xref: /linux/tools/perf/util/session.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include <linux/kernel.h>
5 #include <traceevent/event-parse.h>
6 #include <api/fs/fs.h>
7 
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <sys/types.h>
11 #include <sys/mman.h>
12 
13 #include "evlist.h"
14 #include "evsel.h"
15 #include "memswap.h"
16 #include "map.h"
17 #include "symbol.h"
18 #include "session.h"
19 #include "tool.h"
20 #include "sort.h"
21 #include "util.h"
22 #include "cpumap.h"
23 #include "perf_regs.h"
24 #include "asm/bug.h"
25 #include "auxtrace.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "sample-raw.h"
29 #include "stat.h"
30 #include "arch/common.h"
31 
32 static int perf_session__deliver_event(struct perf_session *session,
33 				       union perf_event *event,
34 				       struct perf_tool *tool,
35 				       u64 file_offset);
36 
37 static int perf_session__open(struct perf_session *session)
38 {
39 	struct perf_data *data = session->data;
40 
41 	if (perf_session__read_header(session) < 0) {
42 		pr_err("incompatible file format (rerun with -v to learn more)\n");
43 		return -1;
44 	}
45 
46 	if (perf_data__is_pipe(data))
47 		return 0;
48 
49 	if (perf_header__has_feat(&session->header, HEADER_STAT))
50 		return 0;
51 
52 	if (!perf_evlist__valid_sample_type(session->evlist)) {
53 		pr_err("non matching sample_type\n");
54 		return -1;
55 	}
56 
57 	if (!perf_evlist__valid_sample_id_all(session->evlist)) {
58 		pr_err("non matching sample_id_all\n");
59 		return -1;
60 	}
61 
62 	if (!perf_evlist__valid_read_format(session->evlist)) {
63 		pr_err("non matching read_format\n");
64 		return -1;
65 	}
66 
67 	return 0;
68 }
69 
70 void perf_session__set_id_hdr_size(struct perf_session *session)
71 {
72 	u16 id_hdr_size = perf_evlist__id_hdr_size(session->evlist);
73 
74 	machines__set_id_hdr_size(&session->machines, id_hdr_size);
75 }
76 
77 int perf_session__create_kernel_maps(struct perf_session *session)
78 {
79 	int ret = machine__create_kernel_maps(&session->machines.host);
80 
81 	if (ret >= 0)
82 		ret = machines__create_guest_kernel_maps(&session->machines);
83 	return ret;
84 }
85 
86 static void perf_session__destroy_kernel_maps(struct perf_session *session)
87 {
88 	machines__destroy_kernel_maps(&session->machines);
89 }
90 
91 static bool perf_session__has_comm_exec(struct perf_session *session)
92 {
93 	struct perf_evsel *evsel;
94 
95 	evlist__for_each_entry(session->evlist, evsel) {
96 		if (evsel->attr.comm_exec)
97 			return true;
98 	}
99 
100 	return false;
101 }
102 
103 static void perf_session__set_comm_exec(struct perf_session *session)
104 {
105 	bool comm_exec = perf_session__has_comm_exec(session);
106 
107 	machines__set_comm_exec(&session->machines, comm_exec);
108 }
109 
110 static int ordered_events__deliver_event(struct ordered_events *oe,
111 					 struct ordered_event *event)
112 {
113 	struct perf_session *session = container_of(oe, struct perf_session,
114 						    ordered_events);
115 
116 	return perf_session__deliver_event(session, event->event,
117 					   session->tool, event->file_offset);
118 }
119 
120 struct perf_session *perf_session__new(struct perf_data *data,
121 				       bool repipe, struct perf_tool *tool)
122 {
123 	struct perf_session *session = zalloc(sizeof(*session));
124 
125 	if (!session)
126 		goto out;
127 
128 	session->repipe = repipe;
129 	session->tool   = tool;
130 	INIT_LIST_HEAD(&session->auxtrace_index);
131 	machines__init(&session->machines);
132 	ordered_events__init(&session->ordered_events,
133 			     ordered_events__deliver_event, NULL);
134 
135 	perf_env__init(&session->header.env);
136 	if (data) {
137 		if (perf_data__open(data))
138 			goto out_delete;
139 
140 		session->data = data;
141 
142 		if (perf_data__is_read(data)) {
143 			if (perf_session__open(session) < 0)
144 				goto out_delete;
145 
146 			/*
147 			 * set session attributes that are present in perf.data
148 			 * but not in pipe-mode.
149 			 */
150 			if (!data->is_pipe) {
151 				perf_session__set_id_hdr_size(session);
152 				perf_session__set_comm_exec(session);
153 			}
154 
155 			perf_evlist__init_trace_event_sample_raw(session->evlist);
156 
157 			/* Open the directory data. */
158 			if (data->is_dir && perf_data__open_dir(data))
159 				goto out_delete;
160 		}
161 	} else  {
162 		session->machines.host.env = &perf_env;
163 	}
164 
165 	session->machines.host.single_address_space =
166 		perf_env__single_address_space(session->machines.host.env);
167 
168 	if (!data || perf_data__is_write(data)) {
169 		/*
170 		 * In O_RDONLY mode this will be performed when reading the
171 		 * kernel MMAP event, in perf_event__process_mmap().
172 		 */
173 		if (perf_session__create_kernel_maps(session) < 0)
174 			pr_warning("Cannot read kernel map\n");
175 	}
176 
177 	/*
178 	 * In pipe-mode, evlist is empty until PERF_RECORD_HEADER_ATTR is
179 	 * processed, so perf_evlist__sample_id_all is not meaningful here.
180 	 */
181 	if ((!data || !data->is_pipe) && tool && tool->ordering_requires_timestamps &&
182 	    tool->ordered_events && !perf_evlist__sample_id_all(session->evlist)) {
183 		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
184 		tool->ordered_events = false;
185 	}
186 
187 	return session;
188 
189  out_delete:
190 	perf_session__delete(session);
191  out:
192 	return NULL;
193 }
194 
195 static void perf_session__delete_threads(struct perf_session *session)
196 {
197 	machine__delete_threads(&session->machines.host);
198 }
199 
200 void perf_session__delete(struct perf_session *session)
201 {
202 	if (session == NULL)
203 		return;
204 	auxtrace__free(session);
205 	auxtrace_index__free(&session->auxtrace_index);
206 	perf_session__destroy_kernel_maps(session);
207 	perf_session__delete_threads(session);
208 	perf_env__exit(&session->header.env);
209 	machines__exit(&session->machines);
210 	if (session->data)
211 		perf_data__close(session->data);
212 	free(session);
213 }
214 
215 static int process_event_synth_tracing_data_stub(struct perf_session *session
216 						 __maybe_unused,
217 						 union perf_event *event
218 						 __maybe_unused)
219 {
220 	dump_printf(": unhandled!\n");
221 	return 0;
222 }
223 
224 static int process_event_synth_attr_stub(struct perf_tool *tool __maybe_unused,
225 					 union perf_event *event __maybe_unused,
226 					 struct perf_evlist **pevlist
227 					 __maybe_unused)
228 {
229 	dump_printf(": unhandled!\n");
230 	return 0;
231 }
232 
233 static int process_event_synth_event_update_stub(struct perf_tool *tool __maybe_unused,
234 						 union perf_event *event __maybe_unused,
235 						 struct perf_evlist **pevlist
236 						 __maybe_unused)
237 {
238 	if (dump_trace)
239 		perf_event__fprintf_event_update(event, stdout);
240 
241 	dump_printf(": unhandled!\n");
242 	return 0;
243 }
244 
245 static int process_event_sample_stub(struct perf_tool *tool __maybe_unused,
246 				     union perf_event *event __maybe_unused,
247 				     struct perf_sample *sample __maybe_unused,
248 				     struct perf_evsel *evsel __maybe_unused,
249 				     struct machine *machine __maybe_unused)
250 {
251 	dump_printf(": unhandled!\n");
252 	return 0;
253 }
254 
255 static int process_event_stub(struct perf_tool *tool __maybe_unused,
256 			      union perf_event *event __maybe_unused,
257 			      struct perf_sample *sample __maybe_unused,
258 			      struct machine *machine __maybe_unused)
259 {
260 	dump_printf(": unhandled!\n");
261 	return 0;
262 }
263 
264 static int process_finished_round_stub(struct perf_tool *tool __maybe_unused,
265 				       union perf_event *event __maybe_unused,
266 				       struct ordered_events *oe __maybe_unused)
267 {
268 	dump_printf(": unhandled!\n");
269 	return 0;
270 }
271 
272 static int process_finished_round(struct perf_tool *tool,
273 				  union perf_event *event,
274 				  struct ordered_events *oe);
275 
276 static int skipn(int fd, off_t n)
277 {
278 	char buf[4096];
279 	ssize_t ret;
280 
281 	while (n > 0) {
282 		ret = read(fd, buf, min(n, (off_t)sizeof(buf)));
283 		if (ret <= 0)
284 			return ret;
285 		n -= ret;
286 	}
287 
288 	return 0;
289 }
290 
291 static s64 process_event_auxtrace_stub(struct perf_session *session __maybe_unused,
292 				       union perf_event *event)
293 {
294 	dump_printf(": unhandled!\n");
295 	if (perf_data__is_pipe(session->data))
296 		skipn(perf_data__fd(session->data), event->auxtrace.size);
297 	return event->auxtrace.size;
298 }
299 
300 static int process_event_op2_stub(struct perf_session *session __maybe_unused,
301 				  union perf_event *event __maybe_unused)
302 {
303 	dump_printf(": unhandled!\n");
304 	return 0;
305 }
306 
307 
308 static
309 int process_event_thread_map_stub(struct perf_session *session __maybe_unused,
310 				  union perf_event *event __maybe_unused)
311 {
312 	if (dump_trace)
313 		perf_event__fprintf_thread_map(event, stdout);
314 
315 	dump_printf(": unhandled!\n");
316 	return 0;
317 }
318 
319 static
320 int process_event_cpu_map_stub(struct perf_session *session __maybe_unused,
321 			       union perf_event *event __maybe_unused)
322 {
323 	if (dump_trace)
324 		perf_event__fprintf_cpu_map(event, stdout);
325 
326 	dump_printf(": unhandled!\n");
327 	return 0;
328 }
329 
330 static
331 int process_event_stat_config_stub(struct perf_session *session __maybe_unused,
332 				   union perf_event *event __maybe_unused)
333 {
334 	if (dump_trace)
335 		perf_event__fprintf_stat_config(event, stdout);
336 
337 	dump_printf(": unhandled!\n");
338 	return 0;
339 }
340 
341 static int process_stat_stub(struct perf_session *perf_session __maybe_unused,
342 			     union perf_event *event)
343 {
344 	if (dump_trace)
345 		perf_event__fprintf_stat(event, stdout);
346 
347 	dump_printf(": unhandled!\n");
348 	return 0;
349 }
350 
351 static int process_stat_round_stub(struct perf_session *perf_session __maybe_unused,
352 				   union perf_event *event)
353 {
354 	if (dump_trace)
355 		perf_event__fprintf_stat_round(event, stdout);
356 
357 	dump_printf(": unhandled!\n");
358 	return 0;
359 }
360 
361 void perf_tool__fill_defaults(struct perf_tool *tool)
362 {
363 	if (tool->sample == NULL)
364 		tool->sample = process_event_sample_stub;
365 	if (tool->mmap == NULL)
366 		tool->mmap = process_event_stub;
367 	if (tool->mmap2 == NULL)
368 		tool->mmap2 = process_event_stub;
369 	if (tool->comm == NULL)
370 		tool->comm = process_event_stub;
371 	if (tool->namespaces == NULL)
372 		tool->namespaces = process_event_stub;
373 	if (tool->fork == NULL)
374 		tool->fork = process_event_stub;
375 	if (tool->exit == NULL)
376 		tool->exit = process_event_stub;
377 	if (tool->lost == NULL)
378 		tool->lost = perf_event__process_lost;
379 	if (tool->lost_samples == NULL)
380 		tool->lost_samples = perf_event__process_lost_samples;
381 	if (tool->aux == NULL)
382 		tool->aux = perf_event__process_aux;
383 	if (tool->itrace_start == NULL)
384 		tool->itrace_start = perf_event__process_itrace_start;
385 	if (tool->context_switch == NULL)
386 		tool->context_switch = perf_event__process_switch;
387 	if (tool->ksymbol == NULL)
388 		tool->ksymbol = perf_event__process_ksymbol;
389 	if (tool->bpf_event == NULL)
390 		tool->bpf_event = perf_event__process_bpf_event;
391 	if (tool->read == NULL)
392 		tool->read = process_event_sample_stub;
393 	if (tool->throttle == NULL)
394 		tool->throttle = process_event_stub;
395 	if (tool->unthrottle == NULL)
396 		tool->unthrottle = process_event_stub;
397 	if (tool->attr == NULL)
398 		tool->attr = process_event_synth_attr_stub;
399 	if (tool->event_update == NULL)
400 		tool->event_update = process_event_synth_event_update_stub;
401 	if (tool->tracing_data == NULL)
402 		tool->tracing_data = process_event_synth_tracing_data_stub;
403 	if (tool->build_id == NULL)
404 		tool->build_id = process_event_op2_stub;
405 	if (tool->finished_round == NULL) {
406 		if (tool->ordered_events)
407 			tool->finished_round = process_finished_round;
408 		else
409 			tool->finished_round = process_finished_round_stub;
410 	}
411 	if (tool->id_index == NULL)
412 		tool->id_index = process_event_op2_stub;
413 	if (tool->auxtrace_info == NULL)
414 		tool->auxtrace_info = process_event_op2_stub;
415 	if (tool->auxtrace == NULL)
416 		tool->auxtrace = process_event_auxtrace_stub;
417 	if (tool->auxtrace_error == NULL)
418 		tool->auxtrace_error = process_event_op2_stub;
419 	if (tool->thread_map == NULL)
420 		tool->thread_map = process_event_thread_map_stub;
421 	if (tool->cpu_map == NULL)
422 		tool->cpu_map = process_event_cpu_map_stub;
423 	if (tool->stat_config == NULL)
424 		tool->stat_config = process_event_stat_config_stub;
425 	if (tool->stat == NULL)
426 		tool->stat = process_stat_stub;
427 	if (tool->stat_round == NULL)
428 		tool->stat_round = process_stat_round_stub;
429 	if (tool->time_conv == NULL)
430 		tool->time_conv = process_event_op2_stub;
431 	if (tool->feature == NULL)
432 		tool->feature = process_event_op2_stub;
433 }
434 
435 static void swap_sample_id_all(union perf_event *event, void *data)
436 {
437 	void *end = (void *) event + event->header.size;
438 	int size = end - data;
439 
440 	BUG_ON(size % sizeof(u64));
441 	mem_bswap_64(data, size);
442 }
443 
444 static void perf_event__all64_swap(union perf_event *event,
445 				   bool sample_id_all __maybe_unused)
446 {
447 	struct perf_event_header *hdr = &event->header;
448 	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
449 }
450 
451 static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
452 {
453 	event->comm.pid = bswap_32(event->comm.pid);
454 	event->comm.tid = bswap_32(event->comm.tid);
455 
456 	if (sample_id_all) {
457 		void *data = &event->comm.comm;
458 
459 		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
460 		swap_sample_id_all(event, data);
461 	}
462 }
463 
464 static void perf_event__mmap_swap(union perf_event *event,
465 				  bool sample_id_all)
466 {
467 	event->mmap.pid	  = bswap_32(event->mmap.pid);
468 	event->mmap.tid	  = bswap_32(event->mmap.tid);
469 	event->mmap.start = bswap_64(event->mmap.start);
470 	event->mmap.len	  = bswap_64(event->mmap.len);
471 	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
472 
473 	if (sample_id_all) {
474 		void *data = &event->mmap.filename;
475 
476 		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
477 		swap_sample_id_all(event, data);
478 	}
479 }
480 
481 static void perf_event__mmap2_swap(union perf_event *event,
482 				  bool sample_id_all)
483 {
484 	event->mmap2.pid   = bswap_32(event->mmap2.pid);
485 	event->mmap2.tid   = bswap_32(event->mmap2.tid);
486 	event->mmap2.start = bswap_64(event->mmap2.start);
487 	event->mmap2.len   = bswap_64(event->mmap2.len);
488 	event->mmap2.pgoff = bswap_64(event->mmap2.pgoff);
489 	event->mmap2.maj   = bswap_32(event->mmap2.maj);
490 	event->mmap2.min   = bswap_32(event->mmap2.min);
491 	event->mmap2.ino   = bswap_64(event->mmap2.ino);
492 
493 	if (sample_id_all) {
494 		void *data = &event->mmap2.filename;
495 
496 		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
497 		swap_sample_id_all(event, data);
498 	}
499 }
500 static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
501 {
502 	event->fork.pid	 = bswap_32(event->fork.pid);
503 	event->fork.tid	 = bswap_32(event->fork.tid);
504 	event->fork.ppid = bswap_32(event->fork.ppid);
505 	event->fork.ptid = bswap_32(event->fork.ptid);
506 	event->fork.time = bswap_64(event->fork.time);
507 
508 	if (sample_id_all)
509 		swap_sample_id_all(event, &event->fork + 1);
510 }
511 
512 static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
513 {
514 	event->read.pid		 = bswap_32(event->read.pid);
515 	event->read.tid		 = bswap_32(event->read.tid);
516 	event->read.value	 = bswap_64(event->read.value);
517 	event->read.time_enabled = bswap_64(event->read.time_enabled);
518 	event->read.time_running = bswap_64(event->read.time_running);
519 	event->read.id		 = bswap_64(event->read.id);
520 
521 	if (sample_id_all)
522 		swap_sample_id_all(event, &event->read + 1);
523 }
524 
525 static void perf_event__aux_swap(union perf_event *event, bool sample_id_all)
526 {
527 	event->aux.aux_offset = bswap_64(event->aux.aux_offset);
528 	event->aux.aux_size   = bswap_64(event->aux.aux_size);
529 	event->aux.flags      = bswap_64(event->aux.flags);
530 
531 	if (sample_id_all)
532 		swap_sample_id_all(event, &event->aux + 1);
533 }
534 
535 static void perf_event__itrace_start_swap(union perf_event *event,
536 					  bool sample_id_all)
537 {
538 	event->itrace_start.pid	 = bswap_32(event->itrace_start.pid);
539 	event->itrace_start.tid	 = bswap_32(event->itrace_start.tid);
540 
541 	if (sample_id_all)
542 		swap_sample_id_all(event, &event->itrace_start + 1);
543 }
544 
545 static void perf_event__switch_swap(union perf_event *event, bool sample_id_all)
546 {
547 	if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) {
548 		event->context_switch.next_prev_pid =
549 				bswap_32(event->context_switch.next_prev_pid);
550 		event->context_switch.next_prev_tid =
551 				bswap_32(event->context_switch.next_prev_tid);
552 	}
553 
554 	if (sample_id_all)
555 		swap_sample_id_all(event, &event->context_switch + 1);
556 }
557 
558 static void perf_event__throttle_swap(union perf_event *event,
559 				      bool sample_id_all)
560 {
561 	event->throttle.time	  = bswap_64(event->throttle.time);
562 	event->throttle.id	  = bswap_64(event->throttle.id);
563 	event->throttle.stream_id = bswap_64(event->throttle.stream_id);
564 
565 	if (sample_id_all)
566 		swap_sample_id_all(event, &event->throttle + 1);
567 }
568 
569 static u8 revbyte(u8 b)
570 {
571 	int rev = (b >> 4) | ((b & 0xf) << 4);
572 	rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
573 	rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
574 	return (u8) rev;
575 }
576 
577 /*
578  * XXX this is hack in attempt to carry flags bitfield
579  * through endian village. ABI says:
580  *
581  * Bit-fields are allocated from right to left (least to most significant)
582  * on little-endian implementations and from left to right (most to least
583  * significant) on big-endian implementations.
584  *
585  * The above seems to be byte specific, so we need to reverse each
586  * byte of the bitfield. 'Internet' also says this might be implementation
587  * specific and we probably need proper fix and carry perf_event_attr
588  * bitfield flags in separate data file FEAT_ section. Thought this seems
589  * to work for now.
590  */
591 static void swap_bitfield(u8 *p, unsigned len)
592 {
593 	unsigned i;
594 
595 	for (i = 0; i < len; i++) {
596 		*p = revbyte(*p);
597 		p++;
598 	}
599 }
600 
601 /* exported for swapping attributes in file header */
602 void perf_event__attr_swap(struct perf_event_attr *attr)
603 {
604 	attr->type		= bswap_32(attr->type);
605 	attr->size		= bswap_32(attr->size);
606 
607 #define bswap_safe(f, n) 					\
608 	(attr->size > (offsetof(struct perf_event_attr, f) + 	\
609 		       sizeof(attr->f) * (n)))
610 #define bswap_field(f, sz) 			\
611 do { 						\
612 	if (bswap_safe(f, 0))			\
613 		attr->f = bswap_##sz(attr->f);	\
614 } while(0)
615 #define bswap_field_16(f) bswap_field(f, 16)
616 #define bswap_field_32(f) bswap_field(f, 32)
617 #define bswap_field_64(f) bswap_field(f, 64)
618 
619 	bswap_field_64(config);
620 	bswap_field_64(sample_period);
621 	bswap_field_64(sample_type);
622 	bswap_field_64(read_format);
623 	bswap_field_32(wakeup_events);
624 	bswap_field_32(bp_type);
625 	bswap_field_64(bp_addr);
626 	bswap_field_64(bp_len);
627 	bswap_field_64(branch_sample_type);
628 	bswap_field_64(sample_regs_user);
629 	bswap_field_32(sample_stack_user);
630 	bswap_field_32(aux_watermark);
631 	bswap_field_16(sample_max_stack);
632 
633 	/*
634 	 * After read_format are bitfields. Check read_format because
635 	 * we are unable to use offsetof on bitfield.
636 	 */
637 	if (bswap_safe(read_format, 1))
638 		swap_bitfield((u8 *) (&attr->read_format + 1),
639 			      sizeof(u64));
640 #undef bswap_field_64
641 #undef bswap_field_32
642 #undef bswap_field
643 #undef bswap_safe
644 }
645 
646 static void perf_event__hdr_attr_swap(union perf_event *event,
647 				      bool sample_id_all __maybe_unused)
648 {
649 	size_t size;
650 
651 	perf_event__attr_swap(&event->attr.attr);
652 
653 	size = event->header.size;
654 	size -= (void *)&event->attr.id - (void *)event;
655 	mem_bswap_64(event->attr.id, size);
656 }
657 
658 static void perf_event__event_update_swap(union perf_event *event,
659 					  bool sample_id_all __maybe_unused)
660 {
661 	event->event_update.type = bswap_64(event->event_update.type);
662 	event->event_update.id   = bswap_64(event->event_update.id);
663 }
664 
665 static void perf_event__event_type_swap(union perf_event *event,
666 					bool sample_id_all __maybe_unused)
667 {
668 	event->event_type.event_type.event_id =
669 		bswap_64(event->event_type.event_type.event_id);
670 }
671 
672 static void perf_event__tracing_data_swap(union perf_event *event,
673 					  bool sample_id_all __maybe_unused)
674 {
675 	event->tracing_data.size = bswap_32(event->tracing_data.size);
676 }
677 
678 static void perf_event__auxtrace_info_swap(union perf_event *event,
679 					   bool sample_id_all __maybe_unused)
680 {
681 	size_t size;
682 
683 	event->auxtrace_info.type = bswap_32(event->auxtrace_info.type);
684 
685 	size = event->header.size;
686 	size -= (void *)&event->auxtrace_info.priv - (void *)event;
687 	mem_bswap_64(event->auxtrace_info.priv, size);
688 }
689 
690 static void perf_event__auxtrace_swap(union perf_event *event,
691 				      bool sample_id_all __maybe_unused)
692 {
693 	event->auxtrace.size      = bswap_64(event->auxtrace.size);
694 	event->auxtrace.offset    = bswap_64(event->auxtrace.offset);
695 	event->auxtrace.reference = bswap_64(event->auxtrace.reference);
696 	event->auxtrace.idx       = bswap_32(event->auxtrace.idx);
697 	event->auxtrace.tid       = bswap_32(event->auxtrace.tid);
698 	event->auxtrace.cpu       = bswap_32(event->auxtrace.cpu);
699 }
700 
701 static void perf_event__auxtrace_error_swap(union perf_event *event,
702 					    bool sample_id_all __maybe_unused)
703 {
704 	event->auxtrace_error.type = bswap_32(event->auxtrace_error.type);
705 	event->auxtrace_error.code = bswap_32(event->auxtrace_error.code);
706 	event->auxtrace_error.cpu  = bswap_32(event->auxtrace_error.cpu);
707 	event->auxtrace_error.pid  = bswap_32(event->auxtrace_error.pid);
708 	event->auxtrace_error.tid  = bswap_32(event->auxtrace_error.tid);
709 	event->auxtrace_error.fmt  = bswap_32(event->auxtrace_error.fmt);
710 	event->auxtrace_error.ip   = bswap_64(event->auxtrace_error.ip);
711 	if (event->auxtrace_error.fmt)
712 		event->auxtrace_error.time = bswap_64(event->auxtrace_error.time);
713 }
714 
715 static void perf_event__thread_map_swap(union perf_event *event,
716 					bool sample_id_all __maybe_unused)
717 {
718 	unsigned i;
719 
720 	event->thread_map.nr = bswap_64(event->thread_map.nr);
721 
722 	for (i = 0; i < event->thread_map.nr; i++)
723 		event->thread_map.entries[i].pid = bswap_64(event->thread_map.entries[i].pid);
724 }
725 
726 static void perf_event__cpu_map_swap(union perf_event *event,
727 				     bool sample_id_all __maybe_unused)
728 {
729 	struct cpu_map_data *data = &event->cpu_map.data;
730 	struct cpu_map_entries *cpus;
731 	struct cpu_map_mask *mask;
732 	unsigned i;
733 
734 	data->type = bswap_64(data->type);
735 
736 	switch (data->type) {
737 	case PERF_CPU_MAP__CPUS:
738 		cpus = (struct cpu_map_entries *)data->data;
739 
740 		cpus->nr = bswap_16(cpus->nr);
741 
742 		for (i = 0; i < cpus->nr; i++)
743 			cpus->cpu[i] = bswap_16(cpus->cpu[i]);
744 		break;
745 	case PERF_CPU_MAP__MASK:
746 		mask = (struct cpu_map_mask *) data->data;
747 
748 		mask->nr = bswap_16(mask->nr);
749 		mask->long_size = bswap_16(mask->long_size);
750 
751 		switch (mask->long_size) {
752 		case 4: mem_bswap_32(&mask->mask, mask->nr); break;
753 		case 8: mem_bswap_64(&mask->mask, mask->nr); break;
754 		default:
755 			pr_err("cpu_map swap: unsupported long size\n");
756 		}
757 	default:
758 		break;
759 	}
760 }
761 
762 static void perf_event__stat_config_swap(union perf_event *event,
763 					 bool sample_id_all __maybe_unused)
764 {
765 	u64 size;
766 
767 	size  = event->stat_config.nr * sizeof(event->stat_config.data[0]);
768 	size += 1; /* nr item itself */
769 	mem_bswap_64(&event->stat_config.nr, size);
770 }
771 
772 static void perf_event__stat_swap(union perf_event *event,
773 				  bool sample_id_all __maybe_unused)
774 {
775 	event->stat.id     = bswap_64(event->stat.id);
776 	event->stat.thread = bswap_32(event->stat.thread);
777 	event->stat.cpu    = bswap_32(event->stat.cpu);
778 	event->stat.val    = bswap_64(event->stat.val);
779 	event->stat.ena    = bswap_64(event->stat.ena);
780 	event->stat.run    = bswap_64(event->stat.run);
781 }
782 
783 static void perf_event__stat_round_swap(union perf_event *event,
784 					bool sample_id_all __maybe_unused)
785 {
786 	event->stat_round.type = bswap_64(event->stat_round.type);
787 	event->stat_round.time = bswap_64(event->stat_round.time);
788 }
789 
790 typedef void (*perf_event__swap_op)(union perf_event *event,
791 				    bool sample_id_all);
792 
793 static perf_event__swap_op perf_event__swap_ops[] = {
794 	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
795 	[PERF_RECORD_MMAP2]		  = perf_event__mmap2_swap,
796 	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
797 	[PERF_RECORD_FORK]		  = perf_event__task_swap,
798 	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
799 	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
800 	[PERF_RECORD_READ]		  = perf_event__read_swap,
801 	[PERF_RECORD_THROTTLE]		  = perf_event__throttle_swap,
802 	[PERF_RECORD_UNTHROTTLE]	  = perf_event__throttle_swap,
803 	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
804 	[PERF_RECORD_AUX]		  = perf_event__aux_swap,
805 	[PERF_RECORD_ITRACE_START]	  = perf_event__itrace_start_swap,
806 	[PERF_RECORD_LOST_SAMPLES]	  = perf_event__all64_swap,
807 	[PERF_RECORD_SWITCH]		  = perf_event__switch_swap,
808 	[PERF_RECORD_SWITCH_CPU_WIDE]	  = perf_event__switch_swap,
809 	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
810 	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
811 	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
812 	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
813 	[PERF_RECORD_ID_INDEX]		  = perf_event__all64_swap,
814 	[PERF_RECORD_AUXTRACE_INFO]	  = perf_event__auxtrace_info_swap,
815 	[PERF_RECORD_AUXTRACE]		  = perf_event__auxtrace_swap,
816 	[PERF_RECORD_AUXTRACE_ERROR]	  = perf_event__auxtrace_error_swap,
817 	[PERF_RECORD_THREAD_MAP]	  = perf_event__thread_map_swap,
818 	[PERF_RECORD_CPU_MAP]		  = perf_event__cpu_map_swap,
819 	[PERF_RECORD_STAT_CONFIG]	  = perf_event__stat_config_swap,
820 	[PERF_RECORD_STAT]		  = perf_event__stat_swap,
821 	[PERF_RECORD_STAT_ROUND]	  = perf_event__stat_round_swap,
822 	[PERF_RECORD_EVENT_UPDATE]	  = perf_event__event_update_swap,
823 	[PERF_RECORD_TIME_CONV]		  = perf_event__all64_swap,
824 	[PERF_RECORD_HEADER_MAX]	  = NULL,
825 };
826 
827 /*
828  * When perf record finishes a pass on every buffers, it records this pseudo
829  * event.
830  * We record the max timestamp t found in the pass n.
831  * Assuming these timestamps are monotonic across cpus, we know that if
832  * a buffer still has events with timestamps below t, they will be all
833  * available and then read in the pass n + 1.
834  * Hence when we start to read the pass n + 2, we can safely flush every
835  * events with timestamps below t.
836  *
837  *    ============ PASS n =================
838  *       CPU 0         |   CPU 1
839  *                     |
840  *    cnt1 timestamps  |   cnt2 timestamps
841  *          1          |         2
842  *          2          |         3
843  *          -          |         4  <--- max recorded
844  *
845  *    ============ PASS n + 1 ==============
846  *       CPU 0         |   CPU 1
847  *                     |
848  *    cnt1 timestamps  |   cnt2 timestamps
849  *          3          |         5
850  *          4          |         6
851  *          5          |         7 <---- max recorded
852  *
853  *      Flush every events below timestamp 4
854  *
855  *    ============ PASS n + 2 ==============
856  *       CPU 0         |   CPU 1
857  *                     |
858  *    cnt1 timestamps  |   cnt2 timestamps
859  *          6          |         8
860  *          7          |         9
861  *          -          |         10
862  *
863  *      Flush every events below timestamp 7
864  *      etc...
865  */
866 static int process_finished_round(struct perf_tool *tool __maybe_unused,
867 				  union perf_event *event __maybe_unused,
868 				  struct ordered_events *oe)
869 {
870 	if (dump_trace)
871 		fprintf(stdout, "\n");
872 	return ordered_events__flush(oe, OE_FLUSH__ROUND);
873 }
874 
875 int perf_session__queue_event(struct perf_session *s, union perf_event *event,
876 			      u64 timestamp, u64 file_offset)
877 {
878 	return ordered_events__queue(&s->ordered_events, event, timestamp, file_offset);
879 }
880 
881 static void callchain__lbr_callstack_printf(struct perf_sample *sample)
882 {
883 	struct ip_callchain *callchain = sample->callchain;
884 	struct branch_stack *lbr_stack = sample->branch_stack;
885 	u64 kernel_callchain_nr = callchain->nr;
886 	unsigned int i;
887 
888 	for (i = 0; i < kernel_callchain_nr; i++) {
889 		if (callchain->ips[i] == PERF_CONTEXT_USER)
890 			break;
891 	}
892 
893 	if ((i != kernel_callchain_nr) && lbr_stack->nr) {
894 		u64 total_nr;
895 		/*
896 		 * LBR callstack can only get user call chain,
897 		 * i is kernel call chain number,
898 		 * 1 is PERF_CONTEXT_USER.
899 		 *
900 		 * The user call chain is stored in LBR registers.
901 		 * LBR are pair registers. The caller is stored
902 		 * in "from" register, while the callee is stored
903 		 * in "to" register.
904 		 * For example, there is a call stack
905 		 * "A"->"B"->"C"->"D".
906 		 * The LBR registers will recorde like
907 		 * "C"->"D", "B"->"C", "A"->"B".
908 		 * So only the first "to" register and all "from"
909 		 * registers are needed to construct the whole stack.
910 		 */
911 		total_nr = i + 1 + lbr_stack->nr + 1;
912 		kernel_callchain_nr = i + 1;
913 
914 		printf("... LBR call chain: nr:%" PRIu64 "\n", total_nr);
915 
916 		for (i = 0; i < kernel_callchain_nr; i++)
917 			printf("..... %2d: %016" PRIx64 "\n",
918 			       i, callchain->ips[i]);
919 
920 		printf("..... %2d: %016" PRIx64 "\n",
921 		       (int)(kernel_callchain_nr), lbr_stack->entries[0].to);
922 		for (i = 0; i < lbr_stack->nr; i++)
923 			printf("..... %2d: %016" PRIx64 "\n",
924 			       (int)(i + kernel_callchain_nr + 1), lbr_stack->entries[i].from);
925 	}
926 }
927 
928 static void callchain__printf(struct perf_evsel *evsel,
929 			      struct perf_sample *sample)
930 {
931 	unsigned int i;
932 	struct ip_callchain *callchain = sample->callchain;
933 
934 	if (perf_evsel__has_branch_callstack(evsel))
935 		callchain__lbr_callstack_printf(sample);
936 
937 	printf("... FP chain: nr:%" PRIu64 "\n", callchain->nr);
938 
939 	for (i = 0; i < callchain->nr; i++)
940 		printf("..... %2d: %016" PRIx64 "\n",
941 		       i, callchain->ips[i]);
942 }
943 
944 static void branch_stack__printf(struct perf_sample *sample)
945 {
946 	uint64_t i;
947 
948 	printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);
949 
950 	for (i = 0; i < sample->branch_stack->nr; i++) {
951 		struct branch_entry *e = &sample->branch_stack->entries[i];
952 
953 		printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 " %hu cycles %s%s%s%s %x\n",
954 			i, e->from, e->to,
955 			(unsigned short)e->flags.cycles,
956 			e->flags.mispred ? "M" : " ",
957 			e->flags.predicted ? "P" : " ",
958 			e->flags.abort ? "A" : " ",
959 			e->flags.in_tx ? "T" : " ",
960 			(unsigned)e->flags.reserved);
961 	}
962 }
963 
964 static void regs_dump__printf(u64 mask, u64 *regs)
965 {
966 	unsigned rid, i = 0;
967 
968 	for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) {
969 		u64 val = regs[i++];
970 
971 		printf(".... %-5s 0x%" PRIx64 "\n",
972 		       perf_reg_name(rid), val);
973 	}
974 }
975 
976 static const char *regs_abi[] = {
977 	[PERF_SAMPLE_REGS_ABI_NONE] = "none",
978 	[PERF_SAMPLE_REGS_ABI_32] = "32-bit",
979 	[PERF_SAMPLE_REGS_ABI_64] = "64-bit",
980 };
981 
982 static inline const char *regs_dump_abi(struct regs_dump *d)
983 {
984 	if (d->abi > PERF_SAMPLE_REGS_ABI_64)
985 		return "unknown";
986 
987 	return regs_abi[d->abi];
988 }
989 
990 static void regs__printf(const char *type, struct regs_dump *regs)
991 {
992 	u64 mask = regs->mask;
993 
994 	printf("... %s regs: mask 0x%" PRIx64 " ABI %s\n",
995 	       type,
996 	       mask,
997 	       regs_dump_abi(regs));
998 
999 	regs_dump__printf(mask, regs->regs);
1000 }
1001 
1002 static void regs_user__printf(struct perf_sample *sample)
1003 {
1004 	struct regs_dump *user_regs = &sample->user_regs;
1005 
1006 	if (user_regs->regs)
1007 		regs__printf("user", user_regs);
1008 }
1009 
1010 static void regs_intr__printf(struct perf_sample *sample)
1011 {
1012 	struct regs_dump *intr_regs = &sample->intr_regs;
1013 
1014 	if (intr_regs->regs)
1015 		regs__printf("intr", intr_regs);
1016 }
1017 
1018 static void stack_user__printf(struct stack_dump *dump)
1019 {
1020 	printf("... ustack: size %" PRIu64 ", offset 0x%x\n",
1021 	       dump->size, dump->offset);
1022 }
1023 
1024 static void perf_evlist__print_tstamp(struct perf_evlist *evlist,
1025 				       union perf_event *event,
1026 				       struct perf_sample *sample)
1027 {
1028 	u64 sample_type = __perf_evlist__combined_sample_type(evlist);
1029 
1030 	if (event->header.type != PERF_RECORD_SAMPLE &&
1031 	    !perf_evlist__sample_id_all(evlist)) {
1032 		fputs("-1 -1 ", stdout);
1033 		return;
1034 	}
1035 
1036 	if ((sample_type & PERF_SAMPLE_CPU))
1037 		printf("%u ", sample->cpu);
1038 
1039 	if (sample_type & PERF_SAMPLE_TIME)
1040 		printf("%" PRIu64 " ", sample->time);
1041 }
1042 
1043 static void sample_read__printf(struct perf_sample *sample, u64 read_format)
1044 {
1045 	printf("... sample_read:\n");
1046 
1047 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1048 		printf("...... time enabled %016" PRIx64 "\n",
1049 		       sample->read.time_enabled);
1050 
1051 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1052 		printf("...... time running %016" PRIx64 "\n",
1053 		       sample->read.time_running);
1054 
1055 	if (read_format & PERF_FORMAT_GROUP) {
1056 		u64 i;
1057 
1058 		printf(".... group nr %" PRIu64 "\n", sample->read.group.nr);
1059 
1060 		for (i = 0; i < sample->read.group.nr; i++) {
1061 			struct sample_read_value *value;
1062 
1063 			value = &sample->read.group.values[i];
1064 			printf("..... id %016" PRIx64
1065 			       ", value %016" PRIx64 "\n",
1066 			       value->id, value->value);
1067 		}
1068 	} else
1069 		printf("..... id %016" PRIx64 ", value %016" PRIx64 "\n",
1070 			sample->read.one.id, sample->read.one.value);
1071 }
1072 
1073 static void dump_event(struct perf_evlist *evlist, union perf_event *event,
1074 		       u64 file_offset, struct perf_sample *sample)
1075 {
1076 	if (!dump_trace)
1077 		return;
1078 
1079 	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
1080 	       file_offset, event->header.size, event->header.type);
1081 
1082 	trace_event(event);
1083 	if (event->header.type == PERF_RECORD_SAMPLE && evlist->trace_event_sample_raw)
1084 		evlist->trace_event_sample_raw(evlist, event, sample);
1085 
1086 	if (sample)
1087 		perf_evlist__print_tstamp(evlist, event, sample);
1088 
1089 	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
1090 	       event->header.size, perf_event__name(event->header.type));
1091 }
1092 
1093 static void dump_sample(struct perf_evsel *evsel, union perf_event *event,
1094 			struct perf_sample *sample)
1095 {
1096 	u64 sample_type;
1097 
1098 	if (!dump_trace)
1099 		return;
1100 
1101 	printf("(IP, 0x%x): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
1102 	       event->header.misc, sample->pid, sample->tid, sample->ip,
1103 	       sample->period, sample->addr);
1104 
1105 	sample_type = evsel->attr.sample_type;
1106 
1107 	if (evsel__has_callchain(evsel))
1108 		callchain__printf(evsel, sample);
1109 
1110 	if ((sample_type & PERF_SAMPLE_BRANCH_STACK) && !perf_evsel__has_branch_callstack(evsel))
1111 		branch_stack__printf(sample);
1112 
1113 	if (sample_type & PERF_SAMPLE_REGS_USER)
1114 		regs_user__printf(sample);
1115 
1116 	if (sample_type & PERF_SAMPLE_REGS_INTR)
1117 		regs_intr__printf(sample);
1118 
1119 	if (sample_type & PERF_SAMPLE_STACK_USER)
1120 		stack_user__printf(&sample->user_stack);
1121 
1122 	if (sample_type & PERF_SAMPLE_WEIGHT)
1123 		printf("... weight: %" PRIu64 "\n", sample->weight);
1124 
1125 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1126 		printf(" . data_src: 0x%"PRIx64"\n", sample->data_src);
1127 
1128 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1129 		printf(" .. phys_addr: 0x%"PRIx64"\n", sample->phys_addr);
1130 
1131 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1132 		printf("... transaction: %" PRIx64 "\n", sample->transaction);
1133 
1134 	if (sample_type & PERF_SAMPLE_READ)
1135 		sample_read__printf(sample, evsel->attr.read_format);
1136 }
1137 
1138 static void dump_read(struct perf_evsel *evsel, union perf_event *event)
1139 {
1140 	struct read_event *read_event = &event->read;
1141 	u64 read_format;
1142 
1143 	if (!dump_trace)
1144 		return;
1145 
1146 	printf(": %d %d %s %" PRIu64 "\n", event->read.pid, event->read.tid,
1147 	       evsel ? perf_evsel__name(evsel) : "FAIL",
1148 	       event->read.value);
1149 
1150 	read_format = evsel->attr.read_format;
1151 
1152 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1153 		printf("... time enabled : %" PRIu64 "\n", read_event->time_enabled);
1154 
1155 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1156 		printf("... time running : %" PRIu64 "\n", read_event->time_running);
1157 
1158 	if (read_format & PERF_FORMAT_ID)
1159 		printf("... id           : %" PRIu64 "\n", read_event->id);
1160 }
1161 
1162 static struct machine *machines__find_for_cpumode(struct machines *machines,
1163 					       union perf_event *event,
1164 					       struct perf_sample *sample)
1165 {
1166 	struct machine *machine;
1167 
1168 	if (perf_guest &&
1169 	    ((sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL) ||
1170 	     (sample->cpumode == PERF_RECORD_MISC_GUEST_USER))) {
1171 		u32 pid;
1172 
1173 		if (event->header.type == PERF_RECORD_MMAP
1174 		    || event->header.type == PERF_RECORD_MMAP2)
1175 			pid = event->mmap.pid;
1176 		else
1177 			pid = sample->pid;
1178 
1179 		machine = machines__find(machines, pid);
1180 		if (!machine)
1181 			machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
1182 		return machine;
1183 	}
1184 
1185 	return &machines->host;
1186 }
1187 
1188 static int deliver_sample_value(struct perf_evlist *evlist,
1189 				struct perf_tool *tool,
1190 				union perf_event *event,
1191 				struct perf_sample *sample,
1192 				struct sample_read_value *v,
1193 				struct machine *machine)
1194 {
1195 	struct perf_sample_id *sid = perf_evlist__id2sid(evlist, v->id);
1196 
1197 	if (sid) {
1198 		sample->id     = v->id;
1199 		sample->period = v->value - sid->period;
1200 		sid->period    = v->value;
1201 	}
1202 
1203 	if (!sid || sid->evsel == NULL) {
1204 		++evlist->stats.nr_unknown_id;
1205 		return 0;
1206 	}
1207 
1208 	/*
1209 	 * There's no reason to deliver sample
1210 	 * for zero period, bail out.
1211 	 */
1212 	if (!sample->period)
1213 		return 0;
1214 
1215 	return tool->sample(tool, event, sample, sid->evsel, machine);
1216 }
1217 
1218 static int deliver_sample_group(struct perf_evlist *evlist,
1219 				struct perf_tool *tool,
1220 				union  perf_event *event,
1221 				struct perf_sample *sample,
1222 				struct machine *machine)
1223 {
1224 	int ret = -EINVAL;
1225 	u64 i;
1226 
1227 	for (i = 0; i < sample->read.group.nr; i++) {
1228 		ret = deliver_sample_value(evlist, tool, event, sample,
1229 					   &sample->read.group.values[i],
1230 					   machine);
1231 		if (ret)
1232 			break;
1233 	}
1234 
1235 	return ret;
1236 }
1237 
1238 static int
1239  perf_evlist__deliver_sample(struct perf_evlist *evlist,
1240 			     struct perf_tool *tool,
1241 			     union  perf_event *event,
1242 			     struct perf_sample *sample,
1243 			     struct perf_evsel *evsel,
1244 			     struct machine *machine)
1245 {
1246 	/* We know evsel != NULL. */
1247 	u64 sample_type = evsel->attr.sample_type;
1248 	u64 read_format = evsel->attr.read_format;
1249 
1250 	/* Standard sample delivery. */
1251 	if (!(sample_type & PERF_SAMPLE_READ))
1252 		return tool->sample(tool, event, sample, evsel, machine);
1253 
1254 	/* For PERF_SAMPLE_READ we have either single or group mode. */
1255 	if (read_format & PERF_FORMAT_GROUP)
1256 		return deliver_sample_group(evlist, tool, event, sample,
1257 					    machine);
1258 	else
1259 		return deliver_sample_value(evlist, tool, event, sample,
1260 					    &sample->read.one, machine);
1261 }
1262 
1263 static int machines__deliver_event(struct machines *machines,
1264 				   struct perf_evlist *evlist,
1265 				   union perf_event *event,
1266 				   struct perf_sample *sample,
1267 				   struct perf_tool *tool, u64 file_offset)
1268 {
1269 	struct perf_evsel *evsel;
1270 	struct machine *machine;
1271 
1272 	dump_event(evlist, event, file_offset, sample);
1273 
1274 	evsel = perf_evlist__id2evsel(evlist, sample->id);
1275 
1276 	machine = machines__find_for_cpumode(machines, event, sample);
1277 
1278 	switch (event->header.type) {
1279 	case PERF_RECORD_SAMPLE:
1280 		if (evsel == NULL) {
1281 			++evlist->stats.nr_unknown_id;
1282 			return 0;
1283 		}
1284 		dump_sample(evsel, event, sample);
1285 		if (machine == NULL) {
1286 			++evlist->stats.nr_unprocessable_samples;
1287 			return 0;
1288 		}
1289 		return perf_evlist__deliver_sample(evlist, tool, event, sample, evsel, machine);
1290 	case PERF_RECORD_MMAP:
1291 		return tool->mmap(tool, event, sample, machine);
1292 	case PERF_RECORD_MMAP2:
1293 		if (event->header.misc & PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT)
1294 			++evlist->stats.nr_proc_map_timeout;
1295 		return tool->mmap2(tool, event, sample, machine);
1296 	case PERF_RECORD_COMM:
1297 		return tool->comm(tool, event, sample, machine);
1298 	case PERF_RECORD_NAMESPACES:
1299 		return tool->namespaces(tool, event, sample, machine);
1300 	case PERF_RECORD_FORK:
1301 		return tool->fork(tool, event, sample, machine);
1302 	case PERF_RECORD_EXIT:
1303 		return tool->exit(tool, event, sample, machine);
1304 	case PERF_RECORD_LOST:
1305 		if (tool->lost == perf_event__process_lost)
1306 			evlist->stats.total_lost += event->lost.lost;
1307 		return tool->lost(tool, event, sample, machine);
1308 	case PERF_RECORD_LOST_SAMPLES:
1309 		if (tool->lost_samples == perf_event__process_lost_samples)
1310 			evlist->stats.total_lost_samples += event->lost_samples.lost;
1311 		return tool->lost_samples(tool, event, sample, machine);
1312 	case PERF_RECORD_READ:
1313 		dump_read(evsel, event);
1314 		return tool->read(tool, event, sample, evsel, machine);
1315 	case PERF_RECORD_THROTTLE:
1316 		return tool->throttle(tool, event, sample, machine);
1317 	case PERF_RECORD_UNTHROTTLE:
1318 		return tool->unthrottle(tool, event, sample, machine);
1319 	case PERF_RECORD_AUX:
1320 		if (tool->aux == perf_event__process_aux) {
1321 			if (event->aux.flags & PERF_AUX_FLAG_TRUNCATED)
1322 				evlist->stats.total_aux_lost += 1;
1323 			if (event->aux.flags & PERF_AUX_FLAG_PARTIAL)
1324 				evlist->stats.total_aux_partial += 1;
1325 		}
1326 		return tool->aux(tool, event, sample, machine);
1327 	case PERF_RECORD_ITRACE_START:
1328 		return tool->itrace_start(tool, event, sample, machine);
1329 	case PERF_RECORD_SWITCH:
1330 	case PERF_RECORD_SWITCH_CPU_WIDE:
1331 		return tool->context_switch(tool, event, sample, machine);
1332 	case PERF_RECORD_KSYMBOL:
1333 		return tool->ksymbol(tool, event, sample, machine);
1334 	case PERF_RECORD_BPF_EVENT:
1335 		return tool->bpf_event(tool, event, sample, machine);
1336 	default:
1337 		++evlist->stats.nr_unknown_events;
1338 		return -1;
1339 	}
1340 }
1341 
1342 static int perf_session__deliver_event(struct perf_session *session,
1343 				       union perf_event *event,
1344 				       struct perf_tool *tool,
1345 				       u64 file_offset)
1346 {
1347 	struct perf_sample sample;
1348 	int ret;
1349 
1350 	ret = perf_evlist__parse_sample(session->evlist, event, &sample);
1351 	if (ret) {
1352 		pr_err("Can't parse sample, err = %d\n", ret);
1353 		return ret;
1354 	}
1355 
1356 	ret = auxtrace__process_event(session, event, &sample, tool);
1357 	if (ret < 0)
1358 		return ret;
1359 	if (ret > 0)
1360 		return 0;
1361 
1362 	return machines__deliver_event(&session->machines, session->evlist,
1363 				       event, &sample, tool, file_offset);
1364 }
1365 
1366 static s64 perf_session__process_user_event(struct perf_session *session,
1367 					    union perf_event *event,
1368 					    u64 file_offset)
1369 {
1370 	struct ordered_events *oe = &session->ordered_events;
1371 	struct perf_tool *tool = session->tool;
1372 	struct perf_sample sample = { .time = 0, };
1373 	int fd = perf_data__fd(session->data);
1374 	int err;
1375 
1376 	dump_event(session->evlist, event, file_offset, &sample);
1377 
1378 	/* These events are processed right away */
1379 	switch (event->header.type) {
1380 	case PERF_RECORD_HEADER_ATTR:
1381 		err = tool->attr(tool, event, &session->evlist);
1382 		if (err == 0) {
1383 			perf_session__set_id_hdr_size(session);
1384 			perf_session__set_comm_exec(session);
1385 		}
1386 		return err;
1387 	case PERF_RECORD_EVENT_UPDATE:
1388 		return tool->event_update(tool, event, &session->evlist);
1389 	case PERF_RECORD_HEADER_EVENT_TYPE:
1390 		/*
1391 		 * Depreceated, but we need to handle it for sake
1392 		 * of old data files create in pipe mode.
1393 		 */
1394 		return 0;
1395 	case PERF_RECORD_HEADER_TRACING_DATA:
1396 		/* setup for reading amidst mmap */
1397 		lseek(fd, file_offset, SEEK_SET);
1398 		return tool->tracing_data(session, event);
1399 	case PERF_RECORD_HEADER_BUILD_ID:
1400 		return tool->build_id(session, event);
1401 	case PERF_RECORD_FINISHED_ROUND:
1402 		return tool->finished_round(tool, event, oe);
1403 	case PERF_RECORD_ID_INDEX:
1404 		return tool->id_index(session, event);
1405 	case PERF_RECORD_AUXTRACE_INFO:
1406 		return tool->auxtrace_info(session, event);
1407 	case PERF_RECORD_AUXTRACE:
1408 		/* setup for reading amidst mmap */
1409 		lseek(fd, file_offset + event->header.size, SEEK_SET);
1410 		return tool->auxtrace(session, event);
1411 	case PERF_RECORD_AUXTRACE_ERROR:
1412 		perf_session__auxtrace_error_inc(session, event);
1413 		return tool->auxtrace_error(session, event);
1414 	case PERF_RECORD_THREAD_MAP:
1415 		return tool->thread_map(session, event);
1416 	case PERF_RECORD_CPU_MAP:
1417 		return tool->cpu_map(session, event);
1418 	case PERF_RECORD_STAT_CONFIG:
1419 		return tool->stat_config(session, event);
1420 	case PERF_RECORD_STAT:
1421 		return tool->stat(session, event);
1422 	case PERF_RECORD_STAT_ROUND:
1423 		return tool->stat_round(session, event);
1424 	case PERF_RECORD_TIME_CONV:
1425 		session->time_conv = event->time_conv;
1426 		return tool->time_conv(session, event);
1427 	case PERF_RECORD_HEADER_FEATURE:
1428 		return tool->feature(session, event);
1429 	default:
1430 		return -EINVAL;
1431 	}
1432 }
1433 
1434 int perf_session__deliver_synth_event(struct perf_session *session,
1435 				      union perf_event *event,
1436 				      struct perf_sample *sample)
1437 {
1438 	struct perf_evlist *evlist = session->evlist;
1439 	struct perf_tool *tool = session->tool;
1440 
1441 	events_stats__inc(&evlist->stats, event->header.type);
1442 
1443 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1444 		return perf_session__process_user_event(session, event, 0);
1445 
1446 	return machines__deliver_event(&session->machines, evlist, event, sample, tool, 0);
1447 }
1448 
1449 static void event_swap(union perf_event *event, bool sample_id_all)
1450 {
1451 	perf_event__swap_op swap;
1452 
1453 	swap = perf_event__swap_ops[event->header.type];
1454 	if (swap)
1455 		swap(event, sample_id_all);
1456 }
1457 
1458 int perf_session__peek_event(struct perf_session *session, off_t file_offset,
1459 			     void *buf, size_t buf_sz,
1460 			     union perf_event **event_ptr,
1461 			     struct perf_sample *sample)
1462 {
1463 	union perf_event *event;
1464 	size_t hdr_sz, rest;
1465 	int fd;
1466 
1467 	if (session->one_mmap && !session->header.needs_swap) {
1468 		event = file_offset - session->one_mmap_offset +
1469 			session->one_mmap_addr;
1470 		goto out_parse_sample;
1471 	}
1472 
1473 	if (perf_data__is_pipe(session->data))
1474 		return -1;
1475 
1476 	fd = perf_data__fd(session->data);
1477 	hdr_sz = sizeof(struct perf_event_header);
1478 
1479 	if (buf_sz < hdr_sz)
1480 		return -1;
1481 
1482 	if (lseek(fd, file_offset, SEEK_SET) == (off_t)-1 ||
1483 	    readn(fd, buf, hdr_sz) != (ssize_t)hdr_sz)
1484 		return -1;
1485 
1486 	event = (union perf_event *)buf;
1487 
1488 	if (session->header.needs_swap)
1489 		perf_event_header__bswap(&event->header);
1490 
1491 	if (event->header.size < hdr_sz || event->header.size > buf_sz)
1492 		return -1;
1493 
1494 	rest = event->header.size - hdr_sz;
1495 
1496 	if (readn(fd, buf, rest) != (ssize_t)rest)
1497 		return -1;
1498 
1499 	if (session->header.needs_swap)
1500 		event_swap(event, perf_evlist__sample_id_all(session->evlist));
1501 
1502 out_parse_sample:
1503 
1504 	if (sample && event->header.type < PERF_RECORD_USER_TYPE_START &&
1505 	    perf_evlist__parse_sample(session->evlist, event, sample))
1506 		return -1;
1507 
1508 	*event_ptr = event;
1509 
1510 	return 0;
1511 }
1512 
1513 static s64 perf_session__process_event(struct perf_session *session,
1514 				       union perf_event *event, u64 file_offset)
1515 {
1516 	struct perf_evlist *evlist = session->evlist;
1517 	struct perf_tool *tool = session->tool;
1518 	int ret;
1519 
1520 	if (session->header.needs_swap)
1521 		event_swap(event, perf_evlist__sample_id_all(evlist));
1522 
1523 	if (event->header.type >= PERF_RECORD_HEADER_MAX)
1524 		return -EINVAL;
1525 
1526 	events_stats__inc(&evlist->stats, event->header.type);
1527 
1528 	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1529 		return perf_session__process_user_event(session, event, file_offset);
1530 
1531 	if (tool->ordered_events) {
1532 		u64 timestamp = -1ULL;
1533 
1534 		ret = perf_evlist__parse_sample_timestamp(evlist, event, &timestamp);
1535 		if (ret && ret != -1)
1536 			return ret;
1537 
1538 		ret = perf_session__queue_event(session, event, timestamp, file_offset);
1539 		if (ret != -ETIME)
1540 			return ret;
1541 	}
1542 
1543 	return perf_session__deliver_event(session, event, tool, file_offset);
1544 }
1545 
1546 void perf_event_header__bswap(struct perf_event_header *hdr)
1547 {
1548 	hdr->type = bswap_32(hdr->type);
1549 	hdr->misc = bswap_16(hdr->misc);
1550 	hdr->size = bswap_16(hdr->size);
1551 }
1552 
1553 struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
1554 {
1555 	return machine__findnew_thread(&session->machines.host, -1, pid);
1556 }
1557 
1558 /*
1559  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
1560  * So here a single thread is created for that, but actually there is a separate
1561  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
1562  * is only 1. That causes problems for some tools, requiring workarounds. For
1563  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
1564  */
1565 int perf_session__register_idle_thread(struct perf_session *session)
1566 {
1567 	struct thread *thread;
1568 	int err = 0;
1569 
1570 	thread = machine__findnew_thread(&session->machines.host, 0, 0);
1571 	if (thread == NULL || thread__set_comm(thread, "swapper", 0)) {
1572 		pr_err("problem inserting idle task.\n");
1573 		err = -1;
1574 	}
1575 
1576 	if (thread == NULL || thread__set_namespaces(thread, 0, NULL)) {
1577 		pr_err("problem inserting idle task.\n");
1578 		err = -1;
1579 	}
1580 
1581 	/* machine__findnew_thread() got the thread, so put it */
1582 	thread__put(thread);
1583 	return err;
1584 }
1585 
1586 static void
1587 perf_session__warn_order(const struct perf_session *session)
1588 {
1589 	const struct ordered_events *oe = &session->ordered_events;
1590 	struct perf_evsel *evsel;
1591 	bool should_warn = true;
1592 
1593 	evlist__for_each_entry(session->evlist, evsel) {
1594 		if (evsel->attr.write_backward)
1595 			should_warn = false;
1596 	}
1597 
1598 	if (!should_warn)
1599 		return;
1600 	if (oe->nr_unordered_events != 0)
1601 		ui__warning("%u out of order events recorded.\n", oe->nr_unordered_events);
1602 }
1603 
1604 static void perf_session__warn_about_errors(const struct perf_session *session)
1605 {
1606 	const struct events_stats *stats = &session->evlist->stats;
1607 
1608 	if (session->tool->lost == perf_event__process_lost &&
1609 	    stats->nr_events[PERF_RECORD_LOST] != 0) {
1610 		ui__warning("Processed %d events and lost %d chunks!\n\n"
1611 			    "Check IO/CPU overload!\n\n",
1612 			    stats->nr_events[0],
1613 			    stats->nr_events[PERF_RECORD_LOST]);
1614 	}
1615 
1616 	if (session->tool->lost_samples == perf_event__process_lost_samples) {
1617 		double drop_rate;
1618 
1619 		drop_rate = (double)stats->total_lost_samples /
1620 			    (double) (stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples);
1621 		if (drop_rate > 0.05) {
1622 			ui__warning("Processed %" PRIu64 " samples and lost %3.2f%%!\n\n",
1623 				    stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples,
1624 				    drop_rate * 100.0);
1625 		}
1626 	}
1627 
1628 	if (session->tool->aux == perf_event__process_aux &&
1629 	    stats->total_aux_lost != 0) {
1630 		ui__warning("AUX data lost %" PRIu64 " times out of %u!\n\n",
1631 			    stats->total_aux_lost,
1632 			    stats->nr_events[PERF_RECORD_AUX]);
1633 	}
1634 
1635 	if (session->tool->aux == perf_event__process_aux &&
1636 	    stats->total_aux_partial != 0) {
1637 		bool vmm_exclusive = false;
1638 
1639 		(void)sysfs__read_bool("module/kvm_intel/parameters/vmm_exclusive",
1640 		                       &vmm_exclusive);
1641 
1642 		ui__warning("AUX data had gaps in it %" PRIu64 " times out of %u!\n\n"
1643 		            "Are you running a KVM guest in the background?%s\n\n",
1644 			    stats->total_aux_partial,
1645 			    stats->nr_events[PERF_RECORD_AUX],
1646 			    vmm_exclusive ?
1647 			    "\nReloading kvm_intel module with vmm_exclusive=0\n"
1648 			    "will reduce the gaps to only guest's timeslices." :
1649 			    "");
1650 	}
1651 
1652 	if (stats->nr_unknown_events != 0) {
1653 		ui__warning("Found %u unknown events!\n\n"
1654 			    "Is this an older tool processing a perf.data "
1655 			    "file generated by a more recent tool?\n\n"
1656 			    "If that is not the case, consider "
1657 			    "reporting to linux-kernel@vger.kernel.org.\n\n",
1658 			    stats->nr_unknown_events);
1659 	}
1660 
1661 	if (stats->nr_unknown_id != 0) {
1662 		ui__warning("%u samples with id not present in the header\n",
1663 			    stats->nr_unknown_id);
1664 	}
1665 
1666 	if (stats->nr_invalid_chains != 0) {
1667 		ui__warning("Found invalid callchains!\n\n"
1668 			    "%u out of %u events were discarded for this reason.\n\n"
1669 			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
1670 			    stats->nr_invalid_chains,
1671 			    stats->nr_events[PERF_RECORD_SAMPLE]);
1672 	}
1673 
1674 	if (stats->nr_unprocessable_samples != 0) {
1675 		ui__warning("%u unprocessable samples recorded.\n"
1676 			    "Do you have a KVM guest running and not using 'perf kvm'?\n",
1677 			    stats->nr_unprocessable_samples);
1678 	}
1679 
1680 	perf_session__warn_order(session);
1681 
1682 	events_stats__auxtrace_error_warn(stats);
1683 
1684 	if (stats->nr_proc_map_timeout != 0) {
1685 		ui__warning("%d map information files for pre-existing threads were\n"
1686 			    "not processed, if there are samples for addresses they\n"
1687 			    "will not be resolved, you may find out which are these\n"
1688 			    "threads by running with -v and redirecting the output\n"
1689 			    "to a file.\n"
1690 			    "The time limit to process proc map is too short?\n"
1691 			    "Increase it by --proc-map-timeout\n",
1692 			    stats->nr_proc_map_timeout);
1693 	}
1694 }
1695 
1696 static int perf_session__flush_thread_stack(struct thread *thread,
1697 					    void *p __maybe_unused)
1698 {
1699 	return thread_stack__flush(thread);
1700 }
1701 
1702 static int perf_session__flush_thread_stacks(struct perf_session *session)
1703 {
1704 	return machines__for_each_thread(&session->machines,
1705 					 perf_session__flush_thread_stack,
1706 					 NULL);
1707 }
1708 
1709 volatile int session_done;
1710 
1711 static int __perf_session__process_pipe_events(struct perf_session *session)
1712 {
1713 	struct ordered_events *oe = &session->ordered_events;
1714 	struct perf_tool *tool = session->tool;
1715 	int fd = perf_data__fd(session->data);
1716 	union perf_event *event;
1717 	uint32_t size, cur_size = 0;
1718 	void *buf = NULL;
1719 	s64 skip = 0;
1720 	u64 head;
1721 	ssize_t err;
1722 	void *p;
1723 
1724 	perf_tool__fill_defaults(tool);
1725 
1726 	head = 0;
1727 	cur_size = sizeof(union perf_event);
1728 
1729 	buf = malloc(cur_size);
1730 	if (!buf)
1731 		return -errno;
1732 	ordered_events__set_copy_on_queue(oe, true);
1733 more:
1734 	event = buf;
1735 	err = readn(fd, event, sizeof(struct perf_event_header));
1736 	if (err <= 0) {
1737 		if (err == 0)
1738 			goto done;
1739 
1740 		pr_err("failed to read event header\n");
1741 		goto out_err;
1742 	}
1743 
1744 	if (session->header.needs_swap)
1745 		perf_event_header__bswap(&event->header);
1746 
1747 	size = event->header.size;
1748 	if (size < sizeof(struct perf_event_header)) {
1749 		pr_err("bad event header size\n");
1750 		goto out_err;
1751 	}
1752 
1753 	if (size > cur_size) {
1754 		void *new = realloc(buf, size);
1755 		if (!new) {
1756 			pr_err("failed to allocate memory to read event\n");
1757 			goto out_err;
1758 		}
1759 		buf = new;
1760 		cur_size = size;
1761 		event = buf;
1762 	}
1763 	p = event;
1764 	p += sizeof(struct perf_event_header);
1765 
1766 	if (size - sizeof(struct perf_event_header)) {
1767 		err = readn(fd, p, size - sizeof(struct perf_event_header));
1768 		if (err <= 0) {
1769 			if (err == 0) {
1770 				pr_err("unexpected end of event stream\n");
1771 				goto done;
1772 			}
1773 
1774 			pr_err("failed to read event data\n");
1775 			goto out_err;
1776 		}
1777 	}
1778 
1779 	if ((skip = perf_session__process_event(session, event, head)) < 0) {
1780 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1781 		       head, event->header.size, event->header.type);
1782 		err = -EINVAL;
1783 		goto out_err;
1784 	}
1785 
1786 	head += size;
1787 
1788 	if (skip > 0)
1789 		head += skip;
1790 
1791 	if (!session_done())
1792 		goto more;
1793 done:
1794 	/* do the final flush for ordered samples */
1795 	err = ordered_events__flush(oe, OE_FLUSH__FINAL);
1796 	if (err)
1797 		goto out_err;
1798 	err = auxtrace__flush_events(session, tool);
1799 	if (err)
1800 		goto out_err;
1801 	err = perf_session__flush_thread_stacks(session);
1802 out_err:
1803 	free(buf);
1804 	if (!tool->no_warn)
1805 		perf_session__warn_about_errors(session);
1806 	ordered_events__free(&session->ordered_events);
1807 	auxtrace__free_events(session);
1808 	return err;
1809 }
1810 
1811 static union perf_event *
1812 fetch_mmaped_event(struct perf_session *session,
1813 		   u64 head, size_t mmap_size, char *buf)
1814 {
1815 	union perf_event *event;
1816 
1817 	/*
1818 	 * Ensure we have enough space remaining to read
1819 	 * the size of the event in the headers.
1820 	 */
1821 	if (head + sizeof(event->header) > mmap_size)
1822 		return NULL;
1823 
1824 	event = (union perf_event *)(buf + head);
1825 
1826 	if (session->header.needs_swap)
1827 		perf_event_header__bswap(&event->header);
1828 
1829 	if (head + event->header.size > mmap_size) {
1830 		/* We're not fetching the event so swap back again */
1831 		if (session->header.needs_swap)
1832 			perf_event_header__bswap(&event->header);
1833 		return NULL;
1834 	}
1835 
1836 	return event;
1837 }
1838 
1839 /*
1840  * On 64bit we can mmap the data file in one go. No need for tiny mmap
1841  * slices. On 32bit we use 32MB.
1842  */
1843 #if BITS_PER_LONG == 64
1844 #define MMAP_SIZE ULLONG_MAX
1845 #define NUM_MMAPS 1
1846 #else
1847 #define MMAP_SIZE (32 * 1024 * 1024ULL)
1848 #define NUM_MMAPS 128
1849 #endif
1850 
1851 struct reader;
1852 
1853 typedef s64 (*reader_cb_t)(struct perf_session *session,
1854 			   union perf_event *event,
1855 			   u64 file_offset);
1856 
1857 struct reader {
1858 	int		 fd;
1859 	u64		 data_size;
1860 	u64		 data_offset;
1861 	reader_cb_t	 process;
1862 };
1863 
1864 static int
1865 reader__process_events(struct reader *rd, struct perf_session *session,
1866 		       struct ui_progress *prog)
1867 {
1868 	u64 data_size = rd->data_size;
1869 	u64 head, page_offset, file_offset, file_pos, size;
1870 	int err = 0, mmap_prot, mmap_flags, map_idx = 0;
1871 	size_t	mmap_size;
1872 	char *buf, *mmaps[NUM_MMAPS];
1873 	union perf_event *event;
1874 	s64 skip;
1875 
1876 	page_offset = page_size * (rd->data_offset / page_size);
1877 	file_offset = page_offset;
1878 	head = rd->data_offset - page_offset;
1879 
1880 	ui_progress__init_size(prog, data_size, "Processing events...");
1881 
1882 	data_size += rd->data_offset;
1883 
1884 	mmap_size = MMAP_SIZE;
1885 	if (mmap_size > data_size) {
1886 		mmap_size = data_size;
1887 		session->one_mmap = true;
1888 	}
1889 
1890 	memset(mmaps, 0, sizeof(mmaps));
1891 
1892 	mmap_prot  = PROT_READ;
1893 	mmap_flags = MAP_SHARED;
1894 
1895 	if (session->header.needs_swap) {
1896 		mmap_prot  |= PROT_WRITE;
1897 		mmap_flags = MAP_PRIVATE;
1898 	}
1899 remap:
1900 	buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, rd->fd,
1901 		   file_offset);
1902 	if (buf == MAP_FAILED) {
1903 		pr_err("failed to mmap file\n");
1904 		err = -errno;
1905 		goto out;
1906 	}
1907 	mmaps[map_idx] = buf;
1908 	map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1909 	file_pos = file_offset + head;
1910 	if (session->one_mmap) {
1911 		session->one_mmap_addr = buf;
1912 		session->one_mmap_offset = file_offset;
1913 	}
1914 
1915 more:
1916 	event = fetch_mmaped_event(session, head, mmap_size, buf);
1917 	if (!event) {
1918 		if (mmaps[map_idx]) {
1919 			munmap(mmaps[map_idx], mmap_size);
1920 			mmaps[map_idx] = NULL;
1921 		}
1922 
1923 		page_offset = page_size * (head / page_size);
1924 		file_offset += page_offset;
1925 		head -= page_offset;
1926 		goto remap;
1927 	}
1928 
1929 	size = event->header.size;
1930 
1931 	if (size < sizeof(struct perf_event_header) ||
1932 	    (skip = rd->process(session, event, file_pos)) < 0) {
1933 		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1934 		       file_offset + head, event->header.size,
1935 		       event->header.type);
1936 		err = -EINVAL;
1937 		goto out;
1938 	}
1939 
1940 	if (skip)
1941 		size += skip;
1942 
1943 	head += size;
1944 	file_pos += size;
1945 
1946 	ui_progress__update(prog, size);
1947 
1948 	if (session_done())
1949 		goto out;
1950 
1951 	if (file_pos < data_size)
1952 		goto more;
1953 
1954 out:
1955 	return err;
1956 }
1957 
1958 static s64 process_simple(struct perf_session *session,
1959 			  union perf_event *event,
1960 			  u64 file_offset)
1961 {
1962 	return perf_session__process_event(session, event, file_offset);
1963 }
1964 
1965 static int __perf_session__process_events(struct perf_session *session)
1966 {
1967 	struct reader rd = {
1968 		.fd		= perf_data__fd(session->data),
1969 		.data_size	= session->header.data_size,
1970 		.data_offset	= session->header.data_offset,
1971 		.process	= process_simple,
1972 	};
1973 	struct ordered_events *oe = &session->ordered_events;
1974 	struct perf_tool *tool = session->tool;
1975 	struct ui_progress prog;
1976 	int err;
1977 
1978 	perf_tool__fill_defaults(tool);
1979 
1980 	if (rd.data_size == 0)
1981 		return -1;
1982 
1983 	ui_progress__init_size(&prog, rd.data_size, "Processing events...");
1984 
1985 	err = reader__process_events(&rd, session, &prog);
1986 	if (err)
1987 		goto out_err;
1988 	/* do the final flush for ordered samples */
1989 	err = ordered_events__flush(oe, OE_FLUSH__FINAL);
1990 	if (err)
1991 		goto out_err;
1992 	err = auxtrace__flush_events(session, tool);
1993 	if (err)
1994 		goto out_err;
1995 	err = perf_session__flush_thread_stacks(session);
1996 out_err:
1997 	ui_progress__finish();
1998 	if (!tool->no_warn)
1999 		perf_session__warn_about_errors(session);
2000 	/*
2001 	 * We may switching perf.data output, make ordered_events
2002 	 * reusable.
2003 	 */
2004 	ordered_events__reinit(&session->ordered_events);
2005 	auxtrace__free_events(session);
2006 	session->one_mmap = false;
2007 	return err;
2008 }
2009 
2010 int perf_session__process_events(struct perf_session *session)
2011 {
2012 	if (perf_session__register_idle_thread(session) < 0)
2013 		return -ENOMEM;
2014 
2015 	if (perf_data__is_pipe(session->data))
2016 		return __perf_session__process_pipe_events(session);
2017 
2018 	return __perf_session__process_events(session);
2019 }
2020 
2021 bool perf_session__has_traces(struct perf_session *session, const char *msg)
2022 {
2023 	struct perf_evsel *evsel;
2024 
2025 	evlist__for_each_entry(session->evlist, evsel) {
2026 		if (evsel->attr.type == PERF_TYPE_TRACEPOINT)
2027 			return true;
2028 	}
2029 
2030 	pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
2031 	return false;
2032 }
2033 
2034 int map__set_kallsyms_ref_reloc_sym(struct map *map, const char *symbol_name, u64 addr)
2035 {
2036 	char *bracket;
2037 	struct ref_reloc_sym *ref;
2038 	struct kmap *kmap;
2039 
2040 	ref = zalloc(sizeof(struct ref_reloc_sym));
2041 	if (ref == NULL)
2042 		return -ENOMEM;
2043 
2044 	ref->name = strdup(symbol_name);
2045 	if (ref->name == NULL) {
2046 		free(ref);
2047 		return -ENOMEM;
2048 	}
2049 
2050 	bracket = strchr(ref->name, ']');
2051 	if (bracket)
2052 		*bracket = '\0';
2053 
2054 	ref->addr = addr;
2055 
2056 	kmap = map__kmap(map);
2057 	if (kmap)
2058 		kmap->ref_reloc_sym = ref;
2059 
2060 	return 0;
2061 }
2062 
2063 size_t perf_session__fprintf_dsos(struct perf_session *session, FILE *fp)
2064 {
2065 	return machines__fprintf_dsos(&session->machines, fp);
2066 }
2067 
2068 size_t perf_session__fprintf_dsos_buildid(struct perf_session *session, FILE *fp,
2069 					  bool (skip)(struct dso *dso, int parm), int parm)
2070 {
2071 	return machines__fprintf_dsos_buildid(&session->machines, fp, skip, parm);
2072 }
2073 
2074 size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
2075 {
2076 	size_t ret;
2077 	const char *msg = "";
2078 
2079 	if (perf_header__has_feat(&session->header, HEADER_AUXTRACE))
2080 		msg = " (excludes AUX area (e.g. instruction trace) decoded / synthesized events)";
2081 
2082 	ret = fprintf(fp, "\nAggregated stats:%s\n", msg);
2083 
2084 	ret += events_stats__fprintf(&session->evlist->stats, fp);
2085 	return ret;
2086 }
2087 
2088 size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
2089 {
2090 	/*
2091 	 * FIXME: Here we have to actually print all the machines in this
2092 	 * session, not just the host...
2093 	 */
2094 	return machine__fprintf(&session->machines.host, fp);
2095 }
2096 
2097 struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
2098 					      unsigned int type)
2099 {
2100 	struct perf_evsel *pos;
2101 
2102 	evlist__for_each_entry(session->evlist, pos) {
2103 		if (pos->attr.type == type)
2104 			return pos;
2105 	}
2106 	return NULL;
2107 }
2108 
2109 int perf_session__cpu_bitmap(struct perf_session *session,
2110 			     const char *cpu_list, unsigned long *cpu_bitmap)
2111 {
2112 	int i, err = -1;
2113 	struct cpu_map *map;
2114 
2115 	for (i = 0; i < PERF_TYPE_MAX; ++i) {
2116 		struct perf_evsel *evsel;
2117 
2118 		evsel = perf_session__find_first_evtype(session, i);
2119 		if (!evsel)
2120 			continue;
2121 
2122 		if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
2123 			pr_err("File does not contain CPU events. "
2124 			       "Remove -C option to proceed.\n");
2125 			return -1;
2126 		}
2127 	}
2128 
2129 	map = cpu_map__new(cpu_list);
2130 	if (map == NULL) {
2131 		pr_err("Invalid cpu_list\n");
2132 		return -1;
2133 	}
2134 
2135 	for (i = 0; i < map->nr; i++) {
2136 		int cpu = map->map[i];
2137 
2138 		if (cpu >= MAX_NR_CPUS) {
2139 			pr_err("Requested CPU %d too large. "
2140 			       "Consider raising MAX_NR_CPUS\n", cpu);
2141 			goto out_delete_map;
2142 		}
2143 
2144 		set_bit(cpu, cpu_bitmap);
2145 	}
2146 
2147 	err = 0;
2148 
2149 out_delete_map:
2150 	cpu_map__put(map);
2151 	return err;
2152 }
2153 
2154 void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
2155 				bool full)
2156 {
2157 	if (session == NULL || fp == NULL)
2158 		return;
2159 
2160 	fprintf(fp, "# ========\n");
2161 	perf_header__fprintf_info(session, fp, full);
2162 	fprintf(fp, "# ========\n#\n");
2163 }
2164 
2165 
2166 int __perf_session__set_tracepoints_handlers(struct perf_session *session,
2167 					     const struct perf_evsel_str_handler *assocs,
2168 					     size_t nr_assocs)
2169 {
2170 	struct perf_evsel *evsel;
2171 	size_t i;
2172 	int err;
2173 
2174 	for (i = 0; i < nr_assocs; i++) {
2175 		/*
2176 		 * Adding a handler for an event not in the session,
2177 		 * just ignore it.
2178 		 */
2179 		evsel = perf_evlist__find_tracepoint_by_name(session->evlist, assocs[i].name);
2180 		if (evsel == NULL)
2181 			continue;
2182 
2183 		err = -EEXIST;
2184 		if (evsel->handler != NULL)
2185 			goto out;
2186 		evsel->handler = assocs[i].handler;
2187 	}
2188 
2189 	err = 0;
2190 out:
2191 	return err;
2192 }
2193 
2194 int perf_event__process_id_index(struct perf_session *session,
2195 				 union perf_event *event)
2196 {
2197 	struct perf_evlist *evlist = session->evlist;
2198 	struct id_index_event *ie = &event->id_index;
2199 	size_t i, nr, max_nr;
2200 
2201 	max_nr = (ie->header.size - sizeof(struct id_index_event)) /
2202 		 sizeof(struct id_index_entry);
2203 	nr = ie->nr;
2204 	if (nr > max_nr)
2205 		return -EINVAL;
2206 
2207 	if (dump_trace)
2208 		fprintf(stdout, " nr: %zu\n", nr);
2209 
2210 	for (i = 0; i < nr; i++) {
2211 		struct id_index_entry *e = &ie->entries[i];
2212 		struct perf_sample_id *sid;
2213 
2214 		if (dump_trace) {
2215 			fprintf(stdout,	" ... id: %"PRIu64, e->id);
2216 			fprintf(stdout,	"  idx: %"PRIu64, e->idx);
2217 			fprintf(stdout,	"  cpu: %"PRId64, e->cpu);
2218 			fprintf(stdout,	"  tid: %"PRId64"\n", e->tid);
2219 		}
2220 
2221 		sid = perf_evlist__id2sid(evlist, e->id);
2222 		if (!sid)
2223 			return -ENOENT;
2224 		sid->idx = e->idx;
2225 		sid->cpu = e->cpu;
2226 		sid->tid = e->tid;
2227 	}
2228 	return 0;
2229 }
2230 
2231 int perf_event__synthesize_id_index(struct perf_tool *tool,
2232 				    perf_event__handler_t process,
2233 				    struct perf_evlist *evlist,
2234 				    struct machine *machine)
2235 {
2236 	union perf_event *ev;
2237 	struct perf_evsel *evsel;
2238 	size_t nr = 0, i = 0, sz, max_nr, n;
2239 	int err;
2240 
2241 	pr_debug2("Synthesizing id index\n");
2242 
2243 	max_nr = (UINT16_MAX - sizeof(struct id_index_event)) /
2244 		 sizeof(struct id_index_entry);
2245 
2246 	evlist__for_each_entry(evlist, evsel)
2247 		nr += evsel->ids;
2248 
2249 	n = nr > max_nr ? max_nr : nr;
2250 	sz = sizeof(struct id_index_event) + n * sizeof(struct id_index_entry);
2251 	ev = zalloc(sz);
2252 	if (!ev)
2253 		return -ENOMEM;
2254 
2255 	ev->id_index.header.type = PERF_RECORD_ID_INDEX;
2256 	ev->id_index.header.size = sz;
2257 	ev->id_index.nr = n;
2258 
2259 	evlist__for_each_entry(evlist, evsel) {
2260 		u32 j;
2261 
2262 		for (j = 0; j < evsel->ids; j++) {
2263 			struct id_index_entry *e;
2264 			struct perf_sample_id *sid;
2265 
2266 			if (i >= n) {
2267 				err = process(tool, ev, NULL, machine);
2268 				if (err)
2269 					goto out_err;
2270 				nr -= n;
2271 				i = 0;
2272 			}
2273 
2274 			e = &ev->id_index.entries[i++];
2275 
2276 			e->id = evsel->id[j];
2277 
2278 			sid = perf_evlist__id2sid(evlist, e->id);
2279 			if (!sid) {
2280 				free(ev);
2281 				return -ENOENT;
2282 			}
2283 
2284 			e->idx = sid->idx;
2285 			e->cpu = sid->cpu;
2286 			e->tid = sid->tid;
2287 		}
2288 	}
2289 
2290 	sz = sizeof(struct id_index_event) + nr * sizeof(struct id_index_entry);
2291 	ev->id_index.header.size = sz;
2292 	ev->id_index.nr = nr;
2293 
2294 	err = process(tool, ev, NULL, machine);
2295 out_err:
2296 	free(ev);
2297 
2298 	return err;
2299 }
2300