1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 47 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip); 48 49 static struct dso *machine__kernel_dso(struct machine *machine) 50 { 51 return map__dso(machine->vmlinux_map); 52 } 53 54 static void dsos__init(struct dsos *dsos) 55 { 56 INIT_LIST_HEAD(&dsos->head); 57 dsos->root = RB_ROOT; 58 init_rwsem(&dsos->lock); 59 } 60 61 static void machine__threads_init(struct machine *machine) 62 { 63 int i; 64 65 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 66 struct threads *threads = &machine->threads[i]; 67 threads->entries = RB_ROOT_CACHED; 68 init_rwsem(&threads->lock); 69 threads->nr = 0; 70 INIT_LIST_HEAD(&threads->dead); 71 threads->last_match = NULL; 72 } 73 } 74 75 static int machine__set_mmap_name(struct machine *machine) 76 { 77 if (machine__is_host(machine)) 78 machine->mmap_name = strdup("[kernel.kallsyms]"); 79 else if (machine__is_default_guest(machine)) 80 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 81 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 82 machine->pid) < 0) 83 machine->mmap_name = NULL; 84 85 return machine->mmap_name ? 0 : -ENOMEM; 86 } 87 88 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 89 { 90 char comm[64]; 91 92 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 93 thread__set_comm(thread, comm, 0); 94 } 95 96 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 97 { 98 int err = -ENOMEM; 99 100 memset(machine, 0, sizeof(*machine)); 101 machine->kmaps = maps__new(machine); 102 if (machine->kmaps == NULL) 103 return -ENOMEM; 104 105 RB_CLEAR_NODE(&machine->rb_node); 106 dsos__init(&machine->dsos); 107 108 machine__threads_init(machine); 109 110 machine->vdso_info = NULL; 111 machine->env = NULL; 112 113 machine->pid = pid; 114 115 machine->id_hdr_size = 0; 116 machine->kptr_restrict_warned = false; 117 machine->comm_exec = false; 118 machine->kernel_start = 0; 119 machine->vmlinux_map = NULL; 120 121 machine->root_dir = strdup(root_dir); 122 if (machine->root_dir == NULL) 123 goto out; 124 125 if (machine__set_mmap_name(machine)) 126 goto out; 127 128 if (pid != HOST_KERNEL_ID) { 129 struct thread *thread = machine__findnew_thread(machine, -1, 130 pid); 131 132 if (thread == NULL) 133 goto out; 134 135 thread__set_guest_comm(thread, pid); 136 thread__put(thread); 137 } 138 139 machine->current_tid = NULL; 140 err = 0; 141 142 out: 143 if (err) { 144 zfree(&machine->kmaps); 145 zfree(&machine->root_dir); 146 zfree(&machine->mmap_name); 147 } 148 return 0; 149 } 150 151 struct machine *machine__new_host(void) 152 { 153 struct machine *machine = malloc(sizeof(*machine)); 154 155 if (machine != NULL) { 156 machine__init(machine, "", HOST_KERNEL_ID); 157 158 if (machine__create_kernel_maps(machine) < 0) 159 goto out_delete; 160 } 161 162 return machine; 163 out_delete: 164 free(machine); 165 return NULL; 166 } 167 168 struct machine *machine__new_kallsyms(void) 169 { 170 struct machine *machine = machine__new_host(); 171 /* 172 * FIXME: 173 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 174 * ask for not using the kcore parsing code, once this one is fixed 175 * to create a map per module. 176 */ 177 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 178 machine__delete(machine); 179 machine = NULL; 180 } 181 182 return machine; 183 } 184 185 static void dsos__purge(struct dsos *dsos) 186 { 187 struct dso *pos, *n; 188 189 down_write(&dsos->lock); 190 191 list_for_each_entry_safe(pos, n, &dsos->head, node) { 192 RB_CLEAR_NODE(&pos->rb_node); 193 pos->root = NULL; 194 list_del_init(&pos->node); 195 dso__put(pos); 196 } 197 198 up_write(&dsos->lock); 199 } 200 201 static void dsos__exit(struct dsos *dsos) 202 { 203 dsos__purge(dsos); 204 exit_rwsem(&dsos->lock); 205 } 206 207 void machine__delete_threads(struct machine *machine) 208 { 209 struct rb_node *nd; 210 int i; 211 212 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 213 struct threads *threads = &machine->threads[i]; 214 down_write(&threads->lock); 215 nd = rb_first_cached(&threads->entries); 216 while (nd) { 217 struct thread *t = rb_entry(nd, struct thread, rb_node); 218 219 nd = rb_next(nd); 220 __machine__remove_thread(machine, t, false); 221 } 222 up_write(&threads->lock); 223 } 224 } 225 226 void machine__exit(struct machine *machine) 227 { 228 int i; 229 230 if (machine == NULL) 231 return; 232 233 machine__destroy_kernel_maps(machine); 234 maps__delete(machine->kmaps); 235 dsos__exit(&machine->dsos); 236 machine__exit_vdso(machine); 237 zfree(&machine->root_dir); 238 zfree(&machine->mmap_name); 239 zfree(&machine->current_tid); 240 zfree(&machine->kallsyms_filename); 241 242 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 243 struct threads *threads = &machine->threads[i]; 244 struct thread *thread, *n; 245 /* 246 * Forget about the dead, at this point whatever threads were 247 * left in the dead lists better have a reference count taken 248 * by who is using them, and then, when they drop those references 249 * and it finally hits zero, thread__put() will check and see that 250 * its not in the dead threads list and will not try to remove it 251 * from there, just calling thread__delete() straight away. 252 */ 253 list_for_each_entry_safe(thread, n, &threads->dead, node) 254 list_del_init(&thread->node); 255 256 exit_rwsem(&threads->lock); 257 } 258 } 259 260 void machine__delete(struct machine *machine) 261 { 262 if (machine) { 263 machine__exit(machine); 264 free(machine); 265 } 266 } 267 268 void machines__init(struct machines *machines) 269 { 270 machine__init(&machines->host, "", HOST_KERNEL_ID); 271 machines->guests = RB_ROOT_CACHED; 272 } 273 274 void machines__exit(struct machines *machines) 275 { 276 machine__exit(&machines->host); 277 /* XXX exit guest */ 278 } 279 280 struct machine *machines__add(struct machines *machines, pid_t pid, 281 const char *root_dir) 282 { 283 struct rb_node **p = &machines->guests.rb_root.rb_node; 284 struct rb_node *parent = NULL; 285 struct machine *pos, *machine = malloc(sizeof(*machine)); 286 bool leftmost = true; 287 288 if (machine == NULL) 289 return NULL; 290 291 if (machine__init(machine, root_dir, pid) != 0) { 292 free(machine); 293 return NULL; 294 } 295 296 while (*p != NULL) { 297 parent = *p; 298 pos = rb_entry(parent, struct machine, rb_node); 299 if (pid < pos->pid) 300 p = &(*p)->rb_left; 301 else { 302 p = &(*p)->rb_right; 303 leftmost = false; 304 } 305 } 306 307 rb_link_node(&machine->rb_node, parent, p); 308 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 309 310 machine->machines = machines; 311 312 return machine; 313 } 314 315 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 316 { 317 struct rb_node *nd; 318 319 machines->host.comm_exec = comm_exec; 320 321 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 322 struct machine *machine = rb_entry(nd, struct machine, rb_node); 323 324 machine->comm_exec = comm_exec; 325 } 326 } 327 328 struct machine *machines__find(struct machines *machines, pid_t pid) 329 { 330 struct rb_node **p = &machines->guests.rb_root.rb_node; 331 struct rb_node *parent = NULL; 332 struct machine *machine; 333 struct machine *default_machine = NULL; 334 335 if (pid == HOST_KERNEL_ID) 336 return &machines->host; 337 338 while (*p != NULL) { 339 parent = *p; 340 machine = rb_entry(parent, struct machine, rb_node); 341 if (pid < machine->pid) 342 p = &(*p)->rb_left; 343 else if (pid > machine->pid) 344 p = &(*p)->rb_right; 345 else 346 return machine; 347 if (!machine->pid) 348 default_machine = machine; 349 } 350 351 return default_machine; 352 } 353 354 struct machine *machines__findnew(struct machines *machines, pid_t pid) 355 { 356 char path[PATH_MAX]; 357 const char *root_dir = ""; 358 struct machine *machine = machines__find(machines, pid); 359 360 if (machine && (machine->pid == pid)) 361 goto out; 362 363 if ((pid != HOST_KERNEL_ID) && 364 (pid != DEFAULT_GUEST_KERNEL_ID) && 365 (symbol_conf.guestmount)) { 366 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 367 if (access(path, R_OK)) { 368 static struct strlist *seen; 369 370 if (!seen) 371 seen = strlist__new(NULL, NULL); 372 373 if (!strlist__has_entry(seen, path)) { 374 pr_err("Can't access file %s\n", path); 375 strlist__add(seen, path); 376 } 377 machine = NULL; 378 goto out; 379 } 380 root_dir = path; 381 } 382 383 machine = machines__add(machines, pid, root_dir); 384 out: 385 return machine; 386 } 387 388 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 389 { 390 struct machine *machine = machines__find(machines, pid); 391 392 if (!machine) 393 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 394 return machine; 395 } 396 397 /* 398 * A common case for KVM test programs is that the test program acts as the 399 * hypervisor, creating, running and destroying the virtual machine, and 400 * providing the guest object code from its own object code. In this case, 401 * the VM is not running an OS, but only the functions loaded into it by the 402 * hypervisor test program, and conveniently, loaded at the same virtual 403 * addresses. 404 * 405 * Normally to resolve addresses, MMAP events are needed to map addresses 406 * back to the object code and debug symbols for that object code. 407 * 408 * Currently, there is no way to get such mapping information from guests 409 * but, in the scenario described above, the guest has the same mappings 410 * as the hypervisor, so support for that scenario can be achieved. 411 * 412 * To support that, copy the host thread's maps to the guest thread's maps. 413 * Note, we do not discover the guest until we encounter a guest event, 414 * which works well because it is not until then that we know that the host 415 * thread's maps have been set up. 416 * 417 * This function returns the guest thread. Apart from keeping the data 418 * structures sane, using a thread belonging to the guest machine, instead 419 * of the host thread, allows it to have its own comm (refer 420 * thread__set_guest_comm()). 421 */ 422 static struct thread *findnew_guest_code(struct machine *machine, 423 struct machine *host_machine, 424 pid_t pid) 425 { 426 struct thread *host_thread; 427 struct thread *thread; 428 int err; 429 430 if (!machine) 431 return NULL; 432 433 thread = machine__findnew_thread(machine, -1, pid); 434 if (!thread) 435 return NULL; 436 437 /* Assume maps are set up if there are any */ 438 if (thread->maps->nr_maps) 439 return thread; 440 441 host_thread = machine__find_thread(host_machine, -1, pid); 442 if (!host_thread) 443 goto out_err; 444 445 thread__set_guest_comm(thread, pid); 446 447 /* 448 * Guest code can be found in hypervisor process at the same address 449 * so copy host maps. 450 */ 451 err = maps__clone(thread, host_thread->maps); 452 thread__put(host_thread); 453 if (err) 454 goto out_err; 455 456 return thread; 457 458 out_err: 459 thread__zput(thread); 460 return NULL; 461 } 462 463 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 464 { 465 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 466 struct machine *machine = machines__findnew(machines, pid); 467 468 return findnew_guest_code(machine, host_machine, pid); 469 } 470 471 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 472 { 473 struct machines *machines = machine->machines; 474 struct machine *host_machine; 475 476 if (!machines) 477 return NULL; 478 479 host_machine = machines__find(machines, HOST_KERNEL_ID); 480 481 return findnew_guest_code(machine, host_machine, pid); 482 } 483 484 void machines__process_guests(struct machines *machines, 485 machine__process_t process, void *data) 486 { 487 struct rb_node *nd; 488 489 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 490 struct machine *pos = rb_entry(nd, struct machine, rb_node); 491 process(pos, data); 492 } 493 } 494 495 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 496 { 497 struct rb_node *node; 498 struct machine *machine; 499 500 machines->host.id_hdr_size = id_hdr_size; 501 502 for (node = rb_first_cached(&machines->guests); node; 503 node = rb_next(node)) { 504 machine = rb_entry(node, struct machine, rb_node); 505 machine->id_hdr_size = id_hdr_size; 506 } 507 508 return; 509 } 510 511 static void machine__update_thread_pid(struct machine *machine, 512 struct thread *th, pid_t pid) 513 { 514 struct thread *leader; 515 516 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 517 return; 518 519 th->pid_ = pid; 520 521 if (th->pid_ == th->tid) 522 return; 523 524 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 525 if (!leader) 526 goto out_err; 527 528 if (!leader->maps) 529 leader->maps = maps__new(machine); 530 531 if (!leader->maps) 532 goto out_err; 533 534 if (th->maps == leader->maps) 535 return; 536 537 if (th->maps) { 538 /* 539 * Maps are created from MMAP events which provide the pid and 540 * tid. Consequently there never should be any maps on a thread 541 * with an unknown pid. Just print an error if there are. 542 */ 543 if (!maps__empty(th->maps)) 544 pr_err("Discarding thread maps for %d:%d\n", 545 th->pid_, th->tid); 546 maps__put(th->maps); 547 } 548 549 th->maps = maps__get(leader->maps); 550 out_put: 551 thread__put(leader); 552 return; 553 out_err: 554 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 555 goto out_put; 556 } 557 558 /* 559 * Front-end cache - TID lookups come in blocks, 560 * so most of the time we dont have to look up 561 * the full rbtree: 562 */ 563 static struct thread* 564 __threads__get_last_match(struct threads *threads, struct machine *machine, 565 int pid, int tid) 566 { 567 struct thread *th; 568 569 th = threads->last_match; 570 if (th != NULL) { 571 if (th->tid == tid) { 572 machine__update_thread_pid(machine, th, pid); 573 return thread__get(th); 574 } 575 576 threads->last_match = NULL; 577 } 578 579 return NULL; 580 } 581 582 static struct thread* 583 threads__get_last_match(struct threads *threads, struct machine *machine, 584 int pid, int tid) 585 { 586 struct thread *th = NULL; 587 588 if (perf_singlethreaded) 589 th = __threads__get_last_match(threads, machine, pid, tid); 590 591 return th; 592 } 593 594 static void 595 __threads__set_last_match(struct threads *threads, struct thread *th) 596 { 597 threads->last_match = th; 598 } 599 600 static void 601 threads__set_last_match(struct threads *threads, struct thread *th) 602 { 603 if (perf_singlethreaded) 604 __threads__set_last_match(threads, th); 605 } 606 607 /* 608 * Caller must eventually drop thread->refcnt returned with a successful 609 * lookup/new thread inserted. 610 */ 611 static struct thread *____machine__findnew_thread(struct machine *machine, 612 struct threads *threads, 613 pid_t pid, pid_t tid, 614 bool create) 615 { 616 struct rb_node **p = &threads->entries.rb_root.rb_node; 617 struct rb_node *parent = NULL; 618 struct thread *th; 619 bool leftmost = true; 620 621 th = threads__get_last_match(threads, machine, pid, tid); 622 if (th) 623 return th; 624 625 while (*p != NULL) { 626 parent = *p; 627 th = rb_entry(parent, struct thread, rb_node); 628 629 if (th->tid == tid) { 630 threads__set_last_match(threads, th); 631 machine__update_thread_pid(machine, th, pid); 632 return thread__get(th); 633 } 634 635 if (tid < th->tid) 636 p = &(*p)->rb_left; 637 else { 638 p = &(*p)->rb_right; 639 leftmost = false; 640 } 641 } 642 643 if (!create) 644 return NULL; 645 646 th = thread__new(pid, tid); 647 if (th != NULL) { 648 rb_link_node(&th->rb_node, parent, p); 649 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 650 651 /* 652 * We have to initialize maps separately after rb tree is updated. 653 * 654 * The reason is that we call machine__findnew_thread 655 * within thread__init_maps to find the thread 656 * leader and that would screwed the rb tree. 657 */ 658 if (thread__init_maps(th, machine)) { 659 rb_erase_cached(&th->rb_node, &threads->entries); 660 RB_CLEAR_NODE(&th->rb_node); 661 thread__put(th); 662 return NULL; 663 } 664 /* 665 * It is now in the rbtree, get a ref 666 */ 667 thread__get(th); 668 threads__set_last_match(threads, th); 669 ++threads->nr; 670 } 671 672 return th; 673 } 674 675 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 676 { 677 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 678 } 679 680 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 681 pid_t tid) 682 { 683 struct threads *threads = machine__threads(machine, tid); 684 struct thread *th; 685 686 down_write(&threads->lock); 687 th = __machine__findnew_thread(machine, pid, tid); 688 up_write(&threads->lock); 689 return th; 690 } 691 692 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 693 pid_t tid) 694 { 695 struct threads *threads = machine__threads(machine, tid); 696 struct thread *th; 697 698 down_read(&threads->lock); 699 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 700 up_read(&threads->lock); 701 return th; 702 } 703 704 /* 705 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 706 * So here a single thread is created for that, but actually there is a separate 707 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 708 * is only 1. That causes problems for some tools, requiring workarounds. For 709 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 710 */ 711 struct thread *machine__idle_thread(struct machine *machine) 712 { 713 struct thread *thread = machine__findnew_thread(machine, 0, 0); 714 715 if (!thread || thread__set_comm(thread, "swapper", 0) || 716 thread__set_namespaces(thread, 0, NULL)) 717 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 718 719 return thread; 720 } 721 722 struct comm *machine__thread_exec_comm(struct machine *machine, 723 struct thread *thread) 724 { 725 if (machine->comm_exec) 726 return thread__exec_comm(thread); 727 else 728 return thread__comm(thread); 729 } 730 731 int machine__process_comm_event(struct machine *machine, union perf_event *event, 732 struct perf_sample *sample) 733 { 734 struct thread *thread = machine__findnew_thread(machine, 735 event->comm.pid, 736 event->comm.tid); 737 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 738 int err = 0; 739 740 if (exec) 741 machine->comm_exec = true; 742 743 if (dump_trace) 744 perf_event__fprintf_comm(event, stdout); 745 746 if (thread == NULL || 747 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 748 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 749 err = -1; 750 } 751 752 thread__put(thread); 753 754 return err; 755 } 756 757 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 758 union perf_event *event, 759 struct perf_sample *sample __maybe_unused) 760 { 761 struct thread *thread = machine__findnew_thread(machine, 762 event->namespaces.pid, 763 event->namespaces.tid); 764 int err = 0; 765 766 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 767 "\nWARNING: kernel seems to support more namespaces than perf" 768 " tool.\nTry updating the perf tool..\n\n"); 769 770 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 771 "\nWARNING: perf tool seems to support more namespaces than" 772 " the kernel.\nTry updating the kernel..\n\n"); 773 774 if (dump_trace) 775 perf_event__fprintf_namespaces(event, stdout); 776 777 if (thread == NULL || 778 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 779 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 780 err = -1; 781 } 782 783 thread__put(thread); 784 785 return err; 786 } 787 788 int machine__process_cgroup_event(struct machine *machine, 789 union perf_event *event, 790 struct perf_sample *sample __maybe_unused) 791 { 792 struct cgroup *cgrp; 793 794 if (dump_trace) 795 perf_event__fprintf_cgroup(event, stdout); 796 797 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 798 if (cgrp == NULL) 799 return -ENOMEM; 800 801 return 0; 802 } 803 804 int machine__process_lost_event(struct machine *machine __maybe_unused, 805 union perf_event *event, struct perf_sample *sample __maybe_unused) 806 { 807 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 808 event->lost.id, event->lost.lost); 809 return 0; 810 } 811 812 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 813 union perf_event *event, struct perf_sample *sample) 814 { 815 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 816 sample->id, event->lost_samples.lost); 817 return 0; 818 } 819 820 static struct dso *machine__findnew_module_dso(struct machine *machine, 821 struct kmod_path *m, 822 const char *filename) 823 { 824 struct dso *dso; 825 826 down_write(&machine->dsos.lock); 827 828 dso = __dsos__find(&machine->dsos, m->name, true); 829 if (!dso) { 830 dso = __dsos__addnew(&machine->dsos, m->name); 831 if (dso == NULL) 832 goto out_unlock; 833 834 dso__set_module_info(dso, m, machine); 835 dso__set_long_name(dso, strdup(filename), true); 836 dso->kernel = DSO_SPACE__KERNEL; 837 } 838 839 dso__get(dso); 840 out_unlock: 841 up_write(&machine->dsos.lock); 842 return dso; 843 } 844 845 int machine__process_aux_event(struct machine *machine __maybe_unused, 846 union perf_event *event) 847 { 848 if (dump_trace) 849 perf_event__fprintf_aux(event, stdout); 850 return 0; 851 } 852 853 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 854 union perf_event *event) 855 { 856 if (dump_trace) 857 perf_event__fprintf_itrace_start(event, stdout); 858 return 0; 859 } 860 861 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 862 union perf_event *event) 863 { 864 if (dump_trace) 865 perf_event__fprintf_aux_output_hw_id(event, stdout); 866 return 0; 867 } 868 869 int machine__process_switch_event(struct machine *machine __maybe_unused, 870 union perf_event *event) 871 { 872 if (dump_trace) 873 perf_event__fprintf_switch(event, stdout); 874 return 0; 875 } 876 877 static int machine__process_ksymbol_register(struct machine *machine, 878 union perf_event *event, 879 struct perf_sample *sample __maybe_unused) 880 { 881 struct symbol *sym; 882 struct dso *dso; 883 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 884 885 if (!map) { 886 int err; 887 888 dso = dso__new(event->ksymbol.name); 889 if (dso) { 890 dso->kernel = DSO_SPACE__KERNEL; 891 map = map__new2(0, dso); 892 dso__put(dso); 893 } 894 895 if (!dso || !map) { 896 return -ENOMEM; 897 } 898 899 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 900 dso->binary_type = DSO_BINARY_TYPE__OOL; 901 dso->data.file_size = event->ksymbol.len; 902 dso__set_loaded(dso); 903 } 904 905 map->start = event->ksymbol.addr; 906 map->end = map__start(map) + event->ksymbol.len; 907 err = maps__insert(machine__kernel_maps(machine), map); 908 map__put(map); 909 if (err) 910 return err; 911 912 dso__set_loaded(dso); 913 914 if (is_bpf_image(event->ksymbol.name)) { 915 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 916 dso__set_long_name(dso, "", false); 917 } 918 } else { 919 dso = map__dso(map); 920 } 921 922 sym = symbol__new(map->map_ip(map, map__start(map)), 923 event->ksymbol.len, 924 0, 0, event->ksymbol.name); 925 if (!sym) 926 return -ENOMEM; 927 dso__insert_symbol(dso, sym); 928 return 0; 929 } 930 931 static int machine__process_ksymbol_unregister(struct machine *machine, 932 union perf_event *event, 933 struct perf_sample *sample __maybe_unused) 934 { 935 struct symbol *sym; 936 struct map *map; 937 938 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 939 if (!map) 940 return 0; 941 942 if (map != machine->vmlinux_map) 943 maps__remove(machine__kernel_maps(machine), map); 944 else { 945 struct dso *dso = map__dso(map); 946 947 sym = dso__find_symbol(dso, map->map_ip(map, map__start(map))); 948 if (sym) 949 dso__delete_symbol(dso, sym); 950 } 951 952 return 0; 953 } 954 955 int machine__process_ksymbol(struct machine *machine __maybe_unused, 956 union perf_event *event, 957 struct perf_sample *sample) 958 { 959 if (dump_trace) 960 perf_event__fprintf_ksymbol(event, stdout); 961 962 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 963 return machine__process_ksymbol_unregister(machine, event, 964 sample); 965 return machine__process_ksymbol_register(machine, event, sample); 966 } 967 968 int machine__process_text_poke(struct machine *machine, union perf_event *event, 969 struct perf_sample *sample __maybe_unused) 970 { 971 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 972 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 973 struct dso *dso = map ? map__dso(map) : NULL; 974 975 if (dump_trace) 976 perf_event__fprintf_text_poke(event, machine, stdout); 977 978 if (!event->text_poke.new_len) 979 return 0; 980 981 if (cpumode != PERF_RECORD_MISC_KERNEL) { 982 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 983 return 0; 984 } 985 986 if (dso) { 987 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 988 int ret; 989 990 /* 991 * Kernel maps might be changed when loading symbols so loading 992 * must be done prior to using kernel maps. 993 */ 994 map__load(map); 995 ret = dso__data_write_cache_addr(dso, map, machine, 996 event->text_poke.addr, 997 new_bytes, 998 event->text_poke.new_len); 999 if (ret != event->text_poke.new_len) 1000 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 1001 event->text_poke.addr); 1002 } else { 1003 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 1004 event->text_poke.addr); 1005 } 1006 1007 return 0; 1008 } 1009 1010 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 1011 const char *filename) 1012 { 1013 struct map *map = NULL; 1014 struct kmod_path m; 1015 struct dso *dso; 1016 int err; 1017 1018 if (kmod_path__parse_name(&m, filename)) 1019 return NULL; 1020 1021 dso = machine__findnew_module_dso(machine, &m, filename); 1022 if (dso == NULL) 1023 goto out; 1024 1025 map = map__new2(start, dso); 1026 if (map == NULL) 1027 goto out; 1028 1029 err = maps__insert(machine__kernel_maps(machine), map); 1030 1031 /* Put the map here because maps__insert already got it */ 1032 map__put(map); 1033 1034 /* If maps__insert failed, return NULL. */ 1035 if (err) 1036 map = NULL; 1037 out: 1038 /* put the dso here, corresponding to machine__findnew_module_dso */ 1039 dso__put(dso); 1040 zfree(&m.name); 1041 return map; 1042 } 1043 1044 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 1045 { 1046 struct rb_node *nd; 1047 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 1048 1049 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1050 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1051 ret += __dsos__fprintf(&pos->dsos.head, fp); 1052 } 1053 1054 return ret; 1055 } 1056 1057 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 1058 bool (skip)(struct dso *dso, int parm), int parm) 1059 { 1060 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 1061 } 1062 1063 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 1064 bool (skip)(struct dso *dso, int parm), int parm) 1065 { 1066 struct rb_node *nd; 1067 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 1068 1069 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1070 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1071 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 1072 } 1073 return ret; 1074 } 1075 1076 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 1077 { 1078 int i; 1079 size_t printed = 0; 1080 struct dso *kdso = machine__kernel_dso(machine); 1081 1082 if (kdso->has_build_id) { 1083 char filename[PATH_MAX]; 1084 if (dso__build_id_filename(kdso, filename, sizeof(filename), 1085 false)) 1086 printed += fprintf(fp, "[0] %s\n", filename); 1087 } 1088 1089 for (i = 0; i < vmlinux_path__nr_entries; ++i) 1090 printed += fprintf(fp, "[%d] %s\n", 1091 i + kdso->has_build_id, vmlinux_path[i]); 1092 1093 return printed; 1094 } 1095 1096 size_t machine__fprintf(struct machine *machine, FILE *fp) 1097 { 1098 struct rb_node *nd; 1099 size_t ret; 1100 int i; 1101 1102 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 1103 struct threads *threads = &machine->threads[i]; 1104 1105 down_read(&threads->lock); 1106 1107 ret = fprintf(fp, "Threads: %u\n", threads->nr); 1108 1109 for (nd = rb_first_cached(&threads->entries); nd; 1110 nd = rb_next(nd)) { 1111 struct thread *pos = rb_entry(nd, struct thread, rb_node); 1112 1113 ret += thread__fprintf(pos, fp); 1114 } 1115 1116 up_read(&threads->lock); 1117 } 1118 return ret; 1119 } 1120 1121 static struct dso *machine__get_kernel(struct machine *machine) 1122 { 1123 const char *vmlinux_name = machine->mmap_name; 1124 struct dso *kernel; 1125 1126 if (machine__is_host(machine)) { 1127 if (symbol_conf.vmlinux_name) 1128 vmlinux_name = symbol_conf.vmlinux_name; 1129 1130 kernel = machine__findnew_kernel(machine, vmlinux_name, 1131 "[kernel]", DSO_SPACE__KERNEL); 1132 } else { 1133 if (symbol_conf.default_guest_vmlinux_name) 1134 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1135 1136 kernel = machine__findnew_kernel(machine, vmlinux_name, 1137 "[guest.kernel]", 1138 DSO_SPACE__KERNEL_GUEST); 1139 } 1140 1141 if (kernel != NULL && (!kernel->has_build_id)) 1142 dso__read_running_kernel_build_id(kernel, machine); 1143 1144 return kernel; 1145 } 1146 1147 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1148 size_t bufsz) 1149 { 1150 if (machine__is_default_guest(machine)) 1151 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1152 else 1153 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1154 } 1155 1156 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1157 1158 /* Figure out the start address of kernel map from /proc/kallsyms. 1159 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1160 * symbol_name if it's not that important. 1161 */ 1162 static int machine__get_running_kernel_start(struct machine *machine, 1163 const char **symbol_name, 1164 u64 *start, u64 *end) 1165 { 1166 char filename[PATH_MAX]; 1167 int i, err = -1; 1168 const char *name; 1169 u64 addr = 0; 1170 1171 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1172 1173 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1174 return 0; 1175 1176 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1177 err = kallsyms__get_function_start(filename, name, &addr); 1178 if (!err) 1179 break; 1180 } 1181 1182 if (err) 1183 return -1; 1184 1185 if (symbol_name) 1186 *symbol_name = name; 1187 1188 *start = addr; 1189 1190 err = kallsyms__get_function_start(filename, "_etext", &addr); 1191 if (!err) 1192 *end = addr; 1193 1194 return 0; 1195 } 1196 1197 int machine__create_extra_kernel_map(struct machine *machine, 1198 struct dso *kernel, 1199 struct extra_kernel_map *xm) 1200 { 1201 struct kmap *kmap; 1202 struct map *map; 1203 int err; 1204 1205 map = map__new2(xm->start, kernel); 1206 if (!map) 1207 return -ENOMEM; 1208 1209 map->end = xm->end; 1210 map->pgoff = xm->pgoff; 1211 1212 kmap = map__kmap(map); 1213 1214 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1215 1216 err = maps__insert(machine__kernel_maps(machine), map); 1217 1218 if (!err) { 1219 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1220 kmap->name, map__start(map), map__end(map)); 1221 } 1222 1223 map__put(map); 1224 1225 return err; 1226 } 1227 1228 static u64 find_entry_trampoline(struct dso *dso) 1229 { 1230 /* Duplicates are removed so lookup all aliases */ 1231 const char *syms[] = { 1232 "_entry_trampoline", 1233 "__entry_trampoline_start", 1234 "entry_SYSCALL_64_trampoline", 1235 }; 1236 struct symbol *sym = dso__first_symbol(dso); 1237 unsigned int i; 1238 1239 for (; sym; sym = dso__next_symbol(sym)) { 1240 if (sym->binding != STB_GLOBAL) 1241 continue; 1242 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1243 if (!strcmp(sym->name, syms[i])) 1244 return sym->start; 1245 } 1246 } 1247 1248 return 0; 1249 } 1250 1251 /* 1252 * These values can be used for kernels that do not have symbols for the entry 1253 * trampolines in kallsyms. 1254 */ 1255 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1256 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1257 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1258 1259 /* Map x86_64 PTI entry trampolines */ 1260 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1261 struct dso *kernel) 1262 { 1263 struct maps *kmaps = machine__kernel_maps(machine); 1264 int nr_cpus_avail, cpu; 1265 bool found = false; 1266 struct map_rb_node *rb_node; 1267 u64 pgoff; 1268 1269 /* 1270 * In the vmlinux case, pgoff is a virtual address which must now be 1271 * mapped to a vmlinux offset. 1272 */ 1273 maps__for_each_entry(kmaps, rb_node) { 1274 struct map *dest_map, *map = rb_node->map; 1275 struct kmap *kmap = __map__kmap(map); 1276 1277 if (!kmap || !is_entry_trampoline(kmap->name)) 1278 continue; 1279 1280 dest_map = maps__find(kmaps, map->pgoff); 1281 if (dest_map != map) 1282 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1283 found = true; 1284 } 1285 if (found || machine->trampolines_mapped) 1286 return 0; 1287 1288 pgoff = find_entry_trampoline(kernel); 1289 if (!pgoff) 1290 return 0; 1291 1292 nr_cpus_avail = machine__nr_cpus_avail(machine); 1293 1294 /* Add a 1 page map for each CPU's entry trampoline */ 1295 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1296 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1297 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1298 X86_64_ENTRY_TRAMPOLINE; 1299 struct extra_kernel_map xm = { 1300 .start = va, 1301 .end = va + page_size, 1302 .pgoff = pgoff, 1303 }; 1304 1305 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1306 1307 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1308 return -1; 1309 } 1310 1311 machine->trampolines_mapped = nr_cpus_avail; 1312 1313 return 0; 1314 } 1315 1316 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1317 struct dso *kernel __maybe_unused) 1318 { 1319 return 0; 1320 } 1321 1322 static int 1323 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1324 { 1325 /* In case of renewal the kernel map, destroy previous one */ 1326 machine__destroy_kernel_maps(machine); 1327 1328 machine->vmlinux_map = map__new2(0, kernel); 1329 if (machine->vmlinux_map == NULL) 1330 return -ENOMEM; 1331 1332 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1333 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1334 } 1335 1336 void machine__destroy_kernel_maps(struct machine *machine) 1337 { 1338 struct kmap *kmap; 1339 struct map *map = machine__kernel_map(machine); 1340 1341 if (map == NULL) 1342 return; 1343 1344 kmap = map__kmap(map); 1345 maps__remove(machine__kernel_maps(machine), map); 1346 if (kmap && kmap->ref_reloc_sym) { 1347 zfree((char **)&kmap->ref_reloc_sym->name); 1348 zfree(&kmap->ref_reloc_sym); 1349 } 1350 1351 map__zput(machine->vmlinux_map); 1352 } 1353 1354 int machines__create_guest_kernel_maps(struct machines *machines) 1355 { 1356 int ret = 0; 1357 struct dirent **namelist = NULL; 1358 int i, items = 0; 1359 char path[PATH_MAX]; 1360 pid_t pid; 1361 char *endp; 1362 1363 if (symbol_conf.default_guest_vmlinux_name || 1364 symbol_conf.default_guest_modules || 1365 symbol_conf.default_guest_kallsyms) { 1366 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1367 } 1368 1369 if (symbol_conf.guestmount) { 1370 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1371 if (items <= 0) 1372 return -ENOENT; 1373 for (i = 0; i < items; i++) { 1374 if (!isdigit(namelist[i]->d_name[0])) { 1375 /* Filter out . and .. */ 1376 continue; 1377 } 1378 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1379 if ((*endp != '\0') || 1380 (endp == namelist[i]->d_name) || 1381 (errno == ERANGE)) { 1382 pr_debug("invalid directory (%s). Skipping.\n", 1383 namelist[i]->d_name); 1384 continue; 1385 } 1386 sprintf(path, "%s/%s/proc/kallsyms", 1387 symbol_conf.guestmount, 1388 namelist[i]->d_name); 1389 ret = access(path, R_OK); 1390 if (ret) { 1391 pr_debug("Can't access file %s\n", path); 1392 goto failure; 1393 } 1394 machines__create_kernel_maps(machines, pid); 1395 } 1396 failure: 1397 free(namelist); 1398 } 1399 1400 return ret; 1401 } 1402 1403 void machines__destroy_kernel_maps(struct machines *machines) 1404 { 1405 struct rb_node *next = rb_first_cached(&machines->guests); 1406 1407 machine__destroy_kernel_maps(&machines->host); 1408 1409 while (next) { 1410 struct machine *pos = rb_entry(next, struct machine, rb_node); 1411 1412 next = rb_next(&pos->rb_node); 1413 rb_erase_cached(&pos->rb_node, &machines->guests); 1414 machine__delete(pos); 1415 } 1416 } 1417 1418 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1419 { 1420 struct machine *machine = machines__findnew(machines, pid); 1421 1422 if (machine == NULL) 1423 return -1; 1424 1425 return machine__create_kernel_maps(machine); 1426 } 1427 1428 int machine__load_kallsyms(struct machine *machine, const char *filename) 1429 { 1430 struct map *map = machine__kernel_map(machine); 1431 struct dso *dso = map__dso(map); 1432 int ret = __dso__load_kallsyms(dso, filename, map, true); 1433 1434 if (ret > 0) { 1435 dso__set_loaded(dso); 1436 /* 1437 * Since /proc/kallsyms will have multiple sessions for the 1438 * kernel, with modules between them, fixup the end of all 1439 * sections. 1440 */ 1441 maps__fixup_end(machine__kernel_maps(machine)); 1442 } 1443 1444 return ret; 1445 } 1446 1447 int machine__load_vmlinux_path(struct machine *machine) 1448 { 1449 struct map *map = machine__kernel_map(machine); 1450 struct dso *dso = map__dso(map); 1451 int ret = dso__load_vmlinux_path(dso, map); 1452 1453 if (ret > 0) 1454 dso__set_loaded(dso); 1455 1456 return ret; 1457 } 1458 1459 static char *get_kernel_version(const char *root_dir) 1460 { 1461 char version[PATH_MAX]; 1462 FILE *file; 1463 char *name, *tmp; 1464 const char *prefix = "Linux version "; 1465 1466 sprintf(version, "%s/proc/version", root_dir); 1467 file = fopen(version, "r"); 1468 if (!file) 1469 return NULL; 1470 1471 tmp = fgets(version, sizeof(version), file); 1472 fclose(file); 1473 if (!tmp) 1474 return NULL; 1475 1476 name = strstr(version, prefix); 1477 if (!name) 1478 return NULL; 1479 name += strlen(prefix); 1480 tmp = strchr(name, ' '); 1481 if (tmp) 1482 *tmp = '\0'; 1483 1484 return strdup(name); 1485 } 1486 1487 static bool is_kmod_dso(struct dso *dso) 1488 { 1489 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1490 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1491 } 1492 1493 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1494 { 1495 char *long_name; 1496 struct dso *dso; 1497 struct map *map = maps__find_by_name(maps, m->name); 1498 1499 if (map == NULL) 1500 return 0; 1501 1502 long_name = strdup(path); 1503 if (long_name == NULL) 1504 return -ENOMEM; 1505 1506 dso = map__dso(map); 1507 dso__set_long_name(dso, long_name, true); 1508 dso__kernel_module_get_build_id(dso, ""); 1509 1510 /* 1511 * Full name could reveal us kmod compression, so 1512 * we need to update the symtab_type if needed. 1513 */ 1514 if (m->comp && is_kmod_dso(dso)) { 1515 dso->symtab_type++; 1516 dso->comp = m->comp; 1517 } 1518 1519 return 0; 1520 } 1521 1522 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1523 { 1524 struct dirent *dent; 1525 DIR *dir = opendir(dir_name); 1526 int ret = 0; 1527 1528 if (!dir) { 1529 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1530 return -1; 1531 } 1532 1533 while ((dent = readdir(dir)) != NULL) { 1534 char path[PATH_MAX]; 1535 struct stat st; 1536 1537 /*sshfs might return bad dent->d_type, so we have to stat*/ 1538 path__join(path, sizeof(path), dir_name, dent->d_name); 1539 if (stat(path, &st)) 1540 continue; 1541 1542 if (S_ISDIR(st.st_mode)) { 1543 if (!strcmp(dent->d_name, ".") || 1544 !strcmp(dent->d_name, "..")) 1545 continue; 1546 1547 /* Do not follow top-level source and build symlinks */ 1548 if (depth == 0) { 1549 if (!strcmp(dent->d_name, "source") || 1550 !strcmp(dent->d_name, "build")) 1551 continue; 1552 } 1553 1554 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1555 if (ret < 0) 1556 goto out; 1557 } else { 1558 struct kmod_path m; 1559 1560 ret = kmod_path__parse_name(&m, dent->d_name); 1561 if (ret) 1562 goto out; 1563 1564 if (m.kmod) 1565 ret = maps__set_module_path(maps, path, &m); 1566 1567 zfree(&m.name); 1568 1569 if (ret) 1570 goto out; 1571 } 1572 } 1573 1574 out: 1575 closedir(dir); 1576 return ret; 1577 } 1578 1579 static int machine__set_modules_path(struct machine *machine) 1580 { 1581 char *version; 1582 char modules_path[PATH_MAX]; 1583 1584 version = get_kernel_version(machine->root_dir); 1585 if (!version) 1586 return -1; 1587 1588 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1589 machine->root_dir, version); 1590 free(version); 1591 1592 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1593 } 1594 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1595 u64 *size __maybe_unused, 1596 const char *name __maybe_unused) 1597 { 1598 return 0; 1599 } 1600 1601 static int machine__create_module(void *arg, const char *name, u64 start, 1602 u64 size) 1603 { 1604 struct machine *machine = arg; 1605 struct map *map; 1606 1607 if (arch__fix_module_text_start(&start, &size, name) < 0) 1608 return -1; 1609 1610 map = machine__addnew_module_map(machine, start, name); 1611 if (map == NULL) 1612 return -1; 1613 map->end = start + size; 1614 1615 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); 1616 1617 return 0; 1618 } 1619 1620 static int machine__create_modules(struct machine *machine) 1621 { 1622 const char *modules; 1623 char path[PATH_MAX]; 1624 1625 if (machine__is_default_guest(machine)) { 1626 modules = symbol_conf.default_guest_modules; 1627 } else { 1628 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1629 modules = path; 1630 } 1631 1632 if (symbol__restricted_filename(modules, "/proc/modules")) 1633 return -1; 1634 1635 if (modules__parse(modules, machine, machine__create_module)) 1636 return -1; 1637 1638 if (!machine__set_modules_path(machine)) 1639 return 0; 1640 1641 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1642 1643 return 0; 1644 } 1645 1646 static void machine__set_kernel_mmap(struct machine *machine, 1647 u64 start, u64 end) 1648 { 1649 machine->vmlinux_map->start = start; 1650 machine->vmlinux_map->end = end; 1651 /* 1652 * Be a bit paranoid here, some perf.data file came with 1653 * a zero sized synthesized MMAP event for the kernel. 1654 */ 1655 if (start == 0 && end == 0) 1656 machine->vmlinux_map->end = ~0ULL; 1657 } 1658 1659 static int machine__update_kernel_mmap(struct machine *machine, 1660 u64 start, u64 end) 1661 { 1662 struct map *map = machine__kernel_map(machine); 1663 int err; 1664 1665 map__get(map); 1666 maps__remove(machine__kernel_maps(machine), map); 1667 1668 machine__set_kernel_mmap(machine, start, end); 1669 1670 err = maps__insert(machine__kernel_maps(machine), map); 1671 map__put(map); 1672 return err; 1673 } 1674 1675 int machine__create_kernel_maps(struct machine *machine) 1676 { 1677 struct dso *kernel = machine__get_kernel(machine); 1678 const char *name = NULL; 1679 u64 start = 0, end = ~0ULL; 1680 int ret; 1681 1682 if (kernel == NULL) 1683 return -1; 1684 1685 ret = __machine__create_kernel_maps(machine, kernel); 1686 if (ret < 0) 1687 goto out_put; 1688 1689 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1690 if (machine__is_host(machine)) 1691 pr_debug("Problems creating module maps, " 1692 "continuing anyway...\n"); 1693 else 1694 pr_debug("Problems creating module maps for guest %d, " 1695 "continuing anyway...\n", machine->pid); 1696 } 1697 1698 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1699 if (name && 1700 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1701 machine__destroy_kernel_maps(machine); 1702 ret = -1; 1703 goto out_put; 1704 } 1705 1706 /* 1707 * we have a real start address now, so re-order the kmaps 1708 * assume it's the last in the kmaps 1709 */ 1710 ret = machine__update_kernel_mmap(machine, start, end); 1711 if (ret < 0) 1712 goto out_put; 1713 } 1714 1715 if (machine__create_extra_kernel_maps(machine, kernel)) 1716 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1717 1718 if (end == ~0ULL) { 1719 /* update end address of the kernel map using adjacent module address */ 1720 struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine), 1721 machine__kernel_map(machine)); 1722 struct map_rb_node *next = map_rb_node__next(rb_node); 1723 1724 if (next) 1725 machine__set_kernel_mmap(machine, start, map__start(next->map)); 1726 } 1727 1728 out_put: 1729 dso__put(kernel); 1730 return ret; 1731 } 1732 1733 static bool machine__uses_kcore(struct machine *machine) 1734 { 1735 struct dso *dso; 1736 1737 list_for_each_entry(dso, &machine->dsos.head, node) { 1738 if (dso__is_kcore(dso)) 1739 return true; 1740 } 1741 1742 return false; 1743 } 1744 1745 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1746 struct extra_kernel_map *xm) 1747 { 1748 return machine__is(machine, "x86_64") && 1749 is_entry_trampoline(xm->name); 1750 } 1751 1752 static int machine__process_extra_kernel_map(struct machine *machine, 1753 struct extra_kernel_map *xm) 1754 { 1755 struct dso *kernel = machine__kernel_dso(machine); 1756 1757 if (kernel == NULL) 1758 return -1; 1759 1760 return machine__create_extra_kernel_map(machine, kernel, xm); 1761 } 1762 1763 static int machine__process_kernel_mmap_event(struct machine *machine, 1764 struct extra_kernel_map *xm, 1765 struct build_id *bid) 1766 { 1767 struct map *map; 1768 enum dso_space_type dso_space; 1769 bool is_kernel_mmap; 1770 const char *mmap_name = machine->mmap_name; 1771 1772 /* If we have maps from kcore then we do not need or want any others */ 1773 if (machine__uses_kcore(machine)) 1774 return 0; 1775 1776 if (machine__is_host(machine)) 1777 dso_space = DSO_SPACE__KERNEL; 1778 else 1779 dso_space = DSO_SPACE__KERNEL_GUEST; 1780 1781 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1782 if (!is_kernel_mmap && !machine__is_host(machine)) { 1783 /* 1784 * If the event was recorded inside the guest and injected into 1785 * the host perf.data file, then it will match a host mmap_name, 1786 * so try that - see machine__set_mmap_name(). 1787 */ 1788 mmap_name = "[kernel.kallsyms]"; 1789 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1790 } 1791 if (xm->name[0] == '/' || 1792 (!is_kernel_mmap && xm->name[0] == '[')) { 1793 map = machine__addnew_module_map(machine, xm->start, 1794 xm->name); 1795 if (map == NULL) 1796 goto out_problem; 1797 1798 map->end = map__start(map) + xm->end - xm->start; 1799 1800 if (build_id__is_defined(bid)) 1801 dso__set_build_id(map__dso(map), bid); 1802 1803 } else if (is_kernel_mmap) { 1804 const char *symbol_name = xm->name + strlen(mmap_name); 1805 /* 1806 * Should be there already, from the build-id table in 1807 * the header. 1808 */ 1809 struct dso *kernel = NULL; 1810 struct dso *dso; 1811 1812 down_read(&machine->dsos.lock); 1813 1814 list_for_each_entry(dso, &machine->dsos.head, node) { 1815 1816 /* 1817 * The cpumode passed to is_kernel_module is not the 1818 * cpumode of *this* event. If we insist on passing 1819 * correct cpumode to is_kernel_module, we should 1820 * record the cpumode when we adding this dso to the 1821 * linked list. 1822 * 1823 * However we don't really need passing correct 1824 * cpumode. We know the correct cpumode must be kernel 1825 * mode (if not, we should not link it onto kernel_dsos 1826 * list). 1827 * 1828 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1829 * is_kernel_module() treats it as a kernel cpumode. 1830 */ 1831 1832 if (!dso->kernel || 1833 is_kernel_module(dso->long_name, 1834 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1835 continue; 1836 1837 1838 kernel = dso; 1839 break; 1840 } 1841 1842 up_read(&machine->dsos.lock); 1843 1844 if (kernel == NULL) 1845 kernel = machine__findnew_dso(machine, machine->mmap_name); 1846 if (kernel == NULL) 1847 goto out_problem; 1848 1849 kernel->kernel = dso_space; 1850 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1851 dso__put(kernel); 1852 goto out_problem; 1853 } 1854 1855 if (strstr(kernel->long_name, "vmlinux")) 1856 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1857 1858 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { 1859 dso__put(kernel); 1860 goto out_problem; 1861 } 1862 1863 if (build_id__is_defined(bid)) 1864 dso__set_build_id(kernel, bid); 1865 1866 /* 1867 * Avoid using a zero address (kptr_restrict) for the ref reloc 1868 * symbol. Effectively having zero here means that at record 1869 * time /proc/sys/kernel/kptr_restrict was non zero. 1870 */ 1871 if (xm->pgoff != 0) { 1872 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1873 symbol_name, 1874 xm->pgoff); 1875 } 1876 1877 if (machine__is_default_guest(machine)) { 1878 /* 1879 * preload dso of guest kernel and modules 1880 */ 1881 dso__load(kernel, machine__kernel_map(machine)); 1882 } 1883 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1884 return machine__process_extra_kernel_map(machine, xm); 1885 } 1886 return 0; 1887 out_problem: 1888 return -1; 1889 } 1890 1891 int machine__process_mmap2_event(struct machine *machine, 1892 union perf_event *event, 1893 struct perf_sample *sample) 1894 { 1895 struct thread *thread; 1896 struct map *map; 1897 struct dso_id dso_id = { 1898 .maj = event->mmap2.maj, 1899 .min = event->mmap2.min, 1900 .ino = event->mmap2.ino, 1901 .ino_generation = event->mmap2.ino_generation, 1902 }; 1903 struct build_id __bid, *bid = NULL; 1904 int ret = 0; 1905 1906 if (dump_trace) 1907 perf_event__fprintf_mmap2(event, stdout); 1908 1909 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1910 bid = &__bid; 1911 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1912 } 1913 1914 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1915 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1916 struct extra_kernel_map xm = { 1917 .start = event->mmap2.start, 1918 .end = event->mmap2.start + event->mmap2.len, 1919 .pgoff = event->mmap2.pgoff, 1920 }; 1921 1922 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1923 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1924 if (ret < 0) 1925 goto out_problem; 1926 return 0; 1927 } 1928 1929 thread = machine__findnew_thread(machine, event->mmap2.pid, 1930 event->mmap2.tid); 1931 if (thread == NULL) 1932 goto out_problem; 1933 1934 map = map__new(machine, event->mmap2.start, 1935 event->mmap2.len, event->mmap2.pgoff, 1936 &dso_id, event->mmap2.prot, 1937 event->mmap2.flags, bid, 1938 event->mmap2.filename, thread); 1939 1940 if (map == NULL) 1941 goto out_problem_map; 1942 1943 ret = thread__insert_map(thread, map); 1944 if (ret) 1945 goto out_problem_insert; 1946 1947 thread__put(thread); 1948 map__put(map); 1949 return 0; 1950 1951 out_problem_insert: 1952 map__put(map); 1953 out_problem_map: 1954 thread__put(thread); 1955 out_problem: 1956 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1957 return 0; 1958 } 1959 1960 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1961 struct perf_sample *sample) 1962 { 1963 struct thread *thread; 1964 struct map *map; 1965 u32 prot = 0; 1966 int ret = 0; 1967 1968 if (dump_trace) 1969 perf_event__fprintf_mmap(event, stdout); 1970 1971 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1972 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1973 struct extra_kernel_map xm = { 1974 .start = event->mmap.start, 1975 .end = event->mmap.start + event->mmap.len, 1976 .pgoff = event->mmap.pgoff, 1977 }; 1978 1979 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1980 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1981 if (ret < 0) 1982 goto out_problem; 1983 return 0; 1984 } 1985 1986 thread = machine__findnew_thread(machine, event->mmap.pid, 1987 event->mmap.tid); 1988 if (thread == NULL) 1989 goto out_problem; 1990 1991 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1992 prot = PROT_EXEC; 1993 1994 map = map__new(machine, event->mmap.start, 1995 event->mmap.len, event->mmap.pgoff, 1996 NULL, prot, 0, NULL, event->mmap.filename, thread); 1997 1998 if (map == NULL) 1999 goto out_problem_map; 2000 2001 ret = thread__insert_map(thread, map); 2002 if (ret) 2003 goto out_problem_insert; 2004 2005 thread__put(thread); 2006 map__put(map); 2007 return 0; 2008 2009 out_problem_insert: 2010 map__put(map); 2011 out_problem_map: 2012 thread__put(thread); 2013 out_problem: 2014 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 2015 return 0; 2016 } 2017 2018 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 2019 { 2020 struct threads *threads = machine__threads(machine, th->tid); 2021 2022 if (threads->last_match == th) 2023 threads__set_last_match(threads, NULL); 2024 2025 if (lock) 2026 down_write(&threads->lock); 2027 2028 BUG_ON(refcount_read(&th->refcnt) == 0); 2029 2030 rb_erase_cached(&th->rb_node, &threads->entries); 2031 RB_CLEAR_NODE(&th->rb_node); 2032 --threads->nr; 2033 /* 2034 * Move it first to the dead_threads list, then drop the reference, 2035 * if this is the last reference, then the thread__delete destructor 2036 * will be called and we will remove it from the dead_threads list. 2037 */ 2038 list_add_tail(&th->node, &threads->dead); 2039 2040 /* 2041 * We need to do the put here because if this is the last refcount, 2042 * then we will be touching the threads->dead head when removing the 2043 * thread. 2044 */ 2045 thread__put(th); 2046 2047 if (lock) 2048 up_write(&threads->lock); 2049 } 2050 2051 void machine__remove_thread(struct machine *machine, struct thread *th) 2052 { 2053 return __machine__remove_thread(machine, th, true); 2054 } 2055 2056 int machine__process_fork_event(struct machine *machine, union perf_event *event, 2057 struct perf_sample *sample) 2058 { 2059 struct thread *thread = machine__find_thread(machine, 2060 event->fork.pid, 2061 event->fork.tid); 2062 struct thread *parent = machine__findnew_thread(machine, 2063 event->fork.ppid, 2064 event->fork.ptid); 2065 bool do_maps_clone = true; 2066 int err = 0; 2067 2068 if (dump_trace) 2069 perf_event__fprintf_task(event, stdout); 2070 2071 /* 2072 * There may be an existing thread that is not actually the parent, 2073 * either because we are processing events out of order, or because the 2074 * (fork) event that would have removed the thread was lost. Assume the 2075 * latter case and continue on as best we can. 2076 */ 2077 if (parent->pid_ != (pid_t)event->fork.ppid) { 2078 dump_printf("removing erroneous parent thread %d/%d\n", 2079 parent->pid_, parent->tid); 2080 machine__remove_thread(machine, parent); 2081 thread__put(parent); 2082 parent = machine__findnew_thread(machine, event->fork.ppid, 2083 event->fork.ptid); 2084 } 2085 2086 /* if a thread currently exists for the thread id remove it */ 2087 if (thread != NULL) { 2088 machine__remove_thread(machine, thread); 2089 thread__put(thread); 2090 } 2091 2092 thread = machine__findnew_thread(machine, event->fork.pid, 2093 event->fork.tid); 2094 /* 2095 * When synthesizing FORK events, we are trying to create thread 2096 * objects for the already running tasks on the machine. 2097 * 2098 * Normally, for a kernel FORK event, we want to clone the parent's 2099 * maps because that is what the kernel just did. 2100 * 2101 * But when synthesizing, this should not be done. If we do, we end up 2102 * with overlapping maps as we process the synthesized MMAP2 events that 2103 * get delivered shortly thereafter. 2104 * 2105 * Use the FORK event misc flags in an internal way to signal this 2106 * situation, so we can elide the map clone when appropriate. 2107 */ 2108 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 2109 do_maps_clone = false; 2110 2111 if (thread == NULL || parent == NULL || 2112 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 2113 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 2114 err = -1; 2115 } 2116 thread__put(thread); 2117 thread__put(parent); 2118 2119 return err; 2120 } 2121 2122 int machine__process_exit_event(struct machine *machine, union perf_event *event, 2123 struct perf_sample *sample __maybe_unused) 2124 { 2125 struct thread *thread = machine__find_thread(machine, 2126 event->fork.pid, 2127 event->fork.tid); 2128 2129 if (dump_trace) 2130 perf_event__fprintf_task(event, stdout); 2131 2132 if (thread != NULL) { 2133 thread__exited(thread); 2134 thread__put(thread); 2135 } 2136 2137 return 0; 2138 } 2139 2140 int machine__process_event(struct machine *machine, union perf_event *event, 2141 struct perf_sample *sample) 2142 { 2143 int ret; 2144 2145 switch (event->header.type) { 2146 case PERF_RECORD_COMM: 2147 ret = machine__process_comm_event(machine, event, sample); break; 2148 case PERF_RECORD_MMAP: 2149 ret = machine__process_mmap_event(machine, event, sample); break; 2150 case PERF_RECORD_NAMESPACES: 2151 ret = machine__process_namespaces_event(machine, event, sample); break; 2152 case PERF_RECORD_CGROUP: 2153 ret = machine__process_cgroup_event(machine, event, sample); break; 2154 case PERF_RECORD_MMAP2: 2155 ret = machine__process_mmap2_event(machine, event, sample); break; 2156 case PERF_RECORD_FORK: 2157 ret = machine__process_fork_event(machine, event, sample); break; 2158 case PERF_RECORD_EXIT: 2159 ret = machine__process_exit_event(machine, event, sample); break; 2160 case PERF_RECORD_LOST: 2161 ret = machine__process_lost_event(machine, event, sample); break; 2162 case PERF_RECORD_AUX: 2163 ret = machine__process_aux_event(machine, event); break; 2164 case PERF_RECORD_ITRACE_START: 2165 ret = machine__process_itrace_start_event(machine, event); break; 2166 case PERF_RECORD_LOST_SAMPLES: 2167 ret = machine__process_lost_samples_event(machine, event, sample); break; 2168 case PERF_RECORD_SWITCH: 2169 case PERF_RECORD_SWITCH_CPU_WIDE: 2170 ret = machine__process_switch_event(machine, event); break; 2171 case PERF_RECORD_KSYMBOL: 2172 ret = machine__process_ksymbol(machine, event, sample); break; 2173 case PERF_RECORD_BPF_EVENT: 2174 ret = machine__process_bpf(machine, event, sample); break; 2175 case PERF_RECORD_TEXT_POKE: 2176 ret = machine__process_text_poke(machine, event, sample); break; 2177 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2178 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2179 default: 2180 ret = -1; 2181 break; 2182 } 2183 2184 return ret; 2185 } 2186 2187 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2188 { 2189 if (!regexec(regex, sym->name, 0, NULL, 0)) 2190 return true; 2191 return false; 2192 } 2193 2194 static void ip__resolve_ams(struct thread *thread, 2195 struct addr_map_symbol *ams, 2196 u64 ip) 2197 { 2198 struct addr_location al; 2199 2200 memset(&al, 0, sizeof(al)); 2201 /* 2202 * We cannot use the header.misc hint to determine whether a 2203 * branch stack address is user, kernel, guest, hypervisor. 2204 * Branches may straddle the kernel/user/hypervisor boundaries. 2205 * Thus, we have to try consecutively until we find a match 2206 * or else, the symbol is unknown 2207 */ 2208 thread__find_cpumode_addr_location(thread, ip, &al); 2209 2210 ams->addr = ip; 2211 ams->al_addr = al.addr; 2212 ams->al_level = al.level; 2213 ams->ms.maps = al.maps; 2214 ams->ms.sym = al.sym; 2215 ams->ms.map = al.map; 2216 ams->phys_addr = 0; 2217 ams->data_page_size = 0; 2218 } 2219 2220 static void ip__resolve_data(struct thread *thread, 2221 u8 m, struct addr_map_symbol *ams, 2222 u64 addr, u64 phys_addr, u64 daddr_page_size) 2223 { 2224 struct addr_location al; 2225 2226 memset(&al, 0, sizeof(al)); 2227 2228 thread__find_symbol(thread, m, addr, &al); 2229 2230 ams->addr = addr; 2231 ams->al_addr = al.addr; 2232 ams->al_level = al.level; 2233 ams->ms.maps = al.maps; 2234 ams->ms.sym = al.sym; 2235 ams->ms.map = al.map; 2236 ams->phys_addr = phys_addr; 2237 ams->data_page_size = daddr_page_size; 2238 } 2239 2240 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2241 struct addr_location *al) 2242 { 2243 struct mem_info *mi = mem_info__new(); 2244 2245 if (!mi) 2246 return NULL; 2247 2248 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2249 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2250 sample->addr, sample->phys_addr, 2251 sample->data_page_size); 2252 mi->data_src.val = sample->data_src; 2253 2254 return mi; 2255 } 2256 2257 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2258 { 2259 struct map *map = ms->map; 2260 char *srcline = NULL; 2261 struct dso *dso; 2262 2263 if (!map || callchain_param.key == CCKEY_FUNCTION) 2264 return srcline; 2265 2266 dso = map__dso(map); 2267 srcline = srcline__tree_find(&dso->srclines, ip); 2268 if (!srcline) { 2269 bool show_sym = false; 2270 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2271 2272 srcline = get_srcline(dso, map__rip_2objdump(map, ip), 2273 ms->sym, show_sym, show_addr, ip); 2274 srcline__tree_insert(&dso->srclines, ip, srcline); 2275 } 2276 2277 return srcline; 2278 } 2279 2280 struct iterations { 2281 int nr_loop_iter; 2282 u64 cycles; 2283 }; 2284 2285 static int add_callchain_ip(struct thread *thread, 2286 struct callchain_cursor *cursor, 2287 struct symbol **parent, 2288 struct addr_location *root_al, 2289 u8 *cpumode, 2290 u64 ip, 2291 bool branch, 2292 struct branch_flags *flags, 2293 struct iterations *iter, 2294 u64 branch_from) 2295 { 2296 struct map_symbol ms; 2297 struct addr_location al; 2298 int nr_loop_iter = 0; 2299 u64 iter_cycles = 0; 2300 const char *srcline = NULL; 2301 2302 al.filtered = 0; 2303 al.sym = NULL; 2304 al.srcline = NULL; 2305 if (!cpumode) { 2306 thread__find_cpumode_addr_location(thread, ip, &al); 2307 } else { 2308 if (ip >= PERF_CONTEXT_MAX) { 2309 switch (ip) { 2310 case PERF_CONTEXT_HV: 2311 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2312 break; 2313 case PERF_CONTEXT_KERNEL: 2314 *cpumode = PERF_RECORD_MISC_KERNEL; 2315 break; 2316 case PERF_CONTEXT_USER: 2317 *cpumode = PERF_RECORD_MISC_USER; 2318 break; 2319 default: 2320 pr_debug("invalid callchain context: " 2321 "%"PRId64"\n", (s64) ip); 2322 /* 2323 * It seems the callchain is corrupted. 2324 * Discard all. 2325 */ 2326 callchain_cursor_reset(cursor); 2327 return 1; 2328 } 2329 return 0; 2330 } 2331 thread__find_symbol(thread, *cpumode, ip, &al); 2332 } 2333 2334 if (al.sym != NULL) { 2335 if (perf_hpp_list.parent && !*parent && 2336 symbol__match_regex(al.sym, &parent_regex)) 2337 *parent = al.sym; 2338 else if (have_ignore_callees && root_al && 2339 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2340 /* Treat this symbol as the root, 2341 forgetting its callees. */ 2342 *root_al = al; 2343 callchain_cursor_reset(cursor); 2344 } 2345 } 2346 2347 if (symbol_conf.hide_unresolved && al.sym == NULL) 2348 return 0; 2349 2350 if (iter) { 2351 nr_loop_iter = iter->nr_loop_iter; 2352 iter_cycles = iter->cycles; 2353 } 2354 2355 ms.maps = al.maps; 2356 ms.map = al.map; 2357 ms.sym = al.sym; 2358 2359 if (!branch && append_inlines(cursor, &ms, ip) == 0) 2360 return 0; 2361 2362 srcline = callchain_srcline(&ms, al.addr); 2363 return callchain_cursor_append(cursor, ip, &ms, 2364 branch, flags, nr_loop_iter, 2365 iter_cycles, branch_from, srcline); 2366 } 2367 2368 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2369 struct addr_location *al) 2370 { 2371 unsigned int i; 2372 const struct branch_stack *bs = sample->branch_stack; 2373 struct branch_entry *entries = perf_sample__branch_entries(sample); 2374 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2375 2376 if (!bi) 2377 return NULL; 2378 2379 for (i = 0; i < bs->nr; i++) { 2380 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2381 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2382 bi[i].flags = entries[i].flags; 2383 } 2384 return bi; 2385 } 2386 2387 static void save_iterations(struct iterations *iter, 2388 struct branch_entry *be, int nr) 2389 { 2390 int i; 2391 2392 iter->nr_loop_iter++; 2393 iter->cycles = 0; 2394 2395 for (i = 0; i < nr; i++) 2396 iter->cycles += be[i].flags.cycles; 2397 } 2398 2399 #define CHASHSZ 127 2400 #define CHASHBITS 7 2401 #define NO_ENTRY 0xff 2402 2403 #define PERF_MAX_BRANCH_DEPTH 127 2404 2405 /* Remove loops. */ 2406 static int remove_loops(struct branch_entry *l, int nr, 2407 struct iterations *iter) 2408 { 2409 int i, j, off; 2410 unsigned char chash[CHASHSZ]; 2411 2412 memset(chash, NO_ENTRY, sizeof(chash)); 2413 2414 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2415 2416 for (i = 0; i < nr; i++) { 2417 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2418 2419 /* no collision handling for now */ 2420 if (chash[h] == NO_ENTRY) { 2421 chash[h] = i; 2422 } else if (l[chash[h]].from == l[i].from) { 2423 bool is_loop = true; 2424 /* check if it is a real loop */ 2425 off = 0; 2426 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2427 if (l[j].from != l[i + off].from) { 2428 is_loop = false; 2429 break; 2430 } 2431 if (is_loop) { 2432 j = nr - (i + off); 2433 if (j > 0) { 2434 save_iterations(iter + i + off, 2435 l + i, off); 2436 2437 memmove(iter + i, iter + i + off, 2438 j * sizeof(*iter)); 2439 2440 memmove(l + i, l + i + off, 2441 j * sizeof(*l)); 2442 } 2443 2444 nr -= off; 2445 } 2446 } 2447 } 2448 return nr; 2449 } 2450 2451 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2452 struct callchain_cursor *cursor, 2453 struct perf_sample *sample, 2454 struct symbol **parent, 2455 struct addr_location *root_al, 2456 u64 branch_from, 2457 bool callee, int end) 2458 { 2459 struct ip_callchain *chain = sample->callchain; 2460 u8 cpumode = PERF_RECORD_MISC_USER; 2461 int err, i; 2462 2463 if (callee) { 2464 for (i = 0; i < end + 1; i++) { 2465 err = add_callchain_ip(thread, cursor, parent, 2466 root_al, &cpumode, chain->ips[i], 2467 false, NULL, NULL, branch_from); 2468 if (err) 2469 return err; 2470 } 2471 return 0; 2472 } 2473 2474 for (i = end; i >= 0; i--) { 2475 err = add_callchain_ip(thread, cursor, parent, 2476 root_al, &cpumode, chain->ips[i], 2477 false, NULL, NULL, branch_from); 2478 if (err) 2479 return err; 2480 } 2481 2482 return 0; 2483 } 2484 2485 static void save_lbr_cursor_node(struct thread *thread, 2486 struct callchain_cursor *cursor, 2487 int idx) 2488 { 2489 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2490 2491 if (!lbr_stitch) 2492 return; 2493 2494 if (cursor->pos == cursor->nr) { 2495 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2496 return; 2497 } 2498 2499 if (!cursor->curr) 2500 cursor->curr = cursor->first; 2501 else 2502 cursor->curr = cursor->curr->next; 2503 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2504 sizeof(struct callchain_cursor_node)); 2505 2506 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2507 cursor->pos++; 2508 } 2509 2510 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2511 struct callchain_cursor *cursor, 2512 struct perf_sample *sample, 2513 struct symbol **parent, 2514 struct addr_location *root_al, 2515 u64 *branch_from, 2516 bool callee) 2517 { 2518 struct branch_stack *lbr_stack = sample->branch_stack; 2519 struct branch_entry *entries = perf_sample__branch_entries(sample); 2520 u8 cpumode = PERF_RECORD_MISC_USER; 2521 int lbr_nr = lbr_stack->nr; 2522 struct branch_flags *flags; 2523 int err, i; 2524 u64 ip; 2525 2526 /* 2527 * The curr and pos are not used in writing session. They are cleared 2528 * in callchain_cursor_commit() when the writing session is closed. 2529 * Using curr and pos to track the current cursor node. 2530 */ 2531 if (thread->lbr_stitch) { 2532 cursor->curr = NULL; 2533 cursor->pos = cursor->nr; 2534 if (cursor->nr) { 2535 cursor->curr = cursor->first; 2536 for (i = 0; i < (int)(cursor->nr - 1); i++) 2537 cursor->curr = cursor->curr->next; 2538 } 2539 } 2540 2541 if (callee) { 2542 /* Add LBR ip from first entries.to */ 2543 ip = entries[0].to; 2544 flags = &entries[0].flags; 2545 *branch_from = entries[0].from; 2546 err = add_callchain_ip(thread, cursor, parent, 2547 root_al, &cpumode, ip, 2548 true, flags, NULL, 2549 *branch_from); 2550 if (err) 2551 return err; 2552 2553 /* 2554 * The number of cursor node increases. 2555 * Move the current cursor node. 2556 * But does not need to save current cursor node for entry 0. 2557 * It's impossible to stitch the whole LBRs of previous sample. 2558 */ 2559 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2560 if (!cursor->curr) 2561 cursor->curr = cursor->first; 2562 else 2563 cursor->curr = cursor->curr->next; 2564 cursor->pos++; 2565 } 2566 2567 /* Add LBR ip from entries.from one by one. */ 2568 for (i = 0; i < lbr_nr; i++) { 2569 ip = entries[i].from; 2570 flags = &entries[i].flags; 2571 err = add_callchain_ip(thread, cursor, parent, 2572 root_al, &cpumode, ip, 2573 true, flags, NULL, 2574 *branch_from); 2575 if (err) 2576 return err; 2577 save_lbr_cursor_node(thread, cursor, i); 2578 } 2579 return 0; 2580 } 2581 2582 /* Add LBR ip from entries.from one by one. */ 2583 for (i = lbr_nr - 1; i >= 0; i--) { 2584 ip = entries[i].from; 2585 flags = &entries[i].flags; 2586 err = add_callchain_ip(thread, cursor, parent, 2587 root_al, &cpumode, ip, 2588 true, flags, NULL, 2589 *branch_from); 2590 if (err) 2591 return err; 2592 save_lbr_cursor_node(thread, cursor, i); 2593 } 2594 2595 /* Add LBR ip from first entries.to */ 2596 ip = entries[0].to; 2597 flags = &entries[0].flags; 2598 *branch_from = entries[0].from; 2599 err = add_callchain_ip(thread, cursor, parent, 2600 root_al, &cpumode, ip, 2601 true, flags, NULL, 2602 *branch_from); 2603 if (err) 2604 return err; 2605 2606 return 0; 2607 } 2608 2609 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2610 struct callchain_cursor *cursor) 2611 { 2612 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2613 struct callchain_cursor_node *cnode; 2614 struct stitch_list *stitch_node; 2615 int err; 2616 2617 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2618 cnode = &stitch_node->cursor; 2619 2620 err = callchain_cursor_append(cursor, cnode->ip, 2621 &cnode->ms, 2622 cnode->branch, 2623 &cnode->branch_flags, 2624 cnode->nr_loop_iter, 2625 cnode->iter_cycles, 2626 cnode->branch_from, 2627 cnode->srcline); 2628 if (err) 2629 return err; 2630 } 2631 return 0; 2632 } 2633 2634 static struct stitch_list *get_stitch_node(struct thread *thread) 2635 { 2636 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2637 struct stitch_list *stitch_node; 2638 2639 if (!list_empty(&lbr_stitch->free_lists)) { 2640 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2641 struct stitch_list, node); 2642 list_del(&stitch_node->node); 2643 2644 return stitch_node; 2645 } 2646 2647 return malloc(sizeof(struct stitch_list)); 2648 } 2649 2650 static bool has_stitched_lbr(struct thread *thread, 2651 struct perf_sample *cur, 2652 struct perf_sample *prev, 2653 unsigned int max_lbr, 2654 bool callee) 2655 { 2656 struct branch_stack *cur_stack = cur->branch_stack; 2657 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2658 struct branch_stack *prev_stack = prev->branch_stack; 2659 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2660 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2661 int i, j, nr_identical_branches = 0; 2662 struct stitch_list *stitch_node; 2663 u64 cur_base, distance; 2664 2665 if (!cur_stack || !prev_stack) 2666 return false; 2667 2668 /* Find the physical index of the base-of-stack for current sample. */ 2669 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2670 2671 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2672 (max_lbr + prev_stack->hw_idx - cur_base); 2673 /* Previous sample has shorter stack. Nothing can be stitched. */ 2674 if (distance + 1 > prev_stack->nr) 2675 return false; 2676 2677 /* 2678 * Check if there are identical LBRs between two samples. 2679 * Identical LBRs must have same from, to and flags values. Also, 2680 * they have to be saved in the same LBR registers (same physical 2681 * index). 2682 * 2683 * Starts from the base-of-stack of current sample. 2684 */ 2685 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2686 if ((prev_entries[i].from != cur_entries[j].from) || 2687 (prev_entries[i].to != cur_entries[j].to) || 2688 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2689 break; 2690 nr_identical_branches++; 2691 } 2692 2693 if (!nr_identical_branches) 2694 return false; 2695 2696 /* 2697 * Save the LBRs between the base-of-stack of previous sample 2698 * and the base-of-stack of current sample into lbr_stitch->lists. 2699 * These LBRs will be stitched later. 2700 */ 2701 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2702 2703 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2704 continue; 2705 2706 stitch_node = get_stitch_node(thread); 2707 if (!stitch_node) 2708 return false; 2709 2710 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2711 sizeof(struct callchain_cursor_node)); 2712 2713 if (callee) 2714 list_add(&stitch_node->node, &lbr_stitch->lists); 2715 else 2716 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2717 } 2718 2719 return true; 2720 } 2721 2722 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2723 { 2724 if (thread->lbr_stitch) 2725 return true; 2726 2727 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2728 if (!thread->lbr_stitch) 2729 goto err; 2730 2731 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2732 if (!thread->lbr_stitch->prev_lbr_cursor) 2733 goto free_lbr_stitch; 2734 2735 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2736 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2737 2738 return true; 2739 2740 free_lbr_stitch: 2741 zfree(&thread->lbr_stitch); 2742 err: 2743 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2744 thread->lbr_stitch_enable = false; 2745 return false; 2746 } 2747 2748 /* 2749 * Resolve LBR callstack chain sample 2750 * Return: 2751 * 1 on success get LBR callchain information 2752 * 0 no available LBR callchain information, should try fp 2753 * negative error code on other errors. 2754 */ 2755 static int resolve_lbr_callchain_sample(struct thread *thread, 2756 struct callchain_cursor *cursor, 2757 struct perf_sample *sample, 2758 struct symbol **parent, 2759 struct addr_location *root_al, 2760 int max_stack, 2761 unsigned int max_lbr) 2762 { 2763 bool callee = (callchain_param.order == ORDER_CALLEE); 2764 struct ip_callchain *chain = sample->callchain; 2765 int chain_nr = min(max_stack, (int)chain->nr), i; 2766 struct lbr_stitch *lbr_stitch; 2767 bool stitched_lbr = false; 2768 u64 branch_from = 0; 2769 int err; 2770 2771 for (i = 0; i < chain_nr; i++) { 2772 if (chain->ips[i] == PERF_CONTEXT_USER) 2773 break; 2774 } 2775 2776 /* LBR only affects the user callchain */ 2777 if (i == chain_nr) 2778 return 0; 2779 2780 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2781 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2782 lbr_stitch = thread->lbr_stitch; 2783 2784 stitched_lbr = has_stitched_lbr(thread, sample, 2785 &lbr_stitch->prev_sample, 2786 max_lbr, callee); 2787 2788 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2789 list_replace_init(&lbr_stitch->lists, 2790 &lbr_stitch->free_lists); 2791 } 2792 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2793 } 2794 2795 if (callee) { 2796 /* Add kernel ip */ 2797 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2798 parent, root_al, branch_from, 2799 true, i); 2800 if (err) 2801 goto error; 2802 2803 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2804 root_al, &branch_from, true); 2805 if (err) 2806 goto error; 2807 2808 if (stitched_lbr) { 2809 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2810 if (err) 2811 goto error; 2812 } 2813 2814 } else { 2815 if (stitched_lbr) { 2816 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2817 if (err) 2818 goto error; 2819 } 2820 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2821 root_al, &branch_from, false); 2822 if (err) 2823 goto error; 2824 2825 /* Add kernel ip */ 2826 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2827 parent, root_al, branch_from, 2828 false, i); 2829 if (err) 2830 goto error; 2831 } 2832 return 1; 2833 2834 error: 2835 return (err < 0) ? err : 0; 2836 } 2837 2838 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2839 struct callchain_cursor *cursor, 2840 struct symbol **parent, 2841 struct addr_location *root_al, 2842 u8 *cpumode, int ent) 2843 { 2844 int err = 0; 2845 2846 while (--ent >= 0) { 2847 u64 ip = chain->ips[ent]; 2848 2849 if (ip >= PERF_CONTEXT_MAX) { 2850 err = add_callchain_ip(thread, cursor, parent, 2851 root_al, cpumode, ip, 2852 false, NULL, NULL, 0); 2853 break; 2854 } 2855 } 2856 return err; 2857 } 2858 2859 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2860 struct thread *thread, int usr_idx) 2861 { 2862 if (machine__normalized_is(maps__machine(thread->maps), "arm64")) 2863 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2864 else 2865 return 0; 2866 } 2867 2868 static int thread__resolve_callchain_sample(struct thread *thread, 2869 struct callchain_cursor *cursor, 2870 struct evsel *evsel, 2871 struct perf_sample *sample, 2872 struct symbol **parent, 2873 struct addr_location *root_al, 2874 int max_stack) 2875 { 2876 struct branch_stack *branch = sample->branch_stack; 2877 struct branch_entry *entries = perf_sample__branch_entries(sample); 2878 struct ip_callchain *chain = sample->callchain; 2879 int chain_nr = 0; 2880 u8 cpumode = PERF_RECORD_MISC_USER; 2881 int i, j, err, nr_entries, usr_idx; 2882 int skip_idx = -1; 2883 int first_call = 0; 2884 u64 leaf_frame_caller; 2885 2886 if (chain) 2887 chain_nr = chain->nr; 2888 2889 if (evsel__has_branch_callstack(evsel)) { 2890 struct perf_env *env = evsel__env(evsel); 2891 2892 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2893 root_al, max_stack, 2894 !env ? 0 : env->max_branches); 2895 if (err) 2896 return (err < 0) ? err : 0; 2897 } 2898 2899 /* 2900 * Based on DWARF debug information, some architectures skip 2901 * a callchain entry saved by the kernel. 2902 */ 2903 skip_idx = arch_skip_callchain_idx(thread, chain); 2904 2905 /* 2906 * Add branches to call stack for easier browsing. This gives 2907 * more context for a sample than just the callers. 2908 * 2909 * This uses individual histograms of paths compared to the 2910 * aggregated histograms the normal LBR mode uses. 2911 * 2912 * Limitations for now: 2913 * - No extra filters 2914 * - No annotations (should annotate somehow) 2915 */ 2916 2917 if (branch && callchain_param.branch_callstack) { 2918 int nr = min(max_stack, (int)branch->nr); 2919 struct branch_entry be[nr]; 2920 struct iterations iter[nr]; 2921 2922 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2923 pr_warning("corrupted branch chain. skipping...\n"); 2924 goto check_calls; 2925 } 2926 2927 for (i = 0; i < nr; i++) { 2928 if (callchain_param.order == ORDER_CALLEE) { 2929 be[i] = entries[i]; 2930 2931 if (chain == NULL) 2932 continue; 2933 2934 /* 2935 * Check for overlap into the callchain. 2936 * The return address is one off compared to 2937 * the branch entry. To adjust for this 2938 * assume the calling instruction is not longer 2939 * than 8 bytes. 2940 */ 2941 if (i == skip_idx || 2942 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2943 first_call++; 2944 else if (be[i].from < chain->ips[first_call] && 2945 be[i].from >= chain->ips[first_call] - 8) 2946 first_call++; 2947 } else 2948 be[i] = entries[branch->nr - i - 1]; 2949 } 2950 2951 memset(iter, 0, sizeof(struct iterations) * nr); 2952 nr = remove_loops(be, nr, iter); 2953 2954 for (i = 0; i < nr; i++) { 2955 err = add_callchain_ip(thread, cursor, parent, 2956 root_al, 2957 NULL, be[i].to, 2958 true, &be[i].flags, 2959 NULL, be[i].from); 2960 2961 if (!err) 2962 err = add_callchain_ip(thread, cursor, parent, root_al, 2963 NULL, be[i].from, 2964 true, &be[i].flags, 2965 &iter[i], 0); 2966 if (err == -EINVAL) 2967 break; 2968 if (err) 2969 return err; 2970 } 2971 2972 if (chain_nr == 0) 2973 return 0; 2974 2975 chain_nr -= nr; 2976 } 2977 2978 check_calls: 2979 if (chain && callchain_param.order != ORDER_CALLEE) { 2980 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2981 &cpumode, chain->nr - first_call); 2982 if (err) 2983 return (err < 0) ? err : 0; 2984 } 2985 for (i = first_call, nr_entries = 0; 2986 i < chain_nr && nr_entries < max_stack; i++) { 2987 u64 ip; 2988 2989 if (callchain_param.order == ORDER_CALLEE) 2990 j = i; 2991 else 2992 j = chain->nr - i - 1; 2993 2994 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2995 if (j == skip_idx) 2996 continue; 2997 #endif 2998 ip = chain->ips[j]; 2999 if (ip < PERF_CONTEXT_MAX) 3000 ++nr_entries; 3001 else if (callchain_param.order != ORDER_CALLEE) { 3002 err = find_prev_cpumode(chain, thread, cursor, parent, 3003 root_al, &cpumode, j); 3004 if (err) 3005 return (err < 0) ? err : 0; 3006 continue; 3007 } 3008 3009 /* 3010 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 3011 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 3012 * the index will be different in order to add the missing frame 3013 * at the right place. 3014 */ 3015 3016 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 3017 3018 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 3019 3020 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 3021 3022 /* 3023 * check if leaf_frame_Caller != ip to not add the same 3024 * value twice. 3025 */ 3026 3027 if (leaf_frame_caller && leaf_frame_caller != ip) { 3028 3029 err = add_callchain_ip(thread, cursor, parent, 3030 root_al, &cpumode, leaf_frame_caller, 3031 false, NULL, NULL, 0); 3032 if (err) 3033 return (err < 0) ? err : 0; 3034 } 3035 } 3036 3037 err = add_callchain_ip(thread, cursor, parent, 3038 root_al, &cpumode, ip, 3039 false, NULL, NULL, 0); 3040 3041 if (err) 3042 return (err < 0) ? err : 0; 3043 } 3044 3045 return 0; 3046 } 3047 3048 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 3049 { 3050 struct symbol *sym = ms->sym; 3051 struct map *map = ms->map; 3052 struct inline_node *inline_node; 3053 struct inline_list *ilist; 3054 struct dso *dso; 3055 u64 addr; 3056 int ret = 1; 3057 3058 if (!symbol_conf.inline_name || !map || !sym) 3059 return ret; 3060 3061 addr = map__map_ip(map, ip); 3062 addr = map__rip_2objdump(map, addr); 3063 dso = map__dso(map); 3064 3065 inline_node = inlines__tree_find(&dso->inlined_nodes, addr); 3066 if (!inline_node) { 3067 inline_node = dso__parse_addr_inlines(dso, addr, sym); 3068 if (!inline_node) 3069 return ret; 3070 inlines__tree_insert(&dso->inlined_nodes, inline_node); 3071 } 3072 3073 list_for_each_entry(ilist, &inline_node->val, list) { 3074 struct map_symbol ilist_ms = { 3075 .maps = ms->maps, 3076 .map = map, 3077 .sym = ilist->symbol, 3078 }; 3079 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 3080 NULL, 0, 0, 0, ilist->srcline); 3081 3082 if (ret != 0) 3083 return ret; 3084 } 3085 3086 return ret; 3087 } 3088 3089 static int unwind_entry(struct unwind_entry *entry, void *arg) 3090 { 3091 struct callchain_cursor *cursor = arg; 3092 const char *srcline = NULL; 3093 u64 addr = entry->ip; 3094 3095 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 3096 return 0; 3097 3098 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 3099 return 0; 3100 3101 /* 3102 * Convert entry->ip from a virtual address to an offset in 3103 * its corresponding binary. 3104 */ 3105 if (entry->ms.map) 3106 addr = map__map_ip(entry->ms.map, entry->ip); 3107 3108 srcline = callchain_srcline(&entry->ms, addr); 3109 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 3110 false, NULL, 0, 0, 0, srcline); 3111 } 3112 3113 static int thread__resolve_callchain_unwind(struct thread *thread, 3114 struct callchain_cursor *cursor, 3115 struct evsel *evsel, 3116 struct perf_sample *sample, 3117 int max_stack) 3118 { 3119 /* Can we do dwarf post unwind? */ 3120 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 3121 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 3122 return 0; 3123 3124 /* Bail out if nothing was captured. */ 3125 if ((!sample->user_regs.regs) || 3126 (!sample->user_stack.size)) 3127 return 0; 3128 3129 return unwind__get_entries(unwind_entry, cursor, 3130 thread, sample, max_stack, false); 3131 } 3132 3133 int thread__resolve_callchain(struct thread *thread, 3134 struct callchain_cursor *cursor, 3135 struct evsel *evsel, 3136 struct perf_sample *sample, 3137 struct symbol **parent, 3138 struct addr_location *root_al, 3139 int max_stack) 3140 { 3141 int ret = 0; 3142 3143 callchain_cursor_reset(cursor); 3144 3145 if (callchain_param.order == ORDER_CALLEE) { 3146 ret = thread__resolve_callchain_sample(thread, cursor, 3147 evsel, sample, 3148 parent, root_al, 3149 max_stack); 3150 if (ret) 3151 return ret; 3152 ret = thread__resolve_callchain_unwind(thread, cursor, 3153 evsel, sample, 3154 max_stack); 3155 } else { 3156 ret = thread__resolve_callchain_unwind(thread, cursor, 3157 evsel, sample, 3158 max_stack); 3159 if (ret) 3160 return ret; 3161 ret = thread__resolve_callchain_sample(thread, cursor, 3162 evsel, sample, 3163 parent, root_al, 3164 max_stack); 3165 } 3166 3167 return ret; 3168 } 3169 3170 int machine__for_each_thread(struct machine *machine, 3171 int (*fn)(struct thread *thread, void *p), 3172 void *priv) 3173 { 3174 struct threads *threads; 3175 struct rb_node *nd; 3176 struct thread *thread; 3177 int rc = 0; 3178 int i; 3179 3180 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 3181 threads = &machine->threads[i]; 3182 for (nd = rb_first_cached(&threads->entries); nd; 3183 nd = rb_next(nd)) { 3184 thread = rb_entry(nd, struct thread, rb_node); 3185 rc = fn(thread, priv); 3186 if (rc != 0) 3187 return rc; 3188 } 3189 3190 list_for_each_entry(thread, &threads->dead, node) { 3191 rc = fn(thread, priv); 3192 if (rc != 0) 3193 return rc; 3194 } 3195 } 3196 return rc; 3197 } 3198 3199 int machines__for_each_thread(struct machines *machines, 3200 int (*fn)(struct thread *thread, void *p), 3201 void *priv) 3202 { 3203 struct rb_node *nd; 3204 int rc = 0; 3205 3206 rc = machine__for_each_thread(&machines->host, fn, priv); 3207 if (rc != 0) 3208 return rc; 3209 3210 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3211 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3212 3213 rc = machine__for_each_thread(machine, fn, priv); 3214 if (rc != 0) 3215 return rc; 3216 } 3217 return rc; 3218 } 3219 3220 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3221 { 3222 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3223 return -1; 3224 3225 return machine->current_tid[cpu]; 3226 } 3227 3228 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3229 pid_t tid) 3230 { 3231 struct thread *thread; 3232 const pid_t init_val = -1; 3233 3234 if (cpu < 0) 3235 return -EINVAL; 3236 3237 if (realloc_array_as_needed(machine->current_tid, 3238 machine->current_tid_sz, 3239 (unsigned int)cpu, 3240 &init_val)) 3241 return -ENOMEM; 3242 3243 machine->current_tid[cpu] = tid; 3244 3245 thread = machine__findnew_thread(machine, pid, tid); 3246 if (!thread) 3247 return -ENOMEM; 3248 3249 thread->cpu = cpu; 3250 thread__put(thread); 3251 3252 return 0; 3253 } 3254 3255 /* 3256 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3257 * machine__normalized_is() if a normalized arch is needed. 3258 */ 3259 bool machine__is(struct machine *machine, const char *arch) 3260 { 3261 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3262 } 3263 3264 bool machine__normalized_is(struct machine *machine, const char *arch) 3265 { 3266 return machine && !strcmp(perf_env__arch(machine->env), arch); 3267 } 3268 3269 int machine__nr_cpus_avail(struct machine *machine) 3270 { 3271 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3272 } 3273 3274 int machine__get_kernel_start(struct machine *machine) 3275 { 3276 struct map *map = machine__kernel_map(machine); 3277 int err = 0; 3278 3279 /* 3280 * The only addresses above 2^63 are kernel addresses of a 64-bit 3281 * kernel. Note that addresses are unsigned so that on a 32-bit system 3282 * all addresses including kernel addresses are less than 2^32. In 3283 * that case (32-bit system), if the kernel mapping is unknown, all 3284 * addresses will be assumed to be in user space - see 3285 * machine__kernel_ip(). 3286 */ 3287 machine->kernel_start = 1ULL << 63; 3288 if (map) { 3289 err = map__load(map); 3290 /* 3291 * On x86_64, PTI entry trampolines are less than the 3292 * start of kernel text, but still above 2^63. So leave 3293 * kernel_start = 1ULL << 63 for x86_64. 3294 */ 3295 if (!err && !machine__is(machine, "x86_64")) 3296 machine->kernel_start = map__start(map); 3297 } 3298 return err; 3299 } 3300 3301 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3302 { 3303 u8 addr_cpumode = cpumode; 3304 bool kernel_ip; 3305 3306 if (!machine->single_address_space) 3307 goto out; 3308 3309 kernel_ip = machine__kernel_ip(machine, addr); 3310 switch (cpumode) { 3311 case PERF_RECORD_MISC_KERNEL: 3312 case PERF_RECORD_MISC_USER: 3313 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3314 PERF_RECORD_MISC_USER; 3315 break; 3316 case PERF_RECORD_MISC_GUEST_KERNEL: 3317 case PERF_RECORD_MISC_GUEST_USER: 3318 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3319 PERF_RECORD_MISC_GUEST_USER; 3320 break; 3321 default: 3322 break; 3323 } 3324 out: 3325 return addr_cpumode; 3326 } 3327 3328 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3329 { 3330 return dsos__findnew_id(&machine->dsos, filename, id); 3331 } 3332 3333 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3334 { 3335 return machine__findnew_dso_id(machine, filename, NULL); 3336 } 3337 3338 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3339 { 3340 struct machine *machine = vmachine; 3341 struct map *map; 3342 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3343 3344 if (sym == NULL) 3345 return NULL; 3346 3347 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL; 3348 *addrp = map->unmap_ip(map, sym->start); 3349 return sym->name; 3350 } 3351 3352 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3353 { 3354 struct dso *pos; 3355 int err = 0; 3356 3357 list_for_each_entry(pos, &machine->dsos.head, node) { 3358 if (fn(pos, machine, priv)) 3359 err = -1; 3360 } 3361 return err; 3362 } 3363 3364 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3365 { 3366 struct maps *maps = machine__kernel_maps(machine); 3367 struct map_rb_node *pos; 3368 int err = 0; 3369 3370 maps__for_each_entry(maps, pos) { 3371 err = fn(pos->map, priv); 3372 if (err != 0) { 3373 break; 3374 } 3375 } 3376 return err; 3377 } 3378 3379 bool machine__is_lock_function(struct machine *machine, u64 addr) 3380 { 3381 if (!machine->sched.text_start) { 3382 struct map *kmap; 3383 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3384 3385 if (!sym) { 3386 /* to avoid retry */ 3387 machine->sched.text_start = 1; 3388 return false; 3389 } 3390 3391 machine->sched.text_start = kmap->unmap_ip(kmap, sym->start); 3392 3393 /* should not fail from here */ 3394 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3395 machine->sched.text_end = kmap->unmap_ip(kmap, sym->start); 3396 3397 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3398 machine->lock.text_start = kmap->unmap_ip(kmap, sym->start); 3399 3400 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3401 machine->lock.text_end = kmap->unmap_ip(kmap, sym->start); 3402 } 3403 3404 /* failed to get kernel symbols */ 3405 if (machine->sched.text_start == 1) 3406 return false; 3407 3408 /* mutex and rwsem functions are in sched text section */ 3409 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3410 return true; 3411 3412 /* spinlock functions are in lock text section */ 3413 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3414 return true; 3415 3416 return false; 3417 } 3418