xref: /linux/tools/perf/util/machine.c (revision f4dc5a3355a84f53ff3287d496728c7b77160069)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "mem-info.h"
20 #include "path.h"
21 #include "srcline.h"
22 #include "symbol.h"
23 #include "sort.h"
24 #include "strlist.h"
25 #include "target.h"
26 #include "thread.h"
27 #include "util.h"
28 #include "vdso.h"
29 #include <stdbool.h>
30 #include <sys/types.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33 #include "unwind.h"
34 #include "linux/hash.h"
35 #include "asm/bug.h"
36 #include "bpf-event.h"
37 #include <internal/lib.h> // page_size
38 #include "cgroup.h"
39 #include "arm64-frame-pointer-unwind-support.h"
40 #include <api/io_dir.h>
41 
42 #include <linux/ctype.h>
43 #include <symbol/kallsyms.h>
44 #include <linux/mman.h>
45 #include <linux/string.h>
46 #include <linux/zalloc.h>
47 
48 static struct dso *machine__kernel_dso(struct machine *machine)
49 {
50 	return map__dso(machine->vmlinux_map);
51 }
52 
53 static int machine__set_mmap_name(struct machine *machine)
54 {
55 	if (machine__is_host(machine))
56 		machine->mmap_name = strdup("[kernel.kallsyms]");
57 	else if (machine__is_default_guest(machine))
58 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
59 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
60 			  machine->pid) < 0)
61 		machine->mmap_name = NULL;
62 
63 	return machine->mmap_name ? 0 : -ENOMEM;
64 }
65 
66 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
67 {
68 	char comm[64];
69 
70 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
71 	thread__set_comm(thread, comm, 0);
72 }
73 
74 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
75 {
76 	int err = -ENOMEM;
77 
78 	memset(machine, 0, sizeof(*machine));
79 	machine->kmaps = maps__new(machine);
80 	if (machine->kmaps == NULL)
81 		return -ENOMEM;
82 
83 	RB_CLEAR_NODE(&machine->rb_node);
84 	dsos__init(&machine->dsos);
85 
86 	threads__init(&machine->threads);
87 
88 	machine->vdso_info = NULL;
89 	machine->env = NULL;
90 
91 	machine->pid = pid;
92 
93 	machine->id_hdr_size = 0;
94 	machine->kptr_restrict_warned = false;
95 	machine->comm_exec = false;
96 	machine->kernel_start = 0;
97 	machine->vmlinux_map = NULL;
98 	/* There is no initial context switch in, so we start at 1. */
99 	machine->parallelism = 1;
100 
101 	machine->root_dir = strdup(root_dir);
102 	if (machine->root_dir == NULL)
103 		goto out;
104 
105 	if (machine__set_mmap_name(machine))
106 		goto out;
107 
108 	if (pid != HOST_KERNEL_ID) {
109 		struct thread *thread = machine__findnew_thread(machine, -1,
110 								pid);
111 
112 		if (thread == NULL)
113 			goto out;
114 
115 		thread__set_guest_comm(thread, pid);
116 		thread__put(thread);
117 	}
118 
119 	machine->current_tid = NULL;
120 	err = 0;
121 
122 out:
123 	if (err) {
124 		zfree(&machine->kmaps);
125 		zfree(&machine->root_dir);
126 		zfree(&machine->mmap_name);
127 	}
128 	return 0;
129 }
130 
131 struct machine *machine__new_host(void)
132 {
133 	struct machine *machine = malloc(sizeof(*machine));
134 
135 	if (machine != NULL) {
136 		machine__init(machine, "", HOST_KERNEL_ID);
137 
138 		if (machine__create_kernel_maps(machine) < 0)
139 			goto out_delete;
140 
141 		machine->env = &perf_env;
142 	}
143 
144 	return machine;
145 out_delete:
146 	free(machine);
147 	return NULL;
148 }
149 
150 struct machine *machine__new_kallsyms(void)
151 {
152 	struct machine *machine = machine__new_host();
153 	/*
154 	 * FIXME:
155 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
156 	 *    ask for not using the kcore parsing code, once this one is fixed
157 	 *    to create a map per module.
158 	 */
159 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
160 		machine__delete(machine);
161 		machine = NULL;
162 	}
163 
164 	return machine;
165 }
166 
167 void machine__delete_threads(struct machine *machine)
168 {
169 	threads__remove_all_threads(&machine->threads);
170 }
171 
172 void machine__exit(struct machine *machine)
173 {
174 	if (machine == NULL)
175 		return;
176 
177 	machine__destroy_kernel_maps(machine);
178 	maps__zput(machine->kmaps);
179 	dsos__exit(&machine->dsos);
180 	machine__exit_vdso(machine);
181 	zfree(&machine->root_dir);
182 	zfree(&machine->mmap_name);
183 	zfree(&machine->current_tid);
184 	zfree(&machine->kallsyms_filename);
185 
186 	threads__exit(&machine->threads);
187 }
188 
189 void machine__delete(struct machine *machine)
190 {
191 	if (machine) {
192 		machine__exit(machine);
193 		free(machine);
194 	}
195 }
196 
197 void machines__init(struct machines *machines)
198 {
199 	machine__init(&machines->host, "", HOST_KERNEL_ID);
200 	machines->guests = RB_ROOT_CACHED;
201 }
202 
203 void machines__exit(struct machines *machines)
204 {
205 	machine__exit(&machines->host);
206 	/* XXX exit guest */
207 }
208 
209 struct machine *machines__add(struct machines *machines, pid_t pid,
210 			      const char *root_dir)
211 {
212 	struct rb_node **p = &machines->guests.rb_root.rb_node;
213 	struct rb_node *parent = NULL;
214 	struct machine *pos, *machine = malloc(sizeof(*machine));
215 	bool leftmost = true;
216 
217 	if (machine == NULL)
218 		return NULL;
219 
220 	if (machine__init(machine, root_dir, pid) != 0) {
221 		free(machine);
222 		return NULL;
223 	}
224 
225 	while (*p != NULL) {
226 		parent = *p;
227 		pos = rb_entry(parent, struct machine, rb_node);
228 		if (pid < pos->pid)
229 			p = &(*p)->rb_left;
230 		else {
231 			p = &(*p)->rb_right;
232 			leftmost = false;
233 		}
234 	}
235 
236 	rb_link_node(&machine->rb_node, parent, p);
237 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
238 
239 	machine->machines = machines;
240 
241 	return machine;
242 }
243 
244 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
245 {
246 	struct rb_node *nd;
247 
248 	machines->host.comm_exec = comm_exec;
249 
250 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
251 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
252 
253 		machine->comm_exec = comm_exec;
254 	}
255 }
256 
257 struct machine *machines__find(struct machines *machines, pid_t pid)
258 {
259 	struct rb_node **p = &machines->guests.rb_root.rb_node;
260 	struct rb_node *parent = NULL;
261 	struct machine *machine;
262 	struct machine *default_machine = NULL;
263 
264 	if (pid == HOST_KERNEL_ID)
265 		return &machines->host;
266 
267 	while (*p != NULL) {
268 		parent = *p;
269 		machine = rb_entry(parent, struct machine, rb_node);
270 		if (pid < machine->pid)
271 			p = &(*p)->rb_left;
272 		else if (pid > machine->pid)
273 			p = &(*p)->rb_right;
274 		else
275 			return machine;
276 		if (!machine->pid)
277 			default_machine = machine;
278 	}
279 
280 	return default_machine;
281 }
282 
283 struct machine *machines__findnew(struct machines *machines, pid_t pid)
284 {
285 	char path[PATH_MAX];
286 	const char *root_dir = "";
287 	struct machine *machine = machines__find(machines, pid);
288 
289 	if (machine && (machine->pid == pid))
290 		goto out;
291 
292 	if ((pid != HOST_KERNEL_ID) &&
293 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
294 	    (symbol_conf.guestmount)) {
295 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
296 		if (access(path, R_OK)) {
297 			static struct strlist *seen;
298 
299 			if (!seen)
300 				seen = strlist__new(NULL, NULL);
301 
302 			if (!strlist__has_entry(seen, path)) {
303 				pr_err("Can't access file %s\n", path);
304 				strlist__add(seen, path);
305 			}
306 			machine = NULL;
307 			goto out;
308 		}
309 		root_dir = path;
310 	}
311 
312 	machine = machines__add(machines, pid, root_dir);
313 out:
314 	return machine;
315 }
316 
317 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
318 {
319 	struct machine *machine = machines__find(machines, pid);
320 
321 	if (!machine)
322 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
323 	return machine;
324 }
325 
326 /*
327  * A common case for KVM test programs is that the test program acts as the
328  * hypervisor, creating, running and destroying the virtual machine, and
329  * providing the guest object code from its own object code. In this case,
330  * the VM is not running an OS, but only the functions loaded into it by the
331  * hypervisor test program, and conveniently, loaded at the same virtual
332  * addresses.
333  *
334  * Normally to resolve addresses, MMAP events are needed to map addresses
335  * back to the object code and debug symbols for that object code.
336  *
337  * Currently, there is no way to get such mapping information from guests
338  * but, in the scenario described above, the guest has the same mappings
339  * as the hypervisor, so support for that scenario can be achieved.
340  *
341  * To support that, copy the host thread's maps to the guest thread's maps.
342  * Note, we do not discover the guest until we encounter a guest event,
343  * which works well because it is not until then that we know that the host
344  * thread's maps have been set up.
345  *
346  * This function returns the guest thread. Apart from keeping the data
347  * structures sane, using a thread belonging to the guest machine, instead
348  * of the host thread, allows it to have its own comm (refer
349  * thread__set_guest_comm()).
350  */
351 static struct thread *findnew_guest_code(struct machine *machine,
352 					 struct machine *host_machine,
353 					 pid_t pid)
354 {
355 	struct thread *host_thread;
356 	struct thread *thread;
357 	int err;
358 
359 	if (!machine)
360 		return NULL;
361 
362 	thread = machine__findnew_thread(machine, -1, pid);
363 	if (!thread)
364 		return NULL;
365 
366 	/* Assume maps are set up if there are any */
367 	if (!maps__empty(thread__maps(thread)))
368 		return thread;
369 
370 	host_thread = machine__find_thread(host_machine, -1, pid);
371 	if (!host_thread)
372 		goto out_err;
373 
374 	thread__set_guest_comm(thread, pid);
375 
376 	/*
377 	 * Guest code can be found in hypervisor process at the same address
378 	 * so copy host maps.
379 	 */
380 	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
381 	thread__put(host_thread);
382 	if (err)
383 		goto out_err;
384 
385 	return thread;
386 
387 out_err:
388 	thread__zput(thread);
389 	return NULL;
390 }
391 
392 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
393 {
394 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
395 	struct machine *machine = machines__findnew(machines, pid);
396 
397 	return findnew_guest_code(machine, host_machine, pid);
398 }
399 
400 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
401 {
402 	struct machines *machines = machine->machines;
403 	struct machine *host_machine;
404 
405 	if (!machines)
406 		return NULL;
407 
408 	host_machine = machines__find(machines, HOST_KERNEL_ID);
409 
410 	return findnew_guest_code(machine, host_machine, pid);
411 }
412 
413 void machines__process_guests(struct machines *machines,
414 			      machine__process_t process, void *data)
415 {
416 	struct rb_node *nd;
417 
418 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
419 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
420 		process(pos, data);
421 	}
422 }
423 
424 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
425 {
426 	struct rb_node *node;
427 	struct machine *machine;
428 
429 	machines->host.id_hdr_size = id_hdr_size;
430 
431 	for (node = rb_first_cached(&machines->guests); node;
432 	     node = rb_next(node)) {
433 		machine = rb_entry(node, struct machine, rb_node);
434 		machine->id_hdr_size = id_hdr_size;
435 	}
436 
437 	return;
438 }
439 
440 static void machine__update_thread_pid(struct machine *machine,
441 				       struct thread *th, pid_t pid)
442 {
443 	struct thread *leader;
444 
445 	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
446 		return;
447 
448 	thread__set_pid(th, pid);
449 
450 	if (thread__pid(th) == thread__tid(th))
451 		return;
452 
453 	leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
454 	if (!leader)
455 		goto out_err;
456 
457 	if (!thread__maps(leader))
458 		thread__set_maps(leader, maps__new(machine));
459 
460 	if (!thread__maps(leader))
461 		goto out_err;
462 
463 	if (thread__maps(th) == thread__maps(leader))
464 		goto out_put;
465 
466 	if (thread__maps(th)) {
467 		/*
468 		 * Maps are created from MMAP events which provide the pid and
469 		 * tid.  Consequently there never should be any maps on a thread
470 		 * with an unknown pid.  Just print an error if there are.
471 		 */
472 		if (!maps__empty(thread__maps(th)))
473 			pr_err("Discarding thread maps for %d:%d\n",
474 				thread__pid(th), thread__tid(th));
475 		maps__put(thread__maps(th));
476 	}
477 
478 	thread__set_maps(th, maps__get(thread__maps(leader)));
479 out_put:
480 	thread__put(leader);
481 	return;
482 out_err:
483 	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
484 	goto out_put;
485 }
486 
487 /*
488  * Caller must eventually drop thread->refcnt returned with a successful
489  * lookup/new thread inserted.
490  */
491 static struct thread *__machine__findnew_thread(struct machine *machine,
492 						pid_t pid,
493 						pid_t tid,
494 						bool create)
495 {
496 	struct thread *th = threads__find(&machine->threads, tid);
497 	bool created;
498 
499 	if (th) {
500 		machine__update_thread_pid(machine, th, pid);
501 		return th;
502 	}
503 	if (!create)
504 		return NULL;
505 
506 	th = threads__findnew(&machine->threads, pid, tid, &created);
507 	if (created) {
508 		/*
509 		 * We have to initialize maps separately after rb tree is
510 		 * updated.
511 		 *
512 		 * The reason is that we call machine__findnew_thread within
513 		 * thread__init_maps to find the thread leader and that would
514 		 * screwed the rb tree.
515 		 */
516 		if (thread__init_maps(th, machine)) {
517 			pr_err("Thread init failed thread %d\n", pid);
518 			threads__remove(&machine->threads, th);
519 			thread__put(th);
520 			return NULL;
521 		}
522 	} else
523 		machine__update_thread_pid(machine, th, pid);
524 
525 	return th;
526 }
527 
528 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
529 {
530 	return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
531 }
532 
533 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
534 				    pid_t tid)
535 {
536 	return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
537 }
538 
539 /*
540  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
541  * So here a single thread is created for that, but actually there is a separate
542  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
543  * is only 1. That causes problems for some tools, requiring workarounds. For
544  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
545  */
546 struct thread *machine__idle_thread(struct machine *machine)
547 {
548 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
549 
550 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
551 	    thread__set_namespaces(thread, 0, NULL))
552 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
553 
554 	return thread;
555 }
556 
557 struct comm *machine__thread_exec_comm(struct machine *machine,
558 				       struct thread *thread)
559 {
560 	if (machine->comm_exec)
561 		return thread__exec_comm(thread);
562 	else
563 		return thread__comm(thread);
564 }
565 
566 int machine__process_comm_event(struct machine *machine, union perf_event *event,
567 				struct perf_sample *sample)
568 {
569 	struct thread *thread = machine__findnew_thread(machine,
570 							event->comm.pid,
571 							event->comm.tid);
572 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
573 	int err = 0;
574 
575 	if (exec)
576 		machine->comm_exec = true;
577 
578 	if (dump_trace)
579 		perf_event__fprintf_comm(event, stdout);
580 
581 	if (thread == NULL ||
582 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
583 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
584 		err = -1;
585 	}
586 
587 	thread__put(thread);
588 
589 	return err;
590 }
591 
592 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
593 				      union perf_event *event,
594 				      struct perf_sample *sample __maybe_unused)
595 {
596 	struct thread *thread = machine__findnew_thread(machine,
597 							event->namespaces.pid,
598 							event->namespaces.tid);
599 	int err = 0;
600 
601 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
602 		  "\nWARNING: kernel seems to support more namespaces than perf"
603 		  " tool.\nTry updating the perf tool..\n\n");
604 
605 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
606 		  "\nWARNING: perf tool seems to support more namespaces than"
607 		  " the kernel.\nTry updating the kernel..\n\n");
608 
609 	if (dump_trace)
610 		perf_event__fprintf_namespaces(event, stdout);
611 
612 	if (thread == NULL ||
613 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
614 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
615 		err = -1;
616 	}
617 
618 	thread__put(thread);
619 
620 	return err;
621 }
622 
623 int machine__process_cgroup_event(struct machine *machine,
624 				  union perf_event *event,
625 				  struct perf_sample *sample __maybe_unused)
626 {
627 	struct cgroup *cgrp;
628 
629 	if (dump_trace)
630 		perf_event__fprintf_cgroup(event, stdout);
631 
632 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
633 	if (cgrp == NULL)
634 		return -ENOMEM;
635 
636 	return 0;
637 }
638 
639 int machine__process_lost_event(struct machine *machine __maybe_unused,
640 				union perf_event *event, struct perf_sample *sample __maybe_unused)
641 {
642 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
643 		    event->lost.id, event->lost.lost);
644 	return 0;
645 }
646 
647 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
648 					union perf_event *event, struct perf_sample *sample)
649 {
650 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n",
651 		    sample->id, event->lost_samples.lost,
652 		    event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : "");
653 	return 0;
654 }
655 
656 int machine__process_aux_event(struct machine *machine __maybe_unused,
657 			       union perf_event *event)
658 {
659 	if (dump_trace)
660 		perf_event__fprintf_aux(event, stdout);
661 	return 0;
662 }
663 
664 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
665 					union perf_event *event)
666 {
667 	if (dump_trace)
668 		perf_event__fprintf_itrace_start(event, stdout);
669 	return 0;
670 }
671 
672 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
673 					    union perf_event *event)
674 {
675 	if (dump_trace)
676 		perf_event__fprintf_aux_output_hw_id(event, stdout);
677 	return 0;
678 }
679 
680 int machine__process_switch_event(struct machine *machine __maybe_unused,
681 				  union perf_event *event)
682 {
683 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
684 
685 	if (dump_trace)
686 		perf_event__fprintf_switch(event, stdout);
687 	machine->parallelism += out ? -1 : 1;
688 	return 0;
689 }
690 
691 static int machine__process_ksymbol_register(struct machine *machine,
692 					     union perf_event *event,
693 					     struct perf_sample *sample __maybe_unused)
694 {
695 	struct symbol *sym;
696 	struct dso *dso = NULL;
697 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
698 	int err = 0;
699 
700 	if (!map) {
701 		dso = dso__new(event->ksymbol.name);
702 
703 		if (!dso) {
704 			err = -ENOMEM;
705 			goto out;
706 		}
707 		dso__set_kernel(dso, DSO_SPACE__KERNEL);
708 		map = map__new2(0, dso);
709 		if (!map) {
710 			err = -ENOMEM;
711 			goto out;
712 		}
713 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
714 			dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
715 			dso__data(dso)->file_size = event->ksymbol.len;
716 			dso__set_loaded(dso);
717 		}
718 
719 		map__set_start(map, event->ksymbol.addr);
720 		map__set_end(map, map__start(map) + event->ksymbol.len);
721 		err = maps__insert(machine__kernel_maps(machine), map);
722 		if (err) {
723 			err = -ENOMEM;
724 			goto out;
725 		}
726 
727 		dso__set_loaded(dso);
728 
729 		if (is_bpf_image(event->ksymbol.name)) {
730 			dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
731 			dso__set_long_name(dso, "", false);
732 		}
733 	} else {
734 		dso = dso__get(map__dso(map));
735 	}
736 
737 	sym = symbol__new(map__map_ip(map, map__start(map)),
738 			  event->ksymbol.len,
739 			  0, 0, event->ksymbol.name);
740 	if (!sym) {
741 		err = -ENOMEM;
742 		goto out;
743 	}
744 	dso__insert_symbol(dso, sym);
745 out:
746 	map__put(map);
747 	dso__put(dso);
748 	return err;
749 }
750 
751 static int machine__process_ksymbol_unregister(struct machine *machine,
752 					       union perf_event *event,
753 					       struct perf_sample *sample __maybe_unused)
754 {
755 	struct symbol *sym;
756 	struct map *map;
757 
758 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
759 	if (!map)
760 		return 0;
761 
762 	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
763 		maps__remove(machine__kernel_maps(machine), map);
764 	else {
765 		struct dso *dso = map__dso(map);
766 
767 		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
768 		if (sym)
769 			dso__delete_symbol(dso, sym);
770 	}
771 	map__put(map);
772 	return 0;
773 }
774 
775 int machine__process_ksymbol(struct machine *machine __maybe_unused,
776 			     union perf_event *event,
777 			     struct perf_sample *sample)
778 {
779 	if (dump_trace)
780 		perf_event__fprintf_ksymbol(event, stdout);
781 
782 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
783 		return machine__process_ksymbol_unregister(machine, event,
784 							   sample);
785 	return machine__process_ksymbol_register(machine, event, sample);
786 }
787 
788 int machine__process_text_poke(struct machine *machine, union perf_event *event,
789 			       struct perf_sample *sample __maybe_unused)
790 {
791 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
792 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
793 	struct dso *dso = map ? map__dso(map) : NULL;
794 
795 	if (dump_trace)
796 		perf_event__fprintf_text_poke(event, machine, stdout);
797 
798 	if (!event->text_poke.new_len)
799 		goto out;
800 
801 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
802 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
803 		goto out;
804 	}
805 
806 	if (dso) {
807 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
808 		int ret;
809 
810 		/*
811 		 * Kernel maps might be changed when loading symbols so loading
812 		 * must be done prior to using kernel maps.
813 		 */
814 		map__load(map);
815 		ret = dso__data_write_cache_addr(dso, map, machine,
816 						 event->text_poke.addr,
817 						 new_bytes,
818 						 event->text_poke.new_len);
819 		if (ret != event->text_poke.new_len)
820 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
821 				 event->text_poke.addr);
822 	} else {
823 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
824 			 event->text_poke.addr);
825 	}
826 out:
827 	map__put(map);
828 	return 0;
829 }
830 
831 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
832 					      const char *filename)
833 {
834 	struct map *map = NULL;
835 	struct kmod_path m;
836 	struct dso *dso;
837 	int err;
838 
839 	if (kmod_path__parse_name(&m, filename))
840 		return NULL;
841 
842 	dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
843 	if (dso == NULL)
844 		goto out;
845 
846 	map = map__new2(start, dso);
847 	if (map == NULL)
848 		goto out;
849 
850 	err = maps__insert(machine__kernel_maps(machine), map);
851 	/* If maps__insert failed, return NULL. */
852 	if (err) {
853 		map__put(map);
854 		map = NULL;
855 	}
856 out:
857 	/* put the dso here, corresponding to  machine__findnew_module_dso */
858 	dso__put(dso);
859 	zfree(&m.name);
860 	return map;
861 }
862 
863 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
864 {
865 	struct rb_node *nd;
866 	size_t ret = dsos__fprintf(&machines->host.dsos, fp);
867 
868 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
869 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
870 		ret += dsos__fprintf(&pos->dsos, fp);
871 	}
872 
873 	return ret;
874 }
875 
876 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
877 				     bool (skip)(struct dso *dso, int parm), int parm)
878 {
879 	return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
880 }
881 
882 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
883 				     bool (skip)(struct dso *dso, int parm), int parm)
884 {
885 	struct rb_node *nd;
886 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
887 
888 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
889 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
890 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
891 	}
892 	return ret;
893 }
894 
895 struct machine_fprintf_cb_args {
896 	FILE *fp;
897 	size_t printed;
898 };
899 
900 static int machine_fprintf_cb(struct thread *thread, void *data)
901 {
902 	struct machine_fprintf_cb_args *args = data;
903 
904 	/* TODO: handle fprintf errors. */
905 	args->printed += thread__fprintf(thread, args->fp);
906 	return 0;
907 }
908 
909 size_t machine__fprintf(struct machine *machine, FILE *fp)
910 {
911 	struct machine_fprintf_cb_args args = {
912 		.fp = fp,
913 		.printed = 0,
914 	};
915 	size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
916 
917 	machine__for_each_thread(machine, machine_fprintf_cb, &args);
918 	return ret + args.printed;
919 }
920 
921 static struct dso *machine__get_kernel(struct machine *machine)
922 {
923 	const char *vmlinux_name = machine->mmap_name;
924 	struct dso *kernel;
925 
926 	if (machine__is_host(machine)) {
927 		if (symbol_conf.vmlinux_name)
928 			vmlinux_name = symbol_conf.vmlinux_name;
929 
930 		kernel = machine__findnew_kernel(machine, vmlinux_name,
931 						 "[kernel]", DSO_SPACE__KERNEL);
932 	} else {
933 		if (symbol_conf.default_guest_vmlinux_name)
934 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
935 
936 		kernel = machine__findnew_kernel(machine, vmlinux_name,
937 						 "[guest.kernel]",
938 						 DSO_SPACE__KERNEL_GUEST);
939 	}
940 
941 	if (kernel != NULL && (!dso__has_build_id(kernel)))
942 		dso__read_running_kernel_build_id(kernel, machine);
943 
944 	return kernel;
945 }
946 
947 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
948 				    size_t bufsz)
949 {
950 	if (machine__is_default_guest(machine))
951 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
952 	else
953 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
954 }
955 
956 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
957 
958 /* Figure out the start address of kernel map from /proc/kallsyms.
959  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
960  * symbol_name if it's not that important.
961  */
962 static int machine__get_running_kernel_start(struct machine *machine,
963 					     const char **symbol_name,
964 					     u64 *start, u64 *end)
965 {
966 	char filename[PATH_MAX];
967 	int i, err = -1;
968 	const char *name;
969 	u64 addr = 0;
970 
971 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
972 
973 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
974 		return 0;
975 
976 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
977 		err = kallsyms__get_function_start(filename, name, &addr);
978 		if (!err)
979 			break;
980 	}
981 
982 	if (err)
983 		return -1;
984 
985 	if (symbol_name)
986 		*symbol_name = name;
987 
988 	*start = addr;
989 
990 	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
991 	if (err)
992 		err = kallsyms__get_symbol_start(filename, "_etext", &addr);
993 	if (!err)
994 		*end = addr;
995 
996 	return 0;
997 }
998 
999 int machine__create_extra_kernel_map(struct machine *machine,
1000 				     struct dso *kernel,
1001 				     struct extra_kernel_map *xm)
1002 {
1003 	struct kmap *kmap;
1004 	struct map *map;
1005 	int err;
1006 
1007 	map = map__new2(xm->start, kernel);
1008 	if (!map)
1009 		return -ENOMEM;
1010 
1011 	map__set_end(map, xm->end);
1012 	map__set_pgoff(map, xm->pgoff);
1013 
1014 	kmap = map__kmap(map);
1015 
1016 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1017 
1018 	err = maps__insert(machine__kernel_maps(machine), map);
1019 
1020 	if (!err) {
1021 		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1022 			kmap->name, map__start(map), map__end(map));
1023 	}
1024 
1025 	map__put(map);
1026 
1027 	return err;
1028 }
1029 
1030 static u64 find_entry_trampoline(struct dso *dso)
1031 {
1032 	/* Duplicates are removed so lookup all aliases */
1033 	const char *syms[] = {
1034 		"_entry_trampoline",
1035 		"__entry_trampoline_start",
1036 		"entry_SYSCALL_64_trampoline",
1037 	};
1038 	struct symbol *sym = dso__first_symbol(dso);
1039 	unsigned int i;
1040 
1041 	for (; sym; sym = dso__next_symbol(sym)) {
1042 		if (sym->binding != STB_GLOBAL)
1043 			continue;
1044 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1045 			if (!strcmp(sym->name, syms[i]))
1046 				return sym->start;
1047 		}
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 /*
1054  * These values can be used for kernels that do not have symbols for the entry
1055  * trampolines in kallsyms.
1056  */
1057 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1058 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1059 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1060 
1061 struct machine__map_x86_64_entry_trampolines_args {
1062 	struct maps *kmaps;
1063 	bool found;
1064 };
1065 
1066 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1067 {
1068 	struct machine__map_x86_64_entry_trampolines_args *args = data;
1069 	struct map *dest_map;
1070 	struct kmap *kmap = __map__kmap(map);
1071 
1072 	if (!kmap || !is_entry_trampoline(kmap->name))
1073 		return 0;
1074 
1075 	dest_map = maps__find(args->kmaps, map__pgoff(map));
1076 	if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1077 		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1078 
1079 	map__put(dest_map);
1080 	args->found = true;
1081 	return 0;
1082 }
1083 
1084 /* Map x86_64 PTI entry trampolines */
1085 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1086 					  struct dso *kernel)
1087 {
1088 	struct machine__map_x86_64_entry_trampolines_args args = {
1089 		.kmaps = machine__kernel_maps(machine),
1090 		.found = false,
1091 	};
1092 	int nr_cpus_avail, cpu;
1093 	u64 pgoff;
1094 
1095 	/*
1096 	 * In the vmlinux case, pgoff is a virtual address which must now be
1097 	 * mapped to a vmlinux offset.
1098 	 */
1099 	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1100 
1101 	if (args.found || machine->trampolines_mapped)
1102 		return 0;
1103 
1104 	pgoff = find_entry_trampoline(kernel);
1105 	if (!pgoff)
1106 		return 0;
1107 
1108 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1109 
1110 	/* Add a 1 page map for each CPU's entry trampoline */
1111 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1112 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1113 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1114 			 X86_64_ENTRY_TRAMPOLINE;
1115 		struct extra_kernel_map xm = {
1116 			.start = va,
1117 			.end   = va + page_size,
1118 			.pgoff = pgoff,
1119 		};
1120 
1121 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1122 
1123 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1124 			return -1;
1125 	}
1126 
1127 	machine->trampolines_mapped = nr_cpus_avail;
1128 
1129 	return 0;
1130 }
1131 
1132 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1133 					     struct dso *kernel __maybe_unused)
1134 {
1135 	return 0;
1136 }
1137 
1138 static int
1139 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1140 {
1141 	/* In case of renewal the kernel map, destroy previous one */
1142 	machine__destroy_kernel_maps(machine);
1143 
1144 	map__put(machine->vmlinux_map);
1145 	machine->vmlinux_map = map__new2(0, kernel);
1146 	if (machine->vmlinux_map == NULL)
1147 		return -ENOMEM;
1148 
1149 	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1150 	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1151 }
1152 
1153 void machine__destroy_kernel_maps(struct machine *machine)
1154 {
1155 	struct kmap *kmap;
1156 	struct map *map = machine__kernel_map(machine);
1157 
1158 	if (map == NULL)
1159 		return;
1160 
1161 	kmap = map__kmap(map);
1162 	maps__remove(machine__kernel_maps(machine), map);
1163 	if (kmap && kmap->ref_reloc_sym) {
1164 		zfree((char **)&kmap->ref_reloc_sym->name);
1165 		zfree(&kmap->ref_reloc_sym);
1166 	}
1167 
1168 	map__zput(machine->vmlinux_map);
1169 }
1170 
1171 int machines__create_guest_kernel_maps(struct machines *machines)
1172 {
1173 	int ret = 0;
1174 	struct dirent **namelist = NULL;
1175 	int i, items = 0;
1176 	char path[PATH_MAX];
1177 	pid_t pid;
1178 	char *endp;
1179 
1180 	if (symbol_conf.default_guest_vmlinux_name ||
1181 	    symbol_conf.default_guest_modules ||
1182 	    symbol_conf.default_guest_kallsyms) {
1183 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1184 	}
1185 
1186 	if (symbol_conf.guestmount) {
1187 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1188 		if (items <= 0)
1189 			return -ENOENT;
1190 		for (i = 0; i < items; i++) {
1191 			if (!isdigit(namelist[i]->d_name[0])) {
1192 				/* Filter out . and .. */
1193 				continue;
1194 			}
1195 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1196 			if ((*endp != '\0') ||
1197 			    (endp == namelist[i]->d_name) ||
1198 			    (errno == ERANGE)) {
1199 				pr_debug("invalid directory (%s). Skipping.\n",
1200 					 namelist[i]->d_name);
1201 				continue;
1202 			}
1203 			sprintf(path, "%s/%s/proc/kallsyms",
1204 				symbol_conf.guestmount,
1205 				namelist[i]->d_name);
1206 			ret = access(path, R_OK);
1207 			if (ret) {
1208 				pr_debug("Can't access file %s\n", path);
1209 				goto failure;
1210 			}
1211 			machines__create_kernel_maps(machines, pid);
1212 		}
1213 failure:
1214 		free(namelist);
1215 	}
1216 
1217 	return ret;
1218 }
1219 
1220 void machines__destroy_kernel_maps(struct machines *machines)
1221 {
1222 	struct rb_node *next = rb_first_cached(&machines->guests);
1223 
1224 	machine__destroy_kernel_maps(&machines->host);
1225 
1226 	while (next) {
1227 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1228 
1229 		next = rb_next(&pos->rb_node);
1230 		rb_erase_cached(&pos->rb_node, &machines->guests);
1231 		machine__delete(pos);
1232 	}
1233 }
1234 
1235 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1236 {
1237 	struct machine *machine = machines__findnew(machines, pid);
1238 
1239 	if (machine == NULL)
1240 		return -1;
1241 
1242 	return machine__create_kernel_maps(machine);
1243 }
1244 
1245 int machine__load_kallsyms(struct machine *machine, const char *filename)
1246 {
1247 	struct map *map = machine__kernel_map(machine);
1248 	struct dso *dso = map__dso(map);
1249 	int ret = __dso__load_kallsyms(dso, filename, map, true);
1250 
1251 	if (ret > 0) {
1252 		dso__set_loaded(dso);
1253 		/*
1254 		 * Since /proc/kallsyms will have multiple sessions for the
1255 		 * kernel, with modules between them, fixup the end of all
1256 		 * sections.
1257 		 */
1258 		maps__fixup_end(machine__kernel_maps(machine));
1259 	}
1260 
1261 	return ret;
1262 }
1263 
1264 int machine__load_vmlinux_path(struct machine *machine)
1265 {
1266 	struct map *map = machine__kernel_map(machine);
1267 	struct dso *dso = map__dso(map);
1268 	int ret = dso__load_vmlinux_path(dso, map);
1269 
1270 	if (ret > 0)
1271 		dso__set_loaded(dso);
1272 
1273 	return ret;
1274 }
1275 
1276 static char *get_kernel_version(const char *root_dir)
1277 {
1278 	char version[PATH_MAX];
1279 	FILE *file;
1280 	char *name, *tmp;
1281 	const char *prefix = "Linux version ";
1282 
1283 	sprintf(version, "%s/proc/version", root_dir);
1284 	file = fopen(version, "r");
1285 	if (!file)
1286 		return NULL;
1287 
1288 	tmp = fgets(version, sizeof(version), file);
1289 	fclose(file);
1290 	if (!tmp)
1291 		return NULL;
1292 
1293 	name = strstr(version, prefix);
1294 	if (!name)
1295 		return NULL;
1296 	name += strlen(prefix);
1297 	tmp = strchr(name, ' ');
1298 	if (tmp)
1299 		*tmp = '\0';
1300 
1301 	return strdup(name);
1302 }
1303 
1304 static bool is_kmod_dso(struct dso *dso)
1305 {
1306 	return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1307 	       dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1308 }
1309 
1310 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1311 {
1312 	char *long_name;
1313 	struct dso *dso;
1314 	struct map *map = maps__find_by_name(maps, m->name);
1315 
1316 	if (map == NULL)
1317 		return 0;
1318 
1319 	long_name = strdup(path);
1320 	if (long_name == NULL) {
1321 		map__put(map);
1322 		return -ENOMEM;
1323 	}
1324 
1325 	dso = map__dso(map);
1326 	dso__set_long_name(dso, long_name, true);
1327 	dso__kernel_module_get_build_id(dso, "");
1328 
1329 	/*
1330 	 * Full name could reveal us kmod compression, so
1331 	 * we need to update the symtab_type if needed.
1332 	 */
1333 	if (m->comp && is_kmod_dso(dso)) {
1334 		dso__set_symtab_type(dso, dso__symtab_type(dso)+1);
1335 		dso__set_comp(dso, m->comp);
1336 	}
1337 	map__put(map);
1338 	return 0;
1339 }
1340 
1341 static int maps__set_modules_path_dir(struct maps *maps, char *path, size_t path_size, int depth)
1342 {
1343 	struct io_dirent64 *dent;
1344 	struct io_dir iod;
1345 	size_t root_len = strlen(path);
1346 	int ret = 0;
1347 
1348 	io_dir__init(&iod, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1349 	if (iod.dirfd < 0) {
1350 		pr_debug("%s: cannot open %s dir\n", __func__, path);
1351 		return -1;
1352 	}
1353 	/* Bounds check, should never happen. */
1354 	if (root_len >= path_size)
1355 		return -1;
1356 	path[root_len++] = '/';
1357 	while ((dent = io_dir__readdir(&iod)) != NULL) {
1358 		if (io_dir__is_dir(&iod, dent)) {
1359 			if (!strcmp(dent->d_name, ".") ||
1360 			    !strcmp(dent->d_name, ".."))
1361 				continue;
1362 
1363 			/* Do not follow top-level source and build symlinks */
1364 			if (depth == 0) {
1365 				if (!strcmp(dent->d_name, "source") ||
1366 				    !strcmp(dent->d_name, "build"))
1367 					continue;
1368 			}
1369 
1370 			/* Bounds check, should never happen. */
1371 			if (root_len + strlen(dent->d_name) >= path_size)
1372 				continue;
1373 
1374 			strcpy(path + root_len, dent->d_name);
1375 			ret = maps__set_modules_path_dir(maps, path, path_size, depth + 1);
1376 			if (ret < 0)
1377 				goto out;
1378 		} else {
1379 			struct kmod_path m;
1380 
1381 			ret = kmod_path__parse_name(&m, dent->d_name);
1382 			if (ret)
1383 				goto out;
1384 
1385 			if (m.kmod) {
1386 				/* Bounds check, should never happen. */
1387 				if (root_len + strlen(dent->d_name) < path_size) {
1388 					strcpy(path + root_len, dent->d_name);
1389 					ret = maps__set_module_path(maps, path, &m);
1390 
1391 				}
1392 			}
1393 			zfree(&m.name);
1394 
1395 			if (ret)
1396 				goto out;
1397 		}
1398 	}
1399 
1400 out:
1401 	close(iod.dirfd);
1402 	return ret;
1403 }
1404 
1405 static int machine__set_modules_path(struct machine *machine)
1406 {
1407 	char *version;
1408 	char modules_path[PATH_MAX];
1409 
1410 	version = get_kernel_version(machine->root_dir);
1411 	if (!version)
1412 		return -1;
1413 
1414 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1415 		 machine->root_dir, version);
1416 	free(version);
1417 
1418 	return maps__set_modules_path_dir(machine__kernel_maps(machine),
1419 					  modules_path, sizeof(modules_path), 0);
1420 }
1421 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1422 				u64 *size __maybe_unused,
1423 				const char *name __maybe_unused)
1424 {
1425 	return 0;
1426 }
1427 
1428 static int machine__create_module(void *arg, const char *name, u64 start,
1429 				  u64 size)
1430 {
1431 	struct machine *machine = arg;
1432 	struct map *map;
1433 
1434 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1435 		return -1;
1436 
1437 	map = machine__addnew_module_map(machine, start, name);
1438 	if (map == NULL)
1439 		return -1;
1440 	map__set_end(map, start + size);
1441 
1442 	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1443 	map__put(map);
1444 	return 0;
1445 }
1446 
1447 static int machine__create_modules(struct machine *machine)
1448 {
1449 	const char *modules;
1450 	char path[PATH_MAX];
1451 
1452 	if (machine__is_default_guest(machine)) {
1453 		modules = symbol_conf.default_guest_modules;
1454 	} else {
1455 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1456 		modules = path;
1457 	}
1458 
1459 	if (symbol__restricted_filename(modules, "/proc/modules"))
1460 		return -1;
1461 
1462 	if (modules__parse(modules, machine, machine__create_module))
1463 		return -1;
1464 
1465 	maps__fixup_end(machine__kernel_maps(machine));
1466 
1467 	if (!machine__set_modules_path(machine))
1468 		return 0;
1469 
1470 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1471 
1472 	return 0;
1473 }
1474 
1475 static void machine__set_kernel_mmap(struct machine *machine,
1476 				     u64 start, u64 end)
1477 {
1478 	map__set_start(machine->vmlinux_map, start);
1479 	map__set_end(machine->vmlinux_map, end);
1480 	/*
1481 	 * Be a bit paranoid here, some perf.data file came with
1482 	 * a zero sized synthesized MMAP event for the kernel.
1483 	 */
1484 	if (start == 0 && end == 0)
1485 		map__set_end(machine->vmlinux_map, ~0ULL);
1486 }
1487 
1488 static int machine__update_kernel_mmap(struct machine *machine,
1489 				     u64 start, u64 end)
1490 {
1491 	struct map *orig, *updated;
1492 	int err;
1493 
1494 	orig = machine->vmlinux_map;
1495 	updated = map__get(orig);
1496 
1497 	machine->vmlinux_map = updated;
1498 	maps__remove(machine__kernel_maps(machine), orig);
1499 	machine__set_kernel_mmap(machine, start, end);
1500 	err = maps__insert(machine__kernel_maps(machine), updated);
1501 	map__put(orig);
1502 
1503 	return err;
1504 }
1505 
1506 int machine__create_kernel_maps(struct machine *machine)
1507 {
1508 	struct dso *kernel = machine__get_kernel(machine);
1509 	const char *name = NULL;
1510 	u64 start = 0, end = ~0ULL;
1511 	int ret;
1512 
1513 	if (kernel == NULL)
1514 		return -1;
1515 
1516 	ret = __machine__create_kernel_maps(machine, kernel);
1517 	if (ret < 0)
1518 		goto out_put;
1519 
1520 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1521 		if (machine__is_host(machine))
1522 			pr_debug("Problems creating module maps, "
1523 				 "continuing anyway...\n");
1524 		else
1525 			pr_debug("Problems creating module maps for guest %d, "
1526 				 "continuing anyway...\n", machine->pid);
1527 	}
1528 
1529 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1530 		if (name &&
1531 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1532 			machine__destroy_kernel_maps(machine);
1533 			ret = -1;
1534 			goto out_put;
1535 		}
1536 
1537 		/*
1538 		 * we have a real start address now, so re-order the kmaps
1539 		 * assume it's the last in the kmaps
1540 		 */
1541 		ret = machine__update_kernel_mmap(machine, start, end);
1542 		if (ret < 0)
1543 			goto out_put;
1544 	}
1545 
1546 	if (machine__create_extra_kernel_maps(machine, kernel))
1547 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1548 
1549 	if (end == ~0ULL) {
1550 		/* update end address of the kernel map using adjacent module address */
1551 		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1552 							 machine__kernel_map(machine));
1553 
1554 		if (next) {
1555 			machine__set_kernel_mmap(machine, start, map__start(next));
1556 			map__put(next);
1557 		}
1558 	}
1559 
1560 out_put:
1561 	dso__put(kernel);
1562 	return ret;
1563 }
1564 
1565 static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1566 {
1567 	return dso__is_kcore(dso) ? 1 : 0;
1568 }
1569 
1570 static bool machine__uses_kcore(struct machine *machine)
1571 {
1572 	return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1573 }
1574 
1575 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1576 					     struct extra_kernel_map *xm)
1577 {
1578 	return machine__is(machine, "x86_64") &&
1579 	       is_entry_trampoline(xm->name);
1580 }
1581 
1582 static int machine__process_extra_kernel_map(struct machine *machine,
1583 					     struct extra_kernel_map *xm)
1584 {
1585 	struct dso *kernel = machine__kernel_dso(machine);
1586 
1587 	if (kernel == NULL)
1588 		return -1;
1589 
1590 	return machine__create_extra_kernel_map(machine, kernel, xm);
1591 }
1592 
1593 static int machine__process_kernel_mmap_event(struct machine *machine,
1594 					      struct extra_kernel_map *xm,
1595 					      struct build_id *bid)
1596 {
1597 	enum dso_space_type dso_space;
1598 	bool is_kernel_mmap;
1599 	const char *mmap_name = machine->mmap_name;
1600 
1601 	/* If we have maps from kcore then we do not need or want any others */
1602 	if (machine__uses_kcore(machine))
1603 		return 0;
1604 
1605 	if (machine__is_host(machine))
1606 		dso_space = DSO_SPACE__KERNEL;
1607 	else
1608 		dso_space = DSO_SPACE__KERNEL_GUEST;
1609 
1610 	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1611 	if (!is_kernel_mmap && !machine__is_host(machine)) {
1612 		/*
1613 		 * If the event was recorded inside the guest and injected into
1614 		 * the host perf.data file, then it will match a host mmap_name,
1615 		 * so try that - see machine__set_mmap_name().
1616 		 */
1617 		mmap_name = "[kernel.kallsyms]";
1618 		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1619 	}
1620 	if (xm->name[0] == '/' ||
1621 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1622 		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1623 
1624 		if (map == NULL)
1625 			goto out_problem;
1626 
1627 		map__set_end(map, map__start(map) + xm->end - xm->start);
1628 
1629 		if (build_id__is_defined(bid))
1630 			dso__set_build_id(map__dso(map), bid);
1631 
1632 		map__put(map);
1633 	} else if (is_kernel_mmap) {
1634 		const char *symbol_name = xm->name + strlen(mmap_name);
1635 		/*
1636 		 * Should be there already, from the build-id table in
1637 		 * the header.
1638 		 */
1639 		struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
1640 
1641 		if (kernel == NULL)
1642 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1643 		if (kernel == NULL)
1644 			goto out_problem;
1645 
1646 		dso__set_kernel(kernel, dso_space);
1647 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1648 			dso__put(kernel);
1649 			goto out_problem;
1650 		}
1651 
1652 		if (strstr(dso__long_name(kernel), "vmlinux"))
1653 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1654 
1655 		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1656 			dso__put(kernel);
1657 			goto out_problem;
1658 		}
1659 
1660 		if (build_id__is_defined(bid))
1661 			dso__set_build_id(kernel, bid);
1662 
1663 		/*
1664 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1665 		 * symbol. Effectively having zero here means that at record
1666 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1667 		 */
1668 		if (xm->pgoff != 0) {
1669 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1670 							symbol_name,
1671 							xm->pgoff);
1672 		}
1673 
1674 		if (machine__is_default_guest(machine)) {
1675 			/*
1676 			 * preload dso of guest kernel and modules
1677 			 */
1678 			dso__load(kernel, machine__kernel_map(machine));
1679 		}
1680 		dso__put(kernel);
1681 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1682 		return machine__process_extra_kernel_map(machine, xm);
1683 	}
1684 	return 0;
1685 out_problem:
1686 	return -1;
1687 }
1688 
1689 int machine__process_mmap2_event(struct machine *machine,
1690 				 union perf_event *event,
1691 				 struct perf_sample *sample)
1692 {
1693 	struct thread *thread;
1694 	struct map *map;
1695 	struct dso_id dso_id = {
1696 		.maj = event->mmap2.maj,
1697 		.min = event->mmap2.min,
1698 		.ino = event->mmap2.ino,
1699 		.ino_generation = event->mmap2.ino_generation,
1700 	};
1701 	struct build_id __bid, *bid = NULL;
1702 	int ret = 0;
1703 
1704 	if (dump_trace)
1705 		perf_event__fprintf_mmap2(event, stdout);
1706 
1707 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1708 		bid = &__bid;
1709 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1710 	}
1711 
1712 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1713 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1714 		struct extra_kernel_map xm = {
1715 			.start = event->mmap2.start,
1716 			.end   = event->mmap2.start + event->mmap2.len,
1717 			.pgoff = event->mmap2.pgoff,
1718 		};
1719 
1720 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1721 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1722 		if (ret < 0)
1723 			goto out_problem;
1724 		return 0;
1725 	}
1726 
1727 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1728 					event->mmap2.tid);
1729 	if (thread == NULL)
1730 		goto out_problem;
1731 
1732 	map = map__new(machine, event->mmap2.start,
1733 			event->mmap2.len, event->mmap2.pgoff,
1734 			&dso_id, event->mmap2.prot,
1735 			event->mmap2.flags, bid,
1736 			event->mmap2.filename, thread);
1737 
1738 	if (map == NULL)
1739 		goto out_problem_map;
1740 
1741 	ret = thread__insert_map(thread, map);
1742 	if (ret)
1743 		goto out_problem_insert;
1744 
1745 	thread__put(thread);
1746 	map__put(map);
1747 	return 0;
1748 
1749 out_problem_insert:
1750 	map__put(map);
1751 out_problem_map:
1752 	thread__put(thread);
1753 out_problem:
1754 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1755 	return 0;
1756 }
1757 
1758 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1759 				struct perf_sample *sample)
1760 {
1761 	struct thread *thread;
1762 	struct map *map;
1763 	u32 prot = 0;
1764 	int ret = 0;
1765 
1766 	if (dump_trace)
1767 		perf_event__fprintf_mmap(event, stdout);
1768 
1769 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1770 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1771 		struct extra_kernel_map xm = {
1772 			.start = event->mmap.start,
1773 			.end   = event->mmap.start + event->mmap.len,
1774 			.pgoff = event->mmap.pgoff,
1775 		};
1776 
1777 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1778 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1779 		if (ret < 0)
1780 			goto out_problem;
1781 		return 0;
1782 	}
1783 
1784 	thread = machine__findnew_thread(machine, event->mmap.pid,
1785 					 event->mmap.tid);
1786 	if (thread == NULL)
1787 		goto out_problem;
1788 
1789 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1790 		prot = PROT_EXEC;
1791 
1792 	map = map__new(machine, event->mmap.start,
1793 			event->mmap.len, event->mmap.pgoff,
1794 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1795 
1796 	if (map == NULL)
1797 		goto out_problem_map;
1798 
1799 	ret = thread__insert_map(thread, map);
1800 	if (ret)
1801 		goto out_problem_insert;
1802 
1803 	thread__put(thread);
1804 	map__put(map);
1805 	return 0;
1806 
1807 out_problem_insert:
1808 	map__put(map);
1809 out_problem_map:
1810 	thread__put(thread);
1811 out_problem:
1812 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1813 	return 0;
1814 }
1815 
1816 void machine__remove_thread(struct machine *machine, struct thread *th)
1817 {
1818 	return threads__remove(&machine->threads, th);
1819 }
1820 
1821 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1822 				struct perf_sample *sample)
1823 {
1824 	struct thread *thread = machine__find_thread(machine,
1825 						     event->fork.pid,
1826 						     event->fork.tid);
1827 	struct thread *parent = machine__findnew_thread(machine,
1828 							event->fork.ppid,
1829 							event->fork.ptid);
1830 	bool do_maps_clone = true;
1831 	int err = 0;
1832 
1833 	if (dump_trace)
1834 		perf_event__fprintf_task(event, stdout);
1835 
1836 	/*
1837 	 * There may be an existing thread that is not actually the parent,
1838 	 * either because we are processing events out of order, or because the
1839 	 * (fork) event that would have removed the thread was lost. Assume the
1840 	 * latter case and continue on as best we can.
1841 	 */
1842 	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1843 		dump_printf("removing erroneous parent thread %d/%d\n",
1844 			    thread__pid(parent), thread__tid(parent));
1845 		machine__remove_thread(machine, parent);
1846 		thread__put(parent);
1847 		parent = machine__findnew_thread(machine, event->fork.ppid,
1848 						 event->fork.ptid);
1849 	}
1850 
1851 	/* if a thread currently exists for the thread id remove it */
1852 	if (thread != NULL) {
1853 		machine__remove_thread(machine, thread);
1854 		thread__put(thread);
1855 	}
1856 
1857 	thread = machine__findnew_thread(machine, event->fork.pid,
1858 					 event->fork.tid);
1859 	/*
1860 	 * When synthesizing FORK events, we are trying to create thread
1861 	 * objects for the already running tasks on the machine.
1862 	 *
1863 	 * Normally, for a kernel FORK event, we want to clone the parent's
1864 	 * maps because that is what the kernel just did.
1865 	 *
1866 	 * But when synthesizing, this should not be done.  If we do, we end up
1867 	 * with overlapping maps as we process the synthesized MMAP2 events that
1868 	 * get delivered shortly thereafter.
1869 	 *
1870 	 * Use the FORK event misc flags in an internal way to signal this
1871 	 * situation, so we can elide the map clone when appropriate.
1872 	 */
1873 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1874 		do_maps_clone = false;
1875 
1876 	if (thread == NULL || parent == NULL ||
1877 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1878 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1879 		err = -1;
1880 	}
1881 	thread__put(thread);
1882 	thread__put(parent);
1883 
1884 	return err;
1885 }
1886 
1887 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1888 				struct perf_sample *sample __maybe_unused)
1889 {
1890 	struct thread *thread = machine__find_thread(machine,
1891 						     event->fork.pid,
1892 						     event->fork.tid);
1893 
1894 	if (dump_trace)
1895 		perf_event__fprintf_task(event, stdout);
1896 
1897 	/* There is no context switch out before exit, so we decrement here. */
1898 	machine->parallelism--;
1899 	if (thread != NULL) {
1900 		if (symbol_conf.keep_exited_threads)
1901 			thread__set_exited(thread, /*exited=*/true);
1902 		else
1903 			machine__remove_thread(machine, thread);
1904 	}
1905 	thread__put(thread);
1906 	return 0;
1907 }
1908 
1909 int machine__process_event(struct machine *machine, union perf_event *event,
1910 			   struct perf_sample *sample)
1911 {
1912 	int ret;
1913 
1914 	switch (event->header.type) {
1915 	case PERF_RECORD_COMM:
1916 		ret = machine__process_comm_event(machine, event, sample); break;
1917 	case PERF_RECORD_MMAP:
1918 		ret = machine__process_mmap_event(machine, event, sample); break;
1919 	case PERF_RECORD_NAMESPACES:
1920 		ret = machine__process_namespaces_event(machine, event, sample); break;
1921 	case PERF_RECORD_CGROUP:
1922 		ret = machine__process_cgroup_event(machine, event, sample); break;
1923 	case PERF_RECORD_MMAP2:
1924 		ret = machine__process_mmap2_event(machine, event, sample); break;
1925 	case PERF_RECORD_FORK:
1926 		ret = machine__process_fork_event(machine, event, sample); break;
1927 	case PERF_RECORD_EXIT:
1928 		ret = machine__process_exit_event(machine, event, sample); break;
1929 	case PERF_RECORD_LOST:
1930 		ret = machine__process_lost_event(machine, event, sample); break;
1931 	case PERF_RECORD_AUX:
1932 		ret = machine__process_aux_event(machine, event); break;
1933 	case PERF_RECORD_ITRACE_START:
1934 		ret = machine__process_itrace_start_event(machine, event); break;
1935 	case PERF_RECORD_LOST_SAMPLES:
1936 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1937 	case PERF_RECORD_SWITCH:
1938 	case PERF_RECORD_SWITCH_CPU_WIDE:
1939 		ret = machine__process_switch_event(machine, event); break;
1940 	case PERF_RECORD_KSYMBOL:
1941 		ret = machine__process_ksymbol(machine, event, sample); break;
1942 	case PERF_RECORD_BPF_EVENT:
1943 		ret = machine__process_bpf(machine, event, sample); break;
1944 	case PERF_RECORD_TEXT_POKE:
1945 		ret = machine__process_text_poke(machine, event, sample); break;
1946 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
1947 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
1948 	default:
1949 		ret = -1;
1950 		break;
1951 	}
1952 
1953 	return ret;
1954 }
1955 
1956 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1957 {
1958 	return regexec(regex, sym->name, 0, NULL, 0) == 0;
1959 }
1960 
1961 static void ip__resolve_ams(struct thread *thread,
1962 			    struct addr_map_symbol *ams,
1963 			    u64 ip)
1964 {
1965 	struct addr_location al;
1966 
1967 	addr_location__init(&al);
1968 	/*
1969 	 * We cannot use the header.misc hint to determine whether a
1970 	 * branch stack address is user, kernel, guest, hypervisor.
1971 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1972 	 * Thus, we have to try consecutively until we find a match
1973 	 * or else, the symbol is unknown
1974 	 */
1975 	thread__find_cpumode_addr_location(thread, ip, &al);
1976 
1977 	ams->addr = ip;
1978 	ams->al_addr = al.addr;
1979 	ams->al_level = al.level;
1980 	ams->ms.maps = maps__get(al.maps);
1981 	ams->ms.sym = al.sym;
1982 	ams->ms.map = map__get(al.map);
1983 	ams->phys_addr = 0;
1984 	ams->data_page_size = 0;
1985 	addr_location__exit(&al);
1986 }
1987 
1988 static void ip__resolve_data(struct thread *thread,
1989 			     u8 m, struct addr_map_symbol *ams,
1990 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
1991 {
1992 	struct addr_location al;
1993 
1994 	addr_location__init(&al);
1995 
1996 	thread__find_symbol(thread, m, addr, &al);
1997 
1998 	ams->addr = addr;
1999 	ams->al_addr = al.addr;
2000 	ams->al_level = al.level;
2001 	ams->ms.maps = maps__get(al.maps);
2002 	ams->ms.sym = al.sym;
2003 	ams->ms.map = map__get(al.map);
2004 	ams->phys_addr = phys_addr;
2005 	ams->data_page_size = daddr_page_size;
2006 	addr_location__exit(&al);
2007 }
2008 
2009 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2010 				     struct addr_location *al)
2011 {
2012 	struct mem_info *mi = mem_info__new();
2013 
2014 	if (!mi)
2015 		return NULL;
2016 
2017 	ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2018 	ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2019 			 sample->addr, sample->phys_addr,
2020 			 sample->data_page_size);
2021 	mem_info__data_src(mi)->val = sample->data_src;
2022 
2023 	return mi;
2024 }
2025 
2026 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2027 {
2028 	struct map *map = ms->map;
2029 	char *srcline = NULL;
2030 	struct dso *dso;
2031 
2032 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2033 		return srcline;
2034 
2035 	dso = map__dso(map);
2036 	srcline = srcline__tree_find(dso__srclines(dso), ip);
2037 	if (!srcline) {
2038 		bool show_sym = false;
2039 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2040 
2041 		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2042 				      ms->sym, show_sym, show_addr, ip);
2043 		srcline__tree_insert(dso__srclines(dso), ip, srcline);
2044 	}
2045 
2046 	return srcline;
2047 }
2048 
2049 struct iterations {
2050 	int nr_loop_iter;
2051 	u64 cycles;
2052 };
2053 
2054 static int add_callchain_ip(struct thread *thread,
2055 			    struct callchain_cursor *cursor,
2056 			    struct symbol **parent,
2057 			    struct addr_location *root_al,
2058 			    u8 *cpumode,
2059 			    u64 ip,
2060 			    bool branch,
2061 			    struct branch_flags *flags,
2062 			    struct iterations *iter,
2063 			    u64 branch_from,
2064 			    bool symbols)
2065 {
2066 	struct map_symbol ms = {};
2067 	struct addr_location al;
2068 	int nr_loop_iter = 0, err = 0;
2069 	u64 iter_cycles = 0;
2070 	const char *srcline = NULL;
2071 
2072 	addr_location__init(&al);
2073 	al.filtered = 0;
2074 	al.sym = NULL;
2075 	al.srcline = NULL;
2076 	if (!cpumode) {
2077 		thread__find_cpumode_addr_location(thread, ip, &al);
2078 	} else {
2079 		if (ip >= PERF_CONTEXT_MAX) {
2080 			switch (ip) {
2081 			case PERF_CONTEXT_HV:
2082 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2083 				break;
2084 			case PERF_CONTEXT_KERNEL:
2085 				*cpumode = PERF_RECORD_MISC_KERNEL;
2086 				break;
2087 			case PERF_CONTEXT_USER:
2088 				*cpumode = PERF_RECORD_MISC_USER;
2089 				break;
2090 			default:
2091 				pr_debug("invalid callchain context: "
2092 					 "%"PRId64"\n", (s64) ip);
2093 				/*
2094 				 * It seems the callchain is corrupted.
2095 				 * Discard all.
2096 				 */
2097 				callchain_cursor_reset(cursor);
2098 				err = 1;
2099 				goto out;
2100 			}
2101 			goto out;
2102 		}
2103 		if (symbols)
2104 			thread__find_symbol(thread, *cpumode, ip, &al);
2105 	}
2106 
2107 	if (al.sym != NULL) {
2108 		if (perf_hpp_list.parent && !*parent &&
2109 		    symbol__match_regex(al.sym, &parent_regex))
2110 			*parent = al.sym;
2111 		else if (have_ignore_callees && root_al &&
2112 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2113 			/* Treat this symbol as the root,
2114 			   forgetting its callees. */
2115 			addr_location__copy(root_al, &al);
2116 			callchain_cursor_reset(cursor);
2117 		}
2118 	}
2119 
2120 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2121 		goto out;
2122 
2123 	if (iter) {
2124 		nr_loop_iter = iter->nr_loop_iter;
2125 		iter_cycles = iter->cycles;
2126 	}
2127 
2128 	ms.maps = maps__get(al.maps);
2129 	ms.map = map__get(al.map);
2130 	ms.sym = al.sym;
2131 	srcline = callchain_srcline(&ms, al.addr);
2132 	err = callchain_cursor_append(cursor, ip, &ms,
2133 				      branch, flags, nr_loop_iter,
2134 				      iter_cycles, branch_from, srcline);
2135 out:
2136 	addr_location__exit(&al);
2137 	map_symbol__exit(&ms);
2138 	return err;
2139 }
2140 
2141 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2142 					   struct addr_location *al)
2143 {
2144 	unsigned int i;
2145 	const struct branch_stack *bs = sample->branch_stack;
2146 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2147 	u64 *branch_stack_cntr = sample->branch_stack_cntr;
2148 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2149 
2150 	if (!bi)
2151 		return NULL;
2152 
2153 	for (i = 0; i < bs->nr; i++) {
2154 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2155 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2156 		bi[i].flags = entries[i].flags;
2157 		if (branch_stack_cntr)
2158 			bi[i].branch_stack_cntr  = branch_stack_cntr[i];
2159 	}
2160 	return bi;
2161 }
2162 
2163 static void save_iterations(struct iterations *iter,
2164 			    struct branch_entry *be, int nr)
2165 {
2166 	int i;
2167 
2168 	iter->nr_loop_iter++;
2169 	iter->cycles = 0;
2170 
2171 	for (i = 0; i < nr; i++)
2172 		iter->cycles += be[i].flags.cycles;
2173 }
2174 
2175 #define CHASHSZ 127
2176 #define CHASHBITS 7
2177 #define NO_ENTRY 0xff
2178 
2179 #define PERF_MAX_BRANCH_DEPTH 127
2180 
2181 /* Remove loops. */
2182 static int remove_loops(struct branch_entry *l, int nr,
2183 			struct iterations *iter)
2184 {
2185 	int i, j, off;
2186 	unsigned char chash[CHASHSZ];
2187 
2188 	memset(chash, NO_ENTRY, sizeof(chash));
2189 
2190 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2191 
2192 	for (i = 0; i < nr; i++) {
2193 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2194 
2195 		/* no collision handling for now */
2196 		if (chash[h] == NO_ENTRY) {
2197 			chash[h] = i;
2198 		} else if (l[chash[h]].from == l[i].from) {
2199 			bool is_loop = true;
2200 			/* check if it is a real loop */
2201 			off = 0;
2202 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2203 				if (l[j].from != l[i + off].from) {
2204 					is_loop = false;
2205 					break;
2206 				}
2207 			if (is_loop) {
2208 				j = nr - (i + off);
2209 				if (j > 0) {
2210 					save_iterations(iter + i + off,
2211 						l + i, off);
2212 
2213 					memmove(iter + i, iter + i + off,
2214 						j * sizeof(*iter));
2215 
2216 					memmove(l + i, l + i + off,
2217 						j * sizeof(*l));
2218 				}
2219 
2220 				nr -= off;
2221 			}
2222 		}
2223 	}
2224 	return nr;
2225 }
2226 
2227 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2228 				       struct callchain_cursor *cursor,
2229 				       struct perf_sample *sample,
2230 				       struct symbol **parent,
2231 				       struct addr_location *root_al,
2232 				       u64 branch_from,
2233 				       bool callee, int end,
2234 				       bool symbols)
2235 {
2236 	struct ip_callchain *chain = sample->callchain;
2237 	u8 cpumode = PERF_RECORD_MISC_USER;
2238 	int err, i;
2239 
2240 	if (callee) {
2241 		for (i = 0; i < end + 1; i++) {
2242 			err = add_callchain_ip(thread, cursor, parent,
2243 					       root_al, &cpumode, chain->ips[i],
2244 					       false, NULL, NULL, branch_from,
2245 					       symbols);
2246 			if (err)
2247 				return err;
2248 		}
2249 		return 0;
2250 	}
2251 
2252 	for (i = end; i >= 0; i--) {
2253 		err = add_callchain_ip(thread, cursor, parent,
2254 				       root_al, &cpumode, chain->ips[i],
2255 				       false, NULL, NULL, branch_from,
2256 				       symbols);
2257 		if (err)
2258 			return err;
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 static void save_lbr_cursor_node(struct thread *thread,
2265 				 struct callchain_cursor *cursor,
2266 				 int idx)
2267 {
2268 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2269 
2270 	if (!lbr_stitch)
2271 		return;
2272 
2273 	if (cursor->pos == cursor->nr) {
2274 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2275 		return;
2276 	}
2277 
2278 	if (!cursor->curr)
2279 		cursor->curr = cursor->first;
2280 	else
2281 		cursor->curr = cursor->curr->next;
2282 
2283 	map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms);
2284 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2285 	       sizeof(struct callchain_cursor_node));
2286 	lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps);
2287 	lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map);
2288 
2289 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2290 	cursor->pos++;
2291 }
2292 
2293 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2294 				    struct callchain_cursor *cursor,
2295 				    struct perf_sample *sample,
2296 				    struct symbol **parent,
2297 				    struct addr_location *root_al,
2298 				    u64 *branch_from,
2299 				    bool callee,
2300 				    bool symbols)
2301 {
2302 	struct branch_stack *lbr_stack = sample->branch_stack;
2303 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2304 	u8 cpumode = PERF_RECORD_MISC_USER;
2305 	int lbr_nr = lbr_stack->nr;
2306 	struct branch_flags *flags;
2307 	int err, i;
2308 	u64 ip;
2309 
2310 	/*
2311 	 * The curr and pos are not used in writing session. They are cleared
2312 	 * in callchain_cursor_commit() when the writing session is closed.
2313 	 * Using curr and pos to track the current cursor node.
2314 	 */
2315 	if (thread__lbr_stitch(thread)) {
2316 		cursor->curr = NULL;
2317 		cursor->pos = cursor->nr;
2318 		if (cursor->nr) {
2319 			cursor->curr = cursor->first;
2320 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2321 				cursor->curr = cursor->curr->next;
2322 		}
2323 	}
2324 
2325 	if (callee) {
2326 		/* Add LBR ip from first entries.to */
2327 		ip = entries[0].to;
2328 		flags = &entries[0].flags;
2329 		*branch_from = entries[0].from;
2330 		err = add_callchain_ip(thread, cursor, parent,
2331 				       root_al, &cpumode, ip,
2332 				       true, flags, NULL,
2333 				       *branch_from, symbols);
2334 		if (err)
2335 			return err;
2336 
2337 		/*
2338 		 * The number of cursor node increases.
2339 		 * Move the current cursor node.
2340 		 * But does not need to save current cursor node for entry 0.
2341 		 * It's impossible to stitch the whole LBRs of previous sample.
2342 		 */
2343 		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2344 			if (!cursor->curr)
2345 				cursor->curr = cursor->first;
2346 			else
2347 				cursor->curr = cursor->curr->next;
2348 			cursor->pos++;
2349 		}
2350 
2351 		/* Add LBR ip from entries.from one by one. */
2352 		for (i = 0; i < lbr_nr; i++) {
2353 			ip = entries[i].from;
2354 			flags = &entries[i].flags;
2355 			err = add_callchain_ip(thread, cursor, parent,
2356 					       root_al, &cpumode, ip,
2357 					       true, flags, NULL,
2358 					       *branch_from, symbols);
2359 			if (err)
2360 				return err;
2361 			save_lbr_cursor_node(thread, cursor, i);
2362 		}
2363 		return 0;
2364 	}
2365 
2366 	/* Add LBR ip from entries.from one by one. */
2367 	for (i = lbr_nr - 1; i >= 0; i--) {
2368 		ip = entries[i].from;
2369 		flags = &entries[i].flags;
2370 		err = add_callchain_ip(thread, cursor, parent,
2371 				       root_al, &cpumode, ip,
2372 				       true, flags, NULL,
2373 				       *branch_from, symbols);
2374 		if (err)
2375 			return err;
2376 		save_lbr_cursor_node(thread, cursor, i);
2377 	}
2378 
2379 	if (lbr_nr > 0) {
2380 		/* Add LBR ip from first entries.to */
2381 		ip = entries[0].to;
2382 		flags = &entries[0].flags;
2383 		*branch_from = entries[0].from;
2384 		err = add_callchain_ip(thread, cursor, parent,
2385 				root_al, &cpumode, ip,
2386 				true, flags, NULL,
2387 				*branch_from, symbols);
2388 		if (err)
2389 			return err;
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2396 					     struct callchain_cursor *cursor)
2397 {
2398 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2399 	struct callchain_cursor_node *cnode;
2400 	struct stitch_list *stitch_node;
2401 	int err;
2402 
2403 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2404 		cnode = &stitch_node->cursor;
2405 
2406 		err = callchain_cursor_append(cursor, cnode->ip,
2407 					      &cnode->ms,
2408 					      cnode->branch,
2409 					      &cnode->branch_flags,
2410 					      cnode->nr_loop_iter,
2411 					      cnode->iter_cycles,
2412 					      cnode->branch_from,
2413 					      cnode->srcline);
2414 		if (err)
2415 			return err;
2416 	}
2417 	return 0;
2418 }
2419 
2420 static struct stitch_list *get_stitch_node(struct thread *thread)
2421 {
2422 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2423 	struct stitch_list *stitch_node;
2424 
2425 	if (!list_empty(&lbr_stitch->free_lists)) {
2426 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2427 					       struct stitch_list, node);
2428 		list_del(&stitch_node->node);
2429 
2430 		return stitch_node;
2431 	}
2432 
2433 	return malloc(sizeof(struct stitch_list));
2434 }
2435 
2436 static bool has_stitched_lbr(struct thread *thread,
2437 			     struct perf_sample *cur,
2438 			     struct perf_sample *prev,
2439 			     unsigned int max_lbr,
2440 			     bool callee)
2441 {
2442 	struct branch_stack *cur_stack = cur->branch_stack;
2443 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2444 	struct branch_stack *prev_stack = prev->branch_stack;
2445 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2446 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2447 	int i, j, nr_identical_branches = 0;
2448 	struct stitch_list *stitch_node;
2449 	u64 cur_base, distance;
2450 
2451 	if (!cur_stack || !prev_stack)
2452 		return false;
2453 
2454 	/* Find the physical index of the base-of-stack for current sample. */
2455 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2456 
2457 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2458 						     (max_lbr + prev_stack->hw_idx - cur_base);
2459 	/* Previous sample has shorter stack. Nothing can be stitched. */
2460 	if (distance + 1 > prev_stack->nr)
2461 		return false;
2462 
2463 	/*
2464 	 * Check if there are identical LBRs between two samples.
2465 	 * Identical LBRs must have same from, to and flags values. Also,
2466 	 * they have to be saved in the same LBR registers (same physical
2467 	 * index).
2468 	 *
2469 	 * Starts from the base-of-stack of current sample.
2470 	 */
2471 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2472 		if ((prev_entries[i].from != cur_entries[j].from) ||
2473 		    (prev_entries[i].to != cur_entries[j].to) ||
2474 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2475 			break;
2476 		nr_identical_branches++;
2477 	}
2478 
2479 	if (!nr_identical_branches)
2480 		return false;
2481 
2482 	/*
2483 	 * Save the LBRs between the base-of-stack of previous sample
2484 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2485 	 * These LBRs will be stitched later.
2486 	 */
2487 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2488 
2489 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2490 			continue;
2491 
2492 		stitch_node = get_stitch_node(thread);
2493 		if (!stitch_node)
2494 			return false;
2495 
2496 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2497 		       sizeof(struct callchain_cursor_node));
2498 
2499 		stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps);
2500 		stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map);
2501 
2502 		if (callee)
2503 			list_add(&stitch_node->node, &lbr_stitch->lists);
2504 		else
2505 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2506 	}
2507 
2508 	return true;
2509 }
2510 
2511 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2512 {
2513 	if (thread__lbr_stitch(thread))
2514 		return true;
2515 
2516 	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2517 	if (!thread__lbr_stitch(thread))
2518 		goto err;
2519 
2520 	thread__lbr_stitch(thread)->prev_lbr_cursor =
2521 		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2522 	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2523 		goto free_lbr_stitch;
2524 
2525 	thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1;
2526 
2527 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2528 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2529 
2530 	return true;
2531 
2532 free_lbr_stitch:
2533 	free(thread__lbr_stitch(thread));
2534 	thread__set_lbr_stitch(thread, NULL);
2535 err:
2536 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2537 	thread__set_lbr_stitch_enable(thread, false);
2538 	return false;
2539 }
2540 
2541 /*
2542  * Resolve LBR callstack chain sample
2543  * Return:
2544  * 1 on success get LBR callchain information
2545  * 0 no available LBR callchain information, should try fp
2546  * negative error code on other errors.
2547  */
2548 static int resolve_lbr_callchain_sample(struct thread *thread,
2549 					struct callchain_cursor *cursor,
2550 					struct perf_sample *sample,
2551 					struct symbol **parent,
2552 					struct addr_location *root_al,
2553 					int max_stack,
2554 					unsigned int max_lbr,
2555 					bool symbols)
2556 {
2557 	bool callee = (callchain_param.order == ORDER_CALLEE);
2558 	struct ip_callchain *chain = sample->callchain;
2559 	int chain_nr = min(max_stack, (int)chain->nr), i;
2560 	struct lbr_stitch *lbr_stitch;
2561 	bool stitched_lbr = false;
2562 	u64 branch_from = 0;
2563 	int err;
2564 
2565 	for (i = 0; i < chain_nr; i++) {
2566 		if (chain->ips[i] == PERF_CONTEXT_USER)
2567 			break;
2568 	}
2569 
2570 	/* LBR only affects the user callchain */
2571 	if (i == chain_nr)
2572 		return 0;
2573 
2574 	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2575 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2576 		lbr_stitch = thread__lbr_stitch(thread);
2577 
2578 		stitched_lbr = has_stitched_lbr(thread, sample,
2579 						&lbr_stitch->prev_sample,
2580 						max_lbr, callee);
2581 
2582 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2583 			struct stitch_list *stitch_node;
2584 
2585 			list_for_each_entry(stitch_node, &lbr_stitch->lists, node)
2586 				map_symbol__exit(&stitch_node->cursor.ms);
2587 
2588 			list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists);
2589 		}
2590 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2591 	}
2592 
2593 	if (callee) {
2594 		/* Add kernel ip */
2595 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2596 						  parent, root_al, branch_from,
2597 						  true, i, symbols);
2598 		if (err)
2599 			goto error;
2600 
2601 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2602 					       root_al, &branch_from, true, symbols);
2603 		if (err)
2604 			goto error;
2605 
2606 		if (stitched_lbr) {
2607 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2608 			if (err)
2609 				goto error;
2610 		}
2611 
2612 	} else {
2613 		if (stitched_lbr) {
2614 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2615 			if (err)
2616 				goto error;
2617 		}
2618 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2619 					       root_al, &branch_from, false, symbols);
2620 		if (err)
2621 			goto error;
2622 
2623 		/* Add kernel ip */
2624 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2625 						  parent, root_al, branch_from,
2626 						  false, i, symbols);
2627 		if (err)
2628 			goto error;
2629 	}
2630 	return 1;
2631 
2632 error:
2633 	return (err < 0) ? err : 0;
2634 }
2635 
2636 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2637 			     struct callchain_cursor *cursor,
2638 			     struct symbol **parent,
2639 			     struct addr_location *root_al,
2640 			     u8 *cpumode, int ent, bool symbols)
2641 {
2642 	int err = 0;
2643 
2644 	while (--ent >= 0) {
2645 		u64 ip = chain->ips[ent];
2646 
2647 		if (ip >= PERF_CONTEXT_MAX) {
2648 			err = add_callchain_ip(thread, cursor, parent,
2649 					       root_al, cpumode, ip,
2650 					       false, NULL, NULL, 0, symbols);
2651 			break;
2652 		}
2653 	}
2654 	return err;
2655 }
2656 
2657 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2658 		struct thread *thread, int usr_idx)
2659 {
2660 	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2661 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2662 	else
2663 		return 0;
2664 }
2665 
2666 static int thread__resolve_callchain_sample(struct thread *thread,
2667 					    struct callchain_cursor *cursor,
2668 					    struct evsel *evsel,
2669 					    struct perf_sample *sample,
2670 					    struct symbol **parent,
2671 					    struct addr_location *root_al,
2672 					    int max_stack,
2673 					    bool symbols)
2674 {
2675 	struct branch_stack *branch = sample->branch_stack;
2676 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2677 	struct ip_callchain *chain = sample->callchain;
2678 	int chain_nr = 0;
2679 	u8 cpumode = PERF_RECORD_MISC_USER;
2680 	int i, j, err, nr_entries, usr_idx;
2681 	int skip_idx = -1;
2682 	int first_call = 0;
2683 	u64 leaf_frame_caller;
2684 
2685 	if (chain)
2686 		chain_nr = chain->nr;
2687 
2688 	if (evsel__has_branch_callstack(evsel)) {
2689 		struct perf_env *env = evsel__env(evsel);
2690 
2691 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2692 						   root_al, max_stack,
2693 						   !env ? 0 : env->max_branches,
2694 						   symbols);
2695 		if (err)
2696 			return (err < 0) ? err : 0;
2697 	}
2698 
2699 	/*
2700 	 * Based on DWARF debug information, some architectures skip
2701 	 * a callchain entry saved by the kernel.
2702 	 */
2703 	skip_idx = arch_skip_callchain_idx(thread, chain);
2704 
2705 	/*
2706 	 * Add branches to call stack for easier browsing. This gives
2707 	 * more context for a sample than just the callers.
2708 	 *
2709 	 * This uses individual histograms of paths compared to the
2710 	 * aggregated histograms the normal LBR mode uses.
2711 	 *
2712 	 * Limitations for now:
2713 	 * - No extra filters
2714 	 * - No annotations (should annotate somehow)
2715 	 */
2716 
2717 	if (branch && callchain_param.branch_callstack) {
2718 		int nr = min(max_stack, (int)branch->nr);
2719 		struct branch_entry be[nr];
2720 		struct iterations iter[nr];
2721 
2722 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2723 			pr_warning("corrupted branch chain. skipping...\n");
2724 			goto check_calls;
2725 		}
2726 
2727 		for (i = 0; i < nr; i++) {
2728 			if (callchain_param.order == ORDER_CALLEE) {
2729 				be[i] = entries[i];
2730 
2731 				if (chain == NULL)
2732 					continue;
2733 
2734 				/*
2735 				 * Check for overlap into the callchain.
2736 				 * The return address is one off compared to
2737 				 * the branch entry. To adjust for this
2738 				 * assume the calling instruction is not longer
2739 				 * than 8 bytes.
2740 				 */
2741 				if (i == skip_idx ||
2742 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2743 					first_call++;
2744 				else if (be[i].from < chain->ips[first_call] &&
2745 				    be[i].from >= chain->ips[first_call] - 8)
2746 					first_call++;
2747 			} else
2748 				be[i] = entries[branch->nr - i - 1];
2749 		}
2750 
2751 		memset(iter, 0, sizeof(struct iterations) * nr);
2752 		nr = remove_loops(be, nr, iter);
2753 
2754 		for (i = 0; i < nr; i++) {
2755 			err = add_callchain_ip(thread, cursor, parent,
2756 					       root_al,
2757 					       NULL, be[i].to,
2758 					       true, &be[i].flags,
2759 					       NULL, be[i].from, symbols);
2760 
2761 			if (!err) {
2762 				err = add_callchain_ip(thread, cursor, parent, root_al,
2763 						       NULL, be[i].from,
2764 						       true, &be[i].flags,
2765 						       &iter[i], 0, symbols);
2766 			}
2767 			if (err == -EINVAL)
2768 				break;
2769 			if (err)
2770 				return err;
2771 		}
2772 
2773 		if (chain_nr == 0)
2774 			return 0;
2775 
2776 		chain_nr -= nr;
2777 	}
2778 
2779 check_calls:
2780 	if (chain && callchain_param.order != ORDER_CALLEE) {
2781 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2782 					&cpumode, chain->nr - first_call, symbols);
2783 		if (err)
2784 			return (err < 0) ? err : 0;
2785 	}
2786 	for (i = first_call, nr_entries = 0;
2787 	     i < chain_nr && nr_entries < max_stack; i++) {
2788 		u64 ip;
2789 
2790 		if (callchain_param.order == ORDER_CALLEE)
2791 			j = i;
2792 		else
2793 			j = chain->nr - i - 1;
2794 
2795 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2796 		if (j == skip_idx)
2797 			continue;
2798 #endif
2799 		ip = chain->ips[j];
2800 		if (ip < PERF_CONTEXT_MAX)
2801                        ++nr_entries;
2802 		else if (callchain_param.order != ORDER_CALLEE) {
2803 			err = find_prev_cpumode(chain, thread, cursor, parent,
2804 						root_al, &cpumode, j, symbols);
2805 			if (err)
2806 				return (err < 0) ? err : 0;
2807 			continue;
2808 		}
2809 
2810 		/*
2811 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2812 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2813 		 * the index will be different in order to add the missing frame
2814 		 * at the right place.
2815 		 */
2816 
2817 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2818 
2819 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2820 
2821 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2822 
2823 			/*
2824 			 * check if leaf_frame_Caller != ip to not add the same
2825 			 * value twice.
2826 			 */
2827 
2828 			if (leaf_frame_caller && leaf_frame_caller != ip) {
2829 
2830 				err = add_callchain_ip(thread, cursor, parent,
2831 						root_al, &cpumode, leaf_frame_caller,
2832 						false, NULL, NULL, 0, symbols);
2833 				if (err)
2834 					return (err < 0) ? err : 0;
2835 			}
2836 		}
2837 
2838 		err = add_callchain_ip(thread, cursor, parent,
2839 				       root_al, &cpumode, ip,
2840 				       false, NULL, NULL, 0, symbols);
2841 
2842 		if (err)
2843 			return (err < 0) ? err : 0;
2844 	}
2845 
2846 	return 0;
2847 }
2848 
2849 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2850 {
2851 	struct symbol *sym = ms->sym;
2852 	struct map *map = ms->map;
2853 	struct inline_node *inline_node;
2854 	struct inline_list *ilist;
2855 	struct dso *dso;
2856 	u64 addr;
2857 	int ret = 1;
2858 	struct map_symbol ilist_ms;
2859 
2860 	if (!symbol_conf.inline_name || !map || !sym)
2861 		return ret;
2862 
2863 	addr = map__dso_map_ip(map, ip);
2864 	addr = map__rip_2objdump(map, addr);
2865 	dso = map__dso(map);
2866 
2867 	inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2868 	if (!inline_node) {
2869 		inline_node = dso__parse_addr_inlines(dso, addr, sym);
2870 		if (!inline_node)
2871 			return ret;
2872 		inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2873 	}
2874 
2875 	ilist_ms = (struct map_symbol) {
2876 		.maps = maps__get(ms->maps),
2877 		.map = map__get(map),
2878 	};
2879 	list_for_each_entry(ilist, &inline_node->val, list) {
2880 		ilist_ms.sym = ilist->symbol;
2881 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2882 					      NULL, 0, 0, 0, ilist->srcline);
2883 
2884 		if (ret != 0)
2885 			return ret;
2886 	}
2887 	map_symbol__exit(&ilist_ms);
2888 
2889 	return ret;
2890 }
2891 
2892 static int unwind_entry(struct unwind_entry *entry, void *arg)
2893 {
2894 	struct callchain_cursor *cursor = arg;
2895 	const char *srcline = NULL;
2896 	u64 addr = entry->ip;
2897 
2898 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2899 		return 0;
2900 
2901 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2902 		return 0;
2903 
2904 	/*
2905 	 * Convert entry->ip from a virtual address to an offset in
2906 	 * its corresponding binary.
2907 	 */
2908 	if (entry->ms.map)
2909 		addr = map__dso_map_ip(entry->ms.map, entry->ip);
2910 
2911 	srcline = callchain_srcline(&entry->ms, addr);
2912 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2913 				       false, NULL, 0, 0, 0, srcline);
2914 }
2915 
2916 static int thread__resolve_callchain_unwind(struct thread *thread,
2917 					    struct callchain_cursor *cursor,
2918 					    struct evsel *evsel,
2919 					    struct perf_sample *sample,
2920 					    int max_stack, bool symbols)
2921 {
2922 	/* Can we do dwarf post unwind? */
2923 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2924 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2925 		return 0;
2926 
2927 	/* Bail out if nothing was captured. */
2928 	if (!sample->user_regs || !sample->user_regs->regs ||
2929 	    !sample->user_stack.size)
2930 		return 0;
2931 
2932 	if (!symbols)
2933 		pr_debug("Not resolving symbols with an unwinder isn't currently supported\n");
2934 
2935 	return unwind__get_entries(unwind_entry, cursor,
2936 				   thread, sample, max_stack, false);
2937 }
2938 
2939 int __thread__resolve_callchain(struct thread *thread,
2940 				struct callchain_cursor *cursor,
2941 				struct evsel *evsel,
2942 				struct perf_sample *sample,
2943 				struct symbol **parent,
2944 				struct addr_location *root_al,
2945 				int max_stack,
2946 				bool symbols)
2947 {
2948 	int ret = 0;
2949 
2950 	if (cursor == NULL)
2951 		return -ENOMEM;
2952 
2953 	callchain_cursor_reset(cursor);
2954 
2955 	if (callchain_param.order == ORDER_CALLEE) {
2956 		ret = thread__resolve_callchain_sample(thread, cursor,
2957 						       evsel, sample,
2958 						       parent, root_al,
2959 						       max_stack, symbols);
2960 		if (ret)
2961 			return ret;
2962 		ret = thread__resolve_callchain_unwind(thread, cursor,
2963 						       evsel, sample,
2964 						       max_stack, symbols);
2965 	} else {
2966 		ret = thread__resolve_callchain_unwind(thread, cursor,
2967 						       evsel, sample,
2968 						       max_stack, symbols);
2969 		if (ret)
2970 			return ret;
2971 		ret = thread__resolve_callchain_sample(thread, cursor,
2972 						       evsel, sample,
2973 						       parent, root_al,
2974 						       max_stack, symbols);
2975 	}
2976 
2977 	return ret;
2978 }
2979 
2980 int machine__for_each_thread(struct machine *machine,
2981 			     int (*fn)(struct thread *thread, void *p),
2982 			     void *priv)
2983 {
2984 	return threads__for_each_thread(&machine->threads, fn, priv);
2985 }
2986 
2987 int machines__for_each_thread(struct machines *machines,
2988 			      int (*fn)(struct thread *thread, void *p),
2989 			      void *priv)
2990 {
2991 	struct rb_node *nd;
2992 	int rc = 0;
2993 
2994 	rc = machine__for_each_thread(&machines->host, fn, priv);
2995 	if (rc != 0)
2996 		return rc;
2997 
2998 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2999 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3000 
3001 		rc = machine__for_each_thread(machine, fn, priv);
3002 		if (rc != 0)
3003 			return rc;
3004 	}
3005 	return rc;
3006 }
3007 
3008 
3009 static int thread_list_cb(struct thread *thread, void *data)
3010 {
3011 	struct list_head *list = data;
3012 	struct thread_list *entry = malloc(sizeof(*entry));
3013 
3014 	if (!entry)
3015 		return -ENOMEM;
3016 
3017 	entry->thread = thread__get(thread);
3018 	list_add_tail(&entry->list, list);
3019 	return 0;
3020 }
3021 
3022 int machine__thread_list(struct machine *machine, struct list_head *list)
3023 {
3024 	return machine__for_each_thread(machine, thread_list_cb, list);
3025 }
3026 
3027 void thread_list__delete(struct list_head *list)
3028 {
3029 	struct thread_list *pos, *next;
3030 
3031 	list_for_each_entry_safe(pos, next, list, list) {
3032 		thread__zput(pos->thread);
3033 		list_del(&pos->list);
3034 		free(pos);
3035 	}
3036 }
3037 
3038 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3039 {
3040 	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3041 		return -1;
3042 
3043 	return machine->current_tid[cpu];
3044 }
3045 
3046 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3047 			     pid_t tid)
3048 {
3049 	struct thread *thread;
3050 	const pid_t init_val = -1;
3051 
3052 	if (cpu < 0)
3053 		return -EINVAL;
3054 
3055 	if (realloc_array_as_needed(machine->current_tid,
3056 				    machine->current_tid_sz,
3057 				    (unsigned int)cpu,
3058 				    &init_val))
3059 		return -ENOMEM;
3060 
3061 	machine->current_tid[cpu] = tid;
3062 
3063 	thread = machine__findnew_thread(machine, pid, tid);
3064 	if (!thread)
3065 		return -ENOMEM;
3066 
3067 	thread__set_cpu(thread, cpu);
3068 	thread__put(thread);
3069 
3070 	return 0;
3071 }
3072 
3073 /*
3074  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3075  * machine__normalized_is() if a normalized arch is needed.
3076  */
3077 bool machine__is(struct machine *machine, const char *arch)
3078 {
3079 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3080 }
3081 
3082 bool machine__normalized_is(struct machine *machine, const char *arch)
3083 {
3084 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3085 }
3086 
3087 int machine__nr_cpus_avail(struct machine *machine)
3088 {
3089 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3090 }
3091 
3092 int machine__get_kernel_start(struct machine *machine)
3093 {
3094 	struct map *map = machine__kernel_map(machine);
3095 	int err = 0;
3096 
3097 	/*
3098 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3099 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3100 	 * all addresses including kernel addresses are less than 2^32.  In
3101 	 * that case (32-bit system), if the kernel mapping is unknown, all
3102 	 * addresses will be assumed to be in user space - see
3103 	 * machine__kernel_ip().
3104 	 */
3105 	machine->kernel_start = 1ULL << 63;
3106 	if (map) {
3107 		err = map__load(map);
3108 		/*
3109 		 * On x86_64, PTI entry trampolines are less than the
3110 		 * start of kernel text, but still above 2^63. So leave
3111 		 * kernel_start = 1ULL << 63 for x86_64.
3112 		 */
3113 		if (!err && !machine__is(machine, "x86_64"))
3114 			machine->kernel_start = map__start(map);
3115 	}
3116 	return err;
3117 }
3118 
3119 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3120 {
3121 	u8 addr_cpumode = cpumode;
3122 	bool kernel_ip;
3123 
3124 	if (!machine->single_address_space)
3125 		goto out;
3126 
3127 	kernel_ip = machine__kernel_ip(machine, addr);
3128 	switch (cpumode) {
3129 	case PERF_RECORD_MISC_KERNEL:
3130 	case PERF_RECORD_MISC_USER:
3131 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3132 					   PERF_RECORD_MISC_USER;
3133 		break;
3134 	case PERF_RECORD_MISC_GUEST_KERNEL:
3135 	case PERF_RECORD_MISC_GUEST_USER:
3136 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3137 					   PERF_RECORD_MISC_GUEST_USER;
3138 		break;
3139 	default:
3140 		break;
3141 	}
3142 out:
3143 	return addr_cpumode;
3144 }
3145 
3146 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename,
3147 				    const struct dso_id *id)
3148 {
3149 	return dsos__findnew_id(&machine->dsos, filename, id);
3150 }
3151 
3152 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3153 {
3154 	return machine__findnew_dso_id(machine, filename, NULL);
3155 }
3156 
3157 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3158 {
3159 	struct machine *machine = vmachine;
3160 	struct map *map;
3161 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3162 
3163 	if (sym == NULL)
3164 		return NULL;
3165 
3166 	*modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3167 	*addrp = map__unmap_ip(map, sym->start);
3168 	return sym->name;
3169 }
3170 
3171 struct machine__for_each_dso_cb_args {
3172 	struct machine *machine;
3173 	machine__dso_t fn;
3174 	void *priv;
3175 };
3176 
3177 static int machine__for_each_dso_cb(struct dso *dso, void *data)
3178 {
3179 	struct machine__for_each_dso_cb_args *args = data;
3180 
3181 	return args->fn(dso, args->machine, args->priv);
3182 }
3183 
3184 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3185 {
3186 	struct machine__for_each_dso_cb_args args = {
3187 		.machine = machine,
3188 		.fn = fn,
3189 		.priv = priv,
3190 	};
3191 
3192 	return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
3193 }
3194 
3195 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3196 {
3197 	struct maps *maps = machine__kernel_maps(machine);
3198 
3199 	return maps__for_each_map(maps, fn, priv);
3200 }
3201 
3202 bool machine__is_lock_function(struct machine *machine, u64 addr)
3203 {
3204 	if (!machine->sched.text_start) {
3205 		struct map *kmap;
3206 		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3207 
3208 		if (!sym) {
3209 			/* to avoid retry */
3210 			machine->sched.text_start = 1;
3211 			return false;
3212 		}
3213 
3214 		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3215 
3216 		/* should not fail from here */
3217 		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3218 		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3219 
3220 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3221 		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3222 
3223 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3224 		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3225 
3226 		sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3227 		if (sym) {
3228 			machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3229 			machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3230 		}
3231 		sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3232 		if (sym) {
3233 			machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3234 			machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3235 		}
3236 	}
3237 
3238 	/* failed to get kernel symbols */
3239 	if (machine->sched.text_start == 1)
3240 		return false;
3241 
3242 	/* mutex and rwsem functions are in sched text section */
3243 	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3244 		return true;
3245 
3246 	/* spinlock functions are in lock text section */
3247 	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3248 		return true;
3249 
3250 	/* traceiter functions currently don't have their own section
3251 	 * but we consider them lock functions
3252 	 */
3253 	if (machine->traceiter.text_start != 0) {
3254 		if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3255 			return true;
3256 	}
3257 
3258 	if (machine->trace.text_start != 0) {
3259 		if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3260 			return true;
3261 	}
3262 
3263 	return false;
3264 }
3265 
3266 int machine__hit_all_dsos(struct machine *machine)
3267 {
3268 	return dsos__hit_all(&machine->dsos);
3269 }
3270