1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 #include "cgroup.h" 37 38 #include <linux/ctype.h> 39 #include <symbol/kallsyms.h> 40 #include <linux/mman.h> 41 #include <linux/string.h> 42 #include <linux/zalloc.h> 43 44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 45 46 static struct dso *machine__kernel_dso(struct machine *machine) 47 { 48 return machine->vmlinux_map->dso; 49 } 50 51 static void dsos__init(struct dsos *dsos) 52 { 53 INIT_LIST_HEAD(&dsos->head); 54 dsos->root = RB_ROOT; 55 init_rwsem(&dsos->lock); 56 } 57 58 static void machine__threads_init(struct machine *machine) 59 { 60 int i; 61 62 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 63 struct threads *threads = &machine->threads[i]; 64 threads->entries = RB_ROOT_CACHED; 65 init_rwsem(&threads->lock); 66 threads->nr = 0; 67 INIT_LIST_HEAD(&threads->dead); 68 threads->last_match = NULL; 69 } 70 } 71 72 static int machine__set_mmap_name(struct machine *machine) 73 { 74 if (machine__is_host(machine)) 75 machine->mmap_name = strdup("[kernel.kallsyms]"); 76 else if (machine__is_default_guest(machine)) 77 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 79 machine->pid) < 0) 80 machine->mmap_name = NULL; 81 82 return machine->mmap_name ? 0 : -ENOMEM; 83 } 84 85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 86 { 87 int err = -ENOMEM; 88 89 memset(machine, 0, sizeof(*machine)); 90 maps__init(&machine->kmaps, machine); 91 RB_CLEAR_NODE(&machine->rb_node); 92 dsos__init(&machine->dsos); 93 94 machine__threads_init(machine); 95 96 machine->vdso_info = NULL; 97 machine->env = NULL; 98 99 machine->pid = pid; 100 101 machine->id_hdr_size = 0; 102 machine->kptr_restrict_warned = false; 103 machine->comm_exec = false; 104 machine->kernel_start = 0; 105 machine->vmlinux_map = NULL; 106 107 machine->root_dir = strdup(root_dir); 108 if (machine->root_dir == NULL) 109 return -ENOMEM; 110 111 if (machine__set_mmap_name(machine)) 112 goto out; 113 114 if (pid != HOST_KERNEL_ID) { 115 struct thread *thread = machine__findnew_thread(machine, -1, 116 pid); 117 char comm[64]; 118 119 if (thread == NULL) 120 goto out; 121 122 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 123 thread__set_comm(thread, comm, 0); 124 thread__put(thread); 125 } 126 127 machine->current_tid = NULL; 128 err = 0; 129 130 out: 131 if (err) { 132 zfree(&machine->root_dir); 133 zfree(&machine->mmap_name); 134 } 135 return 0; 136 } 137 138 struct machine *machine__new_host(void) 139 { 140 struct machine *machine = malloc(sizeof(*machine)); 141 142 if (machine != NULL) { 143 machine__init(machine, "", HOST_KERNEL_ID); 144 145 if (machine__create_kernel_maps(machine) < 0) 146 goto out_delete; 147 } 148 149 return machine; 150 out_delete: 151 free(machine); 152 return NULL; 153 } 154 155 struct machine *machine__new_kallsyms(void) 156 { 157 struct machine *machine = machine__new_host(); 158 /* 159 * FIXME: 160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 161 * ask for not using the kcore parsing code, once this one is fixed 162 * to create a map per module. 163 */ 164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 165 machine__delete(machine); 166 machine = NULL; 167 } 168 169 return machine; 170 } 171 172 static void dsos__purge(struct dsos *dsos) 173 { 174 struct dso *pos, *n; 175 176 down_write(&dsos->lock); 177 178 list_for_each_entry_safe(pos, n, &dsos->head, node) { 179 RB_CLEAR_NODE(&pos->rb_node); 180 pos->root = NULL; 181 list_del_init(&pos->node); 182 dso__put(pos); 183 } 184 185 up_write(&dsos->lock); 186 } 187 188 static void dsos__exit(struct dsos *dsos) 189 { 190 dsos__purge(dsos); 191 exit_rwsem(&dsos->lock); 192 } 193 194 void machine__delete_threads(struct machine *machine) 195 { 196 struct rb_node *nd; 197 int i; 198 199 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 200 struct threads *threads = &machine->threads[i]; 201 down_write(&threads->lock); 202 nd = rb_first_cached(&threads->entries); 203 while (nd) { 204 struct thread *t = rb_entry(nd, struct thread, rb_node); 205 206 nd = rb_next(nd); 207 __machine__remove_thread(machine, t, false); 208 } 209 up_write(&threads->lock); 210 } 211 } 212 213 void machine__exit(struct machine *machine) 214 { 215 int i; 216 217 if (machine == NULL) 218 return; 219 220 machine__destroy_kernel_maps(machine); 221 maps__exit(&machine->kmaps); 222 dsos__exit(&machine->dsos); 223 machine__exit_vdso(machine); 224 zfree(&machine->root_dir); 225 zfree(&machine->mmap_name); 226 zfree(&machine->current_tid); 227 228 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 229 struct threads *threads = &machine->threads[i]; 230 struct thread *thread, *n; 231 /* 232 * Forget about the dead, at this point whatever threads were 233 * left in the dead lists better have a reference count taken 234 * by who is using them, and then, when they drop those references 235 * and it finally hits zero, thread__put() will check and see that 236 * its not in the dead threads list and will not try to remove it 237 * from there, just calling thread__delete() straight away. 238 */ 239 list_for_each_entry_safe(thread, n, &threads->dead, node) 240 list_del_init(&thread->node); 241 242 exit_rwsem(&threads->lock); 243 } 244 } 245 246 void machine__delete(struct machine *machine) 247 { 248 if (machine) { 249 machine__exit(machine); 250 free(machine); 251 } 252 } 253 254 void machines__init(struct machines *machines) 255 { 256 machine__init(&machines->host, "", HOST_KERNEL_ID); 257 machines->guests = RB_ROOT_CACHED; 258 } 259 260 void machines__exit(struct machines *machines) 261 { 262 machine__exit(&machines->host); 263 /* XXX exit guest */ 264 } 265 266 struct machine *machines__add(struct machines *machines, pid_t pid, 267 const char *root_dir) 268 { 269 struct rb_node **p = &machines->guests.rb_root.rb_node; 270 struct rb_node *parent = NULL; 271 struct machine *pos, *machine = malloc(sizeof(*machine)); 272 bool leftmost = true; 273 274 if (machine == NULL) 275 return NULL; 276 277 if (machine__init(machine, root_dir, pid) != 0) { 278 free(machine); 279 return NULL; 280 } 281 282 while (*p != NULL) { 283 parent = *p; 284 pos = rb_entry(parent, struct machine, rb_node); 285 if (pid < pos->pid) 286 p = &(*p)->rb_left; 287 else { 288 p = &(*p)->rb_right; 289 leftmost = false; 290 } 291 } 292 293 rb_link_node(&machine->rb_node, parent, p); 294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 295 296 return machine; 297 } 298 299 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 300 { 301 struct rb_node *nd; 302 303 machines->host.comm_exec = comm_exec; 304 305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 306 struct machine *machine = rb_entry(nd, struct machine, rb_node); 307 308 machine->comm_exec = comm_exec; 309 } 310 } 311 312 struct machine *machines__find(struct machines *machines, pid_t pid) 313 { 314 struct rb_node **p = &machines->guests.rb_root.rb_node; 315 struct rb_node *parent = NULL; 316 struct machine *machine; 317 struct machine *default_machine = NULL; 318 319 if (pid == HOST_KERNEL_ID) 320 return &machines->host; 321 322 while (*p != NULL) { 323 parent = *p; 324 machine = rb_entry(parent, struct machine, rb_node); 325 if (pid < machine->pid) 326 p = &(*p)->rb_left; 327 else if (pid > machine->pid) 328 p = &(*p)->rb_right; 329 else 330 return machine; 331 if (!machine->pid) 332 default_machine = machine; 333 } 334 335 return default_machine; 336 } 337 338 struct machine *machines__findnew(struct machines *machines, pid_t pid) 339 { 340 char path[PATH_MAX]; 341 const char *root_dir = ""; 342 struct machine *machine = machines__find(machines, pid); 343 344 if (machine && (machine->pid == pid)) 345 goto out; 346 347 if ((pid != HOST_KERNEL_ID) && 348 (pid != DEFAULT_GUEST_KERNEL_ID) && 349 (symbol_conf.guestmount)) { 350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 351 if (access(path, R_OK)) { 352 static struct strlist *seen; 353 354 if (!seen) 355 seen = strlist__new(NULL, NULL); 356 357 if (!strlist__has_entry(seen, path)) { 358 pr_err("Can't access file %s\n", path); 359 strlist__add(seen, path); 360 } 361 machine = NULL; 362 goto out; 363 } 364 root_dir = path; 365 } 366 367 machine = machines__add(machines, pid, root_dir); 368 out: 369 return machine; 370 } 371 372 void machines__process_guests(struct machines *machines, 373 machine__process_t process, void *data) 374 { 375 struct rb_node *nd; 376 377 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 378 struct machine *pos = rb_entry(nd, struct machine, rb_node); 379 process(pos, data); 380 } 381 } 382 383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 384 { 385 struct rb_node *node; 386 struct machine *machine; 387 388 machines->host.id_hdr_size = id_hdr_size; 389 390 for (node = rb_first_cached(&machines->guests); node; 391 node = rb_next(node)) { 392 machine = rb_entry(node, struct machine, rb_node); 393 machine->id_hdr_size = id_hdr_size; 394 } 395 396 return; 397 } 398 399 static void machine__update_thread_pid(struct machine *machine, 400 struct thread *th, pid_t pid) 401 { 402 struct thread *leader; 403 404 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 405 return; 406 407 th->pid_ = pid; 408 409 if (th->pid_ == th->tid) 410 return; 411 412 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 413 if (!leader) 414 goto out_err; 415 416 if (!leader->maps) 417 leader->maps = maps__new(machine); 418 419 if (!leader->maps) 420 goto out_err; 421 422 if (th->maps == leader->maps) 423 return; 424 425 if (th->maps) { 426 /* 427 * Maps are created from MMAP events which provide the pid and 428 * tid. Consequently there never should be any maps on a thread 429 * with an unknown pid. Just print an error if there are. 430 */ 431 if (!maps__empty(th->maps)) 432 pr_err("Discarding thread maps for %d:%d\n", 433 th->pid_, th->tid); 434 maps__put(th->maps); 435 } 436 437 th->maps = maps__get(leader->maps); 438 out_put: 439 thread__put(leader); 440 return; 441 out_err: 442 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 443 goto out_put; 444 } 445 446 /* 447 * Front-end cache - TID lookups come in blocks, 448 * so most of the time we dont have to look up 449 * the full rbtree: 450 */ 451 static struct thread* 452 __threads__get_last_match(struct threads *threads, struct machine *machine, 453 int pid, int tid) 454 { 455 struct thread *th; 456 457 th = threads->last_match; 458 if (th != NULL) { 459 if (th->tid == tid) { 460 machine__update_thread_pid(machine, th, pid); 461 return thread__get(th); 462 } 463 464 threads->last_match = NULL; 465 } 466 467 return NULL; 468 } 469 470 static struct thread* 471 threads__get_last_match(struct threads *threads, struct machine *machine, 472 int pid, int tid) 473 { 474 struct thread *th = NULL; 475 476 if (perf_singlethreaded) 477 th = __threads__get_last_match(threads, machine, pid, tid); 478 479 return th; 480 } 481 482 static void 483 __threads__set_last_match(struct threads *threads, struct thread *th) 484 { 485 threads->last_match = th; 486 } 487 488 static void 489 threads__set_last_match(struct threads *threads, struct thread *th) 490 { 491 if (perf_singlethreaded) 492 __threads__set_last_match(threads, th); 493 } 494 495 /* 496 * Caller must eventually drop thread->refcnt returned with a successful 497 * lookup/new thread inserted. 498 */ 499 static struct thread *____machine__findnew_thread(struct machine *machine, 500 struct threads *threads, 501 pid_t pid, pid_t tid, 502 bool create) 503 { 504 struct rb_node **p = &threads->entries.rb_root.rb_node; 505 struct rb_node *parent = NULL; 506 struct thread *th; 507 bool leftmost = true; 508 509 th = threads__get_last_match(threads, machine, pid, tid); 510 if (th) 511 return th; 512 513 while (*p != NULL) { 514 parent = *p; 515 th = rb_entry(parent, struct thread, rb_node); 516 517 if (th->tid == tid) { 518 threads__set_last_match(threads, th); 519 machine__update_thread_pid(machine, th, pid); 520 return thread__get(th); 521 } 522 523 if (tid < th->tid) 524 p = &(*p)->rb_left; 525 else { 526 p = &(*p)->rb_right; 527 leftmost = false; 528 } 529 } 530 531 if (!create) 532 return NULL; 533 534 th = thread__new(pid, tid); 535 if (th != NULL) { 536 rb_link_node(&th->rb_node, parent, p); 537 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 538 539 /* 540 * We have to initialize maps separately after rb tree is updated. 541 * 542 * The reason is that we call machine__findnew_thread 543 * within thread__init_maps to find the thread 544 * leader and that would screwed the rb tree. 545 */ 546 if (thread__init_maps(th, machine)) { 547 rb_erase_cached(&th->rb_node, &threads->entries); 548 RB_CLEAR_NODE(&th->rb_node); 549 thread__put(th); 550 return NULL; 551 } 552 /* 553 * It is now in the rbtree, get a ref 554 */ 555 thread__get(th); 556 threads__set_last_match(threads, th); 557 ++threads->nr; 558 } 559 560 return th; 561 } 562 563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 564 { 565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 566 } 567 568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 569 pid_t tid) 570 { 571 struct threads *threads = machine__threads(machine, tid); 572 struct thread *th; 573 574 down_write(&threads->lock); 575 th = __machine__findnew_thread(machine, pid, tid); 576 up_write(&threads->lock); 577 return th; 578 } 579 580 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 581 pid_t tid) 582 { 583 struct threads *threads = machine__threads(machine, tid); 584 struct thread *th; 585 586 down_read(&threads->lock); 587 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 588 up_read(&threads->lock); 589 return th; 590 } 591 592 struct comm *machine__thread_exec_comm(struct machine *machine, 593 struct thread *thread) 594 { 595 if (machine->comm_exec) 596 return thread__exec_comm(thread); 597 else 598 return thread__comm(thread); 599 } 600 601 int machine__process_comm_event(struct machine *machine, union perf_event *event, 602 struct perf_sample *sample) 603 { 604 struct thread *thread = machine__findnew_thread(machine, 605 event->comm.pid, 606 event->comm.tid); 607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 608 int err = 0; 609 610 if (exec) 611 machine->comm_exec = true; 612 613 if (dump_trace) 614 perf_event__fprintf_comm(event, stdout); 615 616 if (thread == NULL || 617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 619 err = -1; 620 } 621 622 thread__put(thread); 623 624 return err; 625 } 626 627 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 628 union perf_event *event, 629 struct perf_sample *sample __maybe_unused) 630 { 631 struct thread *thread = machine__findnew_thread(machine, 632 event->namespaces.pid, 633 event->namespaces.tid); 634 int err = 0; 635 636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 637 "\nWARNING: kernel seems to support more namespaces than perf" 638 " tool.\nTry updating the perf tool..\n\n"); 639 640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 641 "\nWARNING: perf tool seems to support more namespaces than" 642 " the kernel.\nTry updating the kernel..\n\n"); 643 644 if (dump_trace) 645 perf_event__fprintf_namespaces(event, stdout); 646 647 if (thread == NULL || 648 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 650 err = -1; 651 } 652 653 thread__put(thread); 654 655 return err; 656 } 657 658 int machine__process_cgroup_event(struct machine *machine, 659 union perf_event *event, 660 struct perf_sample *sample __maybe_unused) 661 { 662 struct cgroup *cgrp; 663 664 if (dump_trace) 665 perf_event__fprintf_cgroup(event, stdout); 666 667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 668 if (cgrp == NULL) 669 return -ENOMEM; 670 671 return 0; 672 } 673 674 int machine__process_lost_event(struct machine *machine __maybe_unused, 675 union perf_event *event, struct perf_sample *sample __maybe_unused) 676 { 677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 678 event->lost.id, event->lost.lost); 679 return 0; 680 } 681 682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 683 union perf_event *event, struct perf_sample *sample) 684 { 685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 686 sample->id, event->lost_samples.lost); 687 return 0; 688 } 689 690 static struct dso *machine__findnew_module_dso(struct machine *machine, 691 struct kmod_path *m, 692 const char *filename) 693 { 694 struct dso *dso; 695 696 down_write(&machine->dsos.lock); 697 698 dso = __dsos__find(&machine->dsos, m->name, true); 699 if (!dso) { 700 dso = __dsos__addnew(&machine->dsos, m->name); 701 if (dso == NULL) 702 goto out_unlock; 703 704 dso__set_module_info(dso, m, machine); 705 dso__set_long_name(dso, strdup(filename), true); 706 dso->kernel = DSO_TYPE_KERNEL; 707 } 708 709 dso__get(dso); 710 out_unlock: 711 up_write(&machine->dsos.lock); 712 return dso; 713 } 714 715 int machine__process_aux_event(struct machine *machine __maybe_unused, 716 union perf_event *event) 717 { 718 if (dump_trace) 719 perf_event__fprintf_aux(event, stdout); 720 return 0; 721 } 722 723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 724 union perf_event *event) 725 { 726 if (dump_trace) 727 perf_event__fprintf_itrace_start(event, stdout); 728 return 0; 729 } 730 731 int machine__process_switch_event(struct machine *machine __maybe_unused, 732 union perf_event *event) 733 { 734 if (dump_trace) 735 perf_event__fprintf_switch(event, stdout); 736 return 0; 737 } 738 739 static int is_bpf_image(const char *name) 740 { 741 return strncmp(name, "bpf_trampoline_", sizeof("bpf_trampoline_") - 1) == 0 || 742 strncmp(name, "bpf_dispatcher_", sizeof("bpf_dispatcher_") - 1) == 0; 743 } 744 745 static int machine__process_ksymbol_register(struct machine *machine, 746 union perf_event *event, 747 struct perf_sample *sample __maybe_unused) 748 { 749 struct symbol *sym; 750 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr); 751 752 if (!map) { 753 struct dso *dso = dso__new(event->ksymbol.name); 754 755 if (dso) { 756 dso->kernel = DSO_TYPE_KERNEL; 757 map = map__new2(0, dso); 758 } 759 760 if (!dso || !map) { 761 dso__put(dso); 762 return -ENOMEM; 763 } 764 765 map->start = event->ksymbol.addr; 766 map->end = map->start + event->ksymbol.len; 767 maps__insert(&machine->kmaps, map); 768 dso__set_loaded(dso); 769 770 if (is_bpf_image(event->ksymbol.name)) { 771 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 772 dso__set_long_name(dso, "", false); 773 } 774 } 775 776 sym = symbol__new(map->map_ip(map, map->start), 777 event->ksymbol.len, 778 0, 0, event->ksymbol.name); 779 if (!sym) 780 return -ENOMEM; 781 dso__insert_symbol(map->dso, sym); 782 return 0; 783 } 784 785 static int machine__process_ksymbol_unregister(struct machine *machine, 786 union perf_event *event, 787 struct perf_sample *sample __maybe_unused) 788 { 789 struct map *map; 790 791 map = maps__find(&machine->kmaps, event->ksymbol.addr); 792 if (map) 793 maps__remove(&machine->kmaps, map); 794 795 return 0; 796 } 797 798 int machine__process_ksymbol(struct machine *machine __maybe_unused, 799 union perf_event *event, 800 struct perf_sample *sample) 801 { 802 if (dump_trace) 803 perf_event__fprintf_ksymbol(event, stdout); 804 805 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 806 return machine__process_ksymbol_unregister(machine, event, 807 sample); 808 return machine__process_ksymbol_register(machine, event, sample); 809 } 810 811 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 812 const char *filename) 813 { 814 struct map *map = NULL; 815 struct kmod_path m; 816 struct dso *dso; 817 818 if (kmod_path__parse_name(&m, filename)) 819 return NULL; 820 821 dso = machine__findnew_module_dso(machine, &m, filename); 822 if (dso == NULL) 823 goto out; 824 825 map = map__new2(start, dso); 826 if (map == NULL) 827 goto out; 828 829 maps__insert(&machine->kmaps, map); 830 831 /* Put the map here because maps__insert alread got it */ 832 map__put(map); 833 out: 834 /* put the dso here, corresponding to machine__findnew_module_dso */ 835 dso__put(dso); 836 zfree(&m.name); 837 return map; 838 } 839 840 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 841 { 842 struct rb_node *nd; 843 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 844 845 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 846 struct machine *pos = rb_entry(nd, struct machine, rb_node); 847 ret += __dsos__fprintf(&pos->dsos.head, fp); 848 } 849 850 return ret; 851 } 852 853 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 854 bool (skip)(struct dso *dso, int parm), int parm) 855 { 856 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 857 } 858 859 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 860 bool (skip)(struct dso *dso, int parm), int parm) 861 { 862 struct rb_node *nd; 863 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 864 865 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 866 struct machine *pos = rb_entry(nd, struct machine, rb_node); 867 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 868 } 869 return ret; 870 } 871 872 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 873 { 874 int i; 875 size_t printed = 0; 876 struct dso *kdso = machine__kernel_dso(machine); 877 878 if (kdso->has_build_id) { 879 char filename[PATH_MAX]; 880 if (dso__build_id_filename(kdso, filename, sizeof(filename), 881 false)) 882 printed += fprintf(fp, "[0] %s\n", filename); 883 } 884 885 for (i = 0; i < vmlinux_path__nr_entries; ++i) 886 printed += fprintf(fp, "[%d] %s\n", 887 i + kdso->has_build_id, vmlinux_path[i]); 888 889 return printed; 890 } 891 892 size_t machine__fprintf(struct machine *machine, FILE *fp) 893 { 894 struct rb_node *nd; 895 size_t ret; 896 int i; 897 898 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 899 struct threads *threads = &machine->threads[i]; 900 901 down_read(&threads->lock); 902 903 ret = fprintf(fp, "Threads: %u\n", threads->nr); 904 905 for (nd = rb_first_cached(&threads->entries); nd; 906 nd = rb_next(nd)) { 907 struct thread *pos = rb_entry(nd, struct thread, rb_node); 908 909 ret += thread__fprintf(pos, fp); 910 } 911 912 up_read(&threads->lock); 913 } 914 return ret; 915 } 916 917 static struct dso *machine__get_kernel(struct machine *machine) 918 { 919 const char *vmlinux_name = machine->mmap_name; 920 struct dso *kernel; 921 922 if (machine__is_host(machine)) { 923 if (symbol_conf.vmlinux_name) 924 vmlinux_name = symbol_conf.vmlinux_name; 925 926 kernel = machine__findnew_kernel(machine, vmlinux_name, 927 "[kernel]", DSO_TYPE_KERNEL); 928 } else { 929 if (symbol_conf.default_guest_vmlinux_name) 930 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 931 932 kernel = machine__findnew_kernel(machine, vmlinux_name, 933 "[guest.kernel]", 934 DSO_TYPE_GUEST_KERNEL); 935 } 936 937 if (kernel != NULL && (!kernel->has_build_id)) 938 dso__read_running_kernel_build_id(kernel, machine); 939 940 return kernel; 941 } 942 943 struct process_args { 944 u64 start; 945 }; 946 947 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 948 size_t bufsz) 949 { 950 if (machine__is_default_guest(machine)) 951 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 952 else 953 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 954 } 955 956 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 957 958 /* Figure out the start address of kernel map from /proc/kallsyms. 959 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 960 * symbol_name if it's not that important. 961 */ 962 static int machine__get_running_kernel_start(struct machine *machine, 963 const char **symbol_name, 964 u64 *start, u64 *end) 965 { 966 char filename[PATH_MAX]; 967 int i, err = -1; 968 const char *name; 969 u64 addr = 0; 970 971 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 972 973 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 974 return 0; 975 976 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 977 err = kallsyms__get_function_start(filename, name, &addr); 978 if (!err) 979 break; 980 } 981 982 if (err) 983 return -1; 984 985 if (symbol_name) 986 *symbol_name = name; 987 988 *start = addr; 989 990 err = kallsyms__get_function_start(filename, "_etext", &addr); 991 if (!err) 992 *end = addr; 993 994 return 0; 995 } 996 997 int machine__create_extra_kernel_map(struct machine *machine, 998 struct dso *kernel, 999 struct extra_kernel_map *xm) 1000 { 1001 struct kmap *kmap; 1002 struct map *map; 1003 1004 map = map__new2(xm->start, kernel); 1005 if (!map) 1006 return -1; 1007 1008 map->end = xm->end; 1009 map->pgoff = xm->pgoff; 1010 1011 kmap = map__kmap(map); 1012 1013 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1014 1015 maps__insert(&machine->kmaps, map); 1016 1017 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1018 kmap->name, map->start, map->end); 1019 1020 map__put(map); 1021 1022 return 0; 1023 } 1024 1025 static u64 find_entry_trampoline(struct dso *dso) 1026 { 1027 /* Duplicates are removed so lookup all aliases */ 1028 const char *syms[] = { 1029 "_entry_trampoline", 1030 "__entry_trampoline_start", 1031 "entry_SYSCALL_64_trampoline", 1032 }; 1033 struct symbol *sym = dso__first_symbol(dso); 1034 unsigned int i; 1035 1036 for (; sym; sym = dso__next_symbol(sym)) { 1037 if (sym->binding != STB_GLOBAL) 1038 continue; 1039 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1040 if (!strcmp(sym->name, syms[i])) 1041 return sym->start; 1042 } 1043 } 1044 1045 return 0; 1046 } 1047 1048 /* 1049 * These values can be used for kernels that do not have symbols for the entry 1050 * trampolines in kallsyms. 1051 */ 1052 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1053 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1054 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1055 1056 /* Map x86_64 PTI entry trampolines */ 1057 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1058 struct dso *kernel) 1059 { 1060 struct maps *kmaps = &machine->kmaps; 1061 int nr_cpus_avail, cpu; 1062 bool found = false; 1063 struct map *map; 1064 u64 pgoff; 1065 1066 /* 1067 * In the vmlinux case, pgoff is a virtual address which must now be 1068 * mapped to a vmlinux offset. 1069 */ 1070 maps__for_each_entry(kmaps, map) { 1071 struct kmap *kmap = __map__kmap(map); 1072 struct map *dest_map; 1073 1074 if (!kmap || !is_entry_trampoline(kmap->name)) 1075 continue; 1076 1077 dest_map = maps__find(kmaps, map->pgoff); 1078 if (dest_map != map) 1079 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1080 found = true; 1081 } 1082 if (found || machine->trampolines_mapped) 1083 return 0; 1084 1085 pgoff = find_entry_trampoline(kernel); 1086 if (!pgoff) 1087 return 0; 1088 1089 nr_cpus_avail = machine__nr_cpus_avail(machine); 1090 1091 /* Add a 1 page map for each CPU's entry trampoline */ 1092 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1093 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1094 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1095 X86_64_ENTRY_TRAMPOLINE; 1096 struct extra_kernel_map xm = { 1097 .start = va, 1098 .end = va + page_size, 1099 .pgoff = pgoff, 1100 }; 1101 1102 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1103 1104 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1105 return -1; 1106 } 1107 1108 machine->trampolines_mapped = nr_cpus_avail; 1109 1110 return 0; 1111 } 1112 1113 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1114 struct dso *kernel __maybe_unused) 1115 { 1116 return 0; 1117 } 1118 1119 static int 1120 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1121 { 1122 /* In case of renewal the kernel map, destroy previous one */ 1123 machine__destroy_kernel_maps(machine); 1124 1125 machine->vmlinux_map = map__new2(0, kernel); 1126 if (machine->vmlinux_map == NULL) 1127 return -1; 1128 1129 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1130 maps__insert(&machine->kmaps, machine->vmlinux_map); 1131 return 0; 1132 } 1133 1134 void machine__destroy_kernel_maps(struct machine *machine) 1135 { 1136 struct kmap *kmap; 1137 struct map *map = machine__kernel_map(machine); 1138 1139 if (map == NULL) 1140 return; 1141 1142 kmap = map__kmap(map); 1143 maps__remove(&machine->kmaps, map); 1144 if (kmap && kmap->ref_reloc_sym) { 1145 zfree((char **)&kmap->ref_reloc_sym->name); 1146 zfree(&kmap->ref_reloc_sym); 1147 } 1148 1149 map__zput(machine->vmlinux_map); 1150 } 1151 1152 int machines__create_guest_kernel_maps(struct machines *machines) 1153 { 1154 int ret = 0; 1155 struct dirent **namelist = NULL; 1156 int i, items = 0; 1157 char path[PATH_MAX]; 1158 pid_t pid; 1159 char *endp; 1160 1161 if (symbol_conf.default_guest_vmlinux_name || 1162 symbol_conf.default_guest_modules || 1163 symbol_conf.default_guest_kallsyms) { 1164 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1165 } 1166 1167 if (symbol_conf.guestmount) { 1168 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1169 if (items <= 0) 1170 return -ENOENT; 1171 for (i = 0; i < items; i++) { 1172 if (!isdigit(namelist[i]->d_name[0])) { 1173 /* Filter out . and .. */ 1174 continue; 1175 } 1176 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1177 if ((*endp != '\0') || 1178 (endp == namelist[i]->d_name) || 1179 (errno == ERANGE)) { 1180 pr_debug("invalid directory (%s). Skipping.\n", 1181 namelist[i]->d_name); 1182 continue; 1183 } 1184 sprintf(path, "%s/%s/proc/kallsyms", 1185 symbol_conf.guestmount, 1186 namelist[i]->d_name); 1187 ret = access(path, R_OK); 1188 if (ret) { 1189 pr_debug("Can't access file %s\n", path); 1190 goto failure; 1191 } 1192 machines__create_kernel_maps(machines, pid); 1193 } 1194 failure: 1195 free(namelist); 1196 } 1197 1198 return ret; 1199 } 1200 1201 void machines__destroy_kernel_maps(struct machines *machines) 1202 { 1203 struct rb_node *next = rb_first_cached(&machines->guests); 1204 1205 machine__destroy_kernel_maps(&machines->host); 1206 1207 while (next) { 1208 struct machine *pos = rb_entry(next, struct machine, rb_node); 1209 1210 next = rb_next(&pos->rb_node); 1211 rb_erase_cached(&pos->rb_node, &machines->guests); 1212 machine__delete(pos); 1213 } 1214 } 1215 1216 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1217 { 1218 struct machine *machine = machines__findnew(machines, pid); 1219 1220 if (machine == NULL) 1221 return -1; 1222 1223 return machine__create_kernel_maps(machine); 1224 } 1225 1226 int machine__load_kallsyms(struct machine *machine, const char *filename) 1227 { 1228 struct map *map = machine__kernel_map(machine); 1229 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1230 1231 if (ret > 0) { 1232 dso__set_loaded(map->dso); 1233 /* 1234 * Since /proc/kallsyms will have multiple sessions for the 1235 * kernel, with modules between them, fixup the end of all 1236 * sections. 1237 */ 1238 maps__fixup_end(&machine->kmaps); 1239 } 1240 1241 return ret; 1242 } 1243 1244 int machine__load_vmlinux_path(struct machine *machine) 1245 { 1246 struct map *map = machine__kernel_map(machine); 1247 int ret = dso__load_vmlinux_path(map->dso, map); 1248 1249 if (ret > 0) 1250 dso__set_loaded(map->dso); 1251 1252 return ret; 1253 } 1254 1255 static char *get_kernel_version(const char *root_dir) 1256 { 1257 char version[PATH_MAX]; 1258 FILE *file; 1259 char *name, *tmp; 1260 const char *prefix = "Linux version "; 1261 1262 sprintf(version, "%s/proc/version", root_dir); 1263 file = fopen(version, "r"); 1264 if (!file) 1265 return NULL; 1266 1267 tmp = fgets(version, sizeof(version), file); 1268 fclose(file); 1269 if (!tmp) 1270 return NULL; 1271 1272 name = strstr(version, prefix); 1273 if (!name) 1274 return NULL; 1275 name += strlen(prefix); 1276 tmp = strchr(name, ' '); 1277 if (tmp) 1278 *tmp = '\0'; 1279 1280 return strdup(name); 1281 } 1282 1283 static bool is_kmod_dso(struct dso *dso) 1284 { 1285 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1286 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1287 } 1288 1289 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1290 { 1291 char *long_name; 1292 struct map *map = maps__find_by_name(maps, m->name); 1293 1294 if (map == NULL) 1295 return 0; 1296 1297 long_name = strdup(path); 1298 if (long_name == NULL) 1299 return -ENOMEM; 1300 1301 dso__set_long_name(map->dso, long_name, true); 1302 dso__kernel_module_get_build_id(map->dso, ""); 1303 1304 /* 1305 * Full name could reveal us kmod compression, so 1306 * we need to update the symtab_type if needed. 1307 */ 1308 if (m->comp && is_kmod_dso(map->dso)) { 1309 map->dso->symtab_type++; 1310 map->dso->comp = m->comp; 1311 } 1312 1313 return 0; 1314 } 1315 1316 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1317 { 1318 struct dirent *dent; 1319 DIR *dir = opendir(dir_name); 1320 int ret = 0; 1321 1322 if (!dir) { 1323 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1324 return -1; 1325 } 1326 1327 while ((dent = readdir(dir)) != NULL) { 1328 char path[PATH_MAX]; 1329 struct stat st; 1330 1331 /*sshfs might return bad dent->d_type, so we have to stat*/ 1332 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1333 if (stat(path, &st)) 1334 continue; 1335 1336 if (S_ISDIR(st.st_mode)) { 1337 if (!strcmp(dent->d_name, ".") || 1338 !strcmp(dent->d_name, "..")) 1339 continue; 1340 1341 /* Do not follow top-level source and build symlinks */ 1342 if (depth == 0) { 1343 if (!strcmp(dent->d_name, "source") || 1344 !strcmp(dent->d_name, "build")) 1345 continue; 1346 } 1347 1348 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1349 if (ret < 0) 1350 goto out; 1351 } else { 1352 struct kmod_path m; 1353 1354 ret = kmod_path__parse_name(&m, dent->d_name); 1355 if (ret) 1356 goto out; 1357 1358 if (m.kmod) 1359 ret = maps__set_module_path(maps, path, &m); 1360 1361 zfree(&m.name); 1362 1363 if (ret) 1364 goto out; 1365 } 1366 } 1367 1368 out: 1369 closedir(dir); 1370 return ret; 1371 } 1372 1373 static int machine__set_modules_path(struct machine *machine) 1374 { 1375 char *version; 1376 char modules_path[PATH_MAX]; 1377 1378 version = get_kernel_version(machine->root_dir); 1379 if (!version) 1380 return -1; 1381 1382 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1383 machine->root_dir, version); 1384 free(version); 1385 1386 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1387 } 1388 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1389 u64 *size __maybe_unused, 1390 const char *name __maybe_unused) 1391 { 1392 return 0; 1393 } 1394 1395 static int machine__create_module(void *arg, const char *name, u64 start, 1396 u64 size) 1397 { 1398 struct machine *machine = arg; 1399 struct map *map; 1400 1401 if (arch__fix_module_text_start(&start, &size, name) < 0) 1402 return -1; 1403 1404 map = machine__addnew_module_map(machine, start, name); 1405 if (map == NULL) 1406 return -1; 1407 map->end = start + size; 1408 1409 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1410 1411 return 0; 1412 } 1413 1414 static int machine__create_modules(struct machine *machine) 1415 { 1416 const char *modules; 1417 char path[PATH_MAX]; 1418 1419 if (machine__is_default_guest(machine)) { 1420 modules = symbol_conf.default_guest_modules; 1421 } else { 1422 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1423 modules = path; 1424 } 1425 1426 if (symbol__restricted_filename(modules, "/proc/modules")) 1427 return -1; 1428 1429 if (modules__parse(modules, machine, machine__create_module)) 1430 return -1; 1431 1432 if (!machine__set_modules_path(machine)) 1433 return 0; 1434 1435 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1436 1437 return 0; 1438 } 1439 1440 static void machine__set_kernel_mmap(struct machine *machine, 1441 u64 start, u64 end) 1442 { 1443 machine->vmlinux_map->start = start; 1444 machine->vmlinux_map->end = end; 1445 /* 1446 * Be a bit paranoid here, some perf.data file came with 1447 * a zero sized synthesized MMAP event for the kernel. 1448 */ 1449 if (start == 0 && end == 0) 1450 machine->vmlinux_map->end = ~0ULL; 1451 } 1452 1453 static void machine__update_kernel_mmap(struct machine *machine, 1454 u64 start, u64 end) 1455 { 1456 struct map *map = machine__kernel_map(machine); 1457 1458 map__get(map); 1459 maps__remove(&machine->kmaps, map); 1460 1461 machine__set_kernel_mmap(machine, start, end); 1462 1463 maps__insert(&machine->kmaps, map); 1464 map__put(map); 1465 } 1466 1467 int machine__create_kernel_maps(struct machine *machine) 1468 { 1469 struct dso *kernel = machine__get_kernel(machine); 1470 const char *name = NULL; 1471 struct map *map; 1472 u64 start = 0, end = ~0ULL; 1473 int ret; 1474 1475 if (kernel == NULL) 1476 return -1; 1477 1478 ret = __machine__create_kernel_maps(machine, kernel); 1479 if (ret < 0) 1480 goto out_put; 1481 1482 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1483 if (machine__is_host(machine)) 1484 pr_debug("Problems creating module maps, " 1485 "continuing anyway...\n"); 1486 else 1487 pr_debug("Problems creating module maps for guest %d, " 1488 "continuing anyway...\n", machine->pid); 1489 } 1490 1491 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1492 if (name && 1493 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1494 machine__destroy_kernel_maps(machine); 1495 ret = -1; 1496 goto out_put; 1497 } 1498 1499 /* 1500 * we have a real start address now, so re-order the kmaps 1501 * assume it's the last in the kmaps 1502 */ 1503 machine__update_kernel_mmap(machine, start, end); 1504 } 1505 1506 if (machine__create_extra_kernel_maps(machine, kernel)) 1507 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1508 1509 if (end == ~0ULL) { 1510 /* update end address of the kernel map using adjacent module address */ 1511 map = map__next(machine__kernel_map(machine)); 1512 if (map) 1513 machine__set_kernel_mmap(machine, start, map->start); 1514 } 1515 1516 out_put: 1517 dso__put(kernel); 1518 return ret; 1519 } 1520 1521 static bool machine__uses_kcore(struct machine *machine) 1522 { 1523 struct dso *dso; 1524 1525 list_for_each_entry(dso, &machine->dsos.head, node) { 1526 if (dso__is_kcore(dso)) 1527 return true; 1528 } 1529 1530 return false; 1531 } 1532 1533 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1534 union perf_event *event) 1535 { 1536 return machine__is(machine, "x86_64") && 1537 is_entry_trampoline(event->mmap.filename); 1538 } 1539 1540 static int machine__process_extra_kernel_map(struct machine *machine, 1541 union perf_event *event) 1542 { 1543 struct dso *kernel = machine__kernel_dso(machine); 1544 struct extra_kernel_map xm = { 1545 .start = event->mmap.start, 1546 .end = event->mmap.start + event->mmap.len, 1547 .pgoff = event->mmap.pgoff, 1548 }; 1549 1550 if (kernel == NULL) 1551 return -1; 1552 1553 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1554 1555 return machine__create_extra_kernel_map(machine, kernel, &xm); 1556 } 1557 1558 static int machine__process_kernel_mmap_event(struct machine *machine, 1559 union perf_event *event) 1560 { 1561 struct map *map; 1562 enum dso_kernel_type kernel_type; 1563 bool is_kernel_mmap; 1564 1565 /* If we have maps from kcore then we do not need or want any others */ 1566 if (machine__uses_kcore(machine)) 1567 return 0; 1568 1569 if (machine__is_host(machine)) 1570 kernel_type = DSO_TYPE_KERNEL; 1571 else 1572 kernel_type = DSO_TYPE_GUEST_KERNEL; 1573 1574 is_kernel_mmap = memcmp(event->mmap.filename, 1575 machine->mmap_name, 1576 strlen(machine->mmap_name) - 1) == 0; 1577 if (event->mmap.filename[0] == '/' || 1578 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1579 map = machine__addnew_module_map(machine, event->mmap.start, 1580 event->mmap.filename); 1581 if (map == NULL) 1582 goto out_problem; 1583 1584 map->end = map->start + event->mmap.len; 1585 } else if (is_kernel_mmap) { 1586 const char *symbol_name = (event->mmap.filename + 1587 strlen(machine->mmap_name)); 1588 /* 1589 * Should be there already, from the build-id table in 1590 * the header. 1591 */ 1592 struct dso *kernel = NULL; 1593 struct dso *dso; 1594 1595 down_read(&machine->dsos.lock); 1596 1597 list_for_each_entry(dso, &machine->dsos.head, node) { 1598 1599 /* 1600 * The cpumode passed to is_kernel_module is not the 1601 * cpumode of *this* event. If we insist on passing 1602 * correct cpumode to is_kernel_module, we should 1603 * record the cpumode when we adding this dso to the 1604 * linked list. 1605 * 1606 * However we don't really need passing correct 1607 * cpumode. We know the correct cpumode must be kernel 1608 * mode (if not, we should not link it onto kernel_dsos 1609 * list). 1610 * 1611 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1612 * is_kernel_module() treats it as a kernel cpumode. 1613 */ 1614 1615 if (!dso->kernel || 1616 is_kernel_module(dso->long_name, 1617 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1618 continue; 1619 1620 1621 kernel = dso; 1622 break; 1623 } 1624 1625 up_read(&machine->dsos.lock); 1626 1627 if (kernel == NULL) 1628 kernel = machine__findnew_dso(machine, machine->mmap_name); 1629 if (kernel == NULL) 1630 goto out_problem; 1631 1632 kernel->kernel = kernel_type; 1633 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1634 dso__put(kernel); 1635 goto out_problem; 1636 } 1637 1638 if (strstr(kernel->long_name, "vmlinux")) 1639 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1640 1641 machine__update_kernel_mmap(machine, event->mmap.start, 1642 event->mmap.start + event->mmap.len); 1643 1644 /* 1645 * Avoid using a zero address (kptr_restrict) for the ref reloc 1646 * symbol. Effectively having zero here means that at record 1647 * time /proc/sys/kernel/kptr_restrict was non zero. 1648 */ 1649 if (event->mmap.pgoff != 0) { 1650 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1651 symbol_name, 1652 event->mmap.pgoff); 1653 } 1654 1655 if (machine__is_default_guest(machine)) { 1656 /* 1657 * preload dso of guest kernel and modules 1658 */ 1659 dso__load(kernel, machine__kernel_map(machine)); 1660 } 1661 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1662 return machine__process_extra_kernel_map(machine, event); 1663 } 1664 return 0; 1665 out_problem: 1666 return -1; 1667 } 1668 1669 int machine__process_mmap2_event(struct machine *machine, 1670 union perf_event *event, 1671 struct perf_sample *sample) 1672 { 1673 struct thread *thread; 1674 struct map *map; 1675 struct dso_id dso_id = { 1676 .maj = event->mmap2.maj, 1677 .min = event->mmap2.min, 1678 .ino = event->mmap2.ino, 1679 .ino_generation = event->mmap2.ino_generation, 1680 }; 1681 int ret = 0; 1682 1683 if (dump_trace) 1684 perf_event__fprintf_mmap2(event, stdout); 1685 1686 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1687 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1688 ret = machine__process_kernel_mmap_event(machine, event); 1689 if (ret < 0) 1690 goto out_problem; 1691 return 0; 1692 } 1693 1694 thread = machine__findnew_thread(machine, event->mmap2.pid, 1695 event->mmap2.tid); 1696 if (thread == NULL) 1697 goto out_problem; 1698 1699 map = map__new(machine, event->mmap2.start, 1700 event->mmap2.len, event->mmap2.pgoff, 1701 &dso_id, event->mmap2.prot, 1702 event->mmap2.flags, 1703 event->mmap2.filename, thread); 1704 1705 if (map == NULL) 1706 goto out_problem_map; 1707 1708 ret = thread__insert_map(thread, map); 1709 if (ret) 1710 goto out_problem_insert; 1711 1712 thread__put(thread); 1713 map__put(map); 1714 return 0; 1715 1716 out_problem_insert: 1717 map__put(map); 1718 out_problem_map: 1719 thread__put(thread); 1720 out_problem: 1721 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1722 return 0; 1723 } 1724 1725 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1726 struct perf_sample *sample) 1727 { 1728 struct thread *thread; 1729 struct map *map; 1730 u32 prot = 0; 1731 int ret = 0; 1732 1733 if (dump_trace) 1734 perf_event__fprintf_mmap(event, stdout); 1735 1736 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1737 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1738 ret = machine__process_kernel_mmap_event(machine, event); 1739 if (ret < 0) 1740 goto out_problem; 1741 return 0; 1742 } 1743 1744 thread = machine__findnew_thread(machine, event->mmap.pid, 1745 event->mmap.tid); 1746 if (thread == NULL) 1747 goto out_problem; 1748 1749 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1750 prot = PROT_EXEC; 1751 1752 map = map__new(machine, event->mmap.start, 1753 event->mmap.len, event->mmap.pgoff, 1754 NULL, prot, 0, event->mmap.filename, thread); 1755 1756 if (map == NULL) 1757 goto out_problem_map; 1758 1759 ret = thread__insert_map(thread, map); 1760 if (ret) 1761 goto out_problem_insert; 1762 1763 thread__put(thread); 1764 map__put(map); 1765 return 0; 1766 1767 out_problem_insert: 1768 map__put(map); 1769 out_problem_map: 1770 thread__put(thread); 1771 out_problem: 1772 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1773 return 0; 1774 } 1775 1776 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1777 { 1778 struct threads *threads = machine__threads(machine, th->tid); 1779 1780 if (threads->last_match == th) 1781 threads__set_last_match(threads, NULL); 1782 1783 if (lock) 1784 down_write(&threads->lock); 1785 1786 BUG_ON(refcount_read(&th->refcnt) == 0); 1787 1788 rb_erase_cached(&th->rb_node, &threads->entries); 1789 RB_CLEAR_NODE(&th->rb_node); 1790 --threads->nr; 1791 /* 1792 * Move it first to the dead_threads list, then drop the reference, 1793 * if this is the last reference, then the thread__delete destructor 1794 * will be called and we will remove it from the dead_threads list. 1795 */ 1796 list_add_tail(&th->node, &threads->dead); 1797 1798 /* 1799 * We need to do the put here because if this is the last refcount, 1800 * then we will be touching the threads->dead head when removing the 1801 * thread. 1802 */ 1803 thread__put(th); 1804 1805 if (lock) 1806 up_write(&threads->lock); 1807 } 1808 1809 void machine__remove_thread(struct machine *machine, struct thread *th) 1810 { 1811 return __machine__remove_thread(machine, th, true); 1812 } 1813 1814 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1815 struct perf_sample *sample) 1816 { 1817 struct thread *thread = machine__find_thread(machine, 1818 event->fork.pid, 1819 event->fork.tid); 1820 struct thread *parent = machine__findnew_thread(machine, 1821 event->fork.ppid, 1822 event->fork.ptid); 1823 bool do_maps_clone = true; 1824 int err = 0; 1825 1826 if (dump_trace) 1827 perf_event__fprintf_task(event, stdout); 1828 1829 /* 1830 * There may be an existing thread that is not actually the parent, 1831 * either because we are processing events out of order, or because the 1832 * (fork) event that would have removed the thread was lost. Assume the 1833 * latter case and continue on as best we can. 1834 */ 1835 if (parent->pid_ != (pid_t)event->fork.ppid) { 1836 dump_printf("removing erroneous parent thread %d/%d\n", 1837 parent->pid_, parent->tid); 1838 machine__remove_thread(machine, parent); 1839 thread__put(parent); 1840 parent = machine__findnew_thread(machine, event->fork.ppid, 1841 event->fork.ptid); 1842 } 1843 1844 /* if a thread currently exists for the thread id remove it */ 1845 if (thread != NULL) { 1846 machine__remove_thread(machine, thread); 1847 thread__put(thread); 1848 } 1849 1850 thread = machine__findnew_thread(machine, event->fork.pid, 1851 event->fork.tid); 1852 /* 1853 * When synthesizing FORK events, we are trying to create thread 1854 * objects for the already running tasks on the machine. 1855 * 1856 * Normally, for a kernel FORK event, we want to clone the parent's 1857 * maps because that is what the kernel just did. 1858 * 1859 * But when synthesizing, this should not be done. If we do, we end up 1860 * with overlapping maps as we process the sythesized MMAP2 events that 1861 * get delivered shortly thereafter. 1862 * 1863 * Use the FORK event misc flags in an internal way to signal this 1864 * situation, so we can elide the map clone when appropriate. 1865 */ 1866 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1867 do_maps_clone = false; 1868 1869 if (thread == NULL || parent == NULL || 1870 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1871 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1872 err = -1; 1873 } 1874 thread__put(thread); 1875 thread__put(parent); 1876 1877 return err; 1878 } 1879 1880 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1881 struct perf_sample *sample __maybe_unused) 1882 { 1883 struct thread *thread = machine__find_thread(machine, 1884 event->fork.pid, 1885 event->fork.tid); 1886 1887 if (dump_trace) 1888 perf_event__fprintf_task(event, stdout); 1889 1890 if (thread != NULL) { 1891 thread__exited(thread); 1892 thread__put(thread); 1893 } 1894 1895 return 0; 1896 } 1897 1898 int machine__process_event(struct machine *machine, union perf_event *event, 1899 struct perf_sample *sample) 1900 { 1901 int ret; 1902 1903 switch (event->header.type) { 1904 case PERF_RECORD_COMM: 1905 ret = machine__process_comm_event(machine, event, sample); break; 1906 case PERF_RECORD_MMAP: 1907 ret = machine__process_mmap_event(machine, event, sample); break; 1908 case PERF_RECORD_NAMESPACES: 1909 ret = machine__process_namespaces_event(machine, event, sample); break; 1910 case PERF_RECORD_CGROUP: 1911 ret = machine__process_cgroup_event(machine, event, sample); break; 1912 case PERF_RECORD_MMAP2: 1913 ret = machine__process_mmap2_event(machine, event, sample); break; 1914 case PERF_RECORD_FORK: 1915 ret = machine__process_fork_event(machine, event, sample); break; 1916 case PERF_RECORD_EXIT: 1917 ret = machine__process_exit_event(machine, event, sample); break; 1918 case PERF_RECORD_LOST: 1919 ret = machine__process_lost_event(machine, event, sample); break; 1920 case PERF_RECORD_AUX: 1921 ret = machine__process_aux_event(machine, event); break; 1922 case PERF_RECORD_ITRACE_START: 1923 ret = machine__process_itrace_start_event(machine, event); break; 1924 case PERF_RECORD_LOST_SAMPLES: 1925 ret = machine__process_lost_samples_event(machine, event, sample); break; 1926 case PERF_RECORD_SWITCH: 1927 case PERF_RECORD_SWITCH_CPU_WIDE: 1928 ret = machine__process_switch_event(machine, event); break; 1929 case PERF_RECORD_KSYMBOL: 1930 ret = machine__process_ksymbol(machine, event, sample); break; 1931 case PERF_RECORD_BPF_EVENT: 1932 ret = machine__process_bpf(machine, event, sample); break; 1933 default: 1934 ret = -1; 1935 break; 1936 } 1937 1938 return ret; 1939 } 1940 1941 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1942 { 1943 if (!regexec(regex, sym->name, 0, NULL, 0)) 1944 return 1; 1945 return 0; 1946 } 1947 1948 static void ip__resolve_ams(struct thread *thread, 1949 struct addr_map_symbol *ams, 1950 u64 ip) 1951 { 1952 struct addr_location al; 1953 1954 memset(&al, 0, sizeof(al)); 1955 /* 1956 * We cannot use the header.misc hint to determine whether a 1957 * branch stack address is user, kernel, guest, hypervisor. 1958 * Branches may straddle the kernel/user/hypervisor boundaries. 1959 * Thus, we have to try consecutively until we find a match 1960 * or else, the symbol is unknown 1961 */ 1962 thread__find_cpumode_addr_location(thread, ip, &al); 1963 1964 ams->addr = ip; 1965 ams->al_addr = al.addr; 1966 ams->ms.maps = al.maps; 1967 ams->ms.sym = al.sym; 1968 ams->ms.map = al.map; 1969 ams->phys_addr = 0; 1970 } 1971 1972 static void ip__resolve_data(struct thread *thread, 1973 u8 m, struct addr_map_symbol *ams, 1974 u64 addr, u64 phys_addr) 1975 { 1976 struct addr_location al; 1977 1978 memset(&al, 0, sizeof(al)); 1979 1980 thread__find_symbol(thread, m, addr, &al); 1981 1982 ams->addr = addr; 1983 ams->al_addr = al.addr; 1984 ams->ms.maps = al.maps; 1985 ams->ms.sym = al.sym; 1986 ams->ms.map = al.map; 1987 ams->phys_addr = phys_addr; 1988 } 1989 1990 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1991 struct addr_location *al) 1992 { 1993 struct mem_info *mi = mem_info__new(); 1994 1995 if (!mi) 1996 return NULL; 1997 1998 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1999 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2000 sample->addr, sample->phys_addr); 2001 mi->data_src.val = sample->data_src; 2002 2003 return mi; 2004 } 2005 2006 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2007 { 2008 struct map *map = ms->map; 2009 char *srcline = NULL; 2010 2011 if (!map || callchain_param.key == CCKEY_FUNCTION) 2012 return srcline; 2013 2014 srcline = srcline__tree_find(&map->dso->srclines, ip); 2015 if (!srcline) { 2016 bool show_sym = false; 2017 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2018 2019 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2020 ms->sym, show_sym, show_addr, ip); 2021 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2022 } 2023 2024 return srcline; 2025 } 2026 2027 struct iterations { 2028 int nr_loop_iter; 2029 u64 cycles; 2030 }; 2031 2032 static int add_callchain_ip(struct thread *thread, 2033 struct callchain_cursor *cursor, 2034 struct symbol **parent, 2035 struct addr_location *root_al, 2036 u8 *cpumode, 2037 u64 ip, 2038 bool branch, 2039 struct branch_flags *flags, 2040 struct iterations *iter, 2041 u64 branch_from) 2042 { 2043 struct map_symbol ms; 2044 struct addr_location al; 2045 int nr_loop_iter = 0; 2046 u64 iter_cycles = 0; 2047 const char *srcline = NULL; 2048 2049 al.filtered = 0; 2050 al.sym = NULL; 2051 if (!cpumode) { 2052 thread__find_cpumode_addr_location(thread, ip, &al); 2053 } else { 2054 if (ip >= PERF_CONTEXT_MAX) { 2055 switch (ip) { 2056 case PERF_CONTEXT_HV: 2057 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2058 break; 2059 case PERF_CONTEXT_KERNEL: 2060 *cpumode = PERF_RECORD_MISC_KERNEL; 2061 break; 2062 case PERF_CONTEXT_USER: 2063 *cpumode = PERF_RECORD_MISC_USER; 2064 break; 2065 default: 2066 pr_debug("invalid callchain context: " 2067 "%"PRId64"\n", (s64) ip); 2068 /* 2069 * It seems the callchain is corrupted. 2070 * Discard all. 2071 */ 2072 callchain_cursor_reset(cursor); 2073 return 1; 2074 } 2075 return 0; 2076 } 2077 thread__find_symbol(thread, *cpumode, ip, &al); 2078 } 2079 2080 if (al.sym != NULL) { 2081 if (perf_hpp_list.parent && !*parent && 2082 symbol__match_regex(al.sym, &parent_regex)) 2083 *parent = al.sym; 2084 else if (have_ignore_callees && root_al && 2085 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2086 /* Treat this symbol as the root, 2087 forgetting its callees. */ 2088 *root_al = al; 2089 callchain_cursor_reset(cursor); 2090 } 2091 } 2092 2093 if (symbol_conf.hide_unresolved && al.sym == NULL) 2094 return 0; 2095 2096 if (iter) { 2097 nr_loop_iter = iter->nr_loop_iter; 2098 iter_cycles = iter->cycles; 2099 } 2100 2101 ms.maps = al.maps; 2102 ms.map = al.map; 2103 ms.sym = al.sym; 2104 srcline = callchain_srcline(&ms, al.addr); 2105 return callchain_cursor_append(cursor, ip, &ms, 2106 branch, flags, nr_loop_iter, 2107 iter_cycles, branch_from, srcline); 2108 } 2109 2110 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2111 struct addr_location *al) 2112 { 2113 unsigned int i; 2114 const struct branch_stack *bs = sample->branch_stack; 2115 struct branch_entry *entries = perf_sample__branch_entries(sample); 2116 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2117 2118 if (!bi) 2119 return NULL; 2120 2121 for (i = 0; i < bs->nr; i++) { 2122 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2123 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2124 bi[i].flags = entries[i].flags; 2125 } 2126 return bi; 2127 } 2128 2129 static void save_iterations(struct iterations *iter, 2130 struct branch_entry *be, int nr) 2131 { 2132 int i; 2133 2134 iter->nr_loop_iter++; 2135 iter->cycles = 0; 2136 2137 for (i = 0; i < nr; i++) 2138 iter->cycles += be[i].flags.cycles; 2139 } 2140 2141 #define CHASHSZ 127 2142 #define CHASHBITS 7 2143 #define NO_ENTRY 0xff 2144 2145 #define PERF_MAX_BRANCH_DEPTH 127 2146 2147 /* Remove loops. */ 2148 static int remove_loops(struct branch_entry *l, int nr, 2149 struct iterations *iter) 2150 { 2151 int i, j, off; 2152 unsigned char chash[CHASHSZ]; 2153 2154 memset(chash, NO_ENTRY, sizeof(chash)); 2155 2156 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2157 2158 for (i = 0; i < nr; i++) { 2159 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2160 2161 /* no collision handling for now */ 2162 if (chash[h] == NO_ENTRY) { 2163 chash[h] = i; 2164 } else if (l[chash[h]].from == l[i].from) { 2165 bool is_loop = true; 2166 /* check if it is a real loop */ 2167 off = 0; 2168 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2169 if (l[j].from != l[i + off].from) { 2170 is_loop = false; 2171 break; 2172 } 2173 if (is_loop) { 2174 j = nr - (i + off); 2175 if (j > 0) { 2176 save_iterations(iter + i + off, 2177 l + i, off); 2178 2179 memmove(iter + i, iter + i + off, 2180 j * sizeof(*iter)); 2181 2182 memmove(l + i, l + i + off, 2183 j * sizeof(*l)); 2184 } 2185 2186 nr -= off; 2187 } 2188 } 2189 } 2190 return nr; 2191 } 2192 2193 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2194 struct callchain_cursor *cursor, 2195 struct perf_sample *sample, 2196 struct symbol **parent, 2197 struct addr_location *root_al, 2198 u64 branch_from, 2199 bool callee, int end) 2200 { 2201 struct ip_callchain *chain = sample->callchain; 2202 u8 cpumode = PERF_RECORD_MISC_USER; 2203 int err, i; 2204 2205 if (callee) { 2206 for (i = 0; i < end + 1; i++) { 2207 err = add_callchain_ip(thread, cursor, parent, 2208 root_al, &cpumode, chain->ips[i], 2209 false, NULL, NULL, branch_from); 2210 if (err) 2211 return err; 2212 } 2213 return 0; 2214 } 2215 2216 for (i = end; i >= 0; i--) { 2217 err = add_callchain_ip(thread, cursor, parent, 2218 root_al, &cpumode, chain->ips[i], 2219 false, NULL, NULL, branch_from); 2220 if (err) 2221 return err; 2222 } 2223 2224 return 0; 2225 } 2226 2227 static void save_lbr_cursor_node(struct thread *thread, 2228 struct callchain_cursor *cursor, 2229 int idx) 2230 { 2231 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2232 2233 if (!lbr_stitch) 2234 return; 2235 2236 if (cursor->pos == cursor->nr) { 2237 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2238 return; 2239 } 2240 2241 if (!cursor->curr) 2242 cursor->curr = cursor->first; 2243 else 2244 cursor->curr = cursor->curr->next; 2245 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2246 sizeof(struct callchain_cursor_node)); 2247 2248 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2249 cursor->pos++; 2250 } 2251 2252 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2253 struct callchain_cursor *cursor, 2254 struct perf_sample *sample, 2255 struct symbol **parent, 2256 struct addr_location *root_al, 2257 u64 *branch_from, 2258 bool callee) 2259 { 2260 struct branch_stack *lbr_stack = sample->branch_stack; 2261 struct branch_entry *entries = perf_sample__branch_entries(sample); 2262 u8 cpumode = PERF_RECORD_MISC_USER; 2263 int lbr_nr = lbr_stack->nr; 2264 struct branch_flags *flags; 2265 int err, i; 2266 u64 ip; 2267 2268 /* 2269 * The curr and pos are not used in writing session. They are cleared 2270 * in callchain_cursor_commit() when the writing session is closed. 2271 * Using curr and pos to track the current cursor node. 2272 */ 2273 if (thread->lbr_stitch) { 2274 cursor->curr = NULL; 2275 cursor->pos = cursor->nr; 2276 if (cursor->nr) { 2277 cursor->curr = cursor->first; 2278 for (i = 0; i < (int)(cursor->nr - 1); i++) 2279 cursor->curr = cursor->curr->next; 2280 } 2281 } 2282 2283 if (callee) { 2284 /* Add LBR ip from first entries.to */ 2285 ip = entries[0].to; 2286 flags = &entries[0].flags; 2287 *branch_from = entries[0].from; 2288 err = add_callchain_ip(thread, cursor, parent, 2289 root_al, &cpumode, ip, 2290 true, flags, NULL, 2291 *branch_from); 2292 if (err) 2293 return err; 2294 2295 /* 2296 * The number of cursor node increases. 2297 * Move the current cursor node. 2298 * But does not need to save current cursor node for entry 0. 2299 * It's impossible to stitch the whole LBRs of previous sample. 2300 */ 2301 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2302 if (!cursor->curr) 2303 cursor->curr = cursor->first; 2304 else 2305 cursor->curr = cursor->curr->next; 2306 cursor->pos++; 2307 } 2308 2309 /* Add LBR ip from entries.from one by one. */ 2310 for (i = 0; i < lbr_nr; i++) { 2311 ip = entries[i].from; 2312 flags = &entries[i].flags; 2313 err = add_callchain_ip(thread, cursor, parent, 2314 root_al, &cpumode, ip, 2315 true, flags, NULL, 2316 *branch_from); 2317 if (err) 2318 return err; 2319 save_lbr_cursor_node(thread, cursor, i); 2320 } 2321 return 0; 2322 } 2323 2324 /* Add LBR ip from entries.from one by one. */ 2325 for (i = lbr_nr - 1; i >= 0; i--) { 2326 ip = entries[i].from; 2327 flags = &entries[i].flags; 2328 err = add_callchain_ip(thread, cursor, parent, 2329 root_al, &cpumode, ip, 2330 true, flags, NULL, 2331 *branch_from); 2332 if (err) 2333 return err; 2334 save_lbr_cursor_node(thread, cursor, i); 2335 } 2336 2337 /* Add LBR ip from first entries.to */ 2338 ip = entries[0].to; 2339 flags = &entries[0].flags; 2340 *branch_from = entries[0].from; 2341 err = add_callchain_ip(thread, cursor, parent, 2342 root_al, &cpumode, ip, 2343 true, flags, NULL, 2344 *branch_from); 2345 if (err) 2346 return err; 2347 2348 return 0; 2349 } 2350 2351 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2352 struct callchain_cursor *cursor) 2353 { 2354 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2355 struct callchain_cursor_node *cnode; 2356 struct stitch_list *stitch_node; 2357 int err; 2358 2359 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2360 cnode = &stitch_node->cursor; 2361 2362 err = callchain_cursor_append(cursor, cnode->ip, 2363 &cnode->ms, 2364 cnode->branch, 2365 &cnode->branch_flags, 2366 cnode->nr_loop_iter, 2367 cnode->iter_cycles, 2368 cnode->branch_from, 2369 cnode->srcline); 2370 if (err) 2371 return err; 2372 } 2373 return 0; 2374 } 2375 2376 static struct stitch_list *get_stitch_node(struct thread *thread) 2377 { 2378 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2379 struct stitch_list *stitch_node; 2380 2381 if (!list_empty(&lbr_stitch->free_lists)) { 2382 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2383 struct stitch_list, node); 2384 list_del(&stitch_node->node); 2385 2386 return stitch_node; 2387 } 2388 2389 return malloc(sizeof(struct stitch_list)); 2390 } 2391 2392 static bool has_stitched_lbr(struct thread *thread, 2393 struct perf_sample *cur, 2394 struct perf_sample *prev, 2395 unsigned int max_lbr, 2396 bool callee) 2397 { 2398 struct branch_stack *cur_stack = cur->branch_stack; 2399 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2400 struct branch_stack *prev_stack = prev->branch_stack; 2401 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2402 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2403 int i, j, nr_identical_branches = 0; 2404 struct stitch_list *stitch_node; 2405 u64 cur_base, distance; 2406 2407 if (!cur_stack || !prev_stack) 2408 return false; 2409 2410 /* Find the physical index of the base-of-stack for current sample. */ 2411 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2412 2413 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2414 (max_lbr + prev_stack->hw_idx - cur_base); 2415 /* Previous sample has shorter stack. Nothing can be stitched. */ 2416 if (distance + 1 > prev_stack->nr) 2417 return false; 2418 2419 /* 2420 * Check if there are identical LBRs between two samples. 2421 * Identicall LBRs must have same from, to and flags values. Also, 2422 * they have to be saved in the same LBR registers (same physical 2423 * index). 2424 * 2425 * Starts from the base-of-stack of current sample. 2426 */ 2427 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2428 if ((prev_entries[i].from != cur_entries[j].from) || 2429 (prev_entries[i].to != cur_entries[j].to) || 2430 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2431 break; 2432 nr_identical_branches++; 2433 } 2434 2435 if (!nr_identical_branches) 2436 return false; 2437 2438 /* 2439 * Save the LBRs between the base-of-stack of previous sample 2440 * and the base-of-stack of current sample into lbr_stitch->lists. 2441 * These LBRs will be stitched later. 2442 */ 2443 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2444 2445 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2446 continue; 2447 2448 stitch_node = get_stitch_node(thread); 2449 if (!stitch_node) 2450 return false; 2451 2452 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2453 sizeof(struct callchain_cursor_node)); 2454 2455 if (callee) 2456 list_add(&stitch_node->node, &lbr_stitch->lists); 2457 else 2458 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2459 } 2460 2461 return true; 2462 } 2463 2464 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2465 { 2466 if (thread->lbr_stitch) 2467 return true; 2468 2469 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2470 if (!thread->lbr_stitch) 2471 goto err; 2472 2473 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2474 if (!thread->lbr_stitch->prev_lbr_cursor) 2475 goto free_lbr_stitch; 2476 2477 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2478 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2479 2480 return true; 2481 2482 free_lbr_stitch: 2483 zfree(&thread->lbr_stitch); 2484 err: 2485 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2486 thread->lbr_stitch_enable = false; 2487 return false; 2488 } 2489 2490 /* 2491 * Recolve LBR callstack chain sample 2492 * Return: 2493 * 1 on success get LBR callchain information 2494 * 0 no available LBR callchain information, should try fp 2495 * negative error code on other errors. 2496 */ 2497 static int resolve_lbr_callchain_sample(struct thread *thread, 2498 struct callchain_cursor *cursor, 2499 struct perf_sample *sample, 2500 struct symbol **parent, 2501 struct addr_location *root_al, 2502 int max_stack, 2503 unsigned int max_lbr) 2504 { 2505 bool callee = (callchain_param.order == ORDER_CALLEE); 2506 struct ip_callchain *chain = sample->callchain; 2507 int chain_nr = min(max_stack, (int)chain->nr), i; 2508 struct lbr_stitch *lbr_stitch; 2509 bool stitched_lbr = false; 2510 u64 branch_from = 0; 2511 int err; 2512 2513 for (i = 0; i < chain_nr; i++) { 2514 if (chain->ips[i] == PERF_CONTEXT_USER) 2515 break; 2516 } 2517 2518 /* LBR only affects the user callchain */ 2519 if (i == chain_nr) 2520 return 0; 2521 2522 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2523 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2524 lbr_stitch = thread->lbr_stitch; 2525 2526 stitched_lbr = has_stitched_lbr(thread, sample, 2527 &lbr_stitch->prev_sample, 2528 max_lbr, callee); 2529 2530 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2531 list_replace_init(&lbr_stitch->lists, 2532 &lbr_stitch->free_lists); 2533 } 2534 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2535 } 2536 2537 if (callee) { 2538 /* Add kernel ip */ 2539 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2540 parent, root_al, branch_from, 2541 true, i); 2542 if (err) 2543 goto error; 2544 2545 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2546 root_al, &branch_from, true); 2547 if (err) 2548 goto error; 2549 2550 if (stitched_lbr) { 2551 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2552 if (err) 2553 goto error; 2554 } 2555 2556 } else { 2557 if (stitched_lbr) { 2558 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2559 if (err) 2560 goto error; 2561 } 2562 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2563 root_al, &branch_from, false); 2564 if (err) 2565 goto error; 2566 2567 /* Add kernel ip */ 2568 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2569 parent, root_al, branch_from, 2570 false, i); 2571 if (err) 2572 goto error; 2573 } 2574 return 1; 2575 2576 error: 2577 return (err < 0) ? err : 0; 2578 } 2579 2580 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2581 struct callchain_cursor *cursor, 2582 struct symbol **parent, 2583 struct addr_location *root_al, 2584 u8 *cpumode, int ent) 2585 { 2586 int err = 0; 2587 2588 while (--ent >= 0) { 2589 u64 ip = chain->ips[ent]; 2590 2591 if (ip >= PERF_CONTEXT_MAX) { 2592 err = add_callchain_ip(thread, cursor, parent, 2593 root_al, cpumode, ip, 2594 false, NULL, NULL, 0); 2595 break; 2596 } 2597 } 2598 return err; 2599 } 2600 2601 static int thread__resolve_callchain_sample(struct thread *thread, 2602 struct callchain_cursor *cursor, 2603 struct evsel *evsel, 2604 struct perf_sample *sample, 2605 struct symbol **parent, 2606 struct addr_location *root_al, 2607 int max_stack) 2608 { 2609 struct branch_stack *branch = sample->branch_stack; 2610 struct branch_entry *entries = perf_sample__branch_entries(sample); 2611 struct ip_callchain *chain = sample->callchain; 2612 int chain_nr = 0; 2613 u8 cpumode = PERF_RECORD_MISC_USER; 2614 int i, j, err, nr_entries; 2615 int skip_idx = -1; 2616 int first_call = 0; 2617 2618 if (chain) 2619 chain_nr = chain->nr; 2620 2621 if (evsel__has_branch_callstack(evsel)) { 2622 struct perf_env *env = evsel__env(evsel); 2623 2624 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2625 root_al, max_stack, 2626 !env ? 0 : env->max_branches); 2627 if (err) 2628 return (err < 0) ? err : 0; 2629 } 2630 2631 /* 2632 * Based on DWARF debug information, some architectures skip 2633 * a callchain entry saved by the kernel. 2634 */ 2635 skip_idx = arch_skip_callchain_idx(thread, chain); 2636 2637 /* 2638 * Add branches to call stack for easier browsing. This gives 2639 * more context for a sample than just the callers. 2640 * 2641 * This uses individual histograms of paths compared to the 2642 * aggregated histograms the normal LBR mode uses. 2643 * 2644 * Limitations for now: 2645 * - No extra filters 2646 * - No annotations (should annotate somehow) 2647 */ 2648 2649 if (branch && callchain_param.branch_callstack) { 2650 int nr = min(max_stack, (int)branch->nr); 2651 struct branch_entry be[nr]; 2652 struct iterations iter[nr]; 2653 2654 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2655 pr_warning("corrupted branch chain. skipping...\n"); 2656 goto check_calls; 2657 } 2658 2659 for (i = 0; i < nr; i++) { 2660 if (callchain_param.order == ORDER_CALLEE) { 2661 be[i] = entries[i]; 2662 2663 if (chain == NULL) 2664 continue; 2665 2666 /* 2667 * Check for overlap into the callchain. 2668 * The return address is one off compared to 2669 * the branch entry. To adjust for this 2670 * assume the calling instruction is not longer 2671 * than 8 bytes. 2672 */ 2673 if (i == skip_idx || 2674 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2675 first_call++; 2676 else if (be[i].from < chain->ips[first_call] && 2677 be[i].from >= chain->ips[first_call] - 8) 2678 first_call++; 2679 } else 2680 be[i] = entries[branch->nr - i - 1]; 2681 } 2682 2683 memset(iter, 0, sizeof(struct iterations) * nr); 2684 nr = remove_loops(be, nr, iter); 2685 2686 for (i = 0; i < nr; i++) { 2687 err = add_callchain_ip(thread, cursor, parent, 2688 root_al, 2689 NULL, be[i].to, 2690 true, &be[i].flags, 2691 NULL, be[i].from); 2692 2693 if (!err) 2694 err = add_callchain_ip(thread, cursor, parent, root_al, 2695 NULL, be[i].from, 2696 true, &be[i].flags, 2697 &iter[i], 0); 2698 if (err == -EINVAL) 2699 break; 2700 if (err) 2701 return err; 2702 } 2703 2704 if (chain_nr == 0) 2705 return 0; 2706 2707 chain_nr -= nr; 2708 } 2709 2710 check_calls: 2711 if (chain && callchain_param.order != ORDER_CALLEE) { 2712 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2713 &cpumode, chain->nr - first_call); 2714 if (err) 2715 return (err < 0) ? err : 0; 2716 } 2717 for (i = first_call, nr_entries = 0; 2718 i < chain_nr && nr_entries < max_stack; i++) { 2719 u64 ip; 2720 2721 if (callchain_param.order == ORDER_CALLEE) 2722 j = i; 2723 else 2724 j = chain->nr - i - 1; 2725 2726 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2727 if (j == skip_idx) 2728 continue; 2729 #endif 2730 ip = chain->ips[j]; 2731 if (ip < PERF_CONTEXT_MAX) 2732 ++nr_entries; 2733 else if (callchain_param.order != ORDER_CALLEE) { 2734 err = find_prev_cpumode(chain, thread, cursor, parent, 2735 root_al, &cpumode, j); 2736 if (err) 2737 return (err < 0) ? err : 0; 2738 continue; 2739 } 2740 2741 err = add_callchain_ip(thread, cursor, parent, 2742 root_al, &cpumode, ip, 2743 false, NULL, NULL, 0); 2744 2745 if (err) 2746 return (err < 0) ? err : 0; 2747 } 2748 2749 return 0; 2750 } 2751 2752 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2753 { 2754 struct symbol *sym = ms->sym; 2755 struct map *map = ms->map; 2756 struct inline_node *inline_node; 2757 struct inline_list *ilist; 2758 u64 addr; 2759 int ret = 1; 2760 2761 if (!symbol_conf.inline_name || !map || !sym) 2762 return ret; 2763 2764 addr = map__map_ip(map, ip); 2765 addr = map__rip_2objdump(map, addr); 2766 2767 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2768 if (!inline_node) { 2769 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2770 if (!inline_node) 2771 return ret; 2772 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2773 } 2774 2775 list_for_each_entry(ilist, &inline_node->val, list) { 2776 struct map_symbol ilist_ms = { 2777 .maps = ms->maps, 2778 .map = map, 2779 .sym = ilist->symbol, 2780 }; 2781 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2782 NULL, 0, 0, 0, ilist->srcline); 2783 2784 if (ret != 0) 2785 return ret; 2786 } 2787 2788 return ret; 2789 } 2790 2791 static int unwind_entry(struct unwind_entry *entry, void *arg) 2792 { 2793 struct callchain_cursor *cursor = arg; 2794 const char *srcline = NULL; 2795 u64 addr = entry->ip; 2796 2797 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2798 return 0; 2799 2800 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2801 return 0; 2802 2803 /* 2804 * Convert entry->ip from a virtual address to an offset in 2805 * its corresponding binary. 2806 */ 2807 if (entry->ms.map) 2808 addr = map__map_ip(entry->ms.map, entry->ip); 2809 2810 srcline = callchain_srcline(&entry->ms, addr); 2811 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2812 false, NULL, 0, 0, 0, srcline); 2813 } 2814 2815 static int thread__resolve_callchain_unwind(struct thread *thread, 2816 struct callchain_cursor *cursor, 2817 struct evsel *evsel, 2818 struct perf_sample *sample, 2819 int max_stack) 2820 { 2821 /* Can we do dwarf post unwind? */ 2822 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2823 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2824 return 0; 2825 2826 /* Bail out if nothing was captured. */ 2827 if ((!sample->user_regs.regs) || 2828 (!sample->user_stack.size)) 2829 return 0; 2830 2831 return unwind__get_entries(unwind_entry, cursor, 2832 thread, sample, max_stack); 2833 } 2834 2835 int thread__resolve_callchain(struct thread *thread, 2836 struct callchain_cursor *cursor, 2837 struct evsel *evsel, 2838 struct perf_sample *sample, 2839 struct symbol **parent, 2840 struct addr_location *root_al, 2841 int max_stack) 2842 { 2843 int ret = 0; 2844 2845 callchain_cursor_reset(cursor); 2846 2847 if (callchain_param.order == ORDER_CALLEE) { 2848 ret = thread__resolve_callchain_sample(thread, cursor, 2849 evsel, sample, 2850 parent, root_al, 2851 max_stack); 2852 if (ret) 2853 return ret; 2854 ret = thread__resolve_callchain_unwind(thread, cursor, 2855 evsel, sample, 2856 max_stack); 2857 } else { 2858 ret = thread__resolve_callchain_unwind(thread, cursor, 2859 evsel, sample, 2860 max_stack); 2861 if (ret) 2862 return ret; 2863 ret = thread__resolve_callchain_sample(thread, cursor, 2864 evsel, sample, 2865 parent, root_al, 2866 max_stack); 2867 } 2868 2869 return ret; 2870 } 2871 2872 int machine__for_each_thread(struct machine *machine, 2873 int (*fn)(struct thread *thread, void *p), 2874 void *priv) 2875 { 2876 struct threads *threads; 2877 struct rb_node *nd; 2878 struct thread *thread; 2879 int rc = 0; 2880 int i; 2881 2882 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2883 threads = &machine->threads[i]; 2884 for (nd = rb_first_cached(&threads->entries); nd; 2885 nd = rb_next(nd)) { 2886 thread = rb_entry(nd, struct thread, rb_node); 2887 rc = fn(thread, priv); 2888 if (rc != 0) 2889 return rc; 2890 } 2891 2892 list_for_each_entry(thread, &threads->dead, node) { 2893 rc = fn(thread, priv); 2894 if (rc != 0) 2895 return rc; 2896 } 2897 } 2898 return rc; 2899 } 2900 2901 int machines__for_each_thread(struct machines *machines, 2902 int (*fn)(struct thread *thread, void *p), 2903 void *priv) 2904 { 2905 struct rb_node *nd; 2906 int rc = 0; 2907 2908 rc = machine__for_each_thread(&machines->host, fn, priv); 2909 if (rc != 0) 2910 return rc; 2911 2912 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2913 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2914 2915 rc = machine__for_each_thread(machine, fn, priv); 2916 if (rc != 0) 2917 return rc; 2918 } 2919 return rc; 2920 } 2921 2922 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2923 { 2924 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2925 2926 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 2927 return -1; 2928 2929 return machine->current_tid[cpu]; 2930 } 2931 2932 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2933 pid_t tid) 2934 { 2935 struct thread *thread; 2936 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2937 2938 if (cpu < 0) 2939 return -EINVAL; 2940 2941 if (!machine->current_tid) { 2942 int i; 2943 2944 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 2945 if (!machine->current_tid) 2946 return -ENOMEM; 2947 for (i = 0; i < nr_cpus; i++) 2948 machine->current_tid[i] = -1; 2949 } 2950 2951 if (cpu >= nr_cpus) { 2952 pr_err("Requested CPU %d too large. ", cpu); 2953 pr_err("Consider raising MAX_NR_CPUS\n"); 2954 return -EINVAL; 2955 } 2956 2957 machine->current_tid[cpu] = tid; 2958 2959 thread = machine__findnew_thread(machine, pid, tid); 2960 if (!thread) 2961 return -ENOMEM; 2962 2963 thread->cpu = cpu; 2964 thread__put(thread); 2965 2966 return 0; 2967 } 2968 2969 /* 2970 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2971 * normalized arch is needed. 2972 */ 2973 bool machine__is(struct machine *machine, const char *arch) 2974 { 2975 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2976 } 2977 2978 int machine__nr_cpus_avail(struct machine *machine) 2979 { 2980 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2981 } 2982 2983 int machine__get_kernel_start(struct machine *machine) 2984 { 2985 struct map *map = machine__kernel_map(machine); 2986 int err = 0; 2987 2988 /* 2989 * The only addresses above 2^63 are kernel addresses of a 64-bit 2990 * kernel. Note that addresses are unsigned so that on a 32-bit system 2991 * all addresses including kernel addresses are less than 2^32. In 2992 * that case (32-bit system), if the kernel mapping is unknown, all 2993 * addresses will be assumed to be in user space - see 2994 * machine__kernel_ip(). 2995 */ 2996 machine->kernel_start = 1ULL << 63; 2997 if (map) { 2998 err = map__load(map); 2999 /* 3000 * On x86_64, PTI entry trampolines are less than the 3001 * start of kernel text, but still above 2^63. So leave 3002 * kernel_start = 1ULL << 63 for x86_64. 3003 */ 3004 if (!err && !machine__is(machine, "x86_64")) 3005 machine->kernel_start = map->start; 3006 } 3007 return err; 3008 } 3009 3010 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3011 { 3012 u8 addr_cpumode = cpumode; 3013 bool kernel_ip; 3014 3015 if (!machine->single_address_space) 3016 goto out; 3017 3018 kernel_ip = machine__kernel_ip(machine, addr); 3019 switch (cpumode) { 3020 case PERF_RECORD_MISC_KERNEL: 3021 case PERF_RECORD_MISC_USER: 3022 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3023 PERF_RECORD_MISC_USER; 3024 break; 3025 case PERF_RECORD_MISC_GUEST_KERNEL: 3026 case PERF_RECORD_MISC_GUEST_USER: 3027 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3028 PERF_RECORD_MISC_GUEST_USER; 3029 break; 3030 default: 3031 break; 3032 } 3033 out: 3034 return addr_cpumode; 3035 } 3036 3037 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3038 { 3039 return dsos__findnew_id(&machine->dsos, filename, id); 3040 } 3041 3042 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3043 { 3044 return machine__findnew_dso_id(machine, filename, NULL); 3045 } 3046 3047 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3048 { 3049 struct machine *machine = vmachine; 3050 struct map *map; 3051 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3052 3053 if (sym == NULL) 3054 return NULL; 3055 3056 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3057 *addrp = map->unmap_ip(map, sym->start); 3058 return sym->name; 3059 } 3060