xref: /linux/tools/perf/util/machine.c (revision f7a858bffcddaaf70c71b6b656e7cc21b6107cec)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39 
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45 
46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
47 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip);
48 
49 static struct dso *machine__kernel_dso(struct machine *machine)
50 {
51 	return map__dso(machine->vmlinux_map);
52 }
53 
54 static void dsos__init(struct dsos *dsos)
55 {
56 	INIT_LIST_HEAD(&dsos->head);
57 	dsos->root = RB_ROOT;
58 	init_rwsem(&dsos->lock);
59 }
60 
61 static void machine__threads_init(struct machine *machine)
62 {
63 	int i;
64 
65 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
66 		struct threads *threads = &machine->threads[i];
67 		threads->entries = RB_ROOT_CACHED;
68 		init_rwsem(&threads->lock);
69 		threads->nr = 0;
70 		INIT_LIST_HEAD(&threads->dead);
71 		threads->last_match = NULL;
72 	}
73 }
74 
75 static int machine__set_mmap_name(struct machine *machine)
76 {
77 	if (machine__is_host(machine))
78 		machine->mmap_name = strdup("[kernel.kallsyms]");
79 	else if (machine__is_default_guest(machine))
80 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
81 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
82 			  machine->pid) < 0)
83 		machine->mmap_name = NULL;
84 
85 	return machine->mmap_name ? 0 : -ENOMEM;
86 }
87 
88 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
89 {
90 	char comm[64];
91 
92 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
93 	thread__set_comm(thread, comm, 0);
94 }
95 
96 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
97 {
98 	int err = -ENOMEM;
99 
100 	memset(machine, 0, sizeof(*machine));
101 	machine->kmaps = maps__new(machine);
102 	if (machine->kmaps == NULL)
103 		return -ENOMEM;
104 
105 	RB_CLEAR_NODE(&machine->rb_node);
106 	dsos__init(&machine->dsos);
107 
108 	machine__threads_init(machine);
109 
110 	machine->vdso_info = NULL;
111 	machine->env = NULL;
112 
113 	machine->pid = pid;
114 
115 	machine->id_hdr_size = 0;
116 	machine->kptr_restrict_warned = false;
117 	machine->comm_exec = false;
118 	machine->kernel_start = 0;
119 	machine->vmlinux_map = NULL;
120 
121 	machine->root_dir = strdup(root_dir);
122 	if (machine->root_dir == NULL)
123 		goto out;
124 
125 	if (machine__set_mmap_name(machine))
126 		goto out;
127 
128 	if (pid != HOST_KERNEL_ID) {
129 		struct thread *thread = machine__findnew_thread(machine, -1,
130 								pid);
131 
132 		if (thread == NULL)
133 			goto out;
134 
135 		thread__set_guest_comm(thread, pid);
136 		thread__put(thread);
137 	}
138 
139 	machine->current_tid = NULL;
140 	err = 0;
141 
142 out:
143 	if (err) {
144 		zfree(&machine->kmaps);
145 		zfree(&machine->root_dir);
146 		zfree(&machine->mmap_name);
147 	}
148 	return 0;
149 }
150 
151 struct machine *machine__new_host(void)
152 {
153 	struct machine *machine = malloc(sizeof(*machine));
154 
155 	if (machine != NULL) {
156 		machine__init(machine, "", HOST_KERNEL_ID);
157 
158 		if (machine__create_kernel_maps(machine) < 0)
159 			goto out_delete;
160 	}
161 
162 	return machine;
163 out_delete:
164 	free(machine);
165 	return NULL;
166 }
167 
168 struct machine *machine__new_kallsyms(void)
169 {
170 	struct machine *machine = machine__new_host();
171 	/*
172 	 * FIXME:
173 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
174 	 *    ask for not using the kcore parsing code, once this one is fixed
175 	 *    to create a map per module.
176 	 */
177 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
178 		machine__delete(machine);
179 		machine = NULL;
180 	}
181 
182 	return machine;
183 }
184 
185 static void dsos__purge(struct dsos *dsos)
186 {
187 	struct dso *pos, *n;
188 
189 	down_write(&dsos->lock);
190 
191 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
192 		RB_CLEAR_NODE(&pos->rb_node);
193 		pos->root = NULL;
194 		list_del_init(&pos->node);
195 		dso__put(pos);
196 	}
197 
198 	up_write(&dsos->lock);
199 }
200 
201 static void dsos__exit(struct dsos *dsos)
202 {
203 	dsos__purge(dsos);
204 	exit_rwsem(&dsos->lock);
205 }
206 
207 void machine__delete_threads(struct machine *machine)
208 {
209 	struct rb_node *nd;
210 	int i;
211 
212 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
213 		struct threads *threads = &machine->threads[i];
214 		down_write(&threads->lock);
215 		nd = rb_first_cached(&threads->entries);
216 		while (nd) {
217 			struct thread *t = rb_entry(nd, struct thread, rb_node);
218 
219 			nd = rb_next(nd);
220 			__machine__remove_thread(machine, t, false);
221 		}
222 		up_write(&threads->lock);
223 	}
224 }
225 
226 void machine__exit(struct machine *machine)
227 {
228 	int i;
229 
230 	if (machine == NULL)
231 		return;
232 
233 	machine__destroy_kernel_maps(machine);
234 	maps__delete(machine->kmaps);
235 	dsos__exit(&machine->dsos);
236 	machine__exit_vdso(machine);
237 	zfree(&machine->root_dir);
238 	zfree(&machine->mmap_name);
239 	zfree(&machine->current_tid);
240 	zfree(&machine->kallsyms_filename);
241 
242 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
243 		struct threads *threads = &machine->threads[i];
244 		struct thread *thread, *n;
245 		/*
246 		 * Forget about the dead, at this point whatever threads were
247 		 * left in the dead lists better have a reference count taken
248 		 * by who is using them, and then, when they drop those references
249 		 * and it finally hits zero, thread__put() will check and see that
250 		 * its not in the dead threads list and will not try to remove it
251 		 * from there, just calling thread__delete() straight away.
252 		 */
253 		list_for_each_entry_safe(thread, n, &threads->dead, node)
254 			list_del_init(&thread->node);
255 
256 		exit_rwsem(&threads->lock);
257 	}
258 }
259 
260 void machine__delete(struct machine *machine)
261 {
262 	if (machine) {
263 		machine__exit(machine);
264 		free(machine);
265 	}
266 }
267 
268 void machines__init(struct machines *machines)
269 {
270 	machine__init(&machines->host, "", HOST_KERNEL_ID);
271 	machines->guests = RB_ROOT_CACHED;
272 }
273 
274 void machines__exit(struct machines *machines)
275 {
276 	machine__exit(&machines->host);
277 	/* XXX exit guest */
278 }
279 
280 struct machine *machines__add(struct machines *machines, pid_t pid,
281 			      const char *root_dir)
282 {
283 	struct rb_node **p = &machines->guests.rb_root.rb_node;
284 	struct rb_node *parent = NULL;
285 	struct machine *pos, *machine = malloc(sizeof(*machine));
286 	bool leftmost = true;
287 
288 	if (machine == NULL)
289 		return NULL;
290 
291 	if (machine__init(machine, root_dir, pid) != 0) {
292 		free(machine);
293 		return NULL;
294 	}
295 
296 	while (*p != NULL) {
297 		parent = *p;
298 		pos = rb_entry(parent, struct machine, rb_node);
299 		if (pid < pos->pid)
300 			p = &(*p)->rb_left;
301 		else {
302 			p = &(*p)->rb_right;
303 			leftmost = false;
304 		}
305 	}
306 
307 	rb_link_node(&machine->rb_node, parent, p);
308 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
309 
310 	machine->machines = machines;
311 
312 	return machine;
313 }
314 
315 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
316 {
317 	struct rb_node *nd;
318 
319 	machines->host.comm_exec = comm_exec;
320 
321 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
322 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
323 
324 		machine->comm_exec = comm_exec;
325 	}
326 }
327 
328 struct machine *machines__find(struct machines *machines, pid_t pid)
329 {
330 	struct rb_node **p = &machines->guests.rb_root.rb_node;
331 	struct rb_node *parent = NULL;
332 	struct machine *machine;
333 	struct machine *default_machine = NULL;
334 
335 	if (pid == HOST_KERNEL_ID)
336 		return &machines->host;
337 
338 	while (*p != NULL) {
339 		parent = *p;
340 		machine = rb_entry(parent, struct machine, rb_node);
341 		if (pid < machine->pid)
342 			p = &(*p)->rb_left;
343 		else if (pid > machine->pid)
344 			p = &(*p)->rb_right;
345 		else
346 			return machine;
347 		if (!machine->pid)
348 			default_machine = machine;
349 	}
350 
351 	return default_machine;
352 }
353 
354 struct machine *machines__findnew(struct machines *machines, pid_t pid)
355 {
356 	char path[PATH_MAX];
357 	const char *root_dir = "";
358 	struct machine *machine = machines__find(machines, pid);
359 
360 	if (machine && (machine->pid == pid))
361 		goto out;
362 
363 	if ((pid != HOST_KERNEL_ID) &&
364 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
365 	    (symbol_conf.guestmount)) {
366 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
367 		if (access(path, R_OK)) {
368 			static struct strlist *seen;
369 
370 			if (!seen)
371 				seen = strlist__new(NULL, NULL);
372 
373 			if (!strlist__has_entry(seen, path)) {
374 				pr_err("Can't access file %s\n", path);
375 				strlist__add(seen, path);
376 			}
377 			machine = NULL;
378 			goto out;
379 		}
380 		root_dir = path;
381 	}
382 
383 	machine = machines__add(machines, pid, root_dir);
384 out:
385 	return machine;
386 }
387 
388 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
389 {
390 	struct machine *machine = machines__find(machines, pid);
391 
392 	if (!machine)
393 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
394 	return machine;
395 }
396 
397 /*
398  * A common case for KVM test programs is that the test program acts as the
399  * hypervisor, creating, running and destroying the virtual machine, and
400  * providing the guest object code from its own object code. In this case,
401  * the VM is not running an OS, but only the functions loaded into it by the
402  * hypervisor test program, and conveniently, loaded at the same virtual
403  * addresses.
404  *
405  * Normally to resolve addresses, MMAP events are needed to map addresses
406  * back to the object code and debug symbols for that object code.
407  *
408  * Currently, there is no way to get such mapping information from guests
409  * but, in the scenario described above, the guest has the same mappings
410  * as the hypervisor, so support for that scenario can be achieved.
411  *
412  * To support that, copy the host thread's maps to the guest thread's maps.
413  * Note, we do not discover the guest until we encounter a guest event,
414  * which works well because it is not until then that we know that the host
415  * thread's maps have been set up.
416  *
417  * This function returns the guest thread. Apart from keeping the data
418  * structures sane, using a thread belonging to the guest machine, instead
419  * of the host thread, allows it to have its own comm (refer
420  * thread__set_guest_comm()).
421  */
422 static struct thread *findnew_guest_code(struct machine *machine,
423 					 struct machine *host_machine,
424 					 pid_t pid)
425 {
426 	struct thread *host_thread;
427 	struct thread *thread;
428 	int err;
429 
430 	if (!machine)
431 		return NULL;
432 
433 	thread = machine__findnew_thread(machine, -1, pid);
434 	if (!thread)
435 		return NULL;
436 
437 	/* Assume maps are set up if there are any */
438 	if (thread->maps->nr_maps)
439 		return thread;
440 
441 	host_thread = machine__find_thread(host_machine, -1, pid);
442 	if (!host_thread)
443 		goto out_err;
444 
445 	thread__set_guest_comm(thread, pid);
446 
447 	/*
448 	 * Guest code can be found in hypervisor process at the same address
449 	 * so copy host maps.
450 	 */
451 	err = maps__clone(thread, host_thread->maps);
452 	thread__put(host_thread);
453 	if (err)
454 		goto out_err;
455 
456 	return thread;
457 
458 out_err:
459 	thread__zput(thread);
460 	return NULL;
461 }
462 
463 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
464 {
465 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
466 	struct machine *machine = machines__findnew(machines, pid);
467 
468 	return findnew_guest_code(machine, host_machine, pid);
469 }
470 
471 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
472 {
473 	struct machines *machines = machine->machines;
474 	struct machine *host_machine;
475 
476 	if (!machines)
477 		return NULL;
478 
479 	host_machine = machines__find(machines, HOST_KERNEL_ID);
480 
481 	return findnew_guest_code(machine, host_machine, pid);
482 }
483 
484 void machines__process_guests(struct machines *machines,
485 			      machine__process_t process, void *data)
486 {
487 	struct rb_node *nd;
488 
489 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
490 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
491 		process(pos, data);
492 	}
493 }
494 
495 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
496 {
497 	struct rb_node *node;
498 	struct machine *machine;
499 
500 	machines->host.id_hdr_size = id_hdr_size;
501 
502 	for (node = rb_first_cached(&machines->guests); node;
503 	     node = rb_next(node)) {
504 		machine = rb_entry(node, struct machine, rb_node);
505 		machine->id_hdr_size = id_hdr_size;
506 	}
507 
508 	return;
509 }
510 
511 static void machine__update_thread_pid(struct machine *machine,
512 				       struct thread *th, pid_t pid)
513 {
514 	struct thread *leader;
515 
516 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
517 		return;
518 
519 	th->pid_ = pid;
520 
521 	if (th->pid_ == th->tid)
522 		return;
523 
524 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
525 	if (!leader)
526 		goto out_err;
527 
528 	if (!leader->maps)
529 		leader->maps = maps__new(machine);
530 
531 	if (!leader->maps)
532 		goto out_err;
533 
534 	if (th->maps == leader->maps)
535 		return;
536 
537 	if (th->maps) {
538 		/*
539 		 * Maps are created from MMAP events which provide the pid and
540 		 * tid.  Consequently there never should be any maps on a thread
541 		 * with an unknown pid.  Just print an error if there are.
542 		 */
543 		if (!maps__empty(th->maps))
544 			pr_err("Discarding thread maps for %d:%d\n",
545 			       th->pid_, th->tid);
546 		maps__put(th->maps);
547 	}
548 
549 	th->maps = maps__get(leader->maps);
550 out_put:
551 	thread__put(leader);
552 	return;
553 out_err:
554 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
555 	goto out_put;
556 }
557 
558 /*
559  * Front-end cache - TID lookups come in blocks,
560  * so most of the time we dont have to look up
561  * the full rbtree:
562  */
563 static struct thread*
564 __threads__get_last_match(struct threads *threads, struct machine *machine,
565 			  int pid, int tid)
566 {
567 	struct thread *th;
568 
569 	th = threads->last_match;
570 	if (th != NULL) {
571 		if (th->tid == tid) {
572 			machine__update_thread_pid(machine, th, pid);
573 			return thread__get(th);
574 		}
575 
576 		threads->last_match = NULL;
577 	}
578 
579 	return NULL;
580 }
581 
582 static struct thread*
583 threads__get_last_match(struct threads *threads, struct machine *machine,
584 			int pid, int tid)
585 {
586 	struct thread *th = NULL;
587 
588 	if (perf_singlethreaded)
589 		th = __threads__get_last_match(threads, machine, pid, tid);
590 
591 	return th;
592 }
593 
594 static void
595 __threads__set_last_match(struct threads *threads, struct thread *th)
596 {
597 	threads->last_match = th;
598 }
599 
600 static void
601 threads__set_last_match(struct threads *threads, struct thread *th)
602 {
603 	if (perf_singlethreaded)
604 		__threads__set_last_match(threads, th);
605 }
606 
607 /*
608  * Caller must eventually drop thread->refcnt returned with a successful
609  * lookup/new thread inserted.
610  */
611 static struct thread *____machine__findnew_thread(struct machine *machine,
612 						  struct threads *threads,
613 						  pid_t pid, pid_t tid,
614 						  bool create)
615 {
616 	struct rb_node **p = &threads->entries.rb_root.rb_node;
617 	struct rb_node *parent = NULL;
618 	struct thread *th;
619 	bool leftmost = true;
620 
621 	th = threads__get_last_match(threads, machine, pid, tid);
622 	if (th)
623 		return th;
624 
625 	while (*p != NULL) {
626 		parent = *p;
627 		th = rb_entry(parent, struct thread, rb_node);
628 
629 		if (th->tid == tid) {
630 			threads__set_last_match(threads, th);
631 			machine__update_thread_pid(machine, th, pid);
632 			return thread__get(th);
633 		}
634 
635 		if (tid < th->tid)
636 			p = &(*p)->rb_left;
637 		else {
638 			p = &(*p)->rb_right;
639 			leftmost = false;
640 		}
641 	}
642 
643 	if (!create)
644 		return NULL;
645 
646 	th = thread__new(pid, tid);
647 	if (th != NULL) {
648 		rb_link_node(&th->rb_node, parent, p);
649 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
650 
651 		/*
652 		 * We have to initialize maps separately after rb tree is updated.
653 		 *
654 		 * The reason is that we call machine__findnew_thread
655 		 * within thread__init_maps to find the thread
656 		 * leader and that would screwed the rb tree.
657 		 */
658 		if (thread__init_maps(th, machine)) {
659 			rb_erase_cached(&th->rb_node, &threads->entries);
660 			RB_CLEAR_NODE(&th->rb_node);
661 			thread__put(th);
662 			return NULL;
663 		}
664 		/*
665 		 * It is now in the rbtree, get a ref
666 		 */
667 		thread__get(th);
668 		threads__set_last_match(threads, th);
669 		++threads->nr;
670 	}
671 
672 	return th;
673 }
674 
675 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
676 {
677 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
678 }
679 
680 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
681 				       pid_t tid)
682 {
683 	struct threads *threads = machine__threads(machine, tid);
684 	struct thread *th;
685 
686 	down_write(&threads->lock);
687 	th = __machine__findnew_thread(machine, pid, tid);
688 	up_write(&threads->lock);
689 	return th;
690 }
691 
692 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
693 				    pid_t tid)
694 {
695 	struct threads *threads = machine__threads(machine, tid);
696 	struct thread *th;
697 
698 	down_read(&threads->lock);
699 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
700 	up_read(&threads->lock);
701 	return th;
702 }
703 
704 /*
705  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
706  * So here a single thread is created for that, but actually there is a separate
707  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
708  * is only 1. That causes problems for some tools, requiring workarounds. For
709  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
710  */
711 struct thread *machine__idle_thread(struct machine *machine)
712 {
713 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
714 
715 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
716 	    thread__set_namespaces(thread, 0, NULL))
717 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
718 
719 	return thread;
720 }
721 
722 struct comm *machine__thread_exec_comm(struct machine *machine,
723 				       struct thread *thread)
724 {
725 	if (machine->comm_exec)
726 		return thread__exec_comm(thread);
727 	else
728 		return thread__comm(thread);
729 }
730 
731 int machine__process_comm_event(struct machine *machine, union perf_event *event,
732 				struct perf_sample *sample)
733 {
734 	struct thread *thread = machine__findnew_thread(machine,
735 							event->comm.pid,
736 							event->comm.tid);
737 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
738 	int err = 0;
739 
740 	if (exec)
741 		machine->comm_exec = true;
742 
743 	if (dump_trace)
744 		perf_event__fprintf_comm(event, stdout);
745 
746 	if (thread == NULL ||
747 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
748 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
749 		err = -1;
750 	}
751 
752 	thread__put(thread);
753 
754 	return err;
755 }
756 
757 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
758 				      union perf_event *event,
759 				      struct perf_sample *sample __maybe_unused)
760 {
761 	struct thread *thread = machine__findnew_thread(machine,
762 							event->namespaces.pid,
763 							event->namespaces.tid);
764 	int err = 0;
765 
766 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
767 		  "\nWARNING: kernel seems to support more namespaces than perf"
768 		  " tool.\nTry updating the perf tool..\n\n");
769 
770 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
771 		  "\nWARNING: perf tool seems to support more namespaces than"
772 		  " the kernel.\nTry updating the kernel..\n\n");
773 
774 	if (dump_trace)
775 		perf_event__fprintf_namespaces(event, stdout);
776 
777 	if (thread == NULL ||
778 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
779 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
780 		err = -1;
781 	}
782 
783 	thread__put(thread);
784 
785 	return err;
786 }
787 
788 int machine__process_cgroup_event(struct machine *machine,
789 				  union perf_event *event,
790 				  struct perf_sample *sample __maybe_unused)
791 {
792 	struct cgroup *cgrp;
793 
794 	if (dump_trace)
795 		perf_event__fprintf_cgroup(event, stdout);
796 
797 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
798 	if (cgrp == NULL)
799 		return -ENOMEM;
800 
801 	return 0;
802 }
803 
804 int machine__process_lost_event(struct machine *machine __maybe_unused,
805 				union perf_event *event, struct perf_sample *sample __maybe_unused)
806 {
807 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
808 		    event->lost.id, event->lost.lost);
809 	return 0;
810 }
811 
812 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
813 					union perf_event *event, struct perf_sample *sample)
814 {
815 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
816 		    sample->id, event->lost_samples.lost);
817 	return 0;
818 }
819 
820 static struct dso *machine__findnew_module_dso(struct machine *machine,
821 					       struct kmod_path *m,
822 					       const char *filename)
823 {
824 	struct dso *dso;
825 
826 	down_write(&machine->dsos.lock);
827 
828 	dso = __dsos__find(&machine->dsos, m->name, true);
829 	if (!dso) {
830 		dso = __dsos__addnew(&machine->dsos, m->name);
831 		if (dso == NULL)
832 			goto out_unlock;
833 
834 		dso__set_module_info(dso, m, machine);
835 		dso__set_long_name(dso, strdup(filename), true);
836 		dso->kernel = DSO_SPACE__KERNEL;
837 	}
838 
839 	dso__get(dso);
840 out_unlock:
841 	up_write(&machine->dsos.lock);
842 	return dso;
843 }
844 
845 int machine__process_aux_event(struct machine *machine __maybe_unused,
846 			       union perf_event *event)
847 {
848 	if (dump_trace)
849 		perf_event__fprintf_aux(event, stdout);
850 	return 0;
851 }
852 
853 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
854 					union perf_event *event)
855 {
856 	if (dump_trace)
857 		perf_event__fprintf_itrace_start(event, stdout);
858 	return 0;
859 }
860 
861 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
862 					    union perf_event *event)
863 {
864 	if (dump_trace)
865 		perf_event__fprintf_aux_output_hw_id(event, stdout);
866 	return 0;
867 }
868 
869 int machine__process_switch_event(struct machine *machine __maybe_unused,
870 				  union perf_event *event)
871 {
872 	if (dump_trace)
873 		perf_event__fprintf_switch(event, stdout);
874 	return 0;
875 }
876 
877 static int machine__process_ksymbol_register(struct machine *machine,
878 					     union perf_event *event,
879 					     struct perf_sample *sample __maybe_unused)
880 {
881 	struct symbol *sym;
882 	struct dso *dso;
883 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
884 
885 	if (!map) {
886 		int err;
887 
888 		dso = dso__new(event->ksymbol.name);
889 		if (dso) {
890 			dso->kernel = DSO_SPACE__KERNEL;
891 			map = map__new2(0, dso);
892 			dso__put(dso);
893 		}
894 
895 		if (!dso || !map) {
896 			return -ENOMEM;
897 		}
898 
899 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
900 			dso->binary_type = DSO_BINARY_TYPE__OOL;
901 			dso->data.file_size = event->ksymbol.len;
902 			dso__set_loaded(dso);
903 		}
904 
905 		map->start = event->ksymbol.addr;
906 		map->end = map__start(map) + event->ksymbol.len;
907 		err = maps__insert(machine__kernel_maps(machine), map);
908 		map__put(map);
909 		if (err)
910 			return err;
911 
912 		dso__set_loaded(dso);
913 
914 		if (is_bpf_image(event->ksymbol.name)) {
915 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
916 			dso__set_long_name(dso, "", false);
917 		}
918 	} else {
919 		dso = map__dso(map);
920 	}
921 
922 	sym = symbol__new(map->map_ip(map, map__start(map)),
923 			  event->ksymbol.len,
924 			  0, 0, event->ksymbol.name);
925 	if (!sym)
926 		return -ENOMEM;
927 	dso__insert_symbol(dso, sym);
928 	return 0;
929 }
930 
931 static int machine__process_ksymbol_unregister(struct machine *machine,
932 					       union perf_event *event,
933 					       struct perf_sample *sample __maybe_unused)
934 {
935 	struct symbol *sym;
936 	struct map *map;
937 
938 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
939 	if (!map)
940 		return 0;
941 
942 	if (map != machine->vmlinux_map)
943 		maps__remove(machine__kernel_maps(machine), map);
944 	else {
945 		struct dso *dso = map__dso(map);
946 
947 		sym = dso__find_symbol(dso, map->map_ip(map, map__start(map)));
948 		if (sym)
949 			dso__delete_symbol(dso, sym);
950 	}
951 
952 	return 0;
953 }
954 
955 int machine__process_ksymbol(struct machine *machine __maybe_unused,
956 			     union perf_event *event,
957 			     struct perf_sample *sample)
958 {
959 	if (dump_trace)
960 		perf_event__fprintf_ksymbol(event, stdout);
961 
962 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
963 		return machine__process_ksymbol_unregister(machine, event,
964 							   sample);
965 	return machine__process_ksymbol_register(machine, event, sample);
966 }
967 
968 int machine__process_text_poke(struct machine *machine, union perf_event *event,
969 			       struct perf_sample *sample __maybe_unused)
970 {
971 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
972 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
973 	struct dso *dso = map ? map__dso(map) : NULL;
974 
975 	if (dump_trace)
976 		perf_event__fprintf_text_poke(event, machine, stdout);
977 
978 	if (!event->text_poke.new_len)
979 		return 0;
980 
981 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
982 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
983 		return 0;
984 	}
985 
986 	if (dso) {
987 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
988 		int ret;
989 
990 		/*
991 		 * Kernel maps might be changed when loading symbols so loading
992 		 * must be done prior to using kernel maps.
993 		 */
994 		map__load(map);
995 		ret = dso__data_write_cache_addr(dso, map, machine,
996 						 event->text_poke.addr,
997 						 new_bytes,
998 						 event->text_poke.new_len);
999 		if (ret != event->text_poke.new_len)
1000 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1001 				 event->text_poke.addr);
1002 	} else {
1003 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1004 			 event->text_poke.addr);
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1011 					      const char *filename)
1012 {
1013 	struct map *map = NULL;
1014 	struct kmod_path m;
1015 	struct dso *dso;
1016 	int err;
1017 
1018 	if (kmod_path__parse_name(&m, filename))
1019 		return NULL;
1020 
1021 	dso = machine__findnew_module_dso(machine, &m, filename);
1022 	if (dso == NULL)
1023 		goto out;
1024 
1025 	map = map__new2(start, dso);
1026 	if (map == NULL)
1027 		goto out;
1028 
1029 	err = maps__insert(machine__kernel_maps(machine), map);
1030 
1031 	/* Put the map here because maps__insert already got it */
1032 	map__put(map);
1033 
1034 	/* If maps__insert failed, return NULL. */
1035 	if (err)
1036 		map = NULL;
1037 out:
1038 	/* put the dso here, corresponding to  machine__findnew_module_dso */
1039 	dso__put(dso);
1040 	zfree(&m.name);
1041 	return map;
1042 }
1043 
1044 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1045 {
1046 	struct rb_node *nd;
1047 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1048 
1049 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1050 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1051 		ret += __dsos__fprintf(&pos->dsos.head, fp);
1052 	}
1053 
1054 	return ret;
1055 }
1056 
1057 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1058 				     bool (skip)(struct dso *dso, int parm), int parm)
1059 {
1060 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1061 }
1062 
1063 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1064 				     bool (skip)(struct dso *dso, int parm), int parm)
1065 {
1066 	struct rb_node *nd;
1067 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1068 
1069 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1070 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1071 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1072 	}
1073 	return ret;
1074 }
1075 
1076 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1077 {
1078 	int i;
1079 	size_t printed = 0;
1080 	struct dso *kdso = machine__kernel_dso(machine);
1081 
1082 	if (kdso->has_build_id) {
1083 		char filename[PATH_MAX];
1084 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1085 					   false))
1086 			printed += fprintf(fp, "[0] %s\n", filename);
1087 	}
1088 
1089 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1090 		printed += fprintf(fp, "[%d] %s\n",
1091 				   i + kdso->has_build_id, vmlinux_path[i]);
1092 
1093 	return printed;
1094 }
1095 
1096 size_t machine__fprintf(struct machine *machine, FILE *fp)
1097 {
1098 	struct rb_node *nd;
1099 	size_t ret;
1100 	int i;
1101 
1102 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1103 		struct threads *threads = &machine->threads[i];
1104 
1105 		down_read(&threads->lock);
1106 
1107 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
1108 
1109 		for (nd = rb_first_cached(&threads->entries); nd;
1110 		     nd = rb_next(nd)) {
1111 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
1112 
1113 			ret += thread__fprintf(pos, fp);
1114 		}
1115 
1116 		up_read(&threads->lock);
1117 	}
1118 	return ret;
1119 }
1120 
1121 static struct dso *machine__get_kernel(struct machine *machine)
1122 {
1123 	const char *vmlinux_name = machine->mmap_name;
1124 	struct dso *kernel;
1125 
1126 	if (machine__is_host(machine)) {
1127 		if (symbol_conf.vmlinux_name)
1128 			vmlinux_name = symbol_conf.vmlinux_name;
1129 
1130 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1131 						 "[kernel]", DSO_SPACE__KERNEL);
1132 	} else {
1133 		if (symbol_conf.default_guest_vmlinux_name)
1134 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1135 
1136 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1137 						 "[guest.kernel]",
1138 						 DSO_SPACE__KERNEL_GUEST);
1139 	}
1140 
1141 	if (kernel != NULL && (!kernel->has_build_id))
1142 		dso__read_running_kernel_build_id(kernel, machine);
1143 
1144 	return kernel;
1145 }
1146 
1147 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1148 				    size_t bufsz)
1149 {
1150 	if (machine__is_default_guest(machine))
1151 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1152 	else
1153 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1154 }
1155 
1156 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1157 
1158 /* Figure out the start address of kernel map from /proc/kallsyms.
1159  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1160  * symbol_name if it's not that important.
1161  */
1162 static int machine__get_running_kernel_start(struct machine *machine,
1163 					     const char **symbol_name,
1164 					     u64 *start, u64 *end)
1165 {
1166 	char filename[PATH_MAX];
1167 	int i, err = -1;
1168 	const char *name;
1169 	u64 addr = 0;
1170 
1171 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1172 
1173 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1174 		return 0;
1175 
1176 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1177 		err = kallsyms__get_function_start(filename, name, &addr);
1178 		if (!err)
1179 			break;
1180 	}
1181 
1182 	if (err)
1183 		return -1;
1184 
1185 	if (symbol_name)
1186 		*symbol_name = name;
1187 
1188 	*start = addr;
1189 
1190 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1191 	if (!err)
1192 		*end = addr;
1193 
1194 	return 0;
1195 }
1196 
1197 int machine__create_extra_kernel_map(struct machine *machine,
1198 				     struct dso *kernel,
1199 				     struct extra_kernel_map *xm)
1200 {
1201 	struct kmap *kmap;
1202 	struct map *map;
1203 	int err;
1204 
1205 	map = map__new2(xm->start, kernel);
1206 	if (!map)
1207 		return -ENOMEM;
1208 
1209 	map->end   = xm->end;
1210 	map->pgoff = xm->pgoff;
1211 
1212 	kmap = map__kmap(map);
1213 
1214 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1215 
1216 	err = maps__insert(machine__kernel_maps(machine), map);
1217 
1218 	if (!err) {
1219 		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1220 			kmap->name, map__start(map), map__end(map));
1221 	}
1222 
1223 	map__put(map);
1224 
1225 	return err;
1226 }
1227 
1228 static u64 find_entry_trampoline(struct dso *dso)
1229 {
1230 	/* Duplicates are removed so lookup all aliases */
1231 	const char *syms[] = {
1232 		"_entry_trampoline",
1233 		"__entry_trampoline_start",
1234 		"entry_SYSCALL_64_trampoline",
1235 	};
1236 	struct symbol *sym = dso__first_symbol(dso);
1237 	unsigned int i;
1238 
1239 	for (; sym; sym = dso__next_symbol(sym)) {
1240 		if (sym->binding != STB_GLOBAL)
1241 			continue;
1242 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1243 			if (!strcmp(sym->name, syms[i]))
1244 				return sym->start;
1245 		}
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 /*
1252  * These values can be used for kernels that do not have symbols for the entry
1253  * trampolines in kallsyms.
1254  */
1255 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1256 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1257 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1258 
1259 /* Map x86_64 PTI entry trampolines */
1260 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1261 					  struct dso *kernel)
1262 {
1263 	struct maps *kmaps = machine__kernel_maps(machine);
1264 	int nr_cpus_avail, cpu;
1265 	bool found = false;
1266 	struct map_rb_node *rb_node;
1267 	u64 pgoff;
1268 
1269 	/*
1270 	 * In the vmlinux case, pgoff is a virtual address which must now be
1271 	 * mapped to a vmlinux offset.
1272 	 */
1273 	maps__for_each_entry(kmaps, rb_node) {
1274 		struct map *dest_map, *map = rb_node->map;
1275 		struct kmap *kmap = __map__kmap(map);
1276 
1277 		if (!kmap || !is_entry_trampoline(kmap->name))
1278 			continue;
1279 
1280 		dest_map = maps__find(kmaps, map->pgoff);
1281 		if (dest_map != map)
1282 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1283 		found = true;
1284 	}
1285 	if (found || machine->trampolines_mapped)
1286 		return 0;
1287 
1288 	pgoff = find_entry_trampoline(kernel);
1289 	if (!pgoff)
1290 		return 0;
1291 
1292 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1293 
1294 	/* Add a 1 page map for each CPU's entry trampoline */
1295 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1296 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1297 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1298 			 X86_64_ENTRY_TRAMPOLINE;
1299 		struct extra_kernel_map xm = {
1300 			.start = va,
1301 			.end   = va + page_size,
1302 			.pgoff = pgoff,
1303 		};
1304 
1305 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1306 
1307 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1308 			return -1;
1309 	}
1310 
1311 	machine->trampolines_mapped = nr_cpus_avail;
1312 
1313 	return 0;
1314 }
1315 
1316 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1317 					     struct dso *kernel __maybe_unused)
1318 {
1319 	return 0;
1320 }
1321 
1322 static int
1323 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1324 {
1325 	/* In case of renewal the kernel map, destroy previous one */
1326 	machine__destroy_kernel_maps(machine);
1327 
1328 	machine->vmlinux_map = map__new2(0, kernel);
1329 	if (machine->vmlinux_map == NULL)
1330 		return -ENOMEM;
1331 
1332 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1333 	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1334 }
1335 
1336 void machine__destroy_kernel_maps(struct machine *machine)
1337 {
1338 	struct kmap *kmap;
1339 	struct map *map = machine__kernel_map(machine);
1340 
1341 	if (map == NULL)
1342 		return;
1343 
1344 	kmap = map__kmap(map);
1345 	maps__remove(machine__kernel_maps(machine), map);
1346 	if (kmap && kmap->ref_reloc_sym) {
1347 		zfree((char **)&kmap->ref_reloc_sym->name);
1348 		zfree(&kmap->ref_reloc_sym);
1349 	}
1350 
1351 	map__zput(machine->vmlinux_map);
1352 }
1353 
1354 int machines__create_guest_kernel_maps(struct machines *machines)
1355 {
1356 	int ret = 0;
1357 	struct dirent **namelist = NULL;
1358 	int i, items = 0;
1359 	char path[PATH_MAX];
1360 	pid_t pid;
1361 	char *endp;
1362 
1363 	if (symbol_conf.default_guest_vmlinux_name ||
1364 	    symbol_conf.default_guest_modules ||
1365 	    symbol_conf.default_guest_kallsyms) {
1366 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1367 	}
1368 
1369 	if (symbol_conf.guestmount) {
1370 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1371 		if (items <= 0)
1372 			return -ENOENT;
1373 		for (i = 0; i < items; i++) {
1374 			if (!isdigit(namelist[i]->d_name[0])) {
1375 				/* Filter out . and .. */
1376 				continue;
1377 			}
1378 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1379 			if ((*endp != '\0') ||
1380 			    (endp == namelist[i]->d_name) ||
1381 			    (errno == ERANGE)) {
1382 				pr_debug("invalid directory (%s). Skipping.\n",
1383 					 namelist[i]->d_name);
1384 				continue;
1385 			}
1386 			sprintf(path, "%s/%s/proc/kallsyms",
1387 				symbol_conf.guestmount,
1388 				namelist[i]->d_name);
1389 			ret = access(path, R_OK);
1390 			if (ret) {
1391 				pr_debug("Can't access file %s\n", path);
1392 				goto failure;
1393 			}
1394 			machines__create_kernel_maps(machines, pid);
1395 		}
1396 failure:
1397 		free(namelist);
1398 	}
1399 
1400 	return ret;
1401 }
1402 
1403 void machines__destroy_kernel_maps(struct machines *machines)
1404 {
1405 	struct rb_node *next = rb_first_cached(&machines->guests);
1406 
1407 	machine__destroy_kernel_maps(&machines->host);
1408 
1409 	while (next) {
1410 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1411 
1412 		next = rb_next(&pos->rb_node);
1413 		rb_erase_cached(&pos->rb_node, &machines->guests);
1414 		machine__delete(pos);
1415 	}
1416 }
1417 
1418 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1419 {
1420 	struct machine *machine = machines__findnew(machines, pid);
1421 
1422 	if (machine == NULL)
1423 		return -1;
1424 
1425 	return machine__create_kernel_maps(machine);
1426 }
1427 
1428 int machine__load_kallsyms(struct machine *machine, const char *filename)
1429 {
1430 	struct map *map = machine__kernel_map(machine);
1431 	struct dso *dso = map__dso(map);
1432 	int ret = __dso__load_kallsyms(dso, filename, map, true);
1433 
1434 	if (ret > 0) {
1435 		dso__set_loaded(dso);
1436 		/*
1437 		 * Since /proc/kallsyms will have multiple sessions for the
1438 		 * kernel, with modules between them, fixup the end of all
1439 		 * sections.
1440 		 */
1441 		maps__fixup_end(machine__kernel_maps(machine));
1442 	}
1443 
1444 	return ret;
1445 }
1446 
1447 int machine__load_vmlinux_path(struct machine *machine)
1448 {
1449 	struct map *map = machine__kernel_map(machine);
1450 	struct dso *dso = map__dso(map);
1451 	int ret = dso__load_vmlinux_path(dso, map);
1452 
1453 	if (ret > 0)
1454 		dso__set_loaded(dso);
1455 
1456 	return ret;
1457 }
1458 
1459 static char *get_kernel_version(const char *root_dir)
1460 {
1461 	char version[PATH_MAX];
1462 	FILE *file;
1463 	char *name, *tmp;
1464 	const char *prefix = "Linux version ";
1465 
1466 	sprintf(version, "%s/proc/version", root_dir);
1467 	file = fopen(version, "r");
1468 	if (!file)
1469 		return NULL;
1470 
1471 	tmp = fgets(version, sizeof(version), file);
1472 	fclose(file);
1473 	if (!tmp)
1474 		return NULL;
1475 
1476 	name = strstr(version, prefix);
1477 	if (!name)
1478 		return NULL;
1479 	name += strlen(prefix);
1480 	tmp = strchr(name, ' ');
1481 	if (tmp)
1482 		*tmp = '\0';
1483 
1484 	return strdup(name);
1485 }
1486 
1487 static bool is_kmod_dso(struct dso *dso)
1488 {
1489 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1490 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1491 }
1492 
1493 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1494 {
1495 	char *long_name;
1496 	struct dso *dso;
1497 	struct map *map = maps__find_by_name(maps, m->name);
1498 
1499 	if (map == NULL)
1500 		return 0;
1501 
1502 	long_name = strdup(path);
1503 	if (long_name == NULL)
1504 		return -ENOMEM;
1505 
1506 	dso = map__dso(map);
1507 	dso__set_long_name(dso, long_name, true);
1508 	dso__kernel_module_get_build_id(dso, "");
1509 
1510 	/*
1511 	 * Full name could reveal us kmod compression, so
1512 	 * we need to update the symtab_type if needed.
1513 	 */
1514 	if (m->comp && is_kmod_dso(dso)) {
1515 		dso->symtab_type++;
1516 		dso->comp = m->comp;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1523 {
1524 	struct dirent *dent;
1525 	DIR *dir = opendir(dir_name);
1526 	int ret = 0;
1527 
1528 	if (!dir) {
1529 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1530 		return -1;
1531 	}
1532 
1533 	while ((dent = readdir(dir)) != NULL) {
1534 		char path[PATH_MAX];
1535 		struct stat st;
1536 
1537 		/*sshfs might return bad dent->d_type, so we have to stat*/
1538 		path__join(path, sizeof(path), dir_name, dent->d_name);
1539 		if (stat(path, &st))
1540 			continue;
1541 
1542 		if (S_ISDIR(st.st_mode)) {
1543 			if (!strcmp(dent->d_name, ".") ||
1544 			    !strcmp(dent->d_name, ".."))
1545 				continue;
1546 
1547 			/* Do not follow top-level source and build symlinks */
1548 			if (depth == 0) {
1549 				if (!strcmp(dent->d_name, "source") ||
1550 				    !strcmp(dent->d_name, "build"))
1551 					continue;
1552 			}
1553 
1554 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1555 			if (ret < 0)
1556 				goto out;
1557 		} else {
1558 			struct kmod_path m;
1559 
1560 			ret = kmod_path__parse_name(&m, dent->d_name);
1561 			if (ret)
1562 				goto out;
1563 
1564 			if (m.kmod)
1565 				ret = maps__set_module_path(maps, path, &m);
1566 
1567 			zfree(&m.name);
1568 
1569 			if (ret)
1570 				goto out;
1571 		}
1572 	}
1573 
1574 out:
1575 	closedir(dir);
1576 	return ret;
1577 }
1578 
1579 static int machine__set_modules_path(struct machine *machine)
1580 {
1581 	char *version;
1582 	char modules_path[PATH_MAX];
1583 
1584 	version = get_kernel_version(machine->root_dir);
1585 	if (!version)
1586 		return -1;
1587 
1588 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1589 		 machine->root_dir, version);
1590 	free(version);
1591 
1592 	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1593 }
1594 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1595 				u64 *size __maybe_unused,
1596 				const char *name __maybe_unused)
1597 {
1598 	return 0;
1599 }
1600 
1601 static int machine__create_module(void *arg, const char *name, u64 start,
1602 				  u64 size)
1603 {
1604 	struct machine *machine = arg;
1605 	struct map *map;
1606 
1607 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1608 		return -1;
1609 
1610 	map = machine__addnew_module_map(machine, start, name);
1611 	if (map == NULL)
1612 		return -1;
1613 	map->end = start + size;
1614 
1615 	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1616 
1617 	return 0;
1618 }
1619 
1620 static int machine__create_modules(struct machine *machine)
1621 {
1622 	const char *modules;
1623 	char path[PATH_MAX];
1624 
1625 	if (machine__is_default_guest(machine)) {
1626 		modules = symbol_conf.default_guest_modules;
1627 	} else {
1628 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1629 		modules = path;
1630 	}
1631 
1632 	if (symbol__restricted_filename(modules, "/proc/modules"))
1633 		return -1;
1634 
1635 	if (modules__parse(modules, machine, machine__create_module))
1636 		return -1;
1637 
1638 	if (!machine__set_modules_path(machine))
1639 		return 0;
1640 
1641 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1642 
1643 	return 0;
1644 }
1645 
1646 static void machine__set_kernel_mmap(struct machine *machine,
1647 				     u64 start, u64 end)
1648 {
1649 	machine->vmlinux_map->start = start;
1650 	machine->vmlinux_map->end   = end;
1651 	/*
1652 	 * Be a bit paranoid here, some perf.data file came with
1653 	 * a zero sized synthesized MMAP event for the kernel.
1654 	 */
1655 	if (start == 0 && end == 0)
1656 		machine->vmlinux_map->end = ~0ULL;
1657 }
1658 
1659 static int machine__update_kernel_mmap(struct machine *machine,
1660 				     u64 start, u64 end)
1661 {
1662 	struct map *map = machine__kernel_map(machine);
1663 	int err;
1664 
1665 	map__get(map);
1666 	maps__remove(machine__kernel_maps(machine), map);
1667 
1668 	machine__set_kernel_mmap(machine, start, end);
1669 
1670 	err = maps__insert(machine__kernel_maps(machine), map);
1671 	map__put(map);
1672 	return err;
1673 }
1674 
1675 int machine__create_kernel_maps(struct machine *machine)
1676 {
1677 	struct dso *kernel = machine__get_kernel(machine);
1678 	const char *name = NULL;
1679 	u64 start = 0, end = ~0ULL;
1680 	int ret;
1681 
1682 	if (kernel == NULL)
1683 		return -1;
1684 
1685 	ret = __machine__create_kernel_maps(machine, kernel);
1686 	if (ret < 0)
1687 		goto out_put;
1688 
1689 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1690 		if (machine__is_host(machine))
1691 			pr_debug("Problems creating module maps, "
1692 				 "continuing anyway...\n");
1693 		else
1694 			pr_debug("Problems creating module maps for guest %d, "
1695 				 "continuing anyway...\n", machine->pid);
1696 	}
1697 
1698 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1699 		if (name &&
1700 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1701 			machine__destroy_kernel_maps(machine);
1702 			ret = -1;
1703 			goto out_put;
1704 		}
1705 
1706 		/*
1707 		 * we have a real start address now, so re-order the kmaps
1708 		 * assume it's the last in the kmaps
1709 		 */
1710 		ret = machine__update_kernel_mmap(machine, start, end);
1711 		if (ret < 0)
1712 			goto out_put;
1713 	}
1714 
1715 	if (machine__create_extra_kernel_maps(machine, kernel))
1716 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1717 
1718 	if (end == ~0ULL) {
1719 		/* update end address of the kernel map using adjacent module address */
1720 		struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine),
1721 							machine__kernel_map(machine));
1722 		struct map_rb_node *next = map_rb_node__next(rb_node);
1723 
1724 		if (next)
1725 			machine__set_kernel_mmap(machine, start, map__start(next->map));
1726 	}
1727 
1728 out_put:
1729 	dso__put(kernel);
1730 	return ret;
1731 }
1732 
1733 static bool machine__uses_kcore(struct machine *machine)
1734 {
1735 	struct dso *dso;
1736 
1737 	list_for_each_entry(dso, &machine->dsos.head, node) {
1738 		if (dso__is_kcore(dso))
1739 			return true;
1740 	}
1741 
1742 	return false;
1743 }
1744 
1745 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1746 					     struct extra_kernel_map *xm)
1747 {
1748 	return machine__is(machine, "x86_64") &&
1749 	       is_entry_trampoline(xm->name);
1750 }
1751 
1752 static int machine__process_extra_kernel_map(struct machine *machine,
1753 					     struct extra_kernel_map *xm)
1754 {
1755 	struct dso *kernel = machine__kernel_dso(machine);
1756 
1757 	if (kernel == NULL)
1758 		return -1;
1759 
1760 	return machine__create_extra_kernel_map(machine, kernel, xm);
1761 }
1762 
1763 static int machine__process_kernel_mmap_event(struct machine *machine,
1764 					      struct extra_kernel_map *xm,
1765 					      struct build_id *bid)
1766 {
1767 	struct map *map;
1768 	enum dso_space_type dso_space;
1769 	bool is_kernel_mmap;
1770 	const char *mmap_name = machine->mmap_name;
1771 
1772 	/* If we have maps from kcore then we do not need or want any others */
1773 	if (machine__uses_kcore(machine))
1774 		return 0;
1775 
1776 	if (machine__is_host(machine))
1777 		dso_space = DSO_SPACE__KERNEL;
1778 	else
1779 		dso_space = DSO_SPACE__KERNEL_GUEST;
1780 
1781 	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1782 	if (!is_kernel_mmap && !machine__is_host(machine)) {
1783 		/*
1784 		 * If the event was recorded inside the guest and injected into
1785 		 * the host perf.data file, then it will match a host mmap_name,
1786 		 * so try that - see machine__set_mmap_name().
1787 		 */
1788 		mmap_name = "[kernel.kallsyms]";
1789 		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1790 	}
1791 	if (xm->name[0] == '/' ||
1792 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1793 		map = machine__addnew_module_map(machine, xm->start,
1794 						 xm->name);
1795 		if (map == NULL)
1796 			goto out_problem;
1797 
1798 		map->end = map__start(map) + xm->end - xm->start;
1799 
1800 		if (build_id__is_defined(bid))
1801 			dso__set_build_id(map__dso(map), bid);
1802 
1803 	} else if (is_kernel_mmap) {
1804 		const char *symbol_name = xm->name + strlen(mmap_name);
1805 		/*
1806 		 * Should be there already, from the build-id table in
1807 		 * the header.
1808 		 */
1809 		struct dso *kernel = NULL;
1810 		struct dso *dso;
1811 
1812 		down_read(&machine->dsos.lock);
1813 
1814 		list_for_each_entry(dso, &machine->dsos.head, node) {
1815 
1816 			/*
1817 			 * The cpumode passed to is_kernel_module is not the
1818 			 * cpumode of *this* event. If we insist on passing
1819 			 * correct cpumode to is_kernel_module, we should
1820 			 * record the cpumode when we adding this dso to the
1821 			 * linked list.
1822 			 *
1823 			 * However we don't really need passing correct
1824 			 * cpumode.  We know the correct cpumode must be kernel
1825 			 * mode (if not, we should not link it onto kernel_dsos
1826 			 * list).
1827 			 *
1828 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1829 			 * is_kernel_module() treats it as a kernel cpumode.
1830 			 */
1831 
1832 			if (!dso->kernel ||
1833 			    is_kernel_module(dso->long_name,
1834 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1835 				continue;
1836 
1837 
1838 			kernel = dso;
1839 			break;
1840 		}
1841 
1842 		up_read(&machine->dsos.lock);
1843 
1844 		if (kernel == NULL)
1845 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1846 		if (kernel == NULL)
1847 			goto out_problem;
1848 
1849 		kernel->kernel = dso_space;
1850 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1851 			dso__put(kernel);
1852 			goto out_problem;
1853 		}
1854 
1855 		if (strstr(kernel->long_name, "vmlinux"))
1856 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1857 
1858 		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1859 			dso__put(kernel);
1860 			goto out_problem;
1861 		}
1862 
1863 		if (build_id__is_defined(bid))
1864 			dso__set_build_id(kernel, bid);
1865 
1866 		/*
1867 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1868 		 * symbol. Effectively having zero here means that at record
1869 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1870 		 */
1871 		if (xm->pgoff != 0) {
1872 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1873 							symbol_name,
1874 							xm->pgoff);
1875 		}
1876 
1877 		if (machine__is_default_guest(machine)) {
1878 			/*
1879 			 * preload dso of guest kernel and modules
1880 			 */
1881 			dso__load(kernel, machine__kernel_map(machine));
1882 		}
1883 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1884 		return machine__process_extra_kernel_map(machine, xm);
1885 	}
1886 	return 0;
1887 out_problem:
1888 	return -1;
1889 }
1890 
1891 int machine__process_mmap2_event(struct machine *machine,
1892 				 union perf_event *event,
1893 				 struct perf_sample *sample)
1894 {
1895 	struct thread *thread;
1896 	struct map *map;
1897 	struct dso_id dso_id = {
1898 		.maj = event->mmap2.maj,
1899 		.min = event->mmap2.min,
1900 		.ino = event->mmap2.ino,
1901 		.ino_generation = event->mmap2.ino_generation,
1902 	};
1903 	struct build_id __bid, *bid = NULL;
1904 	int ret = 0;
1905 
1906 	if (dump_trace)
1907 		perf_event__fprintf_mmap2(event, stdout);
1908 
1909 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1910 		bid = &__bid;
1911 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1912 	}
1913 
1914 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1915 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1916 		struct extra_kernel_map xm = {
1917 			.start = event->mmap2.start,
1918 			.end   = event->mmap2.start + event->mmap2.len,
1919 			.pgoff = event->mmap2.pgoff,
1920 		};
1921 
1922 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1923 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1924 		if (ret < 0)
1925 			goto out_problem;
1926 		return 0;
1927 	}
1928 
1929 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1930 					event->mmap2.tid);
1931 	if (thread == NULL)
1932 		goto out_problem;
1933 
1934 	map = map__new(machine, event->mmap2.start,
1935 			event->mmap2.len, event->mmap2.pgoff,
1936 			&dso_id, event->mmap2.prot,
1937 			event->mmap2.flags, bid,
1938 			event->mmap2.filename, thread);
1939 
1940 	if (map == NULL)
1941 		goto out_problem_map;
1942 
1943 	ret = thread__insert_map(thread, map);
1944 	if (ret)
1945 		goto out_problem_insert;
1946 
1947 	thread__put(thread);
1948 	map__put(map);
1949 	return 0;
1950 
1951 out_problem_insert:
1952 	map__put(map);
1953 out_problem_map:
1954 	thread__put(thread);
1955 out_problem:
1956 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1957 	return 0;
1958 }
1959 
1960 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1961 				struct perf_sample *sample)
1962 {
1963 	struct thread *thread;
1964 	struct map *map;
1965 	u32 prot = 0;
1966 	int ret = 0;
1967 
1968 	if (dump_trace)
1969 		perf_event__fprintf_mmap(event, stdout);
1970 
1971 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1972 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1973 		struct extra_kernel_map xm = {
1974 			.start = event->mmap.start,
1975 			.end   = event->mmap.start + event->mmap.len,
1976 			.pgoff = event->mmap.pgoff,
1977 		};
1978 
1979 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1980 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1981 		if (ret < 0)
1982 			goto out_problem;
1983 		return 0;
1984 	}
1985 
1986 	thread = machine__findnew_thread(machine, event->mmap.pid,
1987 					 event->mmap.tid);
1988 	if (thread == NULL)
1989 		goto out_problem;
1990 
1991 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1992 		prot = PROT_EXEC;
1993 
1994 	map = map__new(machine, event->mmap.start,
1995 			event->mmap.len, event->mmap.pgoff,
1996 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1997 
1998 	if (map == NULL)
1999 		goto out_problem_map;
2000 
2001 	ret = thread__insert_map(thread, map);
2002 	if (ret)
2003 		goto out_problem_insert;
2004 
2005 	thread__put(thread);
2006 	map__put(map);
2007 	return 0;
2008 
2009 out_problem_insert:
2010 	map__put(map);
2011 out_problem_map:
2012 	thread__put(thread);
2013 out_problem:
2014 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2015 	return 0;
2016 }
2017 
2018 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
2019 {
2020 	struct threads *threads = machine__threads(machine, th->tid);
2021 
2022 	if (threads->last_match == th)
2023 		threads__set_last_match(threads, NULL);
2024 
2025 	if (lock)
2026 		down_write(&threads->lock);
2027 
2028 	BUG_ON(refcount_read(&th->refcnt) == 0);
2029 
2030 	rb_erase_cached(&th->rb_node, &threads->entries);
2031 	RB_CLEAR_NODE(&th->rb_node);
2032 	--threads->nr;
2033 	/*
2034 	 * Move it first to the dead_threads list, then drop the reference,
2035 	 * if this is the last reference, then the thread__delete destructor
2036 	 * will be called and we will remove it from the dead_threads list.
2037 	 */
2038 	list_add_tail(&th->node, &threads->dead);
2039 
2040 	/*
2041 	 * We need to do the put here because if this is the last refcount,
2042 	 * then we will be touching the threads->dead head when removing the
2043 	 * thread.
2044 	 */
2045 	thread__put(th);
2046 
2047 	if (lock)
2048 		up_write(&threads->lock);
2049 }
2050 
2051 void machine__remove_thread(struct machine *machine, struct thread *th)
2052 {
2053 	return __machine__remove_thread(machine, th, true);
2054 }
2055 
2056 int machine__process_fork_event(struct machine *machine, union perf_event *event,
2057 				struct perf_sample *sample)
2058 {
2059 	struct thread *thread = machine__find_thread(machine,
2060 						     event->fork.pid,
2061 						     event->fork.tid);
2062 	struct thread *parent = machine__findnew_thread(machine,
2063 							event->fork.ppid,
2064 							event->fork.ptid);
2065 	bool do_maps_clone = true;
2066 	int err = 0;
2067 
2068 	if (dump_trace)
2069 		perf_event__fprintf_task(event, stdout);
2070 
2071 	/*
2072 	 * There may be an existing thread that is not actually the parent,
2073 	 * either because we are processing events out of order, or because the
2074 	 * (fork) event that would have removed the thread was lost. Assume the
2075 	 * latter case and continue on as best we can.
2076 	 */
2077 	if (parent->pid_ != (pid_t)event->fork.ppid) {
2078 		dump_printf("removing erroneous parent thread %d/%d\n",
2079 			    parent->pid_, parent->tid);
2080 		machine__remove_thread(machine, parent);
2081 		thread__put(parent);
2082 		parent = machine__findnew_thread(machine, event->fork.ppid,
2083 						 event->fork.ptid);
2084 	}
2085 
2086 	/* if a thread currently exists for the thread id remove it */
2087 	if (thread != NULL) {
2088 		machine__remove_thread(machine, thread);
2089 		thread__put(thread);
2090 	}
2091 
2092 	thread = machine__findnew_thread(machine, event->fork.pid,
2093 					 event->fork.tid);
2094 	/*
2095 	 * When synthesizing FORK events, we are trying to create thread
2096 	 * objects for the already running tasks on the machine.
2097 	 *
2098 	 * Normally, for a kernel FORK event, we want to clone the parent's
2099 	 * maps because that is what the kernel just did.
2100 	 *
2101 	 * But when synthesizing, this should not be done.  If we do, we end up
2102 	 * with overlapping maps as we process the synthesized MMAP2 events that
2103 	 * get delivered shortly thereafter.
2104 	 *
2105 	 * Use the FORK event misc flags in an internal way to signal this
2106 	 * situation, so we can elide the map clone when appropriate.
2107 	 */
2108 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2109 		do_maps_clone = false;
2110 
2111 	if (thread == NULL || parent == NULL ||
2112 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2113 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2114 		err = -1;
2115 	}
2116 	thread__put(thread);
2117 	thread__put(parent);
2118 
2119 	return err;
2120 }
2121 
2122 int machine__process_exit_event(struct machine *machine, union perf_event *event,
2123 				struct perf_sample *sample __maybe_unused)
2124 {
2125 	struct thread *thread = machine__find_thread(machine,
2126 						     event->fork.pid,
2127 						     event->fork.tid);
2128 
2129 	if (dump_trace)
2130 		perf_event__fprintf_task(event, stdout);
2131 
2132 	if (thread != NULL) {
2133 		thread__exited(thread);
2134 		thread__put(thread);
2135 	}
2136 
2137 	return 0;
2138 }
2139 
2140 int machine__process_event(struct machine *machine, union perf_event *event,
2141 			   struct perf_sample *sample)
2142 {
2143 	int ret;
2144 
2145 	switch (event->header.type) {
2146 	case PERF_RECORD_COMM:
2147 		ret = machine__process_comm_event(machine, event, sample); break;
2148 	case PERF_RECORD_MMAP:
2149 		ret = machine__process_mmap_event(machine, event, sample); break;
2150 	case PERF_RECORD_NAMESPACES:
2151 		ret = machine__process_namespaces_event(machine, event, sample); break;
2152 	case PERF_RECORD_CGROUP:
2153 		ret = machine__process_cgroup_event(machine, event, sample); break;
2154 	case PERF_RECORD_MMAP2:
2155 		ret = machine__process_mmap2_event(machine, event, sample); break;
2156 	case PERF_RECORD_FORK:
2157 		ret = machine__process_fork_event(machine, event, sample); break;
2158 	case PERF_RECORD_EXIT:
2159 		ret = machine__process_exit_event(machine, event, sample); break;
2160 	case PERF_RECORD_LOST:
2161 		ret = machine__process_lost_event(machine, event, sample); break;
2162 	case PERF_RECORD_AUX:
2163 		ret = machine__process_aux_event(machine, event); break;
2164 	case PERF_RECORD_ITRACE_START:
2165 		ret = machine__process_itrace_start_event(machine, event); break;
2166 	case PERF_RECORD_LOST_SAMPLES:
2167 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2168 	case PERF_RECORD_SWITCH:
2169 	case PERF_RECORD_SWITCH_CPU_WIDE:
2170 		ret = machine__process_switch_event(machine, event); break;
2171 	case PERF_RECORD_KSYMBOL:
2172 		ret = machine__process_ksymbol(machine, event, sample); break;
2173 	case PERF_RECORD_BPF_EVENT:
2174 		ret = machine__process_bpf(machine, event, sample); break;
2175 	case PERF_RECORD_TEXT_POKE:
2176 		ret = machine__process_text_poke(machine, event, sample); break;
2177 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2178 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2179 	default:
2180 		ret = -1;
2181 		break;
2182 	}
2183 
2184 	return ret;
2185 }
2186 
2187 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2188 {
2189 	if (!regexec(regex, sym->name, 0, NULL, 0))
2190 		return true;
2191 	return false;
2192 }
2193 
2194 static void ip__resolve_ams(struct thread *thread,
2195 			    struct addr_map_symbol *ams,
2196 			    u64 ip)
2197 {
2198 	struct addr_location al;
2199 
2200 	memset(&al, 0, sizeof(al));
2201 	/*
2202 	 * We cannot use the header.misc hint to determine whether a
2203 	 * branch stack address is user, kernel, guest, hypervisor.
2204 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2205 	 * Thus, we have to try consecutively until we find a match
2206 	 * or else, the symbol is unknown
2207 	 */
2208 	thread__find_cpumode_addr_location(thread, ip, &al);
2209 
2210 	ams->addr = ip;
2211 	ams->al_addr = al.addr;
2212 	ams->al_level = al.level;
2213 	ams->ms.maps = al.maps;
2214 	ams->ms.sym = al.sym;
2215 	ams->ms.map = al.map;
2216 	ams->phys_addr = 0;
2217 	ams->data_page_size = 0;
2218 }
2219 
2220 static void ip__resolve_data(struct thread *thread,
2221 			     u8 m, struct addr_map_symbol *ams,
2222 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2223 {
2224 	struct addr_location al;
2225 
2226 	memset(&al, 0, sizeof(al));
2227 
2228 	thread__find_symbol(thread, m, addr, &al);
2229 
2230 	ams->addr = addr;
2231 	ams->al_addr = al.addr;
2232 	ams->al_level = al.level;
2233 	ams->ms.maps = al.maps;
2234 	ams->ms.sym = al.sym;
2235 	ams->ms.map = al.map;
2236 	ams->phys_addr = phys_addr;
2237 	ams->data_page_size = daddr_page_size;
2238 }
2239 
2240 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2241 				     struct addr_location *al)
2242 {
2243 	struct mem_info *mi = mem_info__new();
2244 
2245 	if (!mi)
2246 		return NULL;
2247 
2248 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2249 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2250 			 sample->addr, sample->phys_addr,
2251 			 sample->data_page_size);
2252 	mi->data_src.val = sample->data_src;
2253 
2254 	return mi;
2255 }
2256 
2257 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2258 {
2259 	struct map *map = ms->map;
2260 	char *srcline = NULL;
2261 	struct dso *dso;
2262 
2263 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2264 		return srcline;
2265 
2266 	dso = map__dso(map);
2267 	srcline = srcline__tree_find(&dso->srclines, ip);
2268 	if (!srcline) {
2269 		bool show_sym = false;
2270 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2271 
2272 		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2273 				      ms->sym, show_sym, show_addr, ip);
2274 		srcline__tree_insert(&dso->srclines, ip, srcline);
2275 	}
2276 
2277 	return srcline;
2278 }
2279 
2280 struct iterations {
2281 	int nr_loop_iter;
2282 	u64 cycles;
2283 };
2284 
2285 static int add_callchain_ip(struct thread *thread,
2286 			    struct callchain_cursor *cursor,
2287 			    struct symbol **parent,
2288 			    struct addr_location *root_al,
2289 			    u8 *cpumode,
2290 			    u64 ip,
2291 			    bool branch,
2292 			    struct branch_flags *flags,
2293 			    struct iterations *iter,
2294 			    u64 branch_from)
2295 {
2296 	struct map_symbol ms;
2297 	struct addr_location al;
2298 	int nr_loop_iter = 0;
2299 	u64 iter_cycles = 0;
2300 	const char *srcline = NULL;
2301 
2302 	al.filtered = 0;
2303 	al.sym = NULL;
2304 	al.srcline = NULL;
2305 	if (!cpumode) {
2306 		thread__find_cpumode_addr_location(thread, ip, &al);
2307 	} else {
2308 		if (ip >= PERF_CONTEXT_MAX) {
2309 			switch (ip) {
2310 			case PERF_CONTEXT_HV:
2311 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2312 				break;
2313 			case PERF_CONTEXT_KERNEL:
2314 				*cpumode = PERF_RECORD_MISC_KERNEL;
2315 				break;
2316 			case PERF_CONTEXT_USER:
2317 				*cpumode = PERF_RECORD_MISC_USER;
2318 				break;
2319 			default:
2320 				pr_debug("invalid callchain context: "
2321 					 "%"PRId64"\n", (s64) ip);
2322 				/*
2323 				 * It seems the callchain is corrupted.
2324 				 * Discard all.
2325 				 */
2326 				callchain_cursor_reset(cursor);
2327 				return 1;
2328 			}
2329 			return 0;
2330 		}
2331 		thread__find_symbol(thread, *cpumode, ip, &al);
2332 	}
2333 
2334 	if (al.sym != NULL) {
2335 		if (perf_hpp_list.parent && !*parent &&
2336 		    symbol__match_regex(al.sym, &parent_regex))
2337 			*parent = al.sym;
2338 		else if (have_ignore_callees && root_al &&
2339 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2340 			/* Treat this symbol as the root,
2341 			   forgetting its callees. */
2342 			*root_al = al;
2343 			callchain_cursor_reset(cursor);
2344 		}
2345 	}
2346 
2347 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2348 		return 0;
2349 
2350 	if (iter) {
2351 		nr_loop_iter = iter->nr_loop_iter;
2352 		iter_cycles = iter->cycles;
2353 	}
2354 
2355 	ms.maps = al.maps;
2356 	ms.map = al.map;
2357 	ms.sym = al.sym;
2358 
2359 	if (!branch && append_inlines(cursor, &ms, ip) == 0)
2360 		return 0;
2361 
2362 	srcline = callchain_srcline(&ms, al.addr);
2363 	return callchain_cursor_append(cursor, ip, &ms,
2364 				       branch, flags, nr_loop_iter,
2365 				       iter_cycles, branch_from, srcline);
2366 }
2367 
2368 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2369 					   struct addr_location *al)
2370 {
2371 	unsigned int i;
2372 	const struct branch_stack *bs = sample->branch_stack;
2373 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2374 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2375 
2376 	if (!bi)
2377 		return NULL;
2378 
2379 	for (i = 0; i < bs->nr; i++) {
2380 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2381 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2382 		bi[i].flags = entries[i].flags;
2383 	}
2384 	return bi;
2385 }
2386 
2387 static void save_iterations(struct iterations *iter,
2388 			    struct branch_entry *be, int nr)
2389 {
2390 	int i;
2391 
2392 	iter->nr_loop_iter++;
2393 	iter->cycles = 0;
2394 
2395 	for (i = 0; i < nr; i++)
2396 		iter->cycles += be[i].flags.cycles;
2397 }
2398 
2399 #define CHASHSZ 127
2400 #define CHASHBITS 7
2401 #define NO_ENTRY 0xff
2402 
2403 #define PERF_MAX_BRANCH_DEPTH 127
2404 
2405 /* Remove loops. */
2406 static int remove_loops(struct branch_entry *l, int nr,
2407 			struct iterations *iter)
2408 {
2409 	int i, j, off;
2410 	unsigned char chash[CHASHSZ];
2411 
2412 	memset(chash, NO_ENTRY, sizeof(chash));
2413 
2414 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2415 
2416 	for (i = 0; i < nr; i++) {
2417 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2418 
2419 		/* no collision handling for now */
2420 		if (chash[h] == NO_ENTRY) {
2421 			chash[h] = i;
2422 		} else if (l[chash[h]].from == l[i].from) {
2423 			bool is_loop = true;
2424 			/* check if it is a real loop */
2425 			off = 0;
2426 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2427 				if (l[j].from != l[i + off].from) {
2428 					is_loop = false;
2429 					break;
2430 				}
2431 			if (is_loop) {
2432 				j = nr - (i + off);
2433 				if (j > 0) {
2434 					save_iterations(iter + i + off,
2435 						l + i, off);
2436 
2437 					memmove(iter + i, iter + i + off,
2438 						j * sizeof(*iter));
2439 
2440 					memmove(l + i, l + i + off,
2441 						j * sizeof(*l));
2442 				}
2443 
2444 				nr -= off;
2445 			}
2446 		}
2447 	}
2448 	return nr;
2449 }
2450 
2451 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2452 				       struct callchain_cursor *cursor,
2453 				       struct perf_sample *sample,
2454 				       struct symbol **parent,
2455 				       struct addr_location *root_al,
2456 				       u64 branch_from,
2457 				       bool callee, int end)
2458 {
2459 	struct ip_callchain *chain = sample->callchain;
2460 	u8 cpumode = PERF_RECORD_MISC_USER;
2461 	int err, i;
2462 
2463 	if (callee) {
2464 		for (i = 0; i < end + 1; i++) {
2465 			err = add_callchain_ip(thread, cursor, parent,
2466 					       root_al, &cpumode, chain->ips[i],
2467 					       false, NULL, NULL, branch_from);
2468 			if (err)
2469 				return err;
2470 		}
2471 		return 0;
2472 	}
2473 
2474 	for (i = end; i >= 0; i--) {
2475 		err = add_callchain_ip(thread, cursor, parent,
2476 				       root_al, &cpumode, chain->ips[i],
2477 				       false, NULL, NULL, branch_from);
2478 		if (err)
2479 			return err;
2480 	}
2481 
2482 	return 0;
2483 }
2484 
2485 static void save_lbr_cursor_node(struct thread *thread,
2486 				 struct callchain_cursor *cursor,
2487 				 int idx)
2488 {
2489 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2490 
2491 	if (!lbr_stitch)
2492 		return;
2493 
2494 	if (cursor->pos == cursor->nr) {
2495 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2496 		return;
2497 	}
2498 
2499 	if (!cursor->curr)
2500 		cursor->curr = cursor->first;
2501 	else
2502 		cursor->curr = cursor->curr->next;
2503 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2504 	       sizeof(struct callchain_cursor_node));
2505 
2506 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2507 	cursor->pos++;
2508 }
2509 
2510 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2511 				    struct callchain_cursor *cursor,
2512 				    struct perf_sample *sample,
2513 				    struct symbol **parent,
2514 				    struct addr_location *root_al,
2515 				    u64 *branch_from,
2516 				    bool callee)
2517 {
2518 	struct branch_stack *lbr_stack = sample->branch_stack;
2519 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2520 	u8 cpumode = PERF_RECORD_MISC_USER;
2521 	int lbr_nr = lbr_stack->nr;
2522 	struct branch_flags *flags;
2523 	int err, i;
2524 	u64 ip;
2525 
2526 	/*
2527 	 * The curr and pos are not used in writing session. They are cleared
2528 	 * in callchain_cursor_commit() when the writing session is closed.
2529 	 * Using curr and pos to track the current cursor node.
2530 	 */
2531 	if (thread->lbr_stitch) {
2532 		cursor->curr = NULL;
2533 		cursor->pos = cursor->nr;
2534 		if (cursor->nr) {
2535 			cursor->curr = cursor->first;
2536 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2537 				cursor->curr = cursor->curr->next;
2538 		}
2539 	}
2540 
2541 	if (callee) {
2542 		/* Add LBR ip from first entries.to */
2543 		ip = entries[0].to;
2544 		flags = &entries[0].flags;
2545 		*branch_from = entries[0].from;
2546 		err = add_callchain_ip(thread, cursor, parent,
2547 				       root_al, &cpumode, ip,
2548 				       true, flags, NULL,
2549 				       *branch_from);
2550 		if (err)
2551 			return err;
2552 
2553 		/*
2554 		 * The number of cursor node increases.
2555 		 * Move the current cursor node.
2556 		 * But does not need to save current cursor node for entry 0.
2557 		 * It's impossible to stitch the whole LBRs of previous sample.
2558 		 */
2559 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2560 			if (!cursor->curr)
2561 				cursor->curr = cursor->first;
2562 			else
2563 				cursor->curr = cursor->curr->next;
2564 			cursor->pos++;
2565 		}
2566 
2567 		/* Add LBR ip from entries.from one by one. */
2568 		for (i = 0; i < lbr_nr; i++) {
2569 			ip = entries[i].from;
2570 			flags = &entries[i].flags;
2571 			err = add_callchain_ip(thread, cursor, parent,
2572 					       root_al, &cpumode, ip,
2573 					       true, flags, NULL,
2574 					       *branch_from);
2575 			if (err)
2576 				return err;
2577 			save_lbr_cursor_node(thread, cursor, i);
2578 		}
2579 		return 0;
2580 	}
2581 
2582 	/* Add LBR ip from entries.from one by one. */
2583 	for (i = lbr_nr - 1; i >= 0; i--) {
2584 		ip = entries[i].from;
2585 		flags = &entries[i].flags;
2586 		err = add_callchain_ip(thread, cursor, parent,
2587 				       root_al, &cpumode, ip,
2588 				       true, flags, NULL,
2589 				       *branch_from);
2590 		if (err)
2591 			return err;
2592 		save_lbr_cursor_node(thread, cursor, i);
2593 	}
2594 
2595 	/* Add LBR ip from first entries.to */
2596 	ip = entries[0].to;
2597 	flags = &entries[0].flags;
2598 	*branch_from = entries[0].from;
2599 	err = add_callchain_ip(thread, cursor, parent,
2600 			       root_al, &cpumode, ip,
2601 			       true, flags, NULL,
2602 			       *branch_from);
2603 	if (err)
2604 		return err;
2605 
2606 	return 0;
2607 }
2608 
2609 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2610 					     struct callchain_cursor *cursor)
2611 {
2612 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2613 	struct callchain_cursor_node *cnode;
2614 	struct stitch_list *stitch_node;
2615 	int err;
2616 
2617 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2618 		cnode = &stitch_node->cursor;
2619 
2620 		err = callchain_cursor_append(cursor, cnode->ip,
2621 					      &cnode->ms,
2622 					      cnode->branch,
2623 					      &cnode->branch_flags,
2624 					      cnode->nr_loop_iter,
2625 					      cnode->iter_cycles,
2626 					      cnode->branch_from,
2627 					      cnode->srcline);
2628 		if (err)
2629 			return err;
2630 	}
2631 	return 0;
2632 }
2633 
2634 static struct stitch_list *get_stitch_node(struct thread *thread)
2635 {
2636 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2637 	struct stitch_list *stitch_node;
2638 
2639 	if (!list_empty(&lbr_stitch->free_lists)) {
2640 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2641 					       struct stitch_list, node);
2642 		list_del(&stitch_node->node);
2643 
2644 		return stitch_node;
2645 	}
2646 
2647 	return malloc(sizeof(struct stitch_list));
2648 }
2649 
2650 static bool has_stitched_lbr(struct thread *thread,
2651 			     struct perf_sample *cur,
2652 			     struct perf_sample *prev,
2653 			     unsigned int max_lbr,
2654 			     bool callee)
2655 {
2656 	struct branch_stack *cur_stack = cur->branch_stack;
2657 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2658 	struct branch_stack *prev_stack = prev->branch_stack;
2659 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2660 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2661 	int i, j, nr_identical_branches = 0;
2662 	struct stitch_list *stitch_node;
2663 	u64 cur_base, distance;
2664 
2665 	if (!cur_stack || !prev_stack)
2666 		return false;
2667 
2668 	/* Find the physical index of the base-of-stack for current sample. */
2669 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2670 
2671 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2672 						     (max_lbr + prev_stack->hw_idx - cur_base);
2673 	/* Previous sample has shorter stack. Nothing can be stitched. */
2674 	if (distance + 1 > prev_stack->nr)
2675 		return false;
2676 
2677 	/*
2678 	 * Check if there are identical LBRs between two samples.
2679 	 * Identical LBRs must have same from, to and flags values. Also,
2680 	 * they have to be saved in the same LBR registers (same physical
2681 	 * index).
2682 	 *
2683 	 * Starts from the base-of-stack of current sample.
2684 	 */
2685 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2686 		if ((prev_entries[i].from != cur_entries[j].from) ||
2687 		    (prev_entries[i].to != cur_entries[j].to) ||
2688 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2689 			break;
2690 		nr_identical_branches++;
2691 	}
2692 
2693 	if (!nr_identical_branches)
2694 		return false;
2695 
2696 	/*
2697 	 * Save the LBRs between the base-of-stack of previous sample
2698 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2699 	 * These LBRs will be stitched later.
2700 	 */
2701 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2702 
2703 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2704 			continue;
2705 
2706 		stitch_node = get_stitch_node(thread);
2707 		if (!stitch_node)
2708 			return false;
2709 
2710 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2711 		       sizeof(struct callchain_cursor_node));
2712 
2713 		if (callee)
2714 			list_add(&stitch_node->node, &lbr_stitch->lists);
2715 		else
2716 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2717 	}
2718 
2719 	return true;
2720 }
2721 
2722 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2723 {
2724 	if (thread->lbr_stitch)
2725 		return true;
2726 
2727 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2728 	if (!thread->lbr_stitch)
2729 		goto err;
2730 
2731 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2732 	if (!thread->lbr_stitch->prev_lbr_cursor)
2733 		goto free_lbr_stitch;
2734 
2735 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2736 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2737 
2738 	return true;
2739 
2740 free_lbr_stitch:
2741 	zfree(&thread->lbr_stitch);
2742 err:
2743 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2744 	thread->lbr_stitch_enable = false;
2745 	return false;
2746 }
2747 
2748 /*
2749  * Resolve LBR callstack chain sample
2750  * Return:
2751  * 1 on success get LBR callchain information
2752  * 0 no available LBR callchain information, should try fp
2753  * negative error code on other errors.
2754  */
2755 static int resolve_lbr_callchain_sample(struct thread *thread,
2756 					struct callchain_cursor *cursor,
2757 					struct perf_sample *sample,
2758 					struct symbol **parent,
2759 					struct addr_location *root_al,
2760 					int max_stack,
2761 					unsigned int max_lbr)
2762 {
2763 	bool callee = (callchain_param.order == ORDER_CALLEE);
2764 	struct ip_callchain *chain = sample->callchain;
2765 	int chain_nr = min(max_stack, (int)chain->nr), i;
2766 	struct lbr_stitch *lbr_stitch;
2767 	bool stitched_lbr = false;
2768 	u64 branch_from = 0;
2769 	int err;
2770 
2771 	for (i = 0; i < chain_nr; i++) {
2772 		if (chain->ips[i] == PERF_CONTEXT_USER)
2773 			break;
2774 	}
2775 
2776 	/* LBR only affects the user callchain */
2777 	if (i == chain_nr)
2778 		return 0;
2779 
2780 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2781 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2782 		lbr_stitch = thread->lbr_stitch;
2783 
2784 		stitched_lbr = has_stitched_lbr(thread, sample,
2785 						&lbr_stitch->prev_sample,
2786 						max_lbr, callee);
2787 
2788 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2789 			list_replace_init(&lbr_stitch->lists,
2790 					  &lbr_stitch->free_lists);
2791 		}
2792 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2793 	}
2794 
2795 	if (callee) {
2796 		/* Add kernel ip */
2797 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2798 						  parent, root_al, branch_from,
2799 						  true, i);
2800 		if (err)
2801 			goto error;
2802 
2803 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2804 					       root_al, &branch_from, true);
2805 		if (err)
2806 			goto error;
2807 
2808 		if (stitched_lbr) {
2809 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2810 			if (err)
2811 				goto error;
2812 		}
2813 
2814 	} else {
2815 		if (stitched_lbr) {
2816 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2817 			if (err)
2818 				goto error;
2819 		}
2820 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2821 					       root_al, &branch_from, false);
2822 		if (err)
2823 			goto error;
2824 
2825 		/* Add kernel ip */
2826 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2827 						  parent, root_al, branch_from,
2828 						  false, i);
2829 		if (err)
2830 			goto error;
2831 	}
2832 	return 1;
2833 
2834 error:
2835 	return (err < 0) ? err : 0;
2836 }
2837 
2838 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2839 			     struct callchain_cursor *cursor,
2840 			     struct symbol **parent,
2841 			     struct addr_location *root_al,
2842 			     u8 *cpumode, int ent)
2843 {
2844 	int err = 0;
2845 
2846 	while (--ent >= 0) {
2847 		u64 ip = chain->ips[ent];
2848 
2849 		if (ip >= PERF_CONTEXT_MAX) {
2850 			err = add_callchain_ip(thread, cursor, parent,
2851 					       root_al, cpumode, ip,
2852 					       false, NULL, NULL, 0);
2853 			break;
2854 		}
2855 	}
2856 	return err;
2857 }
2858 
2859 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2860 		struct thread *thread, int usr_idx)
2861 {
2862 	if (machine__normalized_is(maps__machine(thread->maps), "arm64"))
2863 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2864 	else
2865 		return 0;
2866 }
2867 
2868 static int thread__resolve_callchain_sample(struct thread *thread,
2869 					    struct callchain_cursor *cursor,
2870 					    struct evsel *evsel,
2871 					    struct perf_sample *sample,
2872 					    struct symbol **parent,
2873 					    struct addr_location *root_al,
2874 					    int max_stack)
2875 {
2876 	struct branch_stack *branch = sample->branch_stack;
2877 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2878 	struct ip_callchain *chain = sample->callchain;
2879 	int chain_nr = 0;
2880 	u8 cpumode = PERF_RECORD_MISC_USER;
2881 	int i, j, err, nr_entries, usr_idx;
2882 	int skip_idx = -1;
2883 	int first_call = 0;
2884 	u64 leaf_frame_caller;
2885 
2886 	if (chain)
2887 		chain_nr = chain->nr;
2888 
2889 	if (evsel__has_branch_callstack(evsel)) {
2890 		struct perf_env *env = evsel__env(evsel);
2891 
2892 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2893 						   root_al, max_stack,
2894 						   !env ? 0 : env->max_branches);
2895 		if (err)
2896 			return (err < 0) ? err : 0;
2897 	}
2898 
2899 	/*
2900 	 * Based on DWARF debug information, some architectures skip
2901 	 * a callchain entry saved by the kernel.
2902 	 */
2903 	skip_idx = arch_skip_callchain_idx(thread, chain);
2904 
2905 	/*
2906 	 * Add branches to call stack for easier browsing. This gives
2907 	 * more context for a sample than just the callers.
2908 	 *
2909 	 * This uses individual histograms of paths compared to the
2910 	 * aggregated histograms the normal LBR mode uses.
2911 	 *
2912 	 * Limitations for now:
2913 	 * - No extra filters
2914 	 * - No annotations (should annotate somehow)
2915 	 */
2916 
2917 	if (branch && callchain_param.branch_callstack) {
2918 		int nr = min(max_stack, (int)branch->nr);
2919 		struct branch_entry be[nr];
2920 		struct iterations iter[nr];
2921 
2922 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2923 			pr_warning("corrupted branch chain. skipping...\n");
2924 			goto check_calls;
2925 		}
2926 
2927 		for (i = 0; i < nr; i++) {
2928 			if (callchain_param.order == ORDER_CALLEE) {
2929 				be[i] = entries[i];
2930 
2931 				if (chain == NULL)
2932 					continue;
2933 
2934 				/*
2935 				 * Check for overlap into the callchain.
2936 				 * The return address is one off compared to
2937 				 * the branch entry. To adjust for this
2938 				 * assume the calling instruction is not longer
2939 				 * than 8 bytes.
2940 				 */
2941 				if (i == skip_idx ||
2942 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2943 					first_call++;
2944 				else if (be[i].from < chain->ips[first_call] &&
2945 				    be[i].from >= chain->ips[first_call] - 8)
2946 					first_call++;
2947 			} else
2948 				be[i] = entries[branch->nr - i - 1];
2949 		}
2950 
2951 		memset(iter, 0, sizeof(struct iterations) * nr);
2952 		nr = remove_loops(be, nr, iter);
2953 
2954 		for (i = 0; i < nr; i++) {
2955 			err = add_callchain_ip(thread, cursor, parent,
2956 					       root_al,
2957 					       NULL, be[i].to,
2958 					       true, &be[i].flags,
2959 					       NULL, be[i].from);
2960 
2961 			if (!err)
2962 				err = add_callchain_ip(thread, cursor, parent, root_al,
2963 						       NULL, be[i].from,
2964 						       true, &be[i].flags,
2965 						       &iter[i], 0);
2966 			if (err == -EINVAL)
2967 				break;
2968 			if (err)
2969 				return err;
2970 		}
2971 
2972 		if (chain_nr == 0)
2973 			return 0;
2974 
2975 		chain_nr -= nr;
2976 	}
2977 
2978 check_calls:
2979 	if (chain && callchain_param.order != ORDER_CALLEE) {
2980 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2981 					&cpumode, chain->nr - first_call);
2982 		if (err)
2983 			return (err < 0) ? err : 0;
2984 	}
2985 	for (i = first_call, nr_entries = 0;
2986 	     i < chain_nr && nr_entries < max_stack; i++) {
2987 		u64 ip;
2988 
2989 		if (callchain_param.order == ORDER_CALLEE)
2990 			j = i;
2991 		else
2992 			j = chain->nr - i - 1;
2993 
2994 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2995 		if (j == skip_idx)
2996 			continue;
2997 #endif
2998 		ip = chain->ips[j];
2999 		if (ip < PERF_CONTEXT_MAX)
3000                        ++nr_entries;
3001 		else if (callchain_param.order != ORDER_CALLEE) {
3002 			err = find_prev_cpumode(chain, thread, cursor, parent,
3003 						root_al, &cpumode, j);
3004 			if (err)
3005 				return (err < 0) ? err : 0;
3006 			continue;
3007 		}
3008 
3009 		/*
3010 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3011 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3012 		 * the index will be different in order to add the missing frame
3013 		 * at the right place.
3014 		 */
3015 
3016 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3017 
3018 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3019 
3020 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3021 
3022 			/*
3023 			 * check if leaf_frame_Caller != ip to not add the same
3024 			 * value twice.
3025 			 */
3026 
3027 			if (leaf_frame_caller && leaf_frame_caller != ip) {
3028 
3029 				err = add_callchain_ip(thread, cursor, parent,
3030 					       root_al, &cpumode, leaf_frame_caller,
3031 					       false, NULL, NULL, 0);
3032 				if (err)
3033 					return (err < 0) ? err : 0;
3034 			}
3035 		}
3036 
3037 		err = add_callchain_ip(thread, cursor, parent,
3038 				       root_al, &cpumode, ip,
3039 				       false, NULL, NULL, 0);
3040 
3041 		if (err)
3042 			return (err < 0) ? err : 0;
3043 	}
3044 
3045 	return 0;
3046 }
3047 
3048 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3049 {
3050 	struct symbol *sym = ms->sym;
3051 	struct map *map = ms->map;
3052 	struct inline_node *inline_node;
3053 	struct inline_list *ilist;
3054 	struct dso *dso;
3055 	u64 addr;
3056 	int ret = 1;
3057 
3058 	if (!symbol_conf.inline_name || !map || !sym)
3059 		return ret;
3060 
3061 	addr = map__map_ip(map, ip);
3062 	addr = map__rip_2objdump(map, addr);
3063 	dso = map__dso(map);
3064 
3065 	inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3066 	if (!inline_node) {
3067 		inline_node = dso__parse_addr_inlines(dso, addr, sym);
3068 		if (!inline_node)
3069 			return ret;
3070 		inlines__tree_insert(&dso->inlined_nodes, inline_node);
3071 	}
3072 
3073 	list_for_each_entry(ilist, &inline_node->val, list) {
3074 		struct map_symbol ilist_ms = {
3075 			.maps = ms->maps,
3076 			.map = map,
3077 			.sym = ilist->symbol,
3078 		};
3079 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3080 					      NULL, 0, 0, 0, ilist->srcline);
3081 
3082 		if (ret != 0)
3083 			return ret;
3084 	}
3085 
3086 	return ret;
3087 }
3088 
3089 static int unwind_entry(struct unwind_entry *entry, void *arg)
3090 {
3091 	struct callchain_cursor *cursor = arg;
3092 	const char *srcline = NULL;
3093 	u64 addr = entry->ip;
3094 
3095 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3096 		return 0;
3097 
3098 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3099 		return 0;
3100 
3101 	/*
3102 	 * Convert entry->ip from a virtual address to an offset in
3103 	 * its corresponding binary.
3104 	 */
3105 	if (entry->ms.map)
3106 		addr = map__map_ip(entry->ms.map, entry->ip);
3107 
3108 	srcline = callchain_srcline(&entry->ms, addr);
3109 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3110 				       false, NULL, 0, 0, 0, srcline);
3111 }
3112 
3113 static int thread__resolve_callchain_unwind(struct thread *thread,
3114 					    struct callchain_cursor *cursor,
3115 					    struct evsel *evsel,
3116 					    struct perf_sample *sample,
3117 					    int max_stack)
3118 {
3119 	/* Can we do dwarf post unwind? */
3120 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3121 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3122 		return 0;
3123 
3124 	/* Bail out if nothing was captured. */
3125 	if ((!sample->user_regs.regs) ||
3126 	    (!sample->user_stack.size))
3127 		return 0;
3128 
3129 	return unwind__get_entries(unwind_entry, cursor,
3130 				   thread, sample, max_stack, false);
3131 }
3132 
3133 int thread__resolve_callchain(struct thread *thread,
3134 			      struct callchain_cursor *cursor,
3135 			      struct evsel *evsel,
3136 			      struct perf_sample *sample,
3137 			      struct symbol **parent,
3138 			      struct addr_location *root_al,
3139 			      int max_stack)
3140 {
3141 	int ret = 0;
3142 
3143 	callchain_cursor_reset(cursor);
3144 
3145 	if (callchain_param.order == ORDER_CALLEE) {
3146 		ret = thread__resolve_callchain_sample(thread, cursor,
3147 						       evsel, sample,
3148 						       parent, root_al,
3149 						       max_stack);
3150 		if (ret)
3151 			return ret;
3152 		ret = thread__resolve_callchain_unwind(thread, cursor,
3153 						       evsel, sample,
3154 						       max_stack);
3155 	} else {
3156 		ret = thread__resolve_callchain_unwind(thread, cursor,
3157 						       evsel, sample,
3158 						       max_stack);
3159 		if (ret)
3160 			return ret;
3161 		ret = thread__resolve_callchain_sample(thread, cursor,
3162 						       evsel, sample,
3163 						       parent, root_al,
3164 						       max_stack);
3165 	}
3166 
3167 	return ret;
3168 }
3169 
3170 int machine__for_each_thread(struct machine *machine,
3171 			     int (*fn)(struct thread *thread, void *p),
3172 			     void *priv)
3173 {
3174 	struct threads *threads;
3175 	struct rb_node *nd;
3176 	struct thread *thread;
3177 	int rc = 0;
3178 	int i;
3179 
3180 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3181 		threads = &machine->threads[i];
3182 		for (nd = rb_first_cached(&threads->entries); nd;
3183 		     nd = rb_next(nd)) {
3184 			thread = rb_entry(nd, struct thread, rb_node);
3185 			rc = fn(thread, priv);
3186 			if (rc != 0)
3187 				return rc;
3188 		}
3189 
3190 		list_for_each_entry(thread, &threads->dead, node) {
3191 			rc = fn(thread, priv);
3192 			if (rc != 0)
3193 				return rc;
3194 		}
3195 	}
3196 	return rc;
3197 }
3198 
3199 int machines__for_each_thread(struct machines *machines,
3200 			      int (*fn)(struct thread *thread, void *p),
3201 			      void *priv)
3202 {
3203 	struct rb_node *nd;
3204 	int rc = 0;
3205 
3206 	rc = machine__for_each_thread(&machines->host, fn, priv);
3207 	if (rc != 0)
3208 		return rc;
3209 
3210 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3211 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3212 
3213 		rc = machine__for_each_thread(machine, fn, priv);
3214 		if (rc != 0)
3215 			return rc;
3216 	}
3217 	return rc;
3218 }
3219 
3220 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3221 {
3222 	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3223 		return -1;
3224 
3225 	return machine->current_tid[cpu];
3226 }
3227 
3228 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3229 			     pid_t tid)
3230 {
3231 	struct thread *thread;
3232 	const pid_t init_val = -1;
3233 
3234 	if (cpu < 0)
3235 		return -EINVAL;
3236 
3237 	if (realloc_array_as_needed(machine->current_tid,
3238 				    machine->current_tid_sz,
3239 				    (unsigned int)cpu,
3240 				    &init_val))
3241 		return -ENOMEM;
3242 
3243 	machine->current_tid[cpu] = tid;
3244 
3245 	thread = machine__findnew_thread(machine, pid, tid);
3246 	if (!thread)
3247 		return -ENOMEM;
3248 
3249 	thread->cpu = cpu;
3250 	thread__put(thread);
3251 
3252 	return 0;
3253 }
3254 
3255 /*
3256  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3257  * machine__normalized_is() if a normalized arch is needed.
3258  */
3259 bool machine__is(struct machine *machine, const char *arch)
3260 {
3261 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3262 }
3263 
3264 bool machine__normalized_is(struct machine *machine, const char *arch)
3265 {
3266 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3267 }
3268 
3269 int machine__nr_cpus_avail(struct machine *machine)
3270 {
3271 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3272 }
3273 
3274 int machine__get_kernel_start(struct machine *machine)
3275 {
3276 	struct map *map = machine__kernel_map(machine);
3277 	int err = 0;
3278 
3279 	/*
3280 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3281 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3282 	 * all addresses including kernel addresses are less than 2^32.  In
3283 	 * that case (32-bit system), if the kernel mapping is unknown, all
3284 	 * addresses will be assumed to be in user space - see
3285 	 * machine__kernel_ip().
3286 	 */
3287 	machine->kernel_start = 1ULL << 63;
3288 	if (map) {
3289 		err = map__load(map);
3290 		/*
3291 		 * On x86_64, PTI entry trampolines are less than the
3292 		 * start of kernel text, but still above 2^63. So leave
3293 		 * kernel_start = 1ULL << 63 for x86_64.
3294 		 */
3295 		if (!err && !machine__is(machine, "x86_64"))
3296 			machine->kernel_start = map__start(map);
3297 	}
3298 	return err;
3299 }
3300 
3301 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3302 {
3303 	u8 addr_cpumode = cpumode;
3304 	bool kernel_ip;
3305 
3306 	if (!machine->single_address_space)
3307 		goto out;
3308 
3309 	kernel_ip = machine__kernel_ip(machine, addr);
3310 	switch (cpumode) {
3311 	case PERF_RECORD_MISC_KERNEL:
3312 	case PERF_RECORD_MISC_USER:
3313 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3314 					   PERF_RECORD_MISC_USER;
3315 		break;
3316 	case PERF_RECORD_MISC_GUEST_KERNEL:
3317 	case PERF_RECORD_MISC_GUEST_USER:
3318 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3319 					   PERF_RECORD_MISC_GUEST_USER;
3320 		break;
3321 	default:
3322 		break;
3323 	}
3324 out:
3325 	return addr_cpumode;
3326 }
3327 
3328 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3329 {
3330 	return dsos__findnew_id(&machine->dsos, filename, id);
3331 }
3332 
3333 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3334 {
3335 	return machine__findnew_dso_id(machine, filename, NULL);
3336 }
3337 
3338 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3339 {
3340 	struct machine *machine = vmachine;
3341 	struct map *map;
3342 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3343 
3344 	if (sym == NULL)
3345 		return NULL;
3346 
3347 	*modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3348 	*addrp = map->unmap_ip(map, sym->start);
3349 	return sym->name;
3350 }
3351 
3352 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3353 {
3354 	struct dso *pos;
3355 	int err = 0;
3356 
3357 	list_for_each_entry(pos, &machine->dsos.head, node) {
3358 		if (fn(pos, machine, priv))
3359 			err = -1;
3360 	}
3361 	return err;
3362 }
3363 
3364 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3365 {
3366 	struct maps *maps = machine__kernel_maps(machine);
3367 	struct map_rb_node *pos;
3368 	int err = 0;
3369 
3370 	maps__for_each_entry(maps, pos) {
3371 		err = fn(pos->map, priv);
3372 		if (err != 0) {
3373 			break;
3374 		}
3375 	}
3376 	return err;
3377 }
3378 
3379 bool machine__is_lock_function(struct machine *machine, u64 addr)
3380 {
3381 	if (!machine->sched.text_start) {
3382 		struct map *kmap;
3383 		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3384 
3385 		if (!sym) {
3386 			/* to avoid retry */
3387 			machine->sched.text_start = 1;
3388 			return false;
3389 		}
3390 
3391 		machine->sched.text_start = kmap->unmap_ip(kmap, sym->start);
3392 
3393 		/* should not fail from here */
3394 		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3395 		machine->sched.text_end = kmap->unmap_ip(kmap, sym->start);
3396 
3397 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3398 		machine->lock.text_start = kmap->unmap_ip(kmap, sym->start);
3399 
3400 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3401 		machine->lock.text_end = kmap->unmap_ip(kmap, sym->start);
3402 	}
3403 
3404 	/* failed to get kernel symbols */
3405 	if (machine->sched.text_start == 1)
3406 		return false;
3407 
3408 	/* mutex and rwsem functions are in sched text section */
3409 	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3410 		return true;
3411 
3412 	/* spinlock functions are in lock text section */
3413 	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3414 		return true;
3415 
3416 	return false;
3417 }
3418