	struct reader *rd;
2506 
2507 	perf_tool__fill_defaults(tool);
2508 
2509 	ui_progress__init_size(&prog, total_size, "Sorting events...");
2510 
2511 	nr_readers = 1;
2512 	for (i = 0; i < data->dir.nr; i++) {
2513 		if (data->dir.files[i].size)
2514 			nr_readers++;
2515 	}
2516 
2517 	rd = zalloc(nr_readers * sizeof(struct reader));
2518 	if (!rd)
2519 		return -ENOMEM;
2520 
2521 	rd[0] = (struct reader) {
2522 		.fd		 = perf_data__fd(session->data),
2523 		.path		 = session->data->file.path,
2524 		.data_size	 = session->header.data_size,
2525 		.data_offset	 = session->header.data_offset,
2526 		.process	 = process_simple,
2527 		.in_place_update = session->data->in_place_update,
2528 	};
2529 	ret = reader__init(&rd[0], NULL);
2530 	if (ret)
2531 		goto out_err;
2532 	ret = reader__mmap(&rd[0], session);
2533 	if (ret)
2534 		goto out_err;
2535 	readers = 1;
2536 
2537 	for (i = 0; i < data->dir.nr; i++) {
2538 		if (!data->dir.files[i].size)
2539 			continue;
2540 		rd[readers] = (struct reader) {
2541 			.fd		 = data->dir.files[i].fd,
2542 			.path		 = data->dir.files[i].path,
2543 			.data_size	 = data->dir.files[i].size,
2544 			.data_offset	 = 0,
2545 			.process	 = process_simple,
2546 			.in_place_update = session->data->in_place_update,
2547 		};
2548 		ret = reader__init(&rd[readers], NULL);
2549 		if (ret)
2550 			goto out_err;
2551 		ret = reader__mmap(&rd[readers], session);
2552 		if (ret)
2553 			goto out_err;
2554 		readers++;
2555 	}
2556 
2557 	i = 0;
2558 	while (readers) {
2559 		if (session_done())
2560 			break;
2561 
2562 		if (rd[i].done) {
2563 			i = (i + 1) % nr_readers;
2564 			continue;
2565 		}
2566 		if (reader__eof(&rd[i])) {
2567 			rd[i].done = true;
2568 			readers--;
2569 			continue;
2570 		}
2571 
2572 		session->active_decomp = &rd[i].decomp_data;
2573 		ret = reader__read_event(&rd[i], session, &prog);
2574 		if (ret < 0) {
2575 			goto out_err;
2576 		} else if (ret == READER_NODATA) {
2577 			ret = reader__mmap(&rd[i], session);
2578 			if (ret)
2579 				goto out_err;
2580 		}
2581 
2582 		if (rd[i].size >= READER_MAX_SIZE) {
2583 			rd[i].size = 0;
2584 			i = (i + 1) % nr_readers;
2585 		}
2586 	}
2587 
2588 	ret = ordered_events__flush(&session->ordered_events, OE_FLUSH__FINAL);
2589 	if (ret)
2590 		goto out_err;
2591 
2592 	ret = perf_session__flush_thread_stacks(session);
2593 out_err:
2594 	ui_progress__finish();
2595 
2596 	if (!tool->no_warn)
2597 		perf_session__warn_about_errors(session);
2598 
2599 	/*
2600 	 * We may switching perf.data output, make ordered_events
2601 	 * reusable.
2602 	 */
2603 	ordered_events__reinit(&session->ordered_events);
2604 
2605 	session->one_mmap = false;
2606 
2607 	session->active_decomp = &session->decomp_data;
2608 	for (i = 0; i < nr_readers; i++)
2609 		reader__release_decomp(&rd[i]);
2610 	zfree(&rd);
2611 
2612 	return ret;
2613 }
2614 
2615 int perf_session__process_events(struct perf_session *session)
2616 {
2617 	if (perf_session__register_idle_thread(session) < 0)
2618 		return -ENOMEM;
2619 
2620 	if (perf_data__is_pipe(session->data))
2621 		return __perf_session__process_pipe_events(session);
2622 
2623 	if (perf_data__is_dir(session->data) && session->data->dir.nr)
2624 		return __perf_session__process_dir_events(session);
2625 
2626 	return __perf_session__process_events(session);
2627 }
2628 
2629 bool perf_session__has_traces(struct perf_session *session, const char *msg)
2630 {
2631 	struct evsel *evsel;
2632 
2633 	evlist__for_each_entry(session->evlist, evsel) {
2634 		if (evsel->core.attr.type == PERF_TYPE_TRACEPOINT)
2635 			return true;
2636 	}
2637 
2638 	pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
2639 	return false;
2640 }
2641 
2642 int map__set_kallsyms_ref_reloc_sym(struct map *map, const char *symbol_name, u64 addr)
2643 {
2644 	char *bracket;
2645 	struct ref_reloc_sym *ref;
2646 	struct kmap *kmap;
2647 
2648 	ref = zalloc(sizeof(struct ref_reloc_sym));
2649 	if (ref == NULL)
2650 		return -ENOMEM;
2651 
2652 	ref->name = strdup(symbol_name);
2653 	if (ref->name == NULL) {
2654 		free(ref);
2655 		return -ENOMEM;
2656 	}
2657 
2658 	bracket = strchr(ref->name, ']');
2659 	if (bracket)
2660 		*bracket = '\0';
2661 
2662 	ref->addr = addr;
2663 
2664 	kmap = map__kmap(map);
2665 	if (kmap)
2666 		kmap->ref_reloc_sym = ref;
2667 
2668 	return 0;
2669 }
2670 
2671 size_t perf_session__fprintf_dsos(struct perf_session *session, FILE *fp)
2672 {
2673 	return machines__fprintf_dsos(&session->machines, fp);
2674 }
2675 
2676 size_t perf_session__fprintf_dsos_buildid(struct perf_session *session, FILE *fp,
2677 					  bool (skip)(struct dso *dso, int parm), int parm)
2678 {
2679 	return machines__fprintf_dsos_buildid(&session->machines, fp, skip, parm);
2680 }
2681 
2682 size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp,
2683 				       bool skip_empty)
2684 {
2685 	size_t ret;
2686 	const char *msg = "";
2687 
2688 	if (perf_header__has_feat(&session->header, HEADER_AUXTRACE))
2689 		msg = " (excludes AUX area (e.g. instruction trace) decoded / synthesized events)";
2690 
2691 	ret = fprintf(fp, "\nAggregated stats:%s\n", msg);
2692 
2693 	ret += events_stats__fprintf(&session->evlist->stats, fp, skip_empty);
2694 	return ret;
2695 }
2696 
2697 size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
2698 {
2699 	/*
2700 	 * FIXME: Here we have to actually print all the machines in this
2701 	 * session, not just the host...
2702 	 */
2703 	return machine__fprintf(&session->machines.host, fp);
2704 }
2705 
2706 struct evsel *perf_session__find_first_evtype(struct perf_session *session,
2707 					      unsigned int type)
2708 {
2709 	struct evsel *pos;
2710 
2711 	evlist__for_each_entry(session->evlist, pos) {
2712 		if (pos->core.attr.type == type)
2713 			return pos;
2714 	}
2715 	return NULL;
2716 }
2717 
2718 int perf_session__cpu_bitmap(struct perf_session *session,
2719 			     const char *cpu_list, unsigned long *cpu_bitmap)
2720 {
2721 	int i, err = -1;
2722 	struct perf_cpu_map *map;
2723 	int nr_cpus = min(session->header.env.nr_cpus_avail, MAX_NR_CPUS);
2724 
2725 	for (i = 0; i < PERF_TYPE_MAX; ++i) {
2726 		struct evsel *evsel;
2727 
2728 		evsel = perf_session__find_first_evtype(session, i);
2729 		if (!evsel)
2730 			continue;
2731 
2732 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CPU)) {
2733 			pr_err("File does not contain CPU events. "
2734 			       "Remove -C option to proceed.\n");
2735 			return -1;
2736 		}
2737 	}
2738 
2739 	map = perf_cpu_map__new(cpu_list);
2740 	if (map == NULL) {
2741 		pr_err("Invalid cpu_list\n");
2742 		return -1;
2743 	}
2744 
2745 	for (i = 0; i < perf_cpu_map__nr(map); i++) {
2746 		struct perf_cpu cpu = perf_cpu_map__cpu(map, i);
2747 
2748 		if (cpu.cpu >= nr_cpus) {
2749 			pr_err("Requested CPU %d too large. "
2750 			       "Consider raising MAX_NR_CPUS\n", cpu.cpu);
2751 			goto out_delete_map;
2752 		}
2753 
2754 		__set_bit(cpu.cpu, cpu_bitmap);
2755 	}
2756 
2757 	err = 0;
2758 
2759 out_delete_map:
2760 	perf_cpu_map__put(map);
2761 	return err;
2762 }
2763 
2764 void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
2765 				bool full)
2766 {
2767 	if (session == NULL || fp == NULL)
2768 		return;
2769 
2770 	fprintf(fp, "# ========\n");
2771 	perf_header__fprintf_info(session, fp, full);
2772 	fprintf(fp, "# ========\n#\n");
2773 }
2774 
2775 static int perf_session__register_guest(struct perf_session *session, pid_t machine_pid)
2776 {
2777 	struct machine *machine = machines__findnew(&session->machines, machine_pid);
2778 	struct thread *thread;
2779 
2780 	if (!machine)
2781 		return -ENOMEM;
2782 
2783 	machine->single_address_space = session->machines.host.single_address_space;
2784 
2785 	thread = machine__idle_thread(machine);
2786 	if (!thread)
2787 		return -ENOMEM;
2788 	thread__put(thread);
2789 
2790 	machine->kallsyms_filename = perf_data__guest_kallsyms_name(session->data, machine_pid);
2791 
2792 	return 0;
2793 }
2794 
2795 static int perf_session__set_guest_cpu(struct perf_session *session, pid_t pid,
2796 				       pid_t tid, int guest_cpu)
2797 {
2798 	struct machine *machine = &session->machines.host;
2799 	struct thread *thread = machine__findnew_thread(machine, pid, tid);
2800 
2801 	if (!thread)
2802 		return -ENOMEM;
2803 	thread->guest_cpu = guest_cpu;
2804 	thread__put(thread);
2805 
2806 	return 0;
2807 }
2808 
2809 int perf_event__process_id_index(struct perf_session *session,
2810 				 union perf_event *event)
2811 {
2812 	struct evlist *evlist = session->evlist;
2813 	struct perf_record_id_index *ie = &event->id_index;
2814 	size_t sz = ie->header.size - sizeof(*ie);
2815 	size_t i, nr, max_nr;
2816 	size_t e1_sz = sizeof(struct id_index_entry);
2817 	size_t e2_sz = sizeof(struct id_index_entry_2);
2818 	size_t etot_sz = e1_sz + e2_sz;
2819 	struct id_index_entry_2 *e2;
2820 	pid_t last_pid = 0;
2821 
2822 	max_nr = sz / e1_sz;
2823 	nr = ie->nr;
2824 	if (nr > max_nr) {
2825 		printf("Too big: nr %zu max_nr %zu\n", nr, max_nr);
2826 		return -EINVAL;
2827 	}
2828 
2829 	if (sz >= nr * etot_sz) {
2830 		max_nr = sz / etot_sz;
2831 		if (nr > max_nr) {
2832 			printf("Too big2: nr %zu max_nr %zu\n", nr, max_nr);
2833 			return -EINVAL;
2834 		}
2835 		e2 = (void *)ie + sizeof(*ie) + nr * e1_sz;
2836 	} else {
2837 		e2 = NULL;
2838 	}
2839 
2840 	if (dump_trace)
2841 		fprintf(stdout, " nr: %zu\n", nr);
2842 
2843 	for (i = 0; i < nr; i++, (e2 ? e2++ : 0)) {
2844 		struct id_index_entry *e = &ie->entries[i];
2845 		struct perf_sample_id *sid;
2846 		int ret;
2847 
2848 		if (dump_trace) {
2849 			fprintf(stdout,	" ... id: %"PRI_lu64, e->id);
2850 			fprintf(stdout,	"  idx: %"PRI_lu64, e->idx);
2851 			fprintf(stdout,	"  cpu: %"PRI_ld64, e->cpu);
2852 			fprintf(stdout, "  tid: %"PRI_ld64, e->tid);
2853 			if (e2) {
2854 				fprintf(stdout, "  machine_pid: %"PRI_ld64, e2->machine_pid);
2855 				fprintf(stdout, "  vcpu: %"PRI_lu64"\n", e2->vcpu);
2856 			} else {
2857 				fprintf(stdout, "\n");
2858 			}
2859 		}
2860 
2861 		sid = evlist__id2sid(evlist, e->id);
2862 		if (!sid)
2863 			return -ENOENT;
2864 
2865 		sid->idx = e->idx;
2866 		sid->cpu.cpu = e->cpu;
2867 		sid->tid = e->tid;
2868 
2869 		if (!e2)
2870 			continue;
2871 
2872 		sid->machine_pid = e2->machine_pid;
2873 		sid->vcpu.cpu = e2->vcpu;
2874 
2875 		if (!sid->machine_pid)
2876 			continue;
2877 
2878 		if (sid->machine_pid != last_pid) {
2879 			ret = perf_session__register_guest(session, sid->machine_pid);
2880 			if (ret)
2881 				return ret;
2882 			last_pid = sid->machine_pid;
2883 			perf_guest = true;
2884 		}
2885 
2886 		ret = perf_session__set_guest_cpu(session, sid->machine_pid, e->tid, e2->vcpu);
2887 		if (ret)
2888 			return ret;
2889 	}
2890 	return 0;
2891 }
2892