xref: /linux/tools/perf/util/machine.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16 
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18 
19 static void dsos__init(struct dsos *dsos)
20 {
21 	INIT_LIST_HEAD(&dsos->head);
22 	dsos->root = RB_ROOT;
23 	pthread_rwlock_init(&dsos->lock, NULL);
24 }
25 
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 	map_groups__init(&machine->kmaps, machine);
29 	RB_CLEAR_NODE(&machine->rb_node);
30 	dsos__init(&machine->dsos);
31 
32 	machine->threads = RB_ROOT;
33 	pthread_rwlock_init(&machine->threads_lock, NULL);
34 	INIT_LIST_HEAD(&machine->dead_threads);
35 	machine->last_match = NULL;
36 
37 	machine->vdso_info = NULL;
38 
39 	machine->pid = pid;
40 
41 	machine->symbol_filter = NULL;
42 	machine->id_hdr_size = 0;
43 	machine->comm_exec = false;
44 	machine->kernel_start = 0;
45 
46 	machine->root_dir = strdup(root_dir);
47 	if (machine->root_dir == NULL)
48 		return -ENOMEM;
49 
50 	if (pid != HOST_KERNEL_ID) {
51 		struct thread *thread = machine__findnew_thread(machine, -1,
52 								pid);
53 		char comm[64];
54 
55 		if (thread == NULL)
56 			return -ENOMEM;
57 
58 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
59 		thread__set_comm(thread, comm, 0);
60 		thread__put(thread);
61 	}
62 
63 	machine->current_tid = NULL;
64 
65 	return 0;
66 }
67 
68 struct machine *machine__new_host(void)
69 {
70 	struct machine *machine = malloc(sizeof(*machine));
71 
72 	if (machine != NULL) {
73 		machine__init(machine, "", HOST_KERNEL_ID);
74 
75 		if (machine__create_kernel_maps(machine) < 0)
76 			goto out_delete;
77 	}
78 
79 	return machine;
80 out_delete:
81 	free(machine);
82 	return NULL;
83 }
84 
85 static void dsos__purge(struct dsos *dsos)
86 {
87 	struct dso *pos, *n;
88 
89 	pthread_rwlock_wrlock(&dsos->lock);
90 
91 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
92 		RB_CLEAR_NODE(&pos->rb_node);
93 		list_del_init(&pos->node);
94 		dso__put(pos);
95 	}
96 
97 	pthread_rwlock_unlock(&dsos->lock);
98 }
99 
100 static void dsos__exit(struct dsos *dsos)
101 {
102 	dsos__purge(dsos);
103 	pthread_rwlock_destroy(&dsos->lock);
104 }
105 
106 void machine__delete_threads(struct machine *machine)
107 {
108 	struct rb_node *nd;
109 
110 	pthread_rwlock_wrlock(&machine->threads_lock);
111 	nd = rb_first(&machine->threads);
112 	while (nd) {
113 		struct thread *t = rb_entry(nd, struct thread, rb_node);
114 
115 		nd = rb_next(nd);
116 		__machine__remove_thread(machine, t, false);
117 	}
118 	pthread_rwlock_unlock(&machine->threads_lock);
119 }
120 
121 void machine__exit(struct machine *machine)
122 {
123 	map_groups__exit(&machine->kmaps);
124 	dsos__exit(&machine->dsos);
125 	machine__exit_vdso(machine);
126 	zfree(&machine->root_dir);
127 	zfree(&machine->current_tid);
128 	pthread_rwlock_destroy(&machine->threads_lock);
129 }
130 
131 void machine__delete(struct machine *machine)
132 {
133 	machine__exit(machine);
134 	free(machine);
135 }
136 
137 void machines__init(struct machines *machines)
138 {
139 	machine__init(&machines->host, "", HOST_KERNEL_ID);
140 	machines->guests = RB_ROOT;
141 	machines->symbol_filter = NULL;
142 }
143 
144 void machines__exit(struct machines *machines)
145 {
146 	machine__exit(&machines->host);
147 	/* XXX exit guest */
148 }
149 
150 struct machine *machines__add(struct machines *machines, pid_t pid,
151 			      const char *root_dir)
152 {
153 	struct rb_node **p = &machines->guests.rb_node;
154 	struct rb_node *parent = NULL;
155 	struct machine *pos, *machine = malloc(sizeof(*machine));
156 
157 	if (machine == NULL)
158 		return NULL;
159 
160 	if (machine__init(machine, root_dir, pid) != 0) {
161 		free(machine);
162 		return NULL;
163 	}
164 
165 	machine->symbol_filter = machines->symbol_filter;
166 
167 	while (*p != NULL) {
168 		parent = *p;
169 		pos = rb_entry(parent, struct machine, rb_node);
170 		if (pid < pos->pid)
171 			p = &(*p)->rb_left;
172 		else
173 			p = &(*p)->rb_right;
174 	}
175 
176 	rb_link_node(&machine->rb_node, parent, p);
177 	rb_insert_color(&machine->rb_node, &machines->guests);
178 
179 	return machine;
180 }
181 
182 void machines__set_symbol_filter(struct machines *machines,
183 				 symbol_filter_t symbol_filter)
184 {
185 	struct rb_node *nd;
186 
187 	machines->symbol_filter = symbol_filter;
188 	machines->host.symbol_filter = symbol_filter;
189 
190 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
191 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
192 
193 		machine->symbol_filter = symbol_filter;
194 	}
195 }
196 
197 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
198 {
199 	struct rb_node *nd;
200 
201 	machines->host.comm_exec = comm_exec;
202 
203 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
204 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
205 
206 		machine->comm_exec = comm_exec;
207 	}
208 }
209 
210 struct machine *machines__find(struct machines *machines, pid_t pid)
211 {
212 	struct rb_node **p = &machines->guests.rb_node;
213 	struct rb_node *parent = NULL;
214 	struct machine *machine;
215 	struct machine *default_machine = NULL;
216 
217 	if (pid == HOST_KERNEL_ID)
218 		return &machines->host;
219 
220 	while (*p != NULL) {
221 		parent = *p;
222 		machine = rb_entry(parent, struct machine, rb_node);
223 		if (pid < machine->pid)
224 			p = &(*p)->rb_left;
225 		else if (pid > machine->pid)
226 			p = &(*p)->rb_right;
227 		else
228 			return machine;
229 		if (!machine->pid)
230 			default_machine = machine;
231 	}
232 
233 	return default_machine;
234 }
235 
236 struct machine *machines__findnew(struct machines *machines, pid_t pid)
237 {
238 	char path[PATH_MAX];
239 	const char *root_dir = "";
240 	struct machine *machine = machines__find(machines, pid);
241 
242 	if (machine && (machine->pid == pid))
243 		goto out;
244 
245 	if ((pid != HOST_KERNEL_ID) &&
246 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
247 	    (symbol_conf.guestmount)) {
248 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
249 		if (access(path, R_OK)) {
250 			static struct strlist *seen;
251 
252 			if (!seen)
253 				seen = strlist__new(NULL, NULL);
254 
255 			if (!strlist__has_entry(seen, path)) {
256 				pr_err("Can't access file %s\n", path);
257 				strlist__add(seen, path);
258 			}
259 			machine = NULL;
260 			goto out;
261 		}
262 		root_dir = path;
263 	}
264 
265 	machine = machines__add(machines, pid, root_dir);
266 out:
267 	return machine;
268 }
269 
270 void machines__process_guests(struct machines *machines,
271 			      machine__process_t process, void *data)
272 {
273 	struct rb_node *nd;
274 
275 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
276 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
277 		process(pos, data);
278 	}
279 }
280 
281 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
282 {
283 	if (machine__is_host(machine))
284 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
285 	else if (machine__is_default_guest(machine))
286 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
287 	else {
288 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
289 			 machine->pid);
290 	}
291 
292 	return bf;
293 }
294 
295 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
296 {
297 	struct rb_node *node;
298 	struct machine *machine;
299 
300 	machines->host.id_hdr_size = id_hdr_size;
301 
302 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
303 		machine = rb_entry(node, struct machine, rb_node);
304 		machine->id_hdr_size = id_hdr_size;
305 	}
306 
307 	return;
308 }
309 
310 static void machine__update_thread_pid(struct machine *machine,
311 				       struct thread *th, pid_t pid)
312 {
313 	struct thread *leader;
314 
315 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
316 		return;
317 
318 	th->pid_ = pid;
319 
320 	if (th->pid_ == th->tid)
321 		return;
322 
323 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
324 	if (!leader)
325 		goto out_err;
326 
327 	if (!leader->mg)
328 		leader->mg = map_groups__new(machine);
329 
330 	if (!leader->mg)
331 		goto out_err;
332 
333 	if (th->mg == leader->mg)
334 		return;
335 
336 	if (th->mg) {
337 		/*
338 		 * Maps are created from MMAP events which provide the pid and
339 		 * tid.  Consequently there never should be any maps on a thread
340 		 * with an unknown pid.  Just print an error if there are.
341 		 */
342 		if (!map_groups__empty(th->mg))
343 			pr_err("Discarding thread maps for %d:%d\n",
344 			       th->pid_, th->tid);
345 		map_groups__put(th->mg);
346 	}
347 
348 	th->mg = map_groups__get(leader->mg);
349 
350 	return;
351 
352 out_err:
353 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
354 }
355 
356 static struct thread *____machine__findnew_thread(struct machine *machine,
357 						  pid_t pid, pid_t tid,
358 						  bool create)
359 {
360 	struct rb_node **p = &machine->threads.rb_node;
361 	struct rb_node *parent = NULL;
362 	struct thread *th;
363 
364 	/*
365 	 * Front-end cache - TID lookups come in blocks,
366 	 * so most of the time we dont have to look up
367 	 * the full rbtree:
368 	 */
369 	th = machine->last_match;
370 	if (th != NULL) {
371 		if (th->tid == tid) {
372 			machine__update_thread_pid(machine, th, pid);
373 			return th;
374 		}
375 
376 		machine->last_match = NULL;
377 	}
378 
379 	while (*p != NULL) {
380 		parent = *p;
381 		th = rb_entry(parent, struct thread, rb_node);
382 
383 		if (th->tid == tid) {
384 			machine->last_match = th;
385 			machine__update_thread_pid(machine, th, pid);
386 			return th;
387 		}
388 
389 		if (tid < th->tid)
390 			p = &(*p)->rb_left;
391 		else
392 			p = &(*p)->rb_right;
393 	}
394 
395 	if (!create)
396 		return NULL;
397 
398 	th = thread__new(pid, tid);
399 	if (th != NULL) {
400 		rb_link_node(&th->rb_node, parent, p);
401 		rb_insert_color(&th->rb_node, &machine->threads);
402 
403 		/*
404 		 * We have to initialize map_groups separately
405 		 * after rb tree is updated.
406 		 *
407 		 * The reason is that we call machine__findnew_thread
408 		 * within thread__init_map_groups to find the thread
409 		 * leader and that would screwed the rb tree.
410 		 */
411 		if (thread__init_map_groups(th, machine)) {
412 			rb_erase_init(&th->rb_node, &machine->threads);
413 			RB_CLEAR_NODE(&th->rb_node);
414 			thread__delete(th);
415 			return NULL;
416 		}
417 		/*
418 		 * It is now in the rbtree, get a ref
419 		 */
420 		thread__get(th);
421 		machine->last_match = th;
422 	}
423 
424 	return th;
425 }
426 
427 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
428 {
429 	return ____machine__findnew_thread(machine, pid, tid, true);
430 }
431 
432 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
433 				       pid_t tid)
434 {
435 	struct thread *th;
436 
437 	pthread_rwlock_wrlock(&machine->threads_lock);
438 	th = thread__get(__machine__findnew_thread(machine, pid, tid));
439 	pthread_rwlock_unlock(&machine->threads_lock);
440 	return th;
441 }
442 
443 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
444 				    pid_t tid)
445 {
446 	struct thread *th;
447 	pthread_rwlock_rdlock(&machine->threads_lock);
448 	th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
449 	pthread_rwlock_unlock(&machine->threads_lock);
450 	return th;
451 }
452 
453 struct comm *machine__thread_exec_comm(struct machine *machine,
454 				       struct thread *thread)
455 {
456 	if (machine->comm_exec)
457 		return thread__exec_comm(thread);
458 	else
459 		return thread__comm(thread);
460 }
461 
462 int machine__process_comm_event(struct machine *machine, union perf_event *event,
463 				struct perf_sample *sample)
464 {
465 	struct thread *thread = machine__findnew_thread(machine,
466 							event->comm.pid,
467 							event->comm.tid);
468 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
469 	int err = 0;
470 
471 	if (exec)
472 		machine->comm_exec = true;
473 
474 	if (dump_trace)
475 		perf_event__fprintf_comm(event, stdout);
476 
477 	if (thread == NULL ||
478 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
479 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
480 		err = -1;
481 	}
482 
483 	thread__put(thread);
484 
485 	return err;
486 }
487 
488 int machine__process_lost_event(struct machine *machine __maybe_unused,
489 				union perf_event *event, struct perf_sample *sample __maybe_unused)
490 {
491 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
492 		    event->lost.id, event->lost.lost);
493 	return 0;
494 }
495 
496 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
497 					union perf_event *event, struct perf_sample *sample)
498 {
499 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
500 		    sample->id, event->lost_samples.lost);
501 	return 0;
502 }
503 
504 static struct dso *machine__findnew_module_dso(struct machine *machine,
505 					       struct kmod_path *m,
506 					       const char *filename)
507 {
508 	struct dso *dso;
509 
510 	pthread_rwlock_wrlock(&machine->dsos.lock);
511 
512 	dso = __dsos__find(&machine->dsos, m->name, true);
513 	if (!dso) {
514 		dso = __dsos__addnew(&machine->dsos, m->name);
515 		if (dso == NULL)
516 			goto out_unlock;
517 
518 		if (machine__is_host(machine))
519 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
520 		else
521 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
522 
523 		/* _KMODULE_COMP should be next to _KMODULE */
524 		if (m->kmod && m->comp)
525 			dso->symtab_type++;
526 
527 		dso__set_short_name(dso, strdup(m->name), true);
528 		dso__set_long_name(dso, strdup(filename), true);
529 	}
530 
531 	dso__get(dso);
532 out_unlock:
533 	pthread_rwlock_unlock(&machine->dsos.lock);
534 	return dso;
535 }
536 
537 int machine__process_aux_event(struct machine *machine __maybe_unused,
538 			       union perf_event *event)
539 {
540 	if (dump_trace)
541 		perf_event__fprintf_aux(event, stdout);
542 	return 0;
543 }
544 
545 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
546 					union perf_event *event)
547 {
548 	if (dump_trace)
549 		perf_event__fprintf_itrace_start(event, stdout);
550 	return 0;
551 }
552 
553 int machine__process_switch_event(struct machine *machine __maybe_unused,
554 				  union perf_event *event)
555 {
556 	if (dump_trace)
557 		perf_event__fprintf_switch(event, stdout);
558 	return 0;
559 }
560 
561 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
562 					const char *filename)
563 {
564 	struct map *map = NULL;
565 	struct dso *dso;
566 	struct kmod_path m;
567 
568 	if (kmod_path__parse_name(&m, filename))
569 		return NULL;
570 
571 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
572 				       m.name);
573 	if (map)
574 		goto out;
575 
576 	dso = machine__findnew_module_dso(machine, &m, filename);
577 	if (dso == NULL)
578 		goto out;
579 
580 	map = map__new2(start, dso, MAP__FUNCTION);
581 	if (map == NULL)
582 		goto out;
583 
584 	map_groups__insert(&machine->kmaps, map);
585 
586 out:
587 	free(m.name);
588 	return map;
589 }
590 
591 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
592 {
593 	struct rb_node *nd;
594 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
595 
596 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
597 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
598 		ret += __dsos__fprintf(&pos->dsos.head, fp);
599 	}
600 
601 	return ret;
602 }
603 
604 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
605 				     bool (skip)(struct dso *dso, int parm), int parm)
606 {
607 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
608 }
609 
610 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
611 				     bool (skip)(struct dso *dso, int parm), int parm)
612 {
613 	struct rb_node *nd;
614 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
615 
616 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
617 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
618 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
619 	}
620 	return ret;
621 }
622 
623 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
624 {
625 	int i;
626 	size_t printed = 0;
627 	struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso;
628 
629 	if (kdso->has_build_id) {
630 		char filename[PATH_MAX];
631 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
632 			printed += fprintf(fp, "[0] %s\n", filename);
633 	}
634 
635 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
636 		printed += fprintf(fp, "[%d] %s\n",
637 				   i + kdso->has_build_id, vmlinux_path[i]);
638 
639 	return printed;
640 }
641 
642 size_t machine__fprintf(struct machine *machine, FILE *fp)
643 {
644 	size_t ret = 0;
645 	struct rb_node *nd;
646 
647 	pthread_rwlock_rdlock(&machine->threads_lock);
648 
649 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
650 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
651 
652 		ret += thread__fprintf(pos, fp);
653 	}
654 
655 	pthread_rwlock_unlock(&machine->threads_lock);
656 
657 	return ret;
658 }
659 
660 static struct dso *machine__get_kernel(struct machine *machine)
661 {
662 	const char *vmlinux_name = NULL;
663 	struct dso *kernel;
664 
665 	if (machine__is_host(machine)) {
666 		vmlinux_name = symbol_conf.vmlinux_name;
667 		if (!vmlinux_name)
668 			vmlinux_name = "[kernel.kallsyms]";
669 
670 		kernel = machine__findnew_kernel(machine, vmlinux_name,
671 						 "[kernel]", DSO_TYPE_KERNEL);
672 	} else {
673 		char bf[PATH_MAX];
674 
675 		if (machine__is_default_guest(machine))
676 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
677 		if (!vmlinux_name)
678 			vmlinux_name = machine__mmap_name(machine, bf,
679 							  sizeof(bf));
680 
681 		kernel = machine__findnew_kernel(machine, vmlinux_name,
682 						 "[guest.kernel]",
683 						 DSO_TYPE_GUEST_KERNEL);
684 	}
685 
686 	if (kernel != NULL && (!kernel->has_build_id))
687 		dso__read_running_kernel_build_id(kernel, machine);
688 
689 	return kernel;
690 }
691 
692 struct process_args {
693 	u64 start;
694 };
695 
696 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
697 					   size_t bufsz)
698 {
699 	if (machine__is_default_guest(machine))
700 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
701 	else
702 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
703 }
704 
705 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
706 
707 /* Figure out the start address of kernel map from /proc/kallsyms.
708  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
709  * symbol_name if it's not that important.
710  */
711 static u64 machine__get_running_kernel_start(struct machine *machine,
712 					     const char **symbol_name)
713 {
714 	char filename[PATH_MAX];
715 	int i;
716 	const char *name;
717 	u64 addr = 0;
718 
719 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
720 
721 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
722 		return 0;
723 
724 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
725 		addr = kallsyms__get_function_start(filename, name);
726 		if (addr)
727 			break;
728 	}
729 
730 	if (symbol_name)
731 		*symbol_name = name;
732 
733 	return addr;
734 }
735 
736 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
737 {
738 	enum map_type type;
739 	u64 start = machine__get_running_kernel_start(machine, NULL);
740 
741 	for (type = 0; type < MAP__NR_TYPES; ++type) {
742 		struct kmap *kmap;
743 
744 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
745 		if (machine->vmlinux_maps[type] == NULL)
746 			return -1;
747 
748 		machine->vmlinux_maps[type]->map_ip =
749 			machine->vmlinux_maps[type]->unmap_ip =
750 				identity__map_ip;
751 		kmap = map__kmap(machine->vmlinux_maps[type]);
752 		if (!kmap)
753 			return -1;
754 
755 		kmap->kmaps = &machine->kmaps;
756 		map_groups__insert(&machine->kmaps,
757 				   machine->vmlinux_maps[type]);
758 	}
759 
760 	return 0;
761 }
762 
763 void machine__destroy_kernel_maps(struct machine *machine)
764 {
765 	enum map_type type;
766 
767 	for (type = 0; type < MAP__NR_TYPES; ++type) {
768 		struct kmap *kmap;
769 
770 		if (machine->vmlinux_maps[type] == NULL)
771 			continue;
772 
773 		kmap = map__kmap(machine->vmlinux_maps[type]);
774 		map_groups__remove(&machine->kmaps,
775 				   machine->vmlinux_maps[type]);
776 		if (kmap && kmap->ref_reloc_sym) {
777 			/*
778 			 * ref_reloc_sym is shared among all maps, so free just
779 			 * on one of them.
780 			 */
781 			if (type == MAP__FUNCTION) {
782 				zfree((char **)&kmap->ref_reloc_sym->name);
783 				zfree(&kmap->ref_reloc_sym);
784 			} else
785 				kmap->ref_reloc_sym = NULL;
786 		}
787 
788 		machine->vmlinux_maps[type] = NULL;
789 	}
790 }
791 
792 int machines__create_guest_kernel_maps(struct machines *machines)
793 {
794 	int ret = 0;
795 	struct dirent **namelist = NULL;
796 	int i, items = 0;
797 	char path[PATH_MAX];
798 	pid_t pid;
799 	char *endp;
800 
801 	if (symbol_conf.default_guest_vmlinux_name ||
802 	    symbol_conf.default_guest_modules ||
803 	    symbol_conf.default_guest_kallsyms) {
804 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
805 	}
806 
807 	if (symbol_conf.guestmount) {
808 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
809 		if (items <= 0)
810 			return -ENOENT;
811 		for (i = 0; i < items; i++) {
812 			if (!isdigit(namelist[i]->d_name[0])) {
813 				/* Filter out . and .. */
814 				continue;
815 			}
816 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
817 			if ((*endp != '\0') ||
818 			    (endp == namelist[i]->d_name) ||
819 			    (errno == ERANGE)) {
820 				pr_debug("invalid directory (%s). Skipping.\n",
821 					 namelist[i]->d_name);
822 				continue;
823 			}
824 			sprintf(path, "%s/%s/proc/kallsyms",
825 				symbol_conf.guestmount,
826 				namelist[i]->d_name);
827 			ret = access(path, R_OK);
828 			if (ret) {
829 				pr_debug("Can't access file %s\n", path);
830 				goto failure;
831 			}
832 			machines__create_kernel_maps(machines, pid);
833 		}
834 failure:
835 		free(namelist);
836 	}
837 
838 	return ret;
839 }
840 
841 void machines__destroy_kernel_maps(struct machines *machines)
842 {
843 	struct rb_node *next = rb_first(&machines->guests);
844 
845 	machine__destroy_kernel_maps(&machines->host);
846 
847 	while (next) {
848 		struct machine *pos = rb_entry(next, struct machine, rb_node);
849 
850 		next = rb_next(&pos->rb_node);
851 		rb_erase(&pos->rb_node, &machines->guests);
852 		machine__delete(pos);
853 	}
854 }
855 
856 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
857 {
858 	struct machine *machine = machines__findnew(machines, pid);
859 
860 	if (machine == NULL)
861 		return -1;
862 
863 	return machine__create_kernel_maps(machine);
864 }
865 
866 int machine__load_kallsyms(struct machine *machine, const char *filename,
867 			   enum map_type type, symbol_filter_t filter)
868 {
869 	struct map *map = machine->vmlinux_maps[type];
870 	int ret = dso__load_kallsyms(map->dso, filename, map, filter);
871 
872 	if (ret > 0) {
873 		dso__set_loaded(map->dso, type);
874 		/*
875 		 * Since /proc/kallsyms will have multiple sessions for the
876 		 * kernel, with modules between them, fixup the end of all
877 		 * sections.
878 		 */
879 		__map_groups__fixup_end(&machine->kmaps, type);
880 	}
881 
882 	return ret;
883 }
884 
885 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
886 			       symbol_filter_t filter)
887 {
888 	struct map *map = machine->vmlinux_maps[type];
889 	int ret = dso__load_vmlinux_path(map->dso, map, filter);
890 
891 	if (ret > 0)
892 		dso__set_loaded(map->dso, type);
893 
894 	return ret;
895 }
896 
897 static void map_groups__fixup_end(struct map_groups *mg)
898 {
899 	int i;
900 	for (i = 0; i < MAP__NR_TYPES; ++i)
901 		__map_groups__fixup_end(mg, i);
902 }
903 
904 static char *get_kernel_version(const char *root_dir)
905 {
906 	char version[PATH_MAX];
907 	FILE *file;
908 	char *name, *tmp;
909 	const char *prefix = "Linux version ";
910 
911 	sprintf(version, "%s/proc/version", root_dir);
912 	file = fopen(version, "r");
913 	if (!file)
914 		return NULL;
915 
916 	version[0] = '\0';
917 	tmp = fgets(version, sizeof(version), file);
918 	fclose(file);
919 
920 	name = strstr(version, prefix);
921 	if (!name)
922 		return NULL;
923 	name += strlen(prefix);
924 	tmp = strchr(name, ' ');
925 	if (tmp)
926 		*tmp = '\0';
927 
928 	return strdup(name);
929 }
930 
931 static bool is_kmod_dso(struct dso *dso)
932 {
933 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
934 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
935 }
936 
937 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
938 				       struct kmod_path *m)
939 {
940 	struct map *map;
941 	char *long_name;
942 
943 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
944 	if (map == NULL)
945 		return 0;
946 
947 	long_name = strdup(path);
948 	if (long_name == NULL)
949 		return -ENOMEM;
950 
951 	dso__set_long_name(map->dso, long_name, true);
952 	dso__kernel_module_get_build_id(map->dso, "");
953 
954 	/*
955 	 * Full name could reveal us kmod compression, so
956 	 * we need to update the symtab_type if needed.
957 	 */
958 	if (m->comp && is_kmod_dso(map->dso))
959 		map->dso->symtab_type++;
960 
961 	return 0;
962 }
963 
964 static int map_groups__set_modules_path_dir(struct map_groups *mg,
965 				const char *dir_name, int depth)
966 {
967 	struct dirent *dent;
968 	DIR *dir = opendir(dir_name);
969 	int ret = 0;
970 
971 	if (!dir) {
972 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
973 		return -1;
974 	}
975 
976 	while ((dent = readdir(dir)) != NULL) {
977 		char path[PATH_MAX];
978 		struct stat st;
979 
980 		/*sshfs might return bad dent->d_type, so we have to stat*/
981 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
982 		if (stat(path, &st))
983 			continue;
984 
985 		if (S_ISDIR(st.st_mode)) {
986 			if (!strcmp(dent->d_name, ".") ||
987 			    !strcmp(dent->d_name, ".."))
988 				continue;
989 
990 			/* Do not follow top-level source and build symlinks */
991 			if (depth == 0) {
992 				if (!strcmp(dent->d_name, "source") ||
993 				    !strcmp(dent->d_name, "build"))
994 					continue;
995 			}
996 
997 			ret = map_groups__set_modules_path_dir(mg, path,
998 							       depth + 1);
999 			if (ret < 0)
1000 				goto out;
1001 		} else {
1002 			struct kmod_path m;
1003 
1004 			ret = kmod_path__parse_name(&m, dent->d_name);
1005 			if (ret)
1006 				goto out;
1007 
1008 			if (m.kmod)
1009 				ret = map_groups__set_module_path(mg, path, &m);
1010 
1011 			free(m.name);
1012 
1013 			if (ret)
1014 				goto out;
1015 		}
1016 	}
1017 
1018 out:
1019 	closedir(dir);
1020 	return ret;
1021 }
1022 
1023 static int machine__set_modules_path(struct machine *machine)
1024 {
1025 	char *version;
1026 	char modules_path[PATH_MAX];
1027 
1028 	version = get_kernel_version(machine->root_dir);
1029 	if (!version)
1030 		return -1;
1031 
1032 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1033 		 machine->root_dir, version);
1034 	free(version);
1035 
1036 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1037 }
1038 
1039 static int machine__create_module(void *arg, const char *name, u64 start)
1040 {
1041 	struct machine *machine = arg;
1042 	struct map *map;
1043 
1044 	map = machine__findnew_module_map(machine, start, name);
1045 	if (map == NULL)
1046 		return -1;
1047 
1048 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1049 
1050 	return 0;
1051 }
1052 
1053 static int machine__create_modules(struct machine *machine)
1054 {
1055 	const char *modules;
1056 	char path[PATH_MAX];
1057 
1058 	if (machine__is_default_guest(machine)) {
1059 		modules = symbol_conf.default_guest_modules;
1060 	} else {
1061 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1062 		modules = path;
1063 	}
1064 
1065 	if (symbol__restricted_filename(modules, "/proc/modules"))
1066 		return -1;
1067 
1068 	if (modules__parse(modules, machine, machine__create_module))
1069 		return -1;
1070 
1071 	if (!machine__set_modules_path(machine))
1072 		return 0;
1073 
1074 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1075 
1076 	return 0;
1077 }
1078 
1079 int machine__create_kernel_maps(struct machine *machine)
1080 {
1081 	struct dso *kernel = machine__get_kernel(machine);
1082 	const char *name;
1083 	u64 addr = machine__get_running_kernel_start(machine, &name);
1084 	if (!addr)
1085 		return -1;
1086 
1087 	if (kernel == NULL ||
1088 	    __machine__create_kernel_maps(machine, kernel) < 0)
1089 		return -1;
1090 
1091 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1092 		if (machine__is_host(machine))
1093 			pr_debug("Problems creating module maps, "
1094 				 "continuing anyway...\n");
1095 		else
1096 			pr_debug("Problems creating module maps for guest %d, "
1097 				 "continuing anyway...\n", machine->pid);
1098 	}
1099 
1100 	/*
1101 	 * Now that we have all the maps created, just set the ->end of them:
1102 	 */
1103 	map_groups__fixup_end(&machine->kmaps);
1104 
1105 	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1106 					     addr)) {
1107 		machine__destroy_kernel_maps(machine);
1108 		return -1;
1109 	}
1110 
1111 	return 0;
1112 }
1113 
1114 static void machine__set_kernel_mmap_len(struct machine *machine,
1115 					 union perf_event *event)
1116 {
1117 	int i;
1118 
1119 	for (i = 0; i < MAP__NR_TYPES; i++) {
1120 		machine->vmlinux_maps[i]->start = event->mmap.start;
1121 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1122 						   event->mmap.len);
1123 		/*
1124 		 * Be a bit paranoid here, some perf.data file came with
1125 		 * a zero sized synthesized MMAP event for the kernel.
1126 		 */
1127 		if (machine->vmlinux_maps[i]->end == 0)
1128 			machine->vmlinux_maps[i]->end = ~0ULL;
1129 	}
1130 }
1131 
1132 static bool machine__uses_kcore(struct machine *machine)
1133 {
1134 	struct dso *dso;
1135 
1136 	list_for_each_entry(dso, &machine->dsos.head, node) {
1137 		if (dso__is_kcore(dso))
1138 			return true;
1139 	}
1140 
1141 	return false;
1142 }
1143 
1144 static int machine__process_kernel_mmap_event(struct machine *machine,
1145 					      union perf_event *event)
1146 {
1147 	struct map *map;
1148 	char kmmap_prefix[PATH_MAX];
1149 	enum dso_kernel_type kernel_type;
1150 	bool is_kernel_mmap;
1151 
1152 	/* If we have maps from kcore then we do not need or want any others */
1153 	if (machine__uses_kcore(machine))
1154 		return 0;
1155 
1156 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1157 	if (machine__is_host(machine))
1158 		kernel_type = DSO_TYPE_KERNEL;
1159 	else
1160 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1161 
1162 	is_kernel_mmap = memcmp(event->mmap.filename,
1163 				kmmap_prefix,
1164 				strlen(kmmap_prefix) - 1) == 0;
1165 	if (event->mmap.filename[0] == '/' ||
1166 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1167 		map = machine__findnew_module_map(machine, event->mmap.start,
1168 						  event->mmap.filename);
1169 		if (map == NULL)
1170 			goto out_problem;
1171 
1172 		map->end = map->start + event->mmap.len;
1173 	} else if (is_kernel_mmap) {
1174 		const char *symbol_name = (event->mmap.filename +
1175 				strlen(kmmap_prefix));
1176 		/*
1177 		 * Should be there already, from the build-id table in
1178 		 * the header.
1179 		 */
1180 		struct dso *kernel = NULL;
1181 		struct dso *dso;
1182 
1183 		pthread_rwlock_rdlock(&machine->dsos.lock);
1184 
1185 		list_for_each_entry(dso, &machine->dsos.head, node) {
1186 
1187 			/*
1188 			 * The cpumode passed to is_kernel_module is not the
1189 			 * cpumode of *this* event. If we insist on passing
1190 			 * correct cpumode to is_kernel_module, we should
1191 			 * record the cpumode when we adding this dso to the
1192 			 * linked list.
1193 			 *
1194 			 * However we don't really need passing correct
1195 			 * cpumode.  We know the correct cpumode must be kernel
1196 			 * mode (if not, we should not link it onto kernel_dsos
1197 			 * list).
1198 			 *
1199 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1200 			 * is_kernel_module() treats it as a kernel cpumode.
1201 			 */
1202 
1203 			if (!dso->kernel ||
1204 			    is_kernel_module(dso->long_name,
1205 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1206 				continue;
1207 
1208 
1209 			kernel = dso;
1210 			break;
1211 		}
1212 
1213 		pthread_rwlock_unlock(&machine->dsos.lock);
1214 
1215 		if (kernel == NULL)
1216 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1217 		if (kernel == NULL)
1218 			goto out_problem;
1219 
1220 		kernel->kernel = kernel_type;
1221 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1222 			dso__put(kernel);
1223 			goto out_problem;
1224 		}
1225 
1226 		if (strstr(kernel->long_name, "vmlinux"))
1227 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1228 
1229 		machine__set_kernel_mmap_len(machine, event);
1230 
1231 		/*
1232 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1233 		 * symbol. Effectively having zero here means that at record
1234 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1235 		 */
1236 		if (event->mmap.pgoff != 0) {
1237 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1238 							 symbol_name,
1239 							 event->mmap.pgoff);
1240 		}
1241 
1242 		if (machine__is_default_guest(machine)) {
1243 			/*
1244 			 * preload dso of guest kernel and modules
1245 			 */
1246 			dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION],
1247 				  NULL);
1248 		}
1249 	}
1250 	return 0;
1251 out_problem:
1252 	return -1;
1253 }
1254 
1255 int machine__process_mmap2_event(struct machine *machine,
1256 				 union perf_event *event,
1257 				 struct perf_sample *sample __maybe_unused)
1258 {
1259 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1260 	struct thread *thread;
1261 	struct map *map;
1262 	enum map_type type;
1263 	int ret = 0;
1264 
1265 	if (dump_trace)
1266 		perf_event__fprintf_mmap2(event, stdout);
1267 
1268 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1269 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1270 		ret = machine__process_kernel_mmap_event(machine, event);
1271 		if (ret < 0)
1272 			goto out_problem;
1273 		return 0;
1274 	}
1275 
1276 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1277 					event->mmap2.tid);
1278 	if (thread == NULL)
1279 		goto out_problem;
1280 
1281 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1282 		type = MAP__VARIABLE;
1283 	else
1284 		type = MAP__FUNCTION;
1285 
1286 	map = map__new(machine, event->mmap2.start,
1287 			event->mmap2.len, event->mmap2.pgoff,
1288 			event->mmap2.pid, event->mmap2.maj,
1289 			event->mmap2.min, event->mmap2.ino,
1290 			event->mmap2.ino_generation,
1291 			event->mmap2.prot,
1292 			event->mmap2.flags,
1293 			event->mmap2.filename, type, thread);
1294 
1295 	if (map == NULL)
1296 		goto out_problem_map;
1297 
1298 	thread__insert_map(thread, map);
1299 	thread__put(thread);
1300 	map__put(map);
1301 	return 0;
1302 
1303 out_problem_map:
1304 	thread__put(thread);
1305 out_problem:
1306 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1307 	return 0;
1308 }
1309 
1310 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1311 				struct perf_sample *sample __maybe_unused)
1312 {
1313 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1314 	struct thread *thread;
1315 	struct map *map;
1316 	enum map_type type;
1317 	int ret = 0;
1318 
1319 	if (dump_trace)
1320 		perf_event__fprintf_mmap(event, stdout);
1321 
1322 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1323 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1324 		ret = machine__process_kernel_mmap_event(machine, event);
1325 		if (ret < 0)
1326 			goto out_problem;
1327 		return 0;
1328 	}
1329 
1330 	thread = machine__findnew_thread(machine, event->mmap.pid,
1331 					 event->mmap.tid);
1332 	if (thread == NULL)
1333 		goto out_problem;
1334 
1335 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1336 		type = MAP__VARIABLE;
1337 	else
1338 		type = MAP__FUNCTION;
1339 
1340 	map = map__new(machine, event->mmap.start,
1341 			event->mmap.len, event->mmap.pgoff,
1342 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1343 			event->mmap.filename,
1344 			type, thread);
1345 
1346 	if (map == NULL)
1347 		goto out_problem_map;
1348 
1349 	thread__insert_map(thread, map);
1350 	thread__put(thread);
1351 	map__put(map);
1352 	return 0;
1353 
1354 out_problem_map:
1355 	thread__put(thread);
1356 out_problem:
1357 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1358 	return 0;
1359 }
1360 
1361 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1362 {
1363 	if (machine->last_match == th)
1364 		machine->last_match = NULL;
1365 
1366 	BUG_ON(atomic_read(&th->refcnt) == 0);
1367 	if (lock)
1368 		pthread_rwlock_wrlock(&machine->threads_lock);
1369 	rb_erase_init(&th->rb_node, &machine->threads);
1370 	RB_CLEAR_NODE(&th->rb_node);
1371 	/*
1372 	 * Move it first to the dead_threads list, then drop the reference,
1373 	 * if this is the last reference, then the thread__delete destructor
1374 	 * will be called and we will remove it from the dead_threads list.
1375 	 */
1376 	list_add_tail(&th->node, &machine->dead_threads);
1377 	if (lock)
1378 		pthread_rwlock_unlock(&machine->threads_lock);
1379 	thread__put(th);
1380 }
1381 
1382 void machine__remove_thread(struct machine *machine, struct thread *th)
1383 {
1384 	return __machine__remove_thread(machine, th, true);
1385 }
1386 
1387 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1388 				struct perf_sample *sample)
1389 {
1390 	struct thread *thread = machine__find_thread(machine,
1391 						     event->fork.pid,
1392 						     event->fork.tid);
1393 	struct thread *parent = machine__findnew_thread(machine,
1394 							event->fork.ppid,
1395 							event->fork.ptid);
1396 	int err = 0;
1397 
1398 	if (dump_trace)
1399 		perf_event__fprintf_task(event, stdout);
1400 
1401 	/*
1402 	 * There may be an existing thread that is not actually the parent,
1403 	 * either because we are processing events out of order, or because the
1404 	 * (fork) event that would have removed the thread was lost. Assume the
1405 	 * latter case and continue on as best we can.
1406 	 */
1407 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1408 		dump_printf("removing erroneous parent thread %d/%d\n",
1409 			    parent->pid_, parent->tid);
1410 		machine__remove_thread(machine, parent);
1411 		thread__put(parent);
1412 		parent = machine__findnew_thread(machine, event->fork.ppid,
1413 						 event->fork.ptid);
1414 	}
1415 
1416 	/* if a thread currently exists for the thread id remove it */
1417 	if (thread != NULL) {
1418 		machine__remove_thread(machine, thread);
1419 		thread__put(thread);
1420 	}
1421 
1422 	thread = machine__findnew_thread(machine, event->fork.pid,
1423 					 event->fork.tid);
1424 
1425 	if (thread == NULL || parent == NULL ||
1426 	    thread__fork(thread, parent, sample->time) < 0) {
1427 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1428 		err = -1;
1429 	}
1430 	thread__put(thread);
1431 	thread__put(parent);
1432 
1433 	return err;
1434 }
1435 
1436 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1437 				struct perf_sample *sample __maybe_unused)
1438 {
1439 	struct thread *thread = machine__find_thread(machine,
1440 						     event->fork.pid,
1441 						     event->fork.tid);
1442 
1443 	if (dump_trace)
1444 		perf_event__fprintf_task(event, stdout);
1445 
1446 	if (thread != NULL) {
1447 		thread__exited(thread);
1448 		thread__put(thread);
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 int machine__process_event(struct machine *machine, union perf_event *event,
1455 			   struct perf_sample *sample)
1456 {
1457 	int ret;
1458 
1459 	switch (event->header.type) {
1460 	case PERF_RECORD_COMM:
1461 		ret = machine__process_comm_event(machine, event, sample); break;
1462 	case PERF_RECORD_MMAP:
1463 		ret = machine__process_mmap_event(machine, event, sample); break;
1464 	case PERF_RECORD_MMAP2:
1465 		ret = machine__process_mmap2_event(machine, event, sample); break;
1466 	case PERF_RECORD_FORK:
1467 		ret = machine__process_fork_event(machine, event, sample); break;
1468 	case PERF_RECORD_EXIT:
1469 		ret = machine__process_exit_event(machine, event, sample); break;
1470 	case PERF_RECORD_LOST:
1471 		ret = machine__process_lost_event(machine, event, sample); break;
1472 	case PERF_RECORD_AUX:
1473 		ret = machine__process_aux_event(machine, event); break;
1474 	case PERF_RECORD_ITRACE_START:
1475 		ret = machine__process_itrace_start_event(machine, event); break;
1476 	case PERF_RECORD_LOST_SAMPLES:
1477 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1478 	case PERF_RECORD_SWITCH:
1479 	case PERF_RECORD_SWITCH_CPU_WIDE:
1480 		ret = machine__process_switch_event(machine, event); break;
1481 	default:
1482 		ret = -1;
1483 		break;
1484 	}
1485 
1486 	return ret;
1487 }
1488 
1489 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1490 {
1491 	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1492 		return 1;
1493 	return 0;
1494 }
1495 
1496 static void ip__resolve_ams(struct thread *thread,
1497 			    struct addr_map_symbol *ams,
1498 			    u64 ip)
1499 {
1500 	struct addr_location al;
1501 
1502 	memset(&al, 0, sizeof(al));
1503 	/*
1504 	 * We cannot use the header.misc hint to determine whether a
1505 	 * branch stack address is user, kernel, guest, hypervisor.
1506 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1507 	 * Thus, we have to try consecutively until we find a match
1508 	 * or else, the symbol is unknown
1509 	 */
1510 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1511 
1512 	ams->addr = ip;
1513 	ams->al_addr = al.addr;
1514 	ams->sym = al.sym;
1515 	ams->map = al.map;
1516 }
1517 
1518 static void ip__resolve_data(struct thread *thread,
1519 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1520 {
1521 	struct addr_location al;
1522 
1523 	memset(&al, 0, sizeof(al));
1524 
1525 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1526 	if (al.map == NULL) {
1527 		/*
1528 		 * some shared data regions have execute bit set which puts
1529 		 * their mapping in the MAP__FUNCTION type array.
1530 		 * Check there as a fallback option before dropping the sample.
1531 		 */
1532 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1533 	}
1534 
1535 	ams->addr = addr;
1536 	ams->al_addr = al.addr;
1537 	ams->sym = al.sym;
1538 	ams->map = al.map;
1539 }
1540 
1541 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1542 				     struct addr_location *al)
1543 {
1544 	struct mem_info *mi = zalloc(sizeof(*mi));
1545 
1546 	if (!mi)
1547 		return NULL;
1548 
1549 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1550 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1551 	mi->data_src.val = sample->data_src;
1552 
1553 	return mi;
1554 }
1555 
1556 static int add_callchain_ip(struct thread *thread,
1557 			    struct symbol **parent,
1558 			    struct addr_location *root_al,
1559 			    u8 *cpumode,
1560 			    u64 ip)
1561 {
1562 	struct addr_location al;
1563 
1564 	al.filtered = 0;
1565 	al.sym = NULL;
1566 	if (!cpumode) {
1567 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1568 						   ip, &al);
1569 	} else {
1570 		if (ip >= PERF_CONTEXT_MAX) {
1571 			switch (ip) {
1572 			case PERF_CONTEXT_HV:
1573 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1574 				break;
1575 			case PERF_CONTEXT_KERNEL:
1576 				*cpumode = PERF_RECORD_MISC_KERNEL;
1577 				break;
1578 			case PERF_CONTEXT_USER:
1579 				*cpumode = PERF_RECORD_MISC_USER;
1580 				break;
1581 			default:
1582 				pr_debug("invalid callchain context: "
1583 					 "%"PRId64"\n", (s64) ip);
1584 				/*
1585 				 * It seems the callchain is corrupted.
1586 				 * Discard all.
1587 				 */
1588 				callchain_cursor_reset(&callchain_cursor);
1589 				return 1;
1590 			}
1591 			return 0;
1592 		}
1593 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1594 					   ip, &al);
1595 	}
1596 
1597 	if (al.sym != NULL) {
1598 		if (sort__has_parent && !*parent &&
1599 		    symbol__match_regex(al.sym, &parent_regex))
1600 			*parent = al.sym;
1601 		else if (have_ignore_callees && root_al &&
1602 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1603 			/* Treat this symbol as the root,
1604 			   forgetting its callees. */
1605 			*root_al = al;
1606 			callchain_cursor_reset(&callchain_cursor);
1607 		}
1608 	}
1609 
1610 	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1611 }
1612 
1613 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1614 					   struct addr_location *al)
1615 {
1616 	unsigned int i;
1617 	const struct branch_stack *bs = sample->branch_stack;
1618 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1619 
1620 	if (!bi)
1621 		return NULL;
1622 
1623 	for (i = 0; i < bs->nr; i++) {
1624 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1625 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1626 		bi[i].flags = bs->entries[i].flags;
1627 	}
1628 	return bi;
1629 }
1630 
1631 #define CHASHSZ 127
1632 #define CHASHBITS 7
1633 #define NO_ENTRY 0xff
1634 
1635 #define PERF_MAX_BRANCH_DEPTH 127
1636 
1637 /* Remove loops. */
1638 static int remove_loops(struct branch_entry *l, int nr)
1639 {
1640 	int i, j, off;
1641 	unsigned char chash[CHASHSZ];
1642 
1643 	memset(chash, NO_ENTRY, sizeof(chash));
1644 
1645 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1646 
1647 	for (i = 0; i < nr; i++) {
1648 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1649 
1650 		/* no collision handling for now */
1651 		if (chash[h] == NO_ENTRY) {
1652 			chash[h] = i;
1653 		} else if (l[chash[h]].from == l[i].from) {
1654 			bool is_loop = true;
1655 			/* check if it is a real loop */
1656 			off = 0;
1657 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1658 				if (l[j].from != l[i + off].from) {
1659 					is_loop = false;
1660 					break;
1661 				}
1662 			if (is_loop) {
1663 				memmove(l + i, l + i + off,
1664 					(nr - (i + off)) * sizeof(*l));
1665 				nr -= off;
1666 			}
1667 		}
1668 	}
1669 	return nr;
1670 }
1671 
1672 /*
1673  * Recolve LBR callstack chain sample
1674  * Return:
1675  * 1 on success get LBR callchain information
1676  * 0 no available LBR callchain information, should try fp
1677  * negative error code on other errors.
1678  */
1679 static int resolve_lbr_callchain_sample(struct thread *thread,
1680 					struct perf_sample *sample,
1681 					struct symbol **parent,
1682 					struct addr_location *root_al,
1683 					int max_stack)
1684 {
1685 	struct ip_callchain *chain = sample->callchain;
1686 	int chain_nr = min(max_stack, (int)chain->nr);
1687 	u8 cpumode = PERF_RECORD_MISC_USER;
1688 	int i, j, err;
1689 	u64 ip;
1690 
1691 	for (i = 0; i < chain_nr; i++) {
1692 		if (chain->ips[i] == PERF_CONTEXT_USER)
1693 			break;
1694 	}
1695 
1696 	/* LBR only affects the user callchain */
1697 	if (i != chain_nr) {
1698 		struct branch_stack *lbr_stack = sample->branch_stack;
1699 		int lbr_nr = lbr_stack->nr;
1700 		/*
1701 		 * LBR callstack can only get user call chain.
1702 		 * The mix_chain_nr is kernel call chain
1703 		 * number plus LBR user call chain number.
1704 		 * i is kernel call chain number,
1705 		 * 1 is PERF_CONTEXT_USER,
1706 		 * lbr_nr + 1 is the user call chain number.
1707 		 * For details, please refer to the comments
1708 		 * in callchain__printf
1709 		 */
1710 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1711 
1712 		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1713 			pr_warning("corrupted callchain. skipping...\n");
1714 			return 0;
1715 		}
1716 
1717 		for (j = 0; j < mix_chain_nr; j++) {
1718 			if (callchain_param.order == ORDER_CALLEE) {
1719 				if (j < i + 1)
1720 					ip = chain->ips[j];
1721 				else if (j > i + 1)
1722 					ip = lbr_stack->entries[j - i - 2].from;
1723 				else
1724 					ip = lbr_stack->entries[0].to;
1725 			} else {
1726 				if (j < lbr_nr)
1727 					ip = lbr_stack->entries[lbr_nr - j - 1].from;
1728 				else if (j > lbr_nr)
1729 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1730 				else
1731 					ip = lbr_stack->entries[0].to;
1732 			}
1733 
1734 			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1735 			if (err)
1736 				return (err < 0) ? err : 0;
1737 		}
1738 		return 1;
1739 	}
1740 
1741 	return 0;
1742 }
1743 
1744 static int thread__resolve_callchain_sample(struct thread *thread,
1745 					    struct perf_evsel *evsel,
1746 					    struct perf_sample *sample,
1747 					    struct symbol **parent,
1748 					    struct addr_location *root_al,
1749 					    int max_stack)
1750 {
1751 	struct branch_stack *branch = sample->branch_stack;
1752 	struct ip_callchain *chain = sample->callchain;
1753 	int chain_nr = min(max_stack, (int)chain->nr);
1754 	u8 cpumode = PERF_RECORD_MISC_USER;
1755 	int i, j, err;
1756 	int skip_idx = -1;
1757 	int first_call = 0;
1758 
1759 	callchain_cursor_reset(&callchain_cursor);
1760 
1761 	if (has_branch_callstack(evsel)) {
1762 		err = resolve_lbr_callchain_sample(thread, sample, parent,
1763 						   root_al, max_stack);
1764 		if (err)
1765 			return (err < 0) ? err : 0;
1766 	}
1767 
1768 	/*
1769 	 * Based on DWARF debug information, some architectures skip
1770 	 * a callchain entry saved by the kernel.
1771 	 */
1772 	if (chain->nr < PERF_MAX_STACK_DEPTH)
1773 		skip_idx = arch_skip_callchain_idx(thread, chain);
1774 
1775 	/*
1776 	 * Add branches to call stack for easier browsing. This gives
1777 	 * more context for a sample than just the callers.
1778 	 *
1779 	 * This uses individual histograms of paths compared to the
1780 	 * aggregated histograms the normal LBR mode uses.
1781 	 *
1782 	 * Limitations for now:
1783 	 * - No extra filters
1784 	 * - No annotations (should annotate somehow)
1785 	 */
1786 
1787 	if (branch && callchain_param.branch_callstack) {
1788 		int nr = min(max_stack, (int)branch->nr);
1789 		struct branch_entry be[nr];
1790 
1791 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1792 			pr_warning("corrupted branch chain. skipping...\n");
1793 			goto check_calls;
1794 		}
1795 
1796 		for (i = 0; i < nr; i++) {
1797 			if (callchain_param.order == ORDER_CALLEE) {
1798 				be[i] = branch->entries[i];
1799 				/*
1800 				 * Check for overlap into the callchain.
1801 				 * The return address is one off compared to
1802 				 * the branch entry. To adjust for this
1803 				 * assume the calling instruction is not longer
1804 				 * than 8 bytes.
1805 				 */
1806 				if (i == skip_idx ||
1807 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1808 					first_call++;
1809 				else if (be[i].from < chain->ips[first_call] &&
1810 				    be[i].from >= chain->ips[first_call] - 8)
1811 					first_call++;
1812 			} else
1813 				be[i] = branch->entries[branch->nr - i - 1];
1814 		}
1815 
1816 		nr = remove_loops(be, nr);
1817 
1818 		for (i = 0; i < nr; i++) {
1819 			err = add_callchain_ip(thread, parent, root_al,
1820 					       NULL, be[i].to);
1821 			if (!err)
1822 				err = add_callchain_ip(thread, parent, root_al,
1823 						       NULL, be[i].from);
1824 			if (err == -EINVAL)
1825 				break;
1826 			if (err)
1827 				return err;
1828 		}
1829 		chain_nr -= nr;
1830 	}
1831 
1832 check_calls:
1833 	if (chain->nr > PERF_MAX_STACK_DEPTH) {
1834 		pr_warning("corrupted callchain. skipping...\n");
1835 		return 0;
1836 	}
1837 
1838 	for (i = first_call; i < chain_nr; i++) {
1839 		u64 ip;
1840 
1841 		if (callchain_param.order == ORDER_CALLEE)
1842 			j = i;
1843 		else
1844 			j = chain->nr - i - 1;
1845 
1846 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1847 		if (j == skip_idx)
1848 			continue;
1849 #endif
1850 		ip = chain->ips[j];
1851 
1852 		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1853 
1854 		if (err)
1855 			return (err < 0) ? err : 0;
1856 	}
1857 
1858 	return 0;
1859 }
1860 
1861 static int unwind_entry(struct unwind_entry *entry, void *arg)
1862 {
1863 	struct callchain_cursor *cursor = arg;
1864 	return callchain_cursor_append(cursor, entry->ip,
1865 				       entry->map, entry->sym);
1866 }
1867 
1868 int thread__resolve_callchain(struct thread *thread,
1869 			      struct perf_evsel *evsel,
1870 			      struct perf_sample *sample,
1871 			      struct symbol **parent,
1872 			      struct addr_location *root_al,
1873 			      int max_stack)
1874 {
1875 	int ret = thread__resolve_callchain_sample(thread, evsel,
1876 						   sample, parent,
1877 						   root_al, max_stack);
1878 	if (ret)
1879 		return ret;
1880 
1881 	/* Can we do dwarf post unwind? */
1882 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1883 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1884 		return 0;
1885 
1886 	/* Bail out if nothing was captured. */
1887 	if ((!sample->user_regs.regs) ||
1888 	    (!sample->user_stack.size))
1889 		return 0;
1890 
1891 	return unwind__get_entries(unwind_entry, &callchain_cursor,
1892 				   thread, sample, max_stack);
1893 
1894 }
1895 
1896 int machine__for_each_thread(struct machine *machine,
1897 			     int (*fn)(struct thread *thread, void *p),
1898 			     void *priv)
1899 {
1900 	struct rb_node *nd;
1901 	struct thread *thread;
1902 	int rc = 0;
1903 
1904 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1905 		thread = rb_entry(nd, struct thread, rb_node);
1906 		rc = fn(thread, priv);
1907 		if (rc != 0)
1908 			return rc;
1909 	}
1910 
1911 	list_for_each_entry(thread, &machine->dead_threads, node) {
1912 		rc = fn(thread, priv);
1913 		if (rc != 0)
1914 			return rc;
1915 	}
1916 	return rc;
1917 }
1918 
1919 int machines__for_each_thread(struct machines *machines,
1920 			      int (*fn)(struct thread *thread, void *p),
1921 			      void *priv)
1922 {
1923 	struct rb_node *nd;
1924 	int rc = 0;
1925 
1926 	rc = machine__for_each_thread(&machines->host, fn, priv);
1927 	if (rc != 0)
1928 		return rc;
1929 
1930 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1931 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
1932 
1933 		rc = machine__for_each_thread(machine, fn, priv);
1934 		if (rc != 0)
1935 			return rc;
1936 	}
1937 	return rc;
1938 }
1939 
1940 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1941 				  struct target *target, struct thread_map *threads,
1942 				  perf_event__handler_t process, bool data_mmap,
1943 				  unsigned int proc_map_timeout)
1944 {
1945 	if (target__has_task(target))
1946 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1947 	else if (target__has_cpu(target))
1948 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1949 	/* command specified */
1950 	return 0;
1951 }
1952 
1953 pid_t machine__get_current_tid(struct machine *machine, int cpu)
1954 {
1955 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
1956 		return -1;
1957 
1958 	return machine->current_tid[cpu];
1959 }
1960 
1961 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
1962 			     pid_t tid)
1963 {
1964 	struct thread *thread;
1965 
1966 	if (cpu < 0)
1967 		return -EINVAL;
1968 
1969 	if (!machine->current_tid) {
1970 		int i;
1971 
1972 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
1973 		if (!machine->current_tid)
1974 			return -ENOMEM;
1975 		for (i = 0; i < MAX_NR_CPUS; i++)
1976 			machine->current_tid[i] = -1;
1977 	}
1978 
1979 	if (cpu >= MAX_NR_CPUS) {
1980 		pr_err("Requested CPU %d too large. ", cpu);
1981 		pr_err("Consider raising MAX_NR_CPUS\n");
1982 		return -EINVAL;
1983 	}
1984 
1985 	machine->current_tid[cpu] = tid;
1986 
1987 	thread = machine__findnew_thread(machine, pid, tid);
1988 	if (!thread)
1989 		return -ENOMEM;
1990 
1991 	thread->cpu = cpu;
1992 	thread__put(thread);
1993 
1994 	return 0;
1995 }
1996 
1997 int machine__get_kernel_start(struct machine *machine)
1998 {
1999 	struct map *map = machine__kernel_map(machine, MAP__FUNCTION);
2000 	int err = 0;
2001 
2002 	/*
2003 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2004 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2005 	 * all addresses including kernel addresses are less than 2^32.  In
2006 	 * that case (32-bit system), if the kernel mapping is unknown, all
2007 	 * addresses will be assumed to be in user space - see
2008 	 * machine__kernel_ip().
2009 	 */
2010 	machine->kernel_start = 1ULL << 63;
2011 	if (map) {
2012 		err = map__load(map, machine->symbol_filter);
2013 		if (map->start)
2014 			machine->kernel_start = map->start;
2015 	}
2016 	return err;
2017 }
2018 
2019 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2020 {
2021 	return dsos__findnew(&machine->dsos, filename);
2022 }
2023 
2024 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2025 {
2026 	struct machine *machine = vmachine;
2027 	struct map *map;
2028 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2029 
2030 	if (sym == NULL)
2031 		return NULL;
2032 
2033 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2034 	*addrp = map->unmap_ip(map, sym->start);
2035 	return sym->name;
2036 }
2037