xref: /linux/tools/perf/util/session.c (revision 36239c6704b71da7fb8e2a9429e159a84d0c5a3e)
1 #define _FILE_OFFSET_BITS 64
2 
3 #include <linux/kernel.h>
4 
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9 
10 #include "session.h"
11 #include "sort.h"
12 #include "util.h"
13 
14 static int perf_session__open(struct perf_session *self, bool force)
15 {
16 	struct stat input_stat;
17 
18 	if (!strcmp(self->filename, "-")) {
19 		self->fd_pipe = true;
20 		self->fd = STDIN_FILENO;
21 
22 		if (perf_header__read(self, self->fd) < 0)
23 			pr_err("incompatible file format");
24 
25 		return 0;
26 	}
27 
28 	self->fd = open(self->filename, O_RDONLY);
29 	if (self->fd < 0) {
30 		pr_err("failed to open file: %s", self->filename);
31 		if (!strcmp(self->filename, "perf.data"))
32 			pr_err("  (try 'perf record' first)");
33 		pr_err("\n");
34 		return -errno;
35 	}
36 
37 	if (fstat(self->fd, &input_stat) < 0)
38 		goto out_close;
39 
40 	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
41 		pr_err("file %s not owned by current user or root\n",
42 		       self->filename);
43 		goto out_close;
44 	}
45 
46 	if (!input_stat.st_size) {
47 		pr_info("zero-sized file (%s), nothing to do!\n",
48 			self->filename);
49 		goto out_close;
50 	}
51 
52 	if (perf_header__read(self, self->fd) < 0) {
53 		pr_err("incompatible file format");
54 		goto out_close;
55 	}
56 
57 	self->size = input_stat.st_size;
58 	return 0;
59 
60 out_close:
61 	close(self->fd);
62 	self->fd = -1;
63 	return -1;
64 }
65 
66 void perf_session__update_sample_type(struct perf_session *self)
67 {
68 	self->sample_type = perf_header__sample_type(&self->header);
69 }
70 
71 int perf_session__create_kernel_maps(struct perf_session *self)
72 {
73 	int ret = machine__create_kernel_maps(&self->host_machine);
74 
75 	if (ret >= 0)
76 		ret = machines__create_guest_kernel_maps(&self->machines);
77 	return ret;
78 }
79 
80 struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
81 {
82 	size_t len = filename ? strlen(filename) + 1 : 0;
83 	struct perf_session *self = zalloc(sizeof(*self) + len);
84 
85 	if (self == NULL)
86 		goto out;
87 
88 	if (perf_header__init(&self->header) < 0)
89 		goto out_free;
90 
91 	memcpy(self->filename, filename, len);
92 	self->threads = RB_ROOT;
93 	INIT_LIST_HEAD(&self->dead_threads);
94 	self->hists_tree = RB_ROOT;
95 	self->last_match = NULL;
96 	self->mmap_window = 32;
97 	self->cwd = NULL;
98 	self->cwdlen = 0;
99 	self->machines = RB_ROOT;
100 	self->repipe = repipe;
101 	INIT_LIST_HEAD(&self->ordered_samples.samples_head);
102 	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
103 
104 	if (mode == O_RDONLY) {
105 		if (perf_session__open(self, force) < 0)
106 			goto out_delete;
107 	} else if (mode == O_WRONLY) {
108 		/*
109 		 * In O_RDONLY mode this will be performed when reading the
110 		 * kernel MMAP event, in event__process_mmap().
111 		 */
112 		if (perf_session__create_kernel_maps(self) < 0)
113 			goto out_delete;
114 	}
115 
116 	perf_session__update_sample_type(self);
117 out:
118 	return self;
119 out_free:
120 	free(self);
121 	return NULL;
122 out_delete:
123 	perf_session__delete(self);
124 	return NULL;
125 }
126 
127 void perf_session__delete(struct perf_session *self)
128 {
129 	perf_header__exit(&self->header);
130 	close(self->fd);
131 	free(self->cwd);
132 	free(self);
133 }
134 
135 void perf_session__remove_thread(struct perf_session *self, struct thread *th)
136 {
137 	rb_erase(&th->rb_node, &self->threads);
138 	/*
139 	 * We may have references to this thread, for instance in some hist_entry
140 	 * instances, so just move them to a separate list.
141 	 */
142 	list_add_tail(&th->node, &self->dead_threads);
143 }
144 
145 static bool symbol__match_parent_regex(struct symbol *sym)
146 {
147 	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
148 		return 1;
149 
150 	return 0;
151 }
152 
153 struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
154 						   struct thread *thread,
155 						   struct ip_callchain *chain,
156 						   struct symbol **parent)
157 {
158 	u8 cpumode = PERF_RECORD_MISC_USER;
159 	unsigned int i;
160 	struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
161 
162 	if (!syms)
163 		return NULL;
164 
165 	for (i = 0; i < chain->nr; i++) {
166 		u64 ip = chain->ips[i];
167 		struct addr_location al;
168 
169 		if (ip >= PERF_CONTEXT_MAX) {
170 			switch (ip) {
171 			case PERF_CONTEXT_HV:
172 				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
173 			case PERF_CONTEXT_KERNEL:
174 				cpumode = PERF_RECORD_MISC_KERNEL;	break;
175 			case PERF_CONTEXT_USER:
176 				cpumode = PERF_RECORD_MISC_USER;	break;
177 			default:
178 				break;
179 			}
180 			continue;
181 		}
182 
183 		al.filtered = false;
184 		thread__find_addr_location(thread, self, cpumode,
185 				MAP__FUNCTION, thread->pid, ip, &al, NULL);
186 		if (al.sym != NULL) {
187 			if (sort__has_parent && !*parent &&
188 			    symbol__match_parent_regex(al.sym))
189 				*parent = al.sym;
190 			if (!symbol_conf.use_callchain)
191 				break;
192 			syms[i].map = al.map;
193 			syms[i].sym = al.sym;
194 		}
195 	}
196 
197 	return syms;
198 }
199 
200 static int process_event_stub(event_t *event __used,
201 			      struct perf_session *session __used)
202 {
203 	dump_printf(": unhandled!\n");
204 	return 0;
205 }
206 
207 static int process_finished_round_stub(event_t *event __used,
208 				       struct perf_session *session __used,
209 				       struct perf_event_ops *ops __used)
210 {
211 	dump_printf(": unhandled!\n");
212 	return 0;
213 }
214 
215 static int process_finished_round(event_t *event,
216 				  struct perf_session *session,
217 				  struct perf_event_ops *ops);
218 
219 static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
220 {
221 	if (handler->sample == NULL)
222 		handler->sample = process_event_stub;
223 	if (handler->mmap == NULL)
224 		handler->mmap = process_event_stub;
225 	if (handler->comm == NULL)
226 		handler->comm = process_event_stub;
227 	if (handler->fork == NULL)
228 		handler->fork = process_event_stub;
229 	if (handler->exit == NULL)
230 		handler->exit = process_event_stub;
231 	if (handler->lost == NULL)
232 		handler->lost = process_event_stub;
233 	if (handler->read == NULL)
234 		handler->read = process_event_stub;
235 	if (handler->throttle == NULL)
236 		handler->throttle = process_event_stub;
237 	if (handler->unthrottle == NULL)
238 		handler->unthrottle = process_event_stub;
239 	if (handler->attr == NULL)
240 		handler->attr = process_event_stub;
241 	if (handler->event_type == NULL)
242 		handler->event_type = process_event_stub;
243 	if (handler->tracing_data == NULL)
244 		handler->tracing_data = process_event_stub;
245 	if (handler->build_id == NULL)
246 		handler->build_id = process_event_stub;
247 	if (handler->finished_round == NULL) {
248 		if (handler->ordered_samples)
249 			handler->finished_round = process_finished_round;
250 		else
251 			handler->finished_round = process_finished_round_stub;
252 	}
253 }
254 
255 void mem_bswap_64(void *src, int byte_size)
256 {
257 	u64 *m = src;
258 
259 	while (byte_size > 0) {
260 		*m = bswap_64(*m);
261 		byte_size -= sizeof(u64);
262 		++m;
263 	}
264 }
265 
266 static void event__all64_swap(event_t *self)
267 {
268 	struct perf_event_header *hdr = &self->header;
269 	mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
270 }
271 
272 static void event__comm_swap(event_t *self)
273 {
274 	self->comm.pid = bswap_32(self->comm.pid);
275 	self->comm.tid = bswap_32(self->comm.tid);
276 }
277 
278 static void event__mmap_swap(event_t *self)
279 {
280 	self->mmap.pid	 = bswap_32(self->mmap.pid);
281 	self->mmap.tid	 = bswap_32(self->mmap.tid);
282 	self->mmap.start = bswap_64(self->mmap.start);
283 	self->mmap.len	 = bswap_64(self->mmap.len);
284 	self->mmap.pgoff = bswap_64(self->mmap.pgoff);
285 }
286 
287 static void event__task_swap(event_t *self)
288 {
289 	self->fork.pid	= bswap_32(self->fork.pid);
290 	self->fork.tid	= bswap_32(self->fork.tid);
291 	self->fork.ppid	= bswap_32(self->fork.ppid);
292 	self->fork.ptid	= bswap_32(self->fork.ptid);
293 	self->fork.time	= bswap_64(self->fork.time);
294 }
295 
296 static void event__read_swap(event_t *self)
297 {
298 	self->read.pid		= bswap_32(self->read.pid);
299 	self->read.tid		= bswap_32(self->read.tid);
300 	self->read.value	= bswap_64(self->read.value);
301 	self->read.time_enabled	= bswap_64(self->read.time_enabled);
302 	self->read.time_running	= bswap_64(self->read.time_running);
303 	self->read.id		= bswap_64(self->read.id);
304 }
305 
306 static void event__attr_swap(event_t *self)
307 {
308 	size_t size;
309 
310 	self->attr.attr.type		= bswap_32(self->attr.attr.type);
311 	self->attr.attr.size		= bswap_32(self->attr.attr.size);
312 	self->attr.attr.config		= bswap_64(self->attr.attr.config);
313 	self->attr.attr.sample_period	= bswap_64(self->attr.attr.sample_period);
314 	self->attr.attr.sample_type	= bswap_64(self->attr.attr.sample_type);
315 	self->attr.attr.read_format	= bswap_64(self->attr.attr.read_format);
316 	self->attr.attr.wakeup_events	= bswap_32(self->attr.attr.wakeup_events);
317 	self->attr.attr.bp_type		= bswap_32(self->attr.attr.bp_type);
318 	self->attr.attr.bp_addr		= bswap_64(self->attr.attr.bp_addr);
319 	self->attr.attr.bp_len		= bswap_64(self->attr.attr.bp_len);
320 
321 	size = self->header.size;
322 	size -= (void *)&self->attr.id - (void *)self;
323 	mem_bswap_64(self->attr.id, size);
324 }
325 
326 static void event__event_type_swap(event_t *self)
327 {
328 	self->event_type.event_type.event_id =
329 		bswap_64(self->event_type.event_type.event_id);
330 }
331 
332 static void event__tracing_data_swap(event_t *self)
333 {
334 	self->tracing_data.size = bswap_32(self->tracing_data.size);
335 }
336 
337 typedef void (*event__swap_op)(event_t *self);
338 
339 static event__swap_op event__swap_ops[] = {
340 	[PERF_RECORD_MMAP]   = event__mmap_swap,
341 	[PERF_RECORD_COMM]   = event__comm_swap,
342 	[PERF_RECORD_FORK]   = event__task_swap,
343 	[PERF_RECORD_EXIT]   = event__task_swap,
344 	[PERF_RECORD_LOST]   = event__all64_swap,
345 	[PERF_RECORD_READ]   = event__read_swap,
346 	[PERF_RECORD_SAMPLE] = event__all64_swap,
347 	[PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
348 	[PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
349 	[PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
350 	[PERF_RECORD_HEADER_BUILD_ID]   = NULL,
351 	[PERF_RECORD_HEADER_MAX]    = NULL,
352 };
353 
354 struct sample_queue {
355 	u64			timestamp;
356 	struct sample_event	*event;
357 	struct list_head	list;
358 };
359 
360 static void flush_sample_queue(struct perf_session *s,
361 			       struct perf_event_ops *ops)
362 {
363 	struct list_head *head = &s->ordered_samples.samples_head;
364 	u64 limit = s->ordered_samples.next_flush;
365 	struct sample_queue *tmp, *iter;
366 
367 	if (!ops->ordered_samples || !limit)
368 		return;
369 
370 	list_for_each_entry_safe(iter, tmp, head, list) {
371 		if (iter->timestamp > limit)
372 			return;
373 
374 		if (iter == s->ordered_samples.last_inserted)
375 			s->ordered_samples.last_inserted = NULL;
376 
377 		ops->sample((event_t *)iter->event, s);
378 
379 		s->ordered_samples.last_flush = iter->timestamp;
380 		list_del(&iter->list);
381 		free(iter->event);
382 		free(iter);
383 	}
384 }
385 
386 /*
387  * When perf record finishes a pass on every buffers, it records this pseudo
388  * event.
389  * We record the max timestamp t found in the pass n.
390  * Assuming these timestamps are monotonic across cpus, we know that if
391  * a buffer still has events with timestamps below t, they will be all
392  * available and then read in the pass n + 1.
393  * Hence when we start to read the pass n + 2, we can safely flush every
394  * events with timestamps below t.
395  *
396  *    ============ PASS n =================
397  *       CPU 0         |   CPU 1
398  *                     |
399  *    cnt1 timestamps  |   cnt2 timestamps
400  *          1          |         2
401  *          2          |         3
402  *          -          |         4  <--- max recorded
403  *
404  *    ============ PASS n + 1 ==============
405  *       CPU 0         |   CPU 1
406  *                     |
407  *    cnt1 timestamps  |   cnt2 timestamps
408  *          3          |         5
409  *          4          |         6
410  *          5          |         7 <---- max recorded
411  *
412  *      Flush every events below timestamp 4
413  *
414  *    ============ PASS n + 2 ==============
415  *       CPU 0         |   CPU 1
416  *                     |
417  *    cnt1 timestamps  |   cnt2 timestamps
418  *          6          |         8
419  *          7          |         9
420  *          -          |         10
421  *
422  *      Flush every events below timestamp 7
423  *      etc...
424  */
425 static int process_finished_round(event_t *event __used,
426 				  struct perf_session *session,
427 				  struct perf_event_ops *ops)
428 {
429 	flush_sample_queue(session, ops);
430 	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
431 
432 	return 0;
433 }
434 
435 static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
436 {
437 	struct sample_queue *iter;
438 
439 	list_for_each_entry_reverse(iter, head, list) {
440 		if (iter->timestamp < new->timestamp) {
441 			list_add(&new->list, &iter->list);
442 			return;
443 		}
444 	}
445 
446 	list_add(&new->list, head);
447 }
448 
449 static void __queue_sample_before(struct sample_queue *new,
450 				  struct sample_queue *iter,
451 				  struct list_head *head)
452 {
453 	list_for_each_entry_continue_reverse(iter, head, list) {
454 		if (iter->timestamp < new->timestamp) {
455 			list_add(&new->list, &iter->list);
456 			return;
457 		}
458 	}
459 
460 	list_add(&new->list, head);
461 }
462 
463 static void __queue_sample_after(struct sample_queue *new,
464 				 struct sample_queue *iter,
465 				 struct list_head *head)
466 {
467 	list_for_each_entry_continue(iter, head, list) {
468 		if (iter->timestamp > new->timestamp) {
469 			list_add_tail(&new->list, &iter->list);
470 			return;
471 		}
472 	}
473 	list_add_tail(&new->list, head);
474 }
475 
476 /* The queue is ordered by time */
477 static void __queue_sample_event(struct sample_queue *new,
478 				 struct perf_session *s)
479 {
480 	struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
481 	struct list_head *head = &s->ordered_samples.samples_head;
482 
483 
484 	if (!last_inserted) {
485 		__queue_sample_end(new, head);
486 		return;
487 	}
488 
489 	/*
490 	 * Most of the time the current event has a timestamp
491 	 * very close to the last event inserted, unless we just switched
492 	 * to another event buffer. Having a sorting based on a list and
493 	 * on the last inserted event that is close to the current one is
494 	 * probably more efficient than an rbtree based sorting.
495 	 */
496 	if (last_inserted->timestamp >= new->timestamp)
497 		__queue_sample_before(new, last_inserted, head);
498 	else
499 		__queue_sample_after(new, last_inserted, head);
500 }
501 
502 static int queue_sample_event(event_t *event, struct sample_data *data,
503 			      struct perf_session *s)
504 {
505 	u64 timestamp = data->time;
506 	struct sample_queue *new;
507 
508 
509 	if (timestamp < s->ordered_samples.last_flush) {
510 		printf("Warning: Timestamp below last timeslice flush\n");
511 		return -EINVAL;
512 	}
513 
514 	new = malloc(sizeof(*new));
515 	if (!new)
516 		return -ENOMEM;
517 
518 	new->timestamp = timestamp;
519 
520 	new->event = malloc(event->header.size);
521 	if (!new->event) {
522 		free(new);
523 		return -ENOMEM;
524 	}
525 
526 	memcpy(new->event, event, event->header.size);
527 
528 	__queue_sample_event(new, s);
529 	s->ordered_samples.last_inserted = new;
530 
531 	if (new->timestamp > s->ordered_samples.max_timestamp)
532 		s->ordered_samples.max_timestamp = new->timestamp;
533 
534 	return 0;
535 }
536 
537 static int perf_session__process_sample(event_t *event, struct perf_session *s,
538 					struct perf_event_ops *ops)
539 {
540 	struct sample_data data;
541 
542 	if (!ops->ordered_samples)
543 		return ops->sample(event, s);
544 
545 	bzero(&data, sizeof(struct sample_data));
546 	event__parse_sample(event, s->sample_type, &data);
547 
548 	queue_sample_event(event, &data, s);
549 
550 	return 0;
551 }
552 
553 static int perf_session__process_event(struct perf_session *self,
554 				       event_t *event,
555 				       struct perf_event_ops *ops,
556 				       u64 offset, u64 head)
557 {
558 	trace_event(event);
559 
560 	if (event->header.type < PERF_RECORD_HEADER_MAX) {
561 		dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
562 			    offset + head, event->header.size,
563 			    event__name[event->header.type]);
564 		hists__inc_nr_events(&self->hists, event->header.type);
565 	}
566 
567 	if (self->header.needs_swap && event__swap_ops[event->header.type])
568 		event__swap_ops[event->header.type](event);
569 
570 	switch (event->header.type) {
571 	case PERF_RECORD_SAMPLE:
572 		return perf_session__process_sample(event, self, ops);
573 	case PERF_RECORD_MMAP:
574 		return ops->mmap(event, self);
575 	case PERF_RECORD_COMM:
576 		return ops->comm(event, self);
577 	case PERF_RECORD_FORK:
578 		return ops->fork(event, self);
579 	case PERF_RECORD_EXIT:
580 		return ops->exit(event, self);
581 	case PERF_RECORD_LOST:
582 		return ops->lost(event, self);
583 	case PERF_RECORD_READ:
584 		return ops->read(event, self);
585 	case PERF_RECORD_THROTTLE:
586 		return ops->throttle(event, self);
587 	case PERF_RECORD_UNTHROTTLE:
588 		return ops->unthrottle(event, self);
589 	case PERF_RECORD_HEADER_ATTR:
590 		return ops->attr(event, self);
591 	case PERF_RECORD_HEADER_EVENT_TYPE:
592 		return ops->event_type(event, self);
593 	case PERF_RECORD_HEADER_TRACING_DATA:
594 		/* setup for reading amidst mmap */
595 		lseek(self->fd, offset + head, SEEK_SET);
596 		return ops->tracing_data(event, self);
597 	case PERF_RECORD_HEADER_BUILD_ID:
598 		return ops->build_id(event, self);
599 	case PERF_RECORD_FINISHED_ROUND:
600 		return ops->finished_round(event, self, ops);
601 	default:
602 		++self->hists.stats.nr_unknown_events;
603 		return -1;
604 	}
605 }
606 
607 void perf_event_header__bswap(struct perf_event_header *self)
608 {
609 	self->type = bswap_32(self->type);
610 	self->misc = bswap_16(self->misc);
611 	self->size = bswap_16(self->size);
612 }
613 
614 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
615 {
616 	struct thread *thread = perf_session__findnew(self, 0);
617 
618 	if (thread == NULL || thread__set_comm(thread, "swapper")) {
619 		pr_err("problem inserting idle task.\n");
620 		thread = NULL;
621 	}
622 
623 	return thread;
624 }
625 
626 int do_read(int fd, void *buf, size_t size)
627 {
628 	void *buf_start = buf;
629 
630 	while (size) {
631 		int ret = read(fd, buf, size);
632 
633 		if (ret <= 0)
634 			return ret;
635 
636 		size -= ret;
637 		buf += ret;
638 	}
639 
640 	return buf - buf_start;
641 }
642 
643 #define session_done()	(*(volatile int *)(&session_done))
644 volatile int session_done;
645 
646 static int __perf_session__process_pipe_events(struct perf_session *self,
647 					       struct perf_event_ops *ops)
648 {
649 	event_t event;
650 	uint32_t size;
651 	int skip = 0;
652 	u64 head;
653 	int err;
654 	void *p;
655 
656 	perf_event_ops__fill_defaults(ops);
657 
658 	head = 0;
659 more:
660 	err = do_read(self->fd, &event, sizeof(struct perf_event_header));
661 	if (err <= 0) {
662 		if (err == 0)
663 			goto done;
664 
665 		pr_err("failed to read event header\n");
666 		goto out_err;
667 	}
668 
669 	if (self->header.needs_swap)
670 		perf_event_header__bswap(&event.header);
671 
672 	size = event.header.size;
673 	if (size == 0)
674 		size = 8;
675 
676 	p = &event;
677 	p += sizeof(struct perf_event_header);
678 
679 	if (size - sizeof(struct perf_event_header)) {
680 		err = do_read(self->fd, p,
681 			      size - sizeof(struct perf_event_header));
682 		if (err <= 0) {
683 			if (err == 0) {
684 				pr_err("unexpected end of event stream\n");
685 				goto done;
686 			}
687 
688 			pr_err("failed to read event data\n");
689 			goto out_err;
690 		}
691 	}
692 
693 	if (size == 0 ||
694 	    (skip = perf_session__process_event(self, &event, ops,
695 						0, head)) < 0) {
696 		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
697 			    head, event.header.size, event.header.type);
698 		/*
699 		 * assume we lost track of the stream, check alignment, and
700 		 * increment a single u64 in the hope to catch on again 'soon'.
701 		 */
702 		if (unlikely(head & 7))
703 			head &= ~7ULL;
704 
705 		size = 8;
706 	}
707 
708 	head += size;
709 
710 	dump_printf("\n%#Lx [%#x]: event: %d\n",
711 		    head, event.header.size, event.header.type);
712 
713 	if (skip > 0)
714 		head += skip;
715 
716 	if (!session_done())
717 		goto more;
718 done:
719 	err = 0;
720 out_err:
721 	return err;
722 }
723 
724 int __perf_session__process_events(struct perf_session *self,
725 				   u64 data_offset, u64 data_size,
726 				   u64 file_size, struct perf_event_ops *ops)
727 {
728 	int err, mmap_prot, mmap_flags;
729 	u64 head, shift;
730 	u64 offset = 0;
731 	size_t	page_size;
732 	event_t *event;
733 	uint32_t size;
734 	char *buf;
735 	struct ui_progress *progress = ui_progress__new("Processing events...",
736 							self->size);
737 	if (progress == NULL)
738 		return -1;
739 
740 	perf_event_ops__fill_defaults(ops);
741 
742 	page_size = sysconf(_SC_PAGESIZE);
743 
744 	head = data_offset;
745 	shift = page_size * (head / page_size);
746 	offset += shift;
747 	head -= shift;
748 
749 	mmap_prot  = PROT_READ;
750 	mmap_flags = MAP_SHARED;
751 
752 	if (self->header.needs_swap) {
753 		mmap_prot  |= PROT_WRITE;
754 		mmap_flags = MAP_PRIVATE;
755 	}
756 remap:
757 	buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
758 		   mmap_flags, self->fd, offset);
759 	if (buf == MAP_FAILED) {
760 		pr_err("failed to mmap file\n");
761 		err = -errno;
762 		goto out_err;
763 	}
764 
765 more:
766 	event = (event_t *)(buf + head);
767 	ui_progress__update(progress, offset);
768 
769 	if (self->header.needs_swap)
770 		perf_event_header__bswap(&event->header);
771 	size = event->header.size;
772 	if (size == 0)
773 		size = 8;
774 
775 	if (head + event->header.size >= page_size * self->mmap_window) {
776 		int munmap_ret;
777 
778 		shift = page_size * (head / page_size);
779 
780 		munmap_ret = munmap(buf, page_size * self->mmap_window);
781 		assert(munmap_ret == 0);
782 
783 		offset += shift;
784 		head -= shift;
785 		goto remap;
786 	}
787 
788 	size = event->header.size;
789 
790 	dump_printf("\n%#Lx [%#x]: event: %d\n",
791 		    offset + head, event->header.size, event->header.type);
792 
793 	if (size == 0 ||
794 	    perf_session__process_event(self, event, ops, offset, head) < 0) {
795 		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
796 			    offset + head, event->header.size,
797 			    event->header.type);
798 		/*
799 		 * assume we lost track of the stream, check alignment, and
800 		 * increment a single u64 in the hope to catch on again 'soon'.
801 		 */
802 		if (unlikely(head & 7))
803 			head &= ~7ULL;
804 
805 		size = 8;
806 	}
807 
808 	head += size;
809 
810 	if (offset + head >= data_offset + data_size)
811 		goto done;
812 
813 	if (offset + head < file_size)
814 		goto more;
815 done:
816 	err = 0;
817 	/* do the final flush for ordered samples */
818 	self->ordered_samples.next_flush = ULLONG_MAX;
819 	flush_sample_queue(self, ops);
820 out_err:
821 	ui_progress__delete(progress);
822 	return err;
823 }
824 
825 int perf_session__process_events(struct perf_session *self,
826 				 struct perf_event_ops *ops)
827 {
828 	int err;
829 
830 	if (perf_session__register_idle_thread(self) == NULL)
831 		return -ENOMEM;
832 
833 	if (!symbol_conf.full_paths) {
834 		char bf[PATH_MAX];
835 
836 		if (getcwd(bf, sizeof(bf)) == NULL) {
837 			err = -errno;
838 out_getcwd_err:
839 			pr_err("failed to get the current directory\n");
840 			goto out_err;
841 		}
842 		self->cwd = strdup(bf);
843 		if (self->cwd == NULL) {
844 			err = -ENOMEM;
845 			goto out_getcwd_err;
846 		}
847 		self->cwdlen = strlen(self->cwd);
848 	}
849 
850 	if (!self->fd_pipe)
851 		err = __perf_session__process_events(self,
852 						     self->header.data_offset,
853 						     self->header.data_size,
854 						     self->size, ops);
855 	else
856 		err = __perf_session__process_pipe_events(self, ops);
857 out_err:
858 	return err;
859 }
860 
861 bool perf_session__has_traces(struct perf_session *self, const char *msg)
862 {
863 	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
864 		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
865 		return false;
866 	}
867 
868 	return true;
869 }
870 
871 int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
872 					     const char *symbol_name,
873 					     u64 addr)
874 {
875 	char *bracket;
876 	enum map_type i;
877 	struct ref_reloc_sym *ref;
878 
879 	ref = zalloc(sizeof(struct ref_reloc_sym));
880 	if (ref == NULL)
881 		return -ENOMEM;
882 
883 	ref->name = strdup(symbol_name);
884 	if (ref->name == NULL) {
885 		free(ref);
886 		return -ENOMEM;
887 	}
888 
889 	bracket = strchr(ref->name, ']');
890 	if (bracket)
891 		*bracket = '\0';
892 
893 	ref->addr = addr;
894 
895 	for (i = 0; i < MAP__NR_TYPES; ++i) {
896 		struct kmap *kmap = map__kmap(maps[i]);
897 		kmap->ref_reloc_sym = ref;
898 	}
899 
900 	return 0;
901 }
902 
903 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
904 {
905 	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
906 	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
907 	       machines__fprintf_dsos(&self->machines, fp);
908 }
909 
910 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
911 					  bool with_hits)
912 {
913 	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
914 	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
915 }
916