xref: /linux/tools/perf/util/machine.c (revision f474808acb3c4b30552d9c59b181244e0300d218)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "symbol.h"
14 #include "sort.h"
15 #include "strlist.h"
16 #include "thread.h"
17 #include "vdso.h"
18 #include <stdbool.h>
19 #include <sys/types.h>
20 #include <sys/stat.h>
21 #include <unistd.h>
22 #include "unwind.h"
23 #include "linux/hash.h"
24 #include "asm/bug.h"
25 #include "bpf-event.h"
26 
27 #include <linux/ctype.h>
28 #include <symbol/kallsyms.h>
29 #include <linux/mman.h>
30 #include <linux/zalloc.h>
31 
32 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
33 
34 static void dsos__init(struct dsos *dsos)
35 {
36 	INIT_LIST_HEAD(&dsos->head);
37 	dsos->root = RB_ROOT;
38 	init_rwsem(&dsos->lock);
39 }
40 
41 static void machine__threads_init(struct machine *machine)
42 {
43 	int i;
44 
45 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
46 		struct threads *threads = &machine->threads[i];
47 		threads->entries = RB_ROOT_CACHED;
48 		init_rwsem(&threads->lock);
49 		threads->nr = 0;
50 		INIT_LIST_HEAD(&threads->dead);
51 		threads->last_match = NULL;
52 	}
53 }
54 
55 static int machine__set_mmap_name(struct machine *machine)
56 {
57 	if (machine__is_host(machine))
58 		machine->mmap_name = strdup("[kernel.kallsyms]");
59 	else if (machine__is_default_guest(machine))
60 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
61 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
62 			  machine->pid) < 0)
63 		machine->mmap_name = NULL;
64 
65 	return machine->mmap_name ? 0 : -ENOMEM;
66 }
67 
68 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
69 {
70 	int err = -ENOMEM;
71 
72 	memset(machine, 0, sizeof(*machine));
73 	map_groups__init(&machine->kmaps, machine);
74 	RB_CLEAR_NODE(&machine->rb_node);
75 	dsos__init(&machine->dsos);
76 
77 	machine__threads_init(machine);
78 
79 	machine->vdso_info = NULL;
80 	machine->env = NULL;
81 
82 	machine->pid = pid;
83 
84 	machine->id_hdr_size = 0;
85 	machine->kptr_restrict_warned = false;
86 	machine->comm_exec = false;
87 	machine->kernel_start = 0;
88 	machine->vmlinux_map = NULL;
89 
90 	machine->root_dir = strdup(root_dir);
91 	if (machine->root_dir == NULL)
92 		return -ENOMEM;
93 
94 	if (machine__set_mmap_name(machine))
95 		goto out;
96 
97 	if (pid != HOST_KERNEL_ID) {
98 		struct thread *thread = machine__findnew_thread(machine, -1,
99 								pid);
100 		char comm[64];
101 
102 		if (thread == NULL)
103 			goto out;
104 
105 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
106 		thread__set_comm(thread, comm, 0);
107 		thread__put(thread);
108 	}
109 
110 	machine->current_tid = NULL;
111 	err = 0;
112 
113 out:
114 	if (err) {
115 		zfree(&machine->root_dir);
116 		zfree(&machine->mmap_name);
117 	}
118 	return 0;
119 }
120 
121 struct machine *machine__new_host(void)
122 {
123 	struct machine *machine = malloc(sizeof(*machine));
124 
125 	if (machine != NULL) {
126 		machine__init(machine, "", HOST_KERNEL_ID);
127 
128 		if (machine__create_kernel_maps(machine) < 0)
129 			goto out_delete;
130 	}
131 
132 	return machine;
133 out_delete:
134 	free(machine);
135 	return NULL;
136 }
137 
138 struct machine *machine__new_kallsyms(void)
139 {
140 	struct machine *machine = machine__new_host();
141 	/*
142 	 * FIXME:
143 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
144 	 *    ask for not using the kcore parsing code, once this one is fixed
145 	 *    to create a map per module.
146 	 */
147 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
148 		machine__delete(machine);
149 		machine = NULL;
150 	}
151 
152 	return machine;
153 }
154 
155 static void dsos__purge(struct dsos *dsos)
156 {
157 	struct dso *pos, *n;
158 
159 	down_write(&dsos->lock);
160 
161 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
162 		RB_CLEAR_NODE(&pos->rb_node);
163 		pos->root = NULL;
164 		list_del_init(&pos->node);
165 		dso__put(pos);
166 	}
167 
168 	up_write(&dsos->lock);
169 }
170 
171 static void dsos__exit(struct dsos *dsos)
172 {
173 	dsos__purge(dsos);
174 	exit_rwsem(&dsos->lock);
175 }
176 
177 void machine__delete_threads(struct machine *machine)
178 {
179 	struct rb_node *nd;
180 	int i;
181 
182 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
183 		struct threads *threads = &machine->threads[i];
184 		down_write(&threads->lock);
185 		nd = rb_first_cached(&threads->entries);
186 		while (nd) {
187 			struct thread *t = rb_entry(nd, struct thread, rb_node);
188 
189 			nd = rb_next(nd);
190 			__machine__remove_thread(machine, t, false);
191 		}
192 		up_write(&threads->lock);
193 	}
194 }
195 
196 void machine__exit(struct machine *machine)
197 {
198 	int i;
199 
200 	if (machine == NULL)
201 		return;
202 
203 	machine__destroy_kernel_maps(machine);
204 	map_groups__exit(&machine->kmaps);
205 	dsos__exit(&machine->dsos);
206 	machine__exit_vdso(machine);
207 	zfree(&machine->root_dir);
208 	zfree(&machine->mmap_name);
209 	zfree(&machine->current_tid);
210 
211 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
212 		struct threads *threads = &machine->threads[i];
213 		struct thread *thread, *n;
214 		/*
215 		 * Forget about the dead, at this point whatever threads were
216 		 * left in the dead lists better have a reference count taken
217 		 * by who is using them, and then, when they drop those references
218 		 * and it finally hits zero, thread__put() will check and see that
219 		 * its not in the dead threads list and will not try to remove it
220 		 * from there, just calling thread__delete() straight away.
221 		 */
222 		list_for_each_entry_safe(thread, n, &threads->dead, node)
223 			list_del_init(&thread->node);
224 
225 		exit_rwsem(&threads->lock);
226 	}
227 }
228 
229 void machine__delete(struct machine *machine)
230 {
231 	if (machine) {
232 		machine__exit(machine);
233 		free(machine);
234 	}
235 }
236 
237 void machines__init(struct machines *machines)
238 {
239 	machine__init(&machines->host, "", HOST_KERNEL_ID);
240 	machines->guests = RB_ROOT_CACHED;
241 }
242 
243 void machines__exit(struct machines *machines)
244 {
245 	machine__exit(&machines->host);
246 	/* XXX exit guest */
247 }
248 
249 struct machine *machines__add(struct machines *machines, pid_t pid,
250 			      const char *root_dir)
251 {
252 	struct rb_node **p = &machines->guests.rb_root.rb_node;
253 	struct rb_node *parent = NULL;
254 	struct machine *pos, *machine = malloc(sizeof(*machine));
255 	bool leftmost = true;
256 
257 	if (machine == NULL)
258 		return NULL;
259 
260 	if (machine__init(machine, root_dir, pid) != 0) {
261 		free(machine);
262 		return NULL;
263 	}
264 
265 	while (*p != NULL) {
266 		parent = *p;
267 		pos = rb_entry(parent, struct machine, rb_node);
268 		if (pid < pos->pid)
269 			p = &(*p)->rb_left;
270 		else {
271 			p = &(*p)->rb_right;
272 			leftmost = false;
273 		}
274 	}
275 
276 	rb_link_node(&machine->rb_node, parent, p);
277 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
278 
279 	return machine;
280 }
281 
282 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
283 {
284 	struct rb_node *nd;
285 
286 	machines->host.comm_exec = comm_exec;
287 
288 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
289 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
290 
291 		machine->comm_exec = comm_exec;
292 	}
293 }
294 
295 struct machine *machines__find(struct machines *machines, pid_t pid)
296 {
297 	struct rb_node **p = &machines->guests.rb_root.rb_node;
298 	struct rb_node *parent = NULL;
299 	struct machine *machine;
300 	struct machine *default_machine = NULL;
301 
302 	if (pid == HOST_KERNEL_ID)
303 		return &machines->host;
304 
305 	while (*p != NULL) {
306 		parent = *p;
307 		machine = rb_entry(parent, struct machine, rb_node);
308 		if (pid < machine->pid)
309 			p = &(*p)->rb_left;
310 		else if (pid > machine->pid)
311 			p = &(*p)->rb_right;
312 		else
313 			return machine;
314 		if (!machine->pid)
315 			default_machine = machine;
316 	}
317 
318 	return default_machine;
319 }
320 
321 struct machine *machines__findnew(struct machines *machines, pid_t pid)
322 {
323 	char path[PATH_MAX];
324 	const char *root_dir = "";
325 	struct machine *machine = machines__find(machines, pid);
326 
327 	if (machine && (machine->pid == pid))
328 		goto out;
329 
330 	if ((pid != HOST_KERNEL_ID) &&
331 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
332 	    (symbol_conf.guestmount)) {
333 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
334 		if (access(path, R_OK)) {
335 			static struct strlist *seen;
336 
337 			if (!seen)
338 				seen = strlist__new(NULL, NULL);
339 
340 			if (!strlist__has_entry(seen, path)) {
341 				pr_err("Can't access file %s\n", path);
342 				strlist__add(seen, path);
343 			}
344 			machine = NULL;
345 			goto out;
346 		}
347 		root_dir = path;
348 	}
349 
350 	machine = machines__add(machines, pid, root_dir);
351 out:
352 	return machine;
353 }
354 
355 void machines__process_guests(struct machines *machines,
356 			      machine__process_t process, void *data)
357 {
358 	struct rb_node *nd;
359 
360 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
361 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
362 		process(pos, data);
363 	}
364 }
365 
366 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
367 {
368 	struct rb_node *node;
369 	struct machine *machine;
370 
371 	machines->host.id_hdr_size = id_hdr_size;
372 
373 	for (node = rb_first_cached(&machines->guests); node;
374 	     node = rb_next(node)) {
375 		machine = rb_entry(node, struct machine, rb_node);
376 		machine->id_hdr_size = id_hdr_size;
377 	}
378 
379 	return;
380 }
381 
382 static void machine__update_thread_pid(struct machine *machine,
383 				       struct thread *th, pid_t pid)
384 {
385 	struct thread *leader;
386 
387 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
388 		return;
389 
390 	th->pid_ = pid;
391 
392 	if (th->pid_ == th->tid)
393 		return;
394 
395 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
396 	if (!leader)
397 		goto out_err;
398 
399 	if (!leader->mg)
400 		leader->mg = map_groups__new(machine);
401 
402 	if (!leader->mg)
403 		goto out_err;
404 
405 	if (th->mg == leader->mg)
406 		return;
407 
408 	if (th->mg) {
409 		/*
410 		 * Maps are created from MMAP events which provide the pid and
411 		 * tid.  Consequently there never should be any maps on a thread
412 		 * with an unknown pid.  Just print an error if there are.
413 		 */
414 		if (!map_groups__empty(th->mg))
415 			pr_err("Discarding thread maps for %d:%d\n",
416 			       th->pid_, th->tid);
417 		map_groups__put(th->mg);
418 	}
419 
420 	th->mg = map_groups__get(leader->mg);
421 out_put:
422 	thread__put(leader);
423 	return;
424 out_err:
425 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
426 	goto out_put;
427 }
428 
429 /*
430  * Front-end cache - TID lookups come in blocks,
431  * so most of the time we dont have to look up
432  * the full rbtree:
433  */
434 static struct thread*
435 __threads__get_last_match(struct threads *threads, struct machine *machine,
436 			  int pid, int tid)
437 {
438 	struct thread *th;
439 
440 	th = threads->last_match;
441 	if (th != NULL) {
442 		if (th->tid == tid) {
443 			machine__update_thread_pid(machine, th, pid);
444 			return thread__get(th);
445 		}
446 
447 		threads->last_match = NULL;
448 	}
449 
450 	return NULL;
451 }
452 
453 static struct thread*
454 threads__get_last_match(struct threads *threads, struct machine *machine,
455 			int pid, int tid)
456 {
457 	struct thread *th = NULL;
458 
459 	if (perf_singlethreaded)
460 		th = __threads__get_last_match(threads, machine, pid, tid);
461 
462 	return th;
463 }
464 
465 static void
466 __threads__set_last_match(struct threads *threads, struct thread *th)
467 {
468 	threads->last_match = th;
469 }
470 
471 static void
472 threads__set_last_match(struct threads *threads, struct thread *th)
473 {
474 	if (perf_singlethreaded)
475 		__threads__set_last_match(threads, th);
476 }
477 
478 /*
479  * Caller must eventually drop thread->refcnt returned with a successful
480  * lookup/new thread inserted.
481  */
482 static struct thread *____machine__findnew_thread(struct machine *machine,
483 						  struct threads *threads,
484 						  pid_t pid, pid_t tid,
485 						  bool create)
486 {
487 	struct rb_node **p = &threads->entries.rb_root.rb_node;
488 	struct rb_node *parent = NULL;
489 	struct thread *th;
490 	bool leftmost = true;
491 
492 	th = threads__get_last_match(threads, machine, pid, tid);
493 	if (th)
494 		return th;
495 
496 	while (*p != NULL) {
497 		parent = *p;
498 		th = rb_entry(parent, struct thread, rb_node);
499 
500 		if (th->tid == tid) {
501 			threads__set_last_match(threads, th);
502 			machine__update_thread_pid(machine, th, pid);
503 			return thread__get(th);
504 		}
505 
506 		if (tid < th->tid)
507 			p = &(*p)->rb_left;
508 		else {
509 			p = &(*p)->rb_right;
510 			leftmost = false;
511 		}
512 	}
513 
514 	if (!create)
515 		return NULL;
516 
517 	th = thread__new(pid, tid);
518 	if (th != NULL) {
519 		rb_link_node(&th->rb_node, parent, p);
520 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
521 
522 		/*
523 		 * We have to initialize map_groups separately
524 		 * after rb tree is updated.
525 		 *
526 		 * The reason is that we call machine__findnew_thread
527 		 * within thread__init_map_groups to find the thread
528 		 * leader and that would screwed the rb tree.
529 		 */
530 		if (thread__init_map_groups(th, machine)) {
531 			rb_erase_cached(&th->rb_node, &threads->entries);
532 			RB_CLEAR_NODE(&th->rb_node);
533 			thread__put(th);
534 			return NULL;
535 		}
536 		/*
537 		 * It is now in the rbtree, get a ref
538 		 */
539 		thread__get(th);
540 		threads__set_last_match(threads, th);
541 		++threads->nr;
542 	}
543 
544 	return th;
545 }
546 
547 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
548 {
549 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
550 }
551 
552 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
553 				       pid_t tid)
554 {
555 	struct threads *threads = machine__threads(machine, tid);
556 	struct thread *th;
557 
558 	down_write(&threads->lock);
559 	th = __machine__findnew_thread(machine, pid, tid);
560 	up_write(&threads->lock);
561 	return th;
562 }
563 
564 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
565 				    pid_t tid)
566 {
567 	struct threads *threads = machine__threads(machine, tid);
568 	struct thread *th;
569 
570 	down_read(&threads->lock);
571 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
572 	up_read(&threads->lock);
573 	return th;
574 }
575 
576 struct comm *machine__thread_exec_comm(struct machine *machine,
577 				       struct thread *thread)
578 {
579 	if (machine->comm_exec)
580 		return thread__exec_comm(thread);
581 	else
582 		return thread__comm(thread);
583 }
584 
585 int machine__process_comm_event(struct machine *machine, union perf_event *event,
586 				struct perf_sample *sample)
587 {
588 	struct thread *thread = machine__findnew_thread(machine,
589 							event->comm.pid,
590 							event->comm.tid);
591 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
592 	int err = 0;
593 
594 	if (exec)
595 		machine->comm_exec = true;
596 
597 	if (dump_trace)
598 		perf_event__fprintf_comm(event, stdout);
599 
600 	if (thread == NULL ||
601 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
602 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
603 		err = -1;
604 	}
605 
606 	thread__put(thread);
607 
608 	return err;
609 }
610 
611 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
612 				      union perf_event *event,
613 				      struct perf_sample *sample __maybe_unused)
614 {
615 	struct thread *thread = machine__findnew_thread(machine,
616 							event->namespaces.pid,
617 							event->namespaces.tid);
618 	int err = 0;
619 
620 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
621 		  "\nWARNING: kernel seems to support more namespaces than perf"
622 		  " tool.\nTry updating the perf tool..\n\n");
623 
624 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
625 		  "\nWARNING: perf tool seems to support more namespaces than"
626 		  " the kernel.\nTry updating the kernel..\n\n");
627 
628 	if (dump_trace)
629 		perf_event__fprintf_namespaces(event, stdout);
630 
631 	if (thread == NULL ||
632 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
633 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
634 		err = -1;
635 	}
636 
637 	thread__put(thread);
638 
639 	return err;
640 }
641 
642 int machine__process_lost_event(struct machine *machine __maybe_unused,
643 				union perf_event *event, struct perf_sample *sample __maybe_unused)
644 {
645 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
646 		    event->lost.id, event->lost.lost);
647 	return 0;
648 }
649 
650 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
651 					union perf_event *event, struct perf_sample *sample)
652 {
653 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
654 		    sample->id, event->lost_samples.lost);
655 	return 0;
656 }
657 
658 static struct dso *machine__findnew_module_dso(struct machine *machine,
659 					       struct kmod_path *m,
660 					       const char *filename)
661 {
662 	struct dso *dso;
663 
664 	down_write(&machine->dsos.lock);
665 
666 	dso = __dsos__find(&machine->dsos, m->name, true);
667 	if (!dso) {
668 		dso = __dsos__addnew(&machine->dsos, m->name);
669 		if (dso == NULL)
670 			goto out_unlock;
671 
672 		dso__set_module_info(dso, m, machine);
673 		dso__set_long_name(dso, strdup(filename), true);
674 	}
675 
676 	dso__get(dso);
677 out_unlock:
678 	up_write(&machine->dsos.lock);
679 	return dso;
680 }
681 
682 int machine__process_aux_event(struct machine *machine __maybe_unused,
683 			       union perf_event *event)
684 {
685 	if (dump_trace)
686 		perf_event__fprintf_aux(event, stdout);
687 	return 0;
688 }
689 
690 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
691 					union perf_event *event)
692 {
693 	if (dump_trace)
694 		perf_event__fprintf_itrace_start(event, stdout);
695 	return 0;
696 }
697 
698 int machine__process_switch_event(struct machine *machine __maybe_unused,
699 				  union perf_event *event)
700 {
701 	if (dump_trace)
702 		perf_event__fprintf_switch(event, stdout);
703 	return 0;
704 }
705 
706 static int machine__process_ksymbol_register(struct machine *machine,
707 					     union perf_event *event,
708 					     struct perf_sample *sample __maybe_unused)
709 {
710 	struct symbol *sym;
711 	struct map *map;
712 
713 	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
714 	if (!map) {
715 		map = dso__new_map(event->ksymbol_event.name);
716 		if (!map)
717 			return -ENOMEM;
718 
719 		map->start = event->ksymbol_event.addr;
720 		map->end = map->start + event->ksymbol_event.len;
721 		map_groups__insert(&machine->kmaps, map);
722 	}
723 
724 	sym = symbol__new(map->map_ip(map, map->start),
725 			  event->ksymbol_event.len,
726 			  0, 0, event->ksymbol_event.name);
727 	if (!sym)
728 		return -ENOMEM;
729 	dso__insert_symbol(map->dso, sym);
730 	return 0;
731 }
732 
733 static int machine__process_ksymbol_unregister(struct machine *machine,
734 					       union perf_event *event,
735 					       struct perf_sample *sample __maybe_unused)
736 {
737 	struct map *map;
738 
739 	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
740 	if (map)
741 		map_groups__remove(&machine->kmaps, map);
742 
743 	return 0;
744 }
745 
746 int machine__process_ksymbol(struct machine *machine __maybe_unused,
747 			     union perf_event *event,
748 			     struct perf_sample *sample)
749 {
750 	if (dump_trace)
751 		perf_event__fprintf_ksymbol(event, stdout);
752 
753 	if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
754 		return machine__process_ksymbol_unregister(machine, event,
755 							   sample);
756 	return machine__process_ksymbol_register(machine, event, sample);
757 }
758 
759 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
760 {
761 	const char *dup_filename;
762 
763 	if (!filename || !dso || !dso->long_name)
764 		return;
765 	if (dso->long_name[0] != '[')
766 		return;
767 	if (!strchr(filename, '/'))
768 		return;
769 
770 	dup_filename = strdup(filename);
771 	if (!dup_filename)
772 		return;
773 
774 	dso__set_long_name(dso, dup_filename, true);
775 }
776 
777 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
778 					const char *filename)
779 {
780 	struct map *map = NULL;
781 	struct dso *dso = NULL;
782 	struct kmod_path m;
783 
784 	if (kmod_path__parse_name(&m, filename))
785 		return NULL;
786 
787 	map = map_groups__find_by_name(&machine->kmaps, m.name);
788 	if (map) {
789 		/*
790 		 * If the map's dso is an offline module, give dso__load()
791 		 * a chance to find the file path of that module by fixing
792 		 * long_name.
793 		 */
794 		dso__adjust_kmod_long_name(map->dso, filename);
795 		goto out;
796 	}
797 
798 	dso = machine__findnew_module_dso(machine, &m, filename);
799 	if (dso == NULL)
800 		goto out;
801 
802 	map = map__new2(start, dso);
803 	if (map == NULL)
804 		goto out;
805 
806 	map_groups__insert(&machine->kmaps, map);
807 
808 	/* Put the map here because map_groups__insert alread got it */
809 	map__put(map);
810 out:
811 	/* put the dso here, corresponding to  machine__findnew_module_dso */
812 	dso__put(dso);
813 	zfree(&m.name);
814 	return map;
815 }
816 
817 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
818 {
819 	struct rb_node *nd;
820 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
821 
822 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
823 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
824 		ret += __dsos__fprintf(&pos->dsos.head, fp);
825 	}
826 
827 	return ret;
828 }
829 
830 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
831 				     bool (skip)(struct dso *dso, int parm), int parm)
832 {
833 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
834 }
835 
836 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
837 				     bool (skip)(struct dso *dso, int parm), int parm)
838 {
839 	struct rb_node *nd;
840 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
841 
842 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
843 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
844 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
845 	}
846 	return ret;
847 }
848 
849 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
850 {
851 	int i;
852 	size_t printed = 0;
853 	struct dso *kdso = machine__kernel_map(machine)->dso;
854 
855 	if (kdso->has_build_id) {
856 		char filename[PATH_MAX];
857 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
858 					   false))
859 			printed += fprintf(fp, "[0] %s\n", filename);
860 	}
861 
862 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
863 		printed += fprintf(fp, "[%d] %s\n",
864 				   i + kdso->has_build_id, vmlinux_path[i]);
865 
866 	return printed;
867 }
868 
869 size_t machine__fprintf(struct machine *machine, FILE *fp)
870 {
871 	struct rb_node *nd;
872 	size_t ret;
873 	int i;
874 
875 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
876 		struct threads *threads = &machine->threads[i];
877 
878 		down_read(&threads->lock);
879 
880 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
881 
882 		for (nd = rb_first_cached(&threads->entries); nd;
883 		     nd = rb_next(nd)) {
884 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
885 
886 			ret += thread__fprintf(pos, fp);
887 		}
888 
889 		up_read(&threads->lock);
890 	}
891 	return ret;
892 }
893 
894 static struct dso *machine__get_kernel(struct machine *machine)
895 {
896 	const char *vmlinux_name = machine->mmap_name;
897 	struct dso *kernel;
898 
899 	if (machine__is_host(machine)) {
900 		if (symbol_conf.vmlinux_name)
901 			vmlinux_name = symbol_conf.vmlinux_name;
902 
903 		kernel = machine__findnew_kernel(machine, vmlinux_name,
904 						 "[kernel]", DSO_TYPE_KERNEL);
905 	} else {
906 		if (symbol_conf.default_guest_vmlinux_name)
907 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
908 
909 		kernel = machine__findnew_kernel(machine, vmlinux_name,
910 						 "[guest.kernel]",
911 						 DSO_TYPE_GUEST_KERNEL);
912 	}
913 
914 	if (kernel != NULL && (!kernel->has_build_id))
915 		dso__read_running_kernel_build_id(kernel, machine);
916 
917 	return kernel;
918 }
919 
920 struct process_args {
921 	u64 start;
922 };
923 
924 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
925 				    size_t bufsz)
926 {
927 	if (machine__is_default_guest(machine))
928 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
929 	else
930 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
931 }
932 
933 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
934 
935 /* Figure out the start address of kernel map from /proc/kallsyms.
936  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
937  * symbol_name if it's not that important.
938  */
939 static int machine__get_running_kernel_start(struct machine *machine,
940 					     const char **symbol_name,
941 					     u64 *start, u64 *end)
942 {
943 	char filename[PATH_MAX];
944 	int i, err = -1;
945 	const char *name;
946 	u64 addr = 0;
947 
948 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
949 
950 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
951 		return 0;
952 
953 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
954 		err = kallsyms__get_function_start(filename, name, &addr);
955 		if (!err)
956 			break;
957 	}
958 
959 	if (err)
960 		return -1;
961 
962 	if (symbol_name)
963 		*symbol_name = name;
964 
965 	*start = addr;
966 
967 	err = kallsyms__get_function_start(filename, "_etext", &addr);
968 	if (!err)
969 		*end = addr;
970 
971 	return 0;
972 }
973 
974 int machine__create_extra_kernel_map(struct machine *machine,
975 				     struct dso *kernel,
976 				     struct extra_kernel_map *xm)
977 {
978 	struct kmap *kmap;
979 	struct map *map;
980 
981 	map = map__new2(xm->start, kernel);
982 	if (!map)
983 		return -1;
984 
985 	map->end   = xm->end;
986 	map->pgoff = xm->pgoff;
987 
988 	kmap = map__kmap(map);
989 
990 	kmap->kmaps = &machine->kmaps;
991 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
992 
993 	map_groups__insert(&machine->kmaps, map);
994 
995 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
996 		  kmap->name, map->start, map->end);
997 
998 	map__put(map);
999 
1000 	return 0;
1001 }
1002 
1003 static u64 find_entry_trampoline(struct dso *dso)
1004 {
1005 	/* Duplicates are removed so lookup all aliases */
1006 	const char *syms[] = {
1007 		"_entry_trampoline",
1008 		"__entry_trampoline_start",
1009 		"entry_SYSCALL_64_trampoline",
1010 	};
1011 	struct symbol *sym = dso__first_symbol(dso);
1012 	unsigned int i;
1013 
1014 	for (; sym; sym = dso__next_symbol(sym)) {
1015 		if (sym->binding != STB_GLOBAL)
1016 			continue;
1017 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1018 			if (!strcmp(sym->name, syms[i]))
1019 				return sym->start;
1020 		}
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 /*
1027  * These values can be used for kernels that do not have symbols for the entry
1028  * trampolines in kallsyms.
1029  */
1030 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1031 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1032 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1033 
1034 /* Map x86_64 PTI entry trampolines */
1035 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1036 					  struct dso *kernel)
1037 {
1038 	struct map_groups *kmaps = &machine->kmaps;
1039 	struct maps *maps = &kmaps->maps;
1040 	int nr_cpus_avail, cpu;
1041 	bool found = false;
1042 	struct map *map;
1043 	u64 pgoff;
1044 
1045 	/*
1046 	 * In the vmlinux case, pgoff is a virtual address which must now be
1047 	 * mapped to a vmlinux offset.
1048 	 */
1049 	for (map = maps__first(maps); map; map = map__next(map)) {
1050 		struct kmap *kmap = __map__kmap(map);
1051 		struct map *dest_map;
1052 
1053 		if (!kmap || !is_entry_trampoline(kmap->name))
1054 			continue;
1055 
1056 		dest_map = map_groups__find(kmaps, map->pgoff);
1057 		if (dest_map != map)
1058 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1059 		found = true;
1060 	}
1061 	if (found || machine->trampolines_mapped)
1062 		return 0;
1063 
1064 	pgoff = find_entry_trampoline(kernel);
1065 	if (!pgoff)
1066 		return 0;
1067 
1068 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1069 
1070 	/* Add a 1 page map for each CPU's entry trampoline */
1071 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1072 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1073 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1074 			 X86_64_ENTRY_TRAMPOLINE;
1075 		struct extra_kernel_map xm = {
1076 			.start = va,
1077 			.end   = va + page_size,
1078 			.pgoff = pgoff,
1079 		};
1080 
1081 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1082 
1083 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1084 			return -1;
1085 	}
1086 
1087 	machine->trampolines_mapped = nr_cpus_avail;
1088 
1089 	return 0;
1090 }
1091 
1092 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1093 					     struct dso *kernel __maybe_unused)
1094 {
1095 	return 0;
1096 }
1097 
1098 static int
1099 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1100 {
1101 	struct kmap *kmap;
1102 	struct map *map;
1103 
1104 	/* In case of renewal the kernel map, destroy previous one */
1105 	machine__destroy_kernel_maps(machine);
1106 
1107 	machine->vmlinux_map = map__new2(0, kernel);
1108 	if (machine->vmlinux_map == NULL)
1109 		return -1;
1110 
1111 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1112 	map = machine__kernel_map(machine);
1113 	kmap = map__kmap(map);
1114 	if (!kmap)
1115 		return -1;
1116 
1117 	kmap->kmaps = &machine->kmaps;
1118 	map_groups__insert(&machine->kmaps, map);
1119 
1120 	return 0;
1121 }
1122 
1123 void machine__destroy_kernel_maps(struct machine *machine)
1124 {
1125 	struct kmap *kmap;
1126 	struct map *map = machine__kernel_map(machine);
1127 
1128 	if (map == NULL)
1129 		return;
1130 
1131 	kmap = map__kmap(map);
1132 	map_groups__remove(&machine->kmaps, map);
1133 	if (kmap && kmap->ref_reloc_sym) {
1134 		zfree((char **)&kmap->ref_reloc_sym->name);
1135 		zfree(&kmap->ref_reloc_sym);
1136 	}
1137 
1138 	map__zput(machine->vmlinux_map);
1139 }
1140 
1141 int machines__create_guest_kernel_maps(struct machines *machines)
1142 {
1143 	int ret = 0;
1144 	struct dirent **namelist = NULL;
1145 	int i, items = 0;
1146 	char path[PATH_MAX];
1147 	pid_t pid;
1148 	char *endp;
1149 
1150 	if (symbol_conf.default_guest_vmlinux_name ||
1151 	    symbol_conf.default_guest_modules ||
1152 	    symbol_conf.default_guest_kallsyms) {
1153 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1154 	}
1155 
1156 	if (symbol_conf.guestmount) {
1157 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1158 		if (items <= 0)
1159 			return -ENOENT;
1160 		for (i = 0; i < items; i++) {
1161 			if (!isdigit(namelist[i]->d_name[0])) {
1162 				/* Filter out . and .. */
1163 				continue;
1164 			}
1165 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1166 			if ((*endp != '\0') ||
1167 			    (endp == namelist[i]->d_name) ||
1168 			    (errno == ERANGE)) {
1169 				pr_debug("invalid directory (%s). Skipping.\n",
1170 					 namelist[i]->d_name);
1171 				continue;
1172 			}
1173 			sprintf(path, "%s/%s/proc/kallsyms",
1174 				symbol_conf.guestmount,
1175 				namelist[i]->d_name);
1176 			ret = access(path, R_OK);
1177 			if (ret) {
1178 				pr_debug("Can't access file %s\n", path);
1179 				goto failure;
1180 			}
1181 			machines__create_kernel_maps(machines, pid);
1182 		}
1183 failure:
1184 		free(namelist);
1185 	}
1186 
1187 	return ret;
1188 }
1189 
1190 void machines__destroy_kernel_maps(struct machines *machines)
1191 {
1192 	struct rb_node *next = rb_first_cached(&machines->guests);
1193 
1194 	machine__destroy_kernel_maps(&machines->host);
1195 
1196 	while (next) {
1197 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1198 
1199 		next = rb_next(&pos->rb_node);
1200 		rb_erase_cached(&pos->rb_node, &machines->guests);
1201 		machine__delete(pos);
1202 	}
1203 }
1204 
1205 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1206 {
1207 	struct machine *machine = machines__findnew(machines, pid);
1208 
1209 	if (machine == NULL)
1210 		return -1;
1211 
1212 	return machine__create_kernel_maps(machine);
1213 }
1214 
1215 int machine__load_kallsyms(struct machine *machine, const char *filename)
1216 {
1217 	struct map *map = machine__kernel_map(machine);
1218 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1219 
1220 	if (ret > 0) {
1221 		dso__set_loaded(map->dso);
1222 		/*
1223 		 * Since /proc/kallsyms will have multiple sessions for the
1224 		 * kernel, with modules between them, fixup the end of all
1225 		 * sections.
1226 		 */
1227 		map_groups__fixup_end(&machine->kmaps);
1228 	}
1229 
1230 	return ret;
1231 }
1232 
1233 int machine__load_vmlinux_path(struct machine *machine)
1234 {
1235 	struct map *map = machine__kernel_map(machine);
1236 	int ret = dso__load_vmlinux_path(map->dso, map);
1237 
1238 	if (ret > 0)
1239 		dso__set_loaded(map->dso);
1240 
1241 	return ret;
1242 }
1243 
1244 static char *get_kernel_version(const char *root_dir)
1245 {
1246 	char version[PATH_MAX];
1247 	FILE *file;
1248 	char *name, *tmp;
1249 	const char *prefix = "Linux version ";
1250 
1251 	sprintf(version, "%s/proc/version", root_dir);
1252 	file = fopen(version, "r");
1253 	if (!file)
1254 		return NULL;
1255 
1256 	tmp = fgets(version, sizeof(version), file);
1257 	fclose(file);
1258 	if (!tmp)
1259 		return NULL;
1260 
1261 	name = strstr(version, prefix);
1262 	if (!name)
1263 		return NULL;
1264 	name += strlen(prefix);
1265 	tmp = strchr(name, ' ');
1266 	if (tmp)
1267 		*tmp = '\0';
1268 
1269 	return strdup(name);
1270 }
1271 
1272 static bool is_kmod_dso(struct dso *dso)
1273 {
1274 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1275 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1276 }
1277 
1278 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1279 				       struct kmod_path *m)
1280 {
1281 	char *long_name;
1282 	struct map *map = map_groups__find_by_name(mg, m->name);
1283 
1284 	if (map == NULL)
1285 		return 0;
1286 
1287 	long_name = strdup(path);
1288 	if (long_name == NULL)
1289 		return -ENOMEM;
1290 
1291 	dso__set_long_name(map->dso, long_name, true);
1292 	dso__kernel_module_get_build_id(map->dso, "");
1293 
1294 	/*
1295 	 * Full name could reveal us kmod compression, so
1296 	 * we need to update the symtab_type if needed.
1297 	 */
1298 	if (m->comp && is_kmod_dso(map->dso)) {
1299 		map->dso->symtab_type++;
1300 		map->dso->comp = m->comp;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1307 				const char *dir_name, int depth)
1308 {
1309 	struct dirent *dent;
1310 	DIR *dir = opendir(dir_name);
1311 	int ret = 0;
1312 
1313 	if (!dir) {
1314 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1315 		return -1;
1316 	}
1317 
1318 	while ((dent = readdir(dir)) != NULL) {
1319 		char path[PATH_MAX];
1320 		struct stat st;
1321 
1322 		/*sshfs might return bad dent->d_type, so we have to stat*/
1323 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1324 		if (stat(path, &st))
1325 			continue;
1326 
1327 		if (S_ISDIR(st.st_mode)) {
1328 			if (!strcmp(dent->d_name, ".") ||
1329 			    !strcmp(dent->d_name, ".."))
1330 				continue;
1331 
1332 			/* Do not follow top-level source and build symlinks */
1333 			if (depth == 0) {
1334 				if (!strcmp(dent->d_name, "source") ||
1335 				    !strcmp(dent->d_name, "build"))
1336 					continue;
1337 			}
1338 
1339 			ret = map_groups__set_modules_path_dir(mg, path,
1340 							       depth + 1);
1341 			if (ret < 0)
1342 				goto out;
1343 		} else {
1344 			struct kmod_path m;
1345 
1346 			ret = kmod_path__parse_name(&m, dent->d_name);
1347 			if (ret)
1348 				goto out;
1349 
1350 			if (m.kmod)
1351 				ret = map_groups__set_module_path(mg, path, &m);
1352 
1353 			zfree(&m.name);
1354 
1355 			if (ret)
1356 				goto out;
1357 		}
1358 	}
1359 
1360 out:
1361 	closedir(dir);
1362 	return ret;
1363 }
1364 
1365 static int machine__set_modules_path(struct machine *machine)
1366 {
1367 	char *version;
1368 	char modules_path[PATH_MAX];
1369 
1370 	version = get_kernel_version(machine->root_dir);
1371 	if (!version)
1372 		return -1;
1373 
1374 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1375 		 machine->root_dir, version);
1376 	free(version);
1377 
1378 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1379 }
1380 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1381 				const char *name __maybe_unused)
1382 {
1383 	return 0;
1384 }
1385 
1386 static int machine__create_module(void *arg, const char *name, u64 start,
1387 				  u64 size)
1388 {
1389 	struct machine *machine = arg;
1390 	struct map *map;
1391 
1392 	if (arch__fix_module_text_start(&start, name) < 0)
1393 		return -1;
1394 
1395 	map = machine__findnew_module_map(machine, start, name);
1396 	if (map == NULL)
1397 		return -1;
1398 	map->end = start + size;
1399 
1400 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1401 
1402 	return 0;
1403 }
1404 
1405 static int machine__create_modules(struct machine *machine)
1406 {
1407 	const char *modules;
1408 	char path[PATH_MAX];
1409 
1410 	if (machine__is_default_guest(machine)) {
1411 		modules = symbol_conf.default_guest_modules;
1412 	} else {
1413 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1414 		modules = path;
1415 	}
1416 
1417 	if (symbol__restricted_filename(modules, "/proc/modules"))
1418 		return -1;
1419 
1420 	if (modules__parse(modules, machine, machine__create_module))
1421 		return -1;
1422 
1423 	if (!machine__set_modules_path(machine))
1424 		return 0;
1425 
1426 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1427 
1428 	return 0;
1429 }
1430 
1431 static void machine__set_kernel_mmap(struct machine *machine,
1432 				     u64 start, u64 end)
1433 {
1434 	machine->vmlinux_map->start = start;
1435 	machine->vmlinux_map->end   = end;
1436 	/*
1437 	 * Be a bit paranoid here, some perf.data file came with
1438 	 * a zero sized synthesized MMAP event for the kernel.
1439 	 */
1440 	if (start == 0 && end == 0)
1441 		machine->vmlinux_map->end = ~0ULL;
1442 }
1443 
1444 static void machine__update_kernel_mmap(struct machine *machine,
1445 				     u64 start, u64 end)
1446 {
1447 	struct map *map = machine__kernel_map(machine);
1448 
1449 	map__get(map);
1450 	map_groups__remove(&machine->kmaps, map);
1451 
1452 	machine__set_kernel_mmap(machine, start, end);
1453 
1454 	map_groups__insert(&machine->kmaps, map);
1455 	map__put(map);
1456 }
1457 
1458 int machine__create_kernel_maps(struct machine *machine)
1459 {
1460 	struct dso *kernel = machine__get_kernel(machine);
1461 	const char *name = NULL;
1462 	struct map *map;
1463 	u64 start = 0, end = ~0ULL;
1464 	int ret;
1465 
1466 	if (kernel == NULL)
1467 		return -1;
1468 
1469 	ret = __machine__create_kernel_maps(machine, kernel);
1470 	if (ret < 0)
1471 		goto out_put;
1472 
1473 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1474 		if (machine__is_host(machine))
1475 			pr_debug("Problems creating module maps, "
1476 				 "continuing anyway...\n");
1477 		else
1478 			pr_debug("Problems creating module maps for guest %d, "
1479 				 "continuing anyway...\n", machine->pid);
1480 	}
1481 
1482 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1483 		if (name &&
1484 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1485 			machine__destroy_kernel_maps(machine);
1486 			ret = -1;
1487 			goto out_put;
1488 		}
1489 
1490 		/*
1491 		 * we have a real start address now, so re-order the kmaps
1492 		 * assume it's the last in the kmaps
1493 		 */
1494 		machine__update_kernel_mmap(machine, start, end);
1495 	}
1496 
1497 	if (machine__create_extra_kernel_maps(machine, kernel))
1498 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1499 
1500 	if (end == ~0ULL) {
1501 		/* update end address of the kernel map using adjacent module address */
1502 		map = map__next(machine__kernel_map(machine));
1503 		if (map)
1504 			machine__set_kernel_mmap(machine, start, map->start);
1505 	}
1506 
1507 out_put:
1508 	dso__put(kernel);
1509 	return ret;
1510 }
1511 
1512 static bool machine__uses_kcore(struct machine *machine)
1513 {
1514 	struct dso *dso;
1515 
1516 	list_for_each_entry(dso, &machine->dsos.head, node) {
1517 		if (dso__is_kcore(dso))
1518 			return true;
1519 	}
1520 
1521 	return false;
1522 }
1523 
1524 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1525 					     union perf_event *event)
1526 {
1527 	return machine__is(machine, "x86_64") &&
1528 	       is_entry_trampoline(event->mmap.filename);
1529 }
1530 
1531 static int machine__process_extra_kernel_map(struct machine *machine,
1532 					     union perf_event *event)
1533 {
1534 	struct map *kernel_map = machine__kernel_map(machine);
1535 	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1536 	struct extra_kernel_map xm = {
1537 		.start = event->mmap.start,
1538 		.end   = event->mmap.start + event->mmap.len,
1539 		.pgoff = event->mmap.pgoff,
1540 	};
1541 
1542 	if (kernel == NULL)
1543 		return -1;
1544 
1545 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1546 
1547 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1548 }
1549 
1550 static int machine__process_kernel_mmap_event(struct machine *machine,
1551 					      union perf_event *event)
1552 {
1553 	struct map *map;
1554 	enum dso_kernel_type kernel_type;
1555 	bool is_kernel_mmap;
1556 
1557 	/* If we have maps from kcore then we do not need or want any others */
1558 	if (machine__uses_kcore(machine))
1559 		return 0;
1560 
1561 	if (machine__is_host(machine))
1562 		kernel_type = DSO_TYPE_KERNEL;
1563 	else
1564 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1565 
1566 	is_kernel_mmap = memcmp(event->mmap.filename,
1567 				machine->mmap_name,
1568 				strlen(machine->mmap_name) - 1) == 0;
1569 	if (event->mmap.filename[0] == '/' ||
1570 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1571 		map = machine__findnew_module_map(machine, event->mmap.start,
1572 						  event->mmap.filename);
1573 		if (map == NULL)
1574 			goto out_problem;
1575 
1576 		map->end = map->start + event->mmap.len;
1577 	} else if (is_kernel_mmap) {
1578 		const char *symbol_name = (event->mmap.filename +
1579 				strlen(machine->mmap_name));
1580 		/*
1581 		 * Should be there already, from the build-id table in
1582 		 * the header.
1583 		 */
1584 		struct dso *kernel = NULL;
1585 		struct dso *dso;
1586 
1587 		down_read(&machine->dsos.lock);
1588 
1589 		list_for_each_entry(dso, &machine->dsos.head, node) {
1590 
1591 			/*
1592 			 * The cpumode passed to is_kernel_module is not the
1593 			 * cpumode of *this* event. If we insist on passing
1594 			 * correct cpumode to is_kernel_module, we should
1595 			 * record the cpumode when we adding this dso to the
1596 			 * linked list.
1597 			 *
1598 			 * However we don't really need passing correct
1599 			 * cpumode.  We know the correct cpumode must be kernel
1600 			 * mode (if not, we should not link it onto kernel_dsos
1601 			 * list).
1602 			 *
1603 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1604 			 * is_kernel_module() treats it as a kernel cpumode.
1605 			 */
1606 
1607 			if (!dso->kernel ||
1608 			    is_kernel_module(dso->long_name,
1609 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1610 				continue;
1611 
1612 
1613 			kernel = dso;
1614 			break;
1615 		}
1616 
1617 		up_read(&machine->dsos.lock);
1618 
1619 		if (kernel == NULL)
1620 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1621 		if (kernel == NULL)
1622 			goto out_problem;
1623 
1624 		kernel->kernel = kernel_type;
1625 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1626 			dso__put(kernel);
1627 			goto out_problem;
1628 		}
1629 
1630 		if (strstr(kernel->long_name, "vmlinux"))
1631 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1632 
1633 		machine__update_kernel_mmap(machine, event->mmap.start,
1634 					 event->mmap.start + event->mmap.len);
1635 
1636 		/*
1637 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1638 		 * symbol. Effectively having zero here means that at record
1639 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1640 		 */
1641 		if (event->mmap.pgoff != 0) {
1642 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1643 							symbol_name,
1644 							event->mmap.pgoff);
1645 		}
1646 
1647 		if (machine__is_default_guest(machine)) {
1648 			/*
1649 			 * preload dso of guest kernel and modules
1650 			 */
1651 			dso__load(kernel, machine__kernel_map(machine));
1652 		}
1653 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1654 		return machine__process_extra_kernel_map(machine, event);
1655 	}
1656 	return 0;
1657 out_problem:
1658 	return -1;
1659 }
1660 
1661 int machine__process_mmap2_event(struct machine *machine,
1662 				 union perf_event *event,
1663 				 struct perf_sample *sample)
1664 {
1665 	struct thread *thread;
1666 	struct map *map;
1667 	int ret = 0;
1668 
1669 	if (dump_trace)
1670 		perf_event__fprintf_mmap2(event, stdout);
1671 
1672 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1673 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1674 		ret = machine__process_kernel_mmap_event(machine, event);
1675 		if (ret < 0)
1676 			goto out_problem;
1677 		return 0;
1678 	}
1679 
1680 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1681 					event->mmap2.tid);
1682 	if (thread == NULL)
1683 		goto out_problem;
1684 
1685 	map = map__new(machine, event->mmap2.start,
1686 			event->mmap2.len, event->mmap2.pgoff,
1687 			event->mmap2.maj,
1688 			event->mmap2.min, event->mmap2.ino,
1689 			event->mmap2.ino_generation,
1690 			event->mmap2.prot,
1691 			event->mmap2.flags,
1692 			event->mmap2.filename, thread);
1693 
1694 	if (map == NULL)
1695 		goto out_problem_map;
1696 
1697 	ret = thread__insert_map(thread, map);
1698 	if (ret)
1699 		goto out_problem_insert;
1700 
1701 	thread__put(thread);
1702 	map__put(map);
1703 	return 0;
1704 
1705 out_problem_insert:
1706 	map__put(map);
1707 out_problem_map:
1708 	thread__put(thread);
1709 out_problem:
1710 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1711 	return 0;
1712 }
1713 
1714 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1715 				struct perf_sample *sample)
1716 {
1717 	struct thread *thread;
1718 	struct map *map;
1719 	u32 prot = 0;
1720 	int ret = 0;
1721 
1722 	if (dump_trace)
1723 		perf_event__fprintf_mmap(event, stdout);
1724 
1725 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1726 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1727 		ret = machine__process_kernel_mmap_event(machine, event);
1728 		if (ret < 0)
1729 			goto out_problem;
1730 		return 0;
1731 	}
1732 
1733 	thread = machine__findnew_thread(machine, event->mmap.pid,
1734 					 event->mmap.tid);
1735 	if (thread == NULL)
1736 		goto out_problem;
1737 
1738 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1739 		prot = PROT_EXEC;
1740 
1741 	map = map__new(machine, event->mmap.start,
1742 			event->mmap.len, event->mmap.pgoff,
1743 			0, 0, 0, 0, prot, 0,
1744 			event->mmap.filename,
1745 			thread);
1746 
1747 	if (map == NULL)
1748 		goto out_problem_map;
1749 
1750 	ret = thread__insert_map(thread, map);
1751 	if (ret)
1752 		goto out_problem_insert;
1753 
1754 	thread__put(thread);
1755 	map__put(map);
1756 	return 0;
1757 
1758 out_problem_insert:
1759 	map__put(map);
1760 out_problem_map:
1761 	thread__put(thread);
1762 out_problem:
1763 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1764 	return 0;
1765 }
1766 
1767 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1768 {
1769 	struct threads *threads = machine__threads(machine, th->tid);
1770 
1771 	if (threads->last_match == th)
1772 		threads__set_last_match(threads, NULL);
1773 
1774 	if (lock)
1775 		down_write(&threads->lock);
1776 
1777 	BUG_ON(refcount_read(&th->refcnt) == 0);
1778 
1779 	rb_erase_cached(&th->rb_node, &threads->entries);
1780 	RB_CLEAR_NODE(&th->rb_node);
1781 	--threads->nr;
1782 	/*
1783 	 * Move it first to the dead_threads list, then drop the reference,
1784 	 * if this is the last reference, then the thread__delete destructor
1785 	 * will be called and we will remove it from the dead_threads list.
1786 	 */
1787 	list_add_tail(&th->node, &threads->dead);
1788 
1789 	/*
1790 	 * We need to do the put here because if this is the last refcount,
1791 	 * then we will be touching the threads->dead head when removing the
1792 	 * thread.
1793 	 */
1794 	thread__put(th);
1795 
1796 	if (lock)
1797 		up_write(&threads->lock);
1798 }
1799 
1800 void machine__remove_thread(struct machine *machine, struct thread *th)
1801 {
1802 	return __machine__remove_thread(machine, th, true);
1803 }
1804 
1805 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1806 				struct perf_sample *sample)
1807 {
1808 	struct thread *thread = machine__find_thread(machine,
1809 						     event->fork.pid,
1810 						     event->fork.tid);
1811 	struct thread *parent = machine__findnew_thread(machine,
1812 							event->fork.ppid,
1813 							event->fork.ptid);
1814 	bool do_maps_clone = true;
1815 	int err = 0;
1816 
1817 	if (dump_trace)
1818 		perf_event__fprintf_task(event, stdout);
1819 
1820 	/*
1821 	 * There may be an existing thread that is not actually the parent,
1822 	 * either because we are processing events out of order, or because the
1823 	 * (fork) event that would have removed the thread was lost. Assume the
1824 	 * latter case and continue on as best we can.
1825 	 */
1826 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1827 		dump_printf("removing erroneous parent thread %d/%d\n",
1828 			    parent->pid_, parent->tid);
1829 		machine__remove_thread(machine, parent);
1830 		thread__put(parent);
1831 		parent = machine__findnew_thread(machine, event->fork.ppid,
1832 						 event->fork.ptid);
1833 	}
1834 
1835 	/* if a thread currently exists for the thread id remove it */
1836 	if (thread != NULL) {
1837 		machine__remove_thread(machine, thread);
1838 		thread__put(thread);
1839 	}
1840 
1841 	thread = machine__findnew_thread(machine, event->fork.pid,
1842 					 event->fork.tid);
1843 	/*
1844 	 * When synthesizing FORK events, we are trying to create thread
1845 	 * objects for the already running tasks on the machine.
1846 	 *
1847 	 * Normally, for a kernel FORK event, we want to clone the parent's
1848 	 * maps because that is what the kernel just did.
1849 	 *
1850 	 * But when synthesizing, this should not be done.  If we do, we end up
1851 	 * with overlapping maps as we process the sythesized MMAP2 events that
1852 	 * get delivered shortly thereafter.
1853 	 *
1854 	 * Use the FORK event misc flags in an internal way to signal this
1855 	 * situation, so we can elide the map clone when appropriate.
1856 	 */
1857 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1858 		do_maps_clone = false;
1859 
1860 	if (thread == NULL || parent == NULL ||
1861 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1862 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1863 		err = -1;
1864 	}
1865 	thread__put(thread);
1866 	thread__put(parent);
1867 
1868 	return err;
1869 }
1870 
1871 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1872 				struct perf_sample *sample __maybe_unused)
1873 {
1874 	struct thread *thread = machine__find_thread(machine,
1875 						     event->fork.pid,
1876 						     event->fork.tid);
1877 
1878 	if (dump_trace)
1879 		perf_event__fprintf_task(event, stdout);
1880 
1881 	if (thread != NULL) {
1882 		thread__exited(thread);
1883 		thread__put(thread);
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 int machine__process_event(struct machine *machine, union perf_event *event,
1890 			   struct perf_sample *sample)
1891 {
1892 	int ret;
1893 
1894 	switch (event->header.type) {
1895 	case PERF_RECORD_COMM:
1896 		ret = machine__process_comm_event(machine, event, sample); break;
1897 	case PERF_RECORD_MMAP:
1898 		ret = machine__process_mmap_event(machine, event, sample); break;
1899 	case PERF_RECORD_NAMESPACES:
1900 		ret = machine__process_namespaces_event(machine, event, sample); break;
1901 	case PERF_RECORD_MMAP2:
1902 		ret = machine__process_mmap2_event(machine, event, sample); break;
1903 	case PERF_RECORD_FORK:
1904 		ret = machine__process_fork_event(machine, event, sample); break;
1905 	case PERF_RECORD_EXIT:
1906 		ret = machine__process_exit_event(machine, event, sample); break;
1907 	case PERF_RECORD_LOST:
1908 		ret = machine__process_lost_event(machine, event, sample); break;
1909 	case PERF_RECORD_AUX:
1910 		ret = machine__process_aux_event(machine, event); break;
1911 	case PERF_RECORD_ITRACE_START:
1912 		ret = machine__process_itrace_start_event(machine, event); break;
1913 	case PERF_RECORD_LOST_SAMPLES:
1914 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1915 	case PERF_RECORD_SWITCH:
1916 	case PERF_RECORD_SWITCH_CPU_WIDE:
1917 		ret = machine__process_switch_event(machine, event); break;
1918 	case PERF_RECORD_KSYMBOL:
1919 		ret = machine__process_ksymbol(machine, event, sample); break;
1920 	case PERF_RECORD_BPF_EVENT:
1921 		ret = machine__process_bpf_event(machine, event, sample); break;
1922 	default:
1923 		ret = -1;
1924 		break;
1925 	}
1926 
1927 	return ret;
1928 }
1929 
1930 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1931 {
1932 	if (!regexec(regex, sym->name, 0, NULL, 0))
1933 		return 1;
1934 	return 0;
1935 }
1936 
1937 static void ip__resolve_ams(struct thread *thread,
1938 			    struct addr_map_symbol *ams,
1939 			    u64 ip)
1940 {
1941 	struct addr_location al;
1942 
1943 	memset(&al, 0, sizeof(al));
1944 	/*
1945 	 * We cannot use the header.misc hint to determine whether a
1946 	 * branch stack address is user, kernel, guest, hypervisor.
1947 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1948 	 * Thus, we have to try consecutively until we find a match
1949 	 * or else, the symbol is unknown
1950 	 */
1951 	thread__find_cpumode_addr_location(thread, ip, &al);
1952 
1953 	ams->addr = ip;
1954 	ams->al_addr = al.addr;
1955 	ams->sym = al.sym;
1956 	ams->map = al.map;
1957 	ams->phys_addr = 0;
1958 }
1959 
1960 static void ip__resolve_data(struct thread *thread,
1961 			     u8 m, struct addr_map_symbol *ams,
1962 			     u64 addr, u64 phys_addr)
1963 {
1964 	struct addr_location al;
1965 
1966 	memset(&al, 0, sizeof(al));
1967 
1968 	thread__find_symbol(thread, m, addr, &al);
1969 
1970 	ams->addr = addr;
1971 	ams->al_addr = al.addr;
1972 	ams->sym = al.sym;
1973 	ams->map = al.map;
1974 	ams->phys_addr = phys_addr;
1975 }
1976 
1977 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1978 				     struct addr_location *al)
1979 {
1980 	struct mem_info *mi = mem_info__new();
1981 
1982 	if (!mi)
1983 		return NULL;
1984 
1985 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1986 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1987 			 sample->addr, sample->phys_addr);
1988 	mi->data_src.val = sample->data_src;
1989 
1990 	return mi;
1991 }
1992 
1993 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1994 {
1995 	char *srcline = NULL;
1996 
1997 	if (!map || callchain_param.key == CCKEY_FUNCTION)
1998 		return srcline;
1999 
2000 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2001 	if (!srcline) {
2002 		bool show_sym = false;
2003 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2004 
2005 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2006 				      sym, show_sym, show_addr, ip);
2007 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2008 	}
2009 
2010 	return srcline;
2011 }
2012 
2013 struct iterations {
2014 	int nr_loop_iter;
2015 	u64 cycles;
2016 };
2017 
2018 static int add_callchain_ip(struct thread *thread,
2019 			    struct callchain_cursor *cursor,
2020 			    struct symbol **parent,
2021 			    struct addr_location *root_al,
2022 			    u8 *cpumode,
2023 			    u64 ip,
2024 			    bool branch,
2025 			    struct branch_flags *flags,
2026 			    struct iterations *iter,
2027 			    u64 branch_from)
2028 {
2029 	struct addr_location al;
2030 	int nr_loop_iter = 0;
2031 	u64 iter_cycles = 0;
2032 	const char *srcline = NULL;
2033 
2034 	al.filtered = 0;
2035 	al.sym = NULL;
2036 	if (!cpumode) {
2037 		thread__find_cpumode_addr_location(thread, ip, &al);
2038 	} else {
2039 		if (ip >= PERF_CONTEXT_MAX) {
2040 			switch (ip) {
2041 			case PERF_CONTEXT_HV:
2042 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2043 				break;
2044 			case PERF_CONTEXT_KERNEL:
2045 				*cpumode = PERF_RECORD_MISC_KERNEL;
2046 				break;
2047 			case PERF_CONTEXT_USER:
2048 				*cpumode = PERF_RECORD_MISC_USER;
2049 				break;
2050 			default:
2051 				pr_debug("invalid callchain context: "
2052 					 "%"PRId64"\n", (s64) ip);
2053 				/*
2054 				 * It seems the callchain is corrupted.
2055 				 * Discard all.
2056 				 */
2057 				callchain_cursor_reset(cursor);
2058 				return 1;
2059 			}
2060 			return 0;
2061 		}
2062 		thread__find_symbol(thread, *cpumode, ip, &al);
2063 	}
2064 
2065 	if (al.sym != NULL) {
2066 		if (perf_hpp_list.parent && !*parent &&
2067 		    symbol__match_regex(al.sym, &parent_regex))
2068 			*parent = al.sym;
2069 		else if (have_ignore_callees && root_al &&
2070 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2071 			/* Treat this symbol as the root,
2072 			   forgetting its callees. */
2073 			*root_al = al;
2074 			callchain_cursor_reset(cursor);
2075 		}
2076 	}
2077 
2078 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2079 		return 0;
2080 
2081 	if (iter) {
2082 		nr_loop_iter = iter->nr_loop_iter;
2083 		iter_cycles = iter->cycles;
2084 	}
2085 
2086 	srcline = callchain_srcline(al.map, al.sym, al.addr);
2087 	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2088 				       branch, flags, nr_loop_iter,
2089 				       iter_cycles, branch_from, srcline);
2090 }
2091 
2092 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2093 					   struct addr_location *al)
2094 {
2095 	unsigned int i;
2096 	const struct branch_stack *bs = sample->branch_stack;
2097 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2098 
2099 	if (!bi)
2100 		return NULL;
2101 
2102 	for (i = 0; i < bs->nr; i++) {
2103 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2104 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2105 		bi[i].flags = bs->entries[i].flags;
2106 	}
2107 	return bi;
2108 }
2109 
2110 static void save_iterations(struct iterations *iter,
2111 			    struct branch_entry *be, int nr)
2112 {
2113 	int i;
2114 
2115 	iter->nr_loop_iter++;
2116 	iter->cycles = 0;
2117 
2118 	for (i = 0; i < nr; i++)
2119 		iter->cycles += be[i].flags.cycles;
2120 }
2121 
2122 #define CHASHSZ 127
2123 #define CHASHBITS 7
2124 #define NO_ENTRY 0xff
2125 
2126 #define PERF_MAX_BRANCH_DEPTH 127
2127 
2128 /* Remove loops. */
2129 static int remove_loops(struct branch_entry *l, int nr,
2130 			struct iterations *iter)
2131 {
2132 	int i, j, off;
2133 	unsigned char chash[CHASHSZ];
2134 
2135 	memset(chash, NO_ENTRY, sizeof(chash));
2136 
2137 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2138 
2139 	for (i = 0; i < nr; i++) {
2140 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2141 
2142 		/* no collision handling for now */
2143 		if (chash[h] == NO_ENTRY) {
2144 			chash[h] = i;
2145 		} else if (l[chash[h]].from == l[i].from) {
2146 			bool is_loop = true;
2147 			/* check if it is a real loop */
2148 			off = 0;
2149 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2150 				if (l[j].from != l[i + off].from) {
2151 					is_loop = false;
2152 					break;
2153 				}
2154 			if (is_loop) {
2155 				j = nr - (i + off);
2156 				if (j > 0) {
2157 					save_iterations(iter + i + off,
2158 						l + i, off);
2159 
2160 					memmove(iter + i, iter + i + off,
2161 						j * sizeof(*iter));
2162 
2163 					memmove(l + i, l + i + off,
2164 						j * sizeof(*l));
2165 				}
2166 
2167 				nr -= off;
2168 			}
2169 		}
2170 	}
2171 	return nr;
2172 }
2173 
2174 /*
2175  * Recolve LBR callstack chain sample
2176  * Return:
2177  * 1 on success get LBR callchain information
2178  * 0 no available LBR callchain information, should try fp
2179  * negative error code on other errors.
2180  */
2181 static int resolve_lbr_callchain_sample(struct thread *thread,
2182 					struct callchain_cursor *cursor,
2183 					struct perf_sample *sample,
2184 					struct symbol **parent,
2185 					struct addr_location *root_al,
2186 					int max_stack)
2187 {
2188 	struct ip_callchain *chain = sample->callchain;
2189 	int chain_nr = min(max_stack, (int)chain->nr), i;
2190 	u8 cpumode = PERF_RECORD_MISC_USER;
2191 	u64 ip, branch_from = 0;
2192 
2193 	for (i = 0; i < chain_nr; i++) {
2194 		if (chain->ips[i] == PERF_CONTEXT_USER)
2195 			break;
2196 	}
2197 
2198 	/* LBR only affects the user callchain */
2199 	if (i != chain_nr) {
2200 		struct branch_stack *lbr_stack = sample->branch_stack;
2201 		int lbr_nr = lbr_stack->nr, j, k;
2202 		bool branch;
2203 		struct branch_flags *flags;
2204 		/*
2205 		 * LBR callstack can only get user call chain.
2206 		 * The mix_chain_nr is kernel call chain
2207 		 * number plus LBR user call chain number.
2208 		 * i is kernel call chain number,
2209 		 * 1 is PERF_CONTEXT_USER,
2210 		 * lbr_nr + 1 is the user call chain number.
2211 		 * For details, please refer to the comments
2212 		 * in callchain__printf
2213 		 */
2214 		int mix_chain_nr = i + 1 + lbr_nr + 1;
2215 
2216 		for (j = 0; j < mix_chain_nr; j++) {
2217 			int err;
2218 			branch = false;
2219 			flags = NULL;
2220 
2221 			if (callchain_param.order == ORDER_CALLEE) {
2222 				if (j < i + 1)
2223 					ip = chain->ips[j];
2224 				else if (j > i + 1) {
2225 					k = j - i - 2;
2226 					ip = lbr_stack->entries[k].from;
2227 					branch = true;
2228 					flags = &lbr_stack->entries[k].flags;
2229 				} else {
2230 					ip = lbr_stack->entries[0].to;
2231 					branch = true;
2232 					flags = &lbr_stack->entries[0].flags;
2233 					branch_from =
2234 						lbr_stack->entries[0].from;
2235 				}
2236 			} else {
2237 				if (j < lbr_nr) {
2238 					k = lbr_nr - j - 1;
2239 					ip = lbr_stack->entries[k].from;
2240 					branch = true;
2241 					flags = &lbr_stack->entries[k].flags;
2242 				}
2243 				else if (j > lbr_nr)
2244 					ip = chain->ips[i + 1 - (j - lbr_nr)];
2245 				else {
2246 					ip = lbr_stack->entries[0].to;
2247 					branch = true;
2248 					flags = &lbr_stack->entries[0].flags;
2249 					branch_from =
2250 						lbr_stack->entries[0].from;
2251 				}
2252 			}
2253 
2254 			err = add_callchain_ip(thread, cursor, parent,
2255 					       root_al, &cpumode, ip,
2256 					       branch, flags, NULL,
2257 					       branch_from);
2258 			if (err)
2259 				return (err < 0) ? err : 0;
2260 		}
2261 		return 1;
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2268 			     struct callchain_cursor *cursor,
2269 			     struct symbol **parent,
2270 			     struct addr_location *root_al,
2271 			     u8 *cpumode, int ent)
2272 {
2273 	int err = 0;
2274 
2275 	while (--ent >= 0) {
2276 		u64 ip = chain->ips[ent];
2277 
2278 		if (ip >= PERF_CONTEXT_MAX) {
2279 			err = add_callchain_ip(thread, cursor, parent,
2280 					       root_al, cpumode, ip,
2281 					       false, NULL, NULL, 0);
2282 			break;
2283 		}
2284 	}
2285 	return err;
2286 }
2287 
2288 static int thread__resolve_callchain_sample(struct thread *thread,
2289 					    struct callchain_cursor *cursor,
2290 					    struct perf_evsel *evsel,
2291 					    struct perf_sample *sample,
2292 					    struct symbol **parent,
2293 					    struct addr_location *root_al,
2294 					    int max_stack)
2295 {
2296 	struct branch_stack *branch = sample->branch_stack;
2297 	struct ip_callchain *chain = sample->callchain;
2298 	int chain_nr = 0;
2299 	u8 cpumode = PERF_RECORD_MISC_USER;
2300 	int i, j, err, nr_entries;
2301 	int skip_idx = -1;
2302 	int first_call = 0;
2303 
2304 	if (chain)
2305 		chain_nr = chain->nr;
2306 
2307 	if (perf_evsel__has_branch_callstack(evsel)) {
2308 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2309 						   root_al, max_stack);
2310 		if (err)
2311 			return (err < 0) ? err : 0;
2312 	}
2313 
2314 	/*
2315 	 * Based on DWARF debug information, some architectures skip
2316 	 * a callchain entry saved by the kernel.
2317 	 */
2318 	skip_idx = arch_skip_callchain_idx(thread, chain);
2319 
2320 	/*
2321 	 * Add branches to call stack for easier browsing. This gives
2322 	 * more context for a sample than just the callers.
2323 	 *
2324 	 * This uses individual histograms of paths compared to the
2325 	 * aggregated histograms the normal LBR mode uses.
2326 	 *
2327 	 * Limitations for now:
2328 	 * - No extra filters
2329 	 * - No annotations (should annotate somehow)
2330 	 */
2331 
2332 	if (branch && callchain_param.branch_callstack) {
2333 		int nr = min(max_stack, (int)branch->nr);
2334 		struct branch_entry be[nr];
2335 		struct iterations iter[nr];
2336 
2337 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2338 			pr_warning("corrupted branch chain. skipping...\n");
2339 			goto check_calls;
2340 		}
2341 
2342 		for (i = 0; i < nr; i++) {
2343 			if (callchain_param.order == ORDER_CALLEE) {
2344 				be[i] = branch->entries[i];
2345 
2346 				if (chain == NULL)
2347 					continue;
2348 
2349 				/*
2350 				 * Check for overlap into the callchain.
2351 				 * The return address is one off compared to
2352 				 * the branch entry. To adjust for this
2353 				 * assume the calling instruction is not longer
2354 				 * than 8 bytes.
2355 				 */
2356 				if (i == skip_idx ||
2357 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2358 					first_call++;
2359 				else if (be[i].from < chain->ips[first_call] &&
2360 				    be[i].from >= chain->ips[first_call] - 8)
2361 					first_call++;
2362 			} else
2363 				be[i] = branch->entries[branch->nr - i - 1];
2364 		}
2365 
2366 		memset(iter, 0, sizeof(struct iterations) * nr);
2367 		nr = remove_loops(be, nr, iter);
2368 
2369 		for (i = 0; i < nr; i++) {
2370 			err = add_callchain_ip(thread, cursor, parent,
2371 					       root_al,
2372 					       NULL, be[i].to,
2373 					       true, &be[i].flags,
2374 					       NULL, be[i].from);
2375 
2376 			if (!err)
2377 				err = add_callchain_ip(thread, cursor, parent, root_al,
2378 						       NULL, be[i].from,
2379 						       true, &be[i].flags,
2380 						       &iter[i], 0);
2381 			if (err == -EINVAL)
2382 				break;
2383 			if (err)
2384 				return err;
2385 		}
2386 
2387 		if (chain_nr == 0)
2388 			return 0;
2389 
2390 		chain_nr -= nr;
2391 	}
2392 
2393 check_calls:
2394 	if (callchain_param.order != ORDER_CALLEE) {
2395 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2396 					&cpumode, chain->nr - first_call);
2397 		if (err)
2398 			return (err < 0) ? err : 0;
2399 	}
2400 	for (i = first_call, nr_entries = 0;
2401 	     i < chain_nr && nr_entries < max_stack; i++) {
2402 		u64 ip;
2403 
2404 		if (callchain_param.order == ORDER_CALLEE)
2405 			j = i;
2406 		else
2407 			j = chain->nr - i - 1;
2408 
2409 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2410 		if (j == skip_idx)
2411 			continue;
2412 #endif
2413 		ip = chain->ips[j];
2414 		if (ip < PERF_CONTEXT_MAX)
2415                        ++nr_entries;
2416 		else if (callchain_param.order != ORDER_CALLEE) {
2417 			err = find_prev_cpumode(chain, thread, cursor, parent,
2418 						root_al, &cpumode, j);
2419 			if (err)
2420 				return (err < 0) ? err : 0;
2421 			continue;
2422 		}
2423 
2424 		err = add_callchain_ip(thread, cursor, parent,
2425 				       root_al, &cpumode, ip,
2426 				       false, NULL, NULL, 0);
2427 
2428 		if (err)
2429 			return (err < 0) ? err : 0;
2430 	}
2431 
2432 	return 0;
2433 }
2434 
2435 static int append_inlines(struct callchain_cursor *cursor,
2436 			  struct map *map, struct symbol *sym, u64 ip)
2437 {
2438 	struct inline_node *inline_node;
2439 	struct inline_list *ilist;
2440 	u64 addr;
2441 	int ret = 1;
2442 
2443 	if (!symbol_conf.inline_name || !map || !sym)
2444 		return ret;
2445 
2446 	addr = map__map_ip(map, ip);
2447 	addr = map__rip_2objdump(map, addr);
2448 
2449 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2450 	if (!inline_node) {
2451 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2452 		if (!inline_node)
2453 			return ret;
2454 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2455 	}
2456 
2457 	list_for_each_entry(ilist, &inline_node->val, list) {
2458 		ret = callchain_cursor_append(cursor, ip, map,
2459 					      ilist->symbol, false,
2460 					      NULL, 0, 0, 0, ilist->srcline);
2461 
2462 		if (ret != 0)
2463 			return ret;
2464 	}
2465 
2466 	return ret;
2467 }
2468 
2469 static int unwind_entry(struct unwind_entry *entry, void *arg)
2470 {
2471 	struct callchain_cursor *cursor = arg;
2472 	const char *srcline = NULL;
2473 	u64 addr = entry->ip;
2474 
2475 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2476 		return 0;
2477 
2478 	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2479 		return 0;
2480 
2481 	/*
2482 	 * Convert entry->ip from a virtual address to an offset in
2483 	 * its corresponding binary.
2484 	 */
2485 	if (entry->map)
2486 		addr = map__map_ip(entry->map, entry->ip);
2487 
2488 	srcline = callchain_srcline(entry->map, entry->sym, addr);
2489 	return callchain_cursor_append(cursor, entry->ip,
2490 				       entry->map, entry->sym,
2491 				       false, NULL, 0, 0, 0, srcline);
2492 }
2493 
2494 static int thread__resolve_callchain_unwind(struct thread *thread,
2495 					    struct callchain_cursor *cursor,
2496 					    struct perf_evsel *evsel,
2497 					    struct perf_sample *sample,
2498 					    int max_stack)
2499 {
2500 	/* Can we do dwarf post unwind? */
2501 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2502 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2503 		return 0;
2504 
2505 	/* Bail out if nothing was captured. */
2506 	if ((!sample->user_regs.regs) ||
2507 	    (!sample->user_stack.size))
2508 		return 0;
2509 
2510 	return unwind__get_entries(unwind_entry, cursor,
2511 				   thread, sample, max_stack);
2512 }
2513 
2514 int thread__resolve_callchain(struct thread *thread,
2515 			      struct callchain_cursor *cursor,
2516 			      struct perf_evsel *evsel,
2517 			      struct perf_sample *sample,
2518 			      struct symbol **parent,
2519 			      struct addr_location *root_al,
2520 			      int max_stack)
2521 {
2522 	int ret = 0;
2523 
2524 	callchain_cursor_reset(cursor);
2525 
2526 	if (callchain_param.order == ORDER_CALLEE) {
2527 		ret = thread__resolve_callchain_sample(thread, cursor,
2528 						       evsel, sample,
2529 						       parent, root_al,
2530 						       max_stack);
2531 		if (ret)
2532 			return ret;
2533 		ret = thread__resolve_callchain_unwind(thread, cursor,
2534 						       evsel, sample,
2535 						       max_stack);
2536 	} else {
2537 		ret = thread__resolve_callchain_unwind(thread, cursor,
2538 						       evsel, sample,
2539 						       max_stack);
2540 		if (ret)
2541 			return ret;
2542 		ret = thread__resolve_callchain_sample(thread, cursor,
2543 						       evsel, sample,
2544 						       parent, root_al,
2545 						       max_stack);
2546 	}
2547 
2548 	return ret;
2549 }
2550 
2551 int machine__for_each_thread(struct machine *machine,
2552 			     int (*fn)(struct thread *thread, void *p),
2553 			     void *priv)
2554 {
2555 	struct threads *threads;
2556 	struct rb_node *nd;
2557 	struct thread *thread;
2558 	int rc = 0;
2559 	int i;
2560 
2561 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2562 		threads = &machine->threads[i];
2563 		for (nd = rb_first_cached(&threads->entries); nd;
2564 		     nd = rb_next(nd)) {
2565 			thread = rb_entry(nd, struct thread, rb_node);
2566 			rc = fn(thread, priv);
2567 			if (rc != 0)
2568 				return rc;
2569 		}
2570 
2571 		list_for_each_entry(thread, &threads->dead, node) {
2572 			rc = fn(thread, priv);
2573 			if (rc != 0)
2574 				return rc;
2575 		}
2576 	}
2577 	return rc;
2578 }
2579 
2580 int machines__for_each_thread(struct machines *machines,
2581 			      int (*fn)(struct thread *thread, void *p),
2582 			      void *priv)
2583 {
2584 	struct rb_node *nd;
2585 	int rc = 0;
2586 
2587 	rc = machine__for_each_thread(&machines->host, fn, priv);
2588 	if (rc != 0)
2589 		return rc;
2590 
2591 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2592 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2593 
2594 		rc = machine__for_each_thread(machine, fn, priv);
2595 		if (rc != 0)
2596 			return rc;
2597 	}
2598 	return rc;
2599 }
2600 
2601 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2602 				  struct target *target, struct thread_map *threads,
2603 				  perf_event__handler_t process, bool data_mmap,
2604 				  unsigned int nr_threads_synthesize)
2605 {
2606 	if (target__has_task(target))
2607 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2608 	else if (target__has_cpu(target))
2609 		return perf_event__synthesize_threads(tool, process,
2610 						      machine, data_mmap,
2611 						      nr_threads_synthesize);
2612 	/* command specified */
2613 	return 0;
2614 }
2615 
2616 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2617 {
2618 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2619 		return -1;
2620 
2621 	return machine->current_tid[cpu];
2622 }
2623 
2624 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2625 			     pid_t tid)
2626 {
2627 	struct thread *thread;
2628 
2629 	if (cpu < 0)
2630 		return -EINVAL;
2631 
2632 	if (!machine->current_tid) {
2633 		int i;
2634 
2635 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2636 		if (!machine->current_tid)
2637 			return -ENOMEM;
2638 		for (i = 0; i < MAX_NR_CPUS; i++)
2639 			machine->current_tid[i] = -1;
2640 	}
2641 
2642 	if (cpu >= MAX_NR_CPUS) {
2643 		pr_err("Requested CPU %d too large. ", cpu);
2644 		pr_err("Consider raising MAX_NR_CPUS\n");
2645 		return -EINVAL;
2646 	}
2647 
2648 	machine->current_tid[cpu] = tid;
2649 
2650 	thread = machine__findnew_thread(machine, pid, tid);
2651 	if (!thread)
2652 		return -ENOMEM;
2653 
2654 	thread->cpu = cpu;
2655 	thread__put(thread);
2656 
2657 	return 0;
2658 }
2659 
2660 /*
2661  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2662  * normalized arch is needed.
2663  */
2664 bool machine__is(struct machine *machine, const char *arch)
2665 {
2666 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2667 }
2668 
2669 int machine__nr_cpus_avail(struct machine *machine)
2670 {
2671 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2672 }
2673 
2674 int machine__get_kernel_start(struct machine *machine)
2675 {
2676 	struct map *map = machine__kernel_map(machine);
2677 	int err = 0;
2678 
2679 	/*
2680 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2681 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2682 	 * all addresses including kernel addresses are less than 2^32.  In
2683 	 * that case (32-bit system), if the kernel mapping is unknown, all
2684 	 * addresses will be assumed to be in user space - see
2685 	 * machine__kernel_ip().
2686 	 */
2687 	machine->kernel_start = 1ULL << 63;
2688 	if (map) {
2689 		err = map__load(map);
2690 		/*
2691 		 * On x86_64, PTI entry trampolines are less than the
2692 		 * start of kernel text, but still above 2^63. So leave
2693 		 * kernel_start = 1ULL << 63 for x86_64.
2694 		 */
2695 		if (!err && !machine__is(machine, "x86_64"))
2696 			machine->kernel_start = map->start;
2697 	}
2698 	return err;
2699 }
2700 
2701 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2702 {
2703 	u8 addr_cpumode = cpumode;
2704 	bool kernel_ip;
2705 
2706 	if (!machine->single_address_space)
2707 		goto out;
2708 
2709 	kernel_ip = machine__kernel_ip(machine, addr);
2710 	switch (cpumode) {
2711 	case PERF_RECORD_MISC_KERNEL:
2712 	case PERF_RECORD_MISC_USER:
2713 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2714 					   PERF_RECORD_MISC_USER;
2715 		break;
2716 	case PERF_RECORD_MISC_GUEST_KERNEL:
2717 	case PERF_RECORD_MISC_GUEST_USER:
2718 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2719 					   PERF_RECORD_MISC_GUEST_USER;
2720 		break;
2721 	default:
2722 		break;
2723 	}
2724 out:
2725 	return addr_cpumode;
2726 }
2727 
2728 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2729 {
2730 	return dsos__findnew(&machine->dsos, filename);
2731 }
2732 
2733 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2734 {
2735 	struct machine *machine = vmachine;
2736 	struct map *map;
2737 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2738 
2739 	if (sym == NULL)
2740 		return NULL;
2741 
2742 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2743 	*addrp = map->unmap_ip(map, sym->start);
2744 	return sym->name;
2745 }
2746