1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static struct dso *machine__kernel_dso(struct machine *machine) 47 { 48 return map__dso(machine->vmlinux_map); 49 } 50 51 static void dsos__init(struct dsos *dsos) 52 { 53 INIT_LIST_HEAD(&dsos->head); 54 dsos->root = RB_ROOT; 55 init_rwsem(&dsos->lock); 56 } 57 58 static int machine__set_mmap_name(struct machine *machine) 59 { 60 if (machine__is_host(machine)) 61 machine->mmap_name = strdup("[kernel.kallsyms]"); 62 else if (machine__is_default_guest(machine)) 63 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 64 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 65 machine->pid) < 0) 66 machine->mmap_name = NULL; 67 68 return machine->mmap_name ? 0 : -ENOMEM; 69 } 70 71 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 72 { 73 char comm[64]; 74 75 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 76 thread__set_comm(thread, comm, 0); 77 } 78 79 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 80 { 81 int err = -ENOMEM; 82 83 memset(machine, 0, sizeof(*machine)); 84 machine->kmaps = maps__new(machine); 85 if (machine->kmaps == NULL) 86 return -ENOMEM; 87 88 RB_CLEAR_NODE(&machine->rb_node); 89 dsos__init(&machine->dsos); 90 91 threads__init(&machine->threads); 92 93 machine->vdso_info = NULL; 94 machine->env = NULL; 95 96 machine->pid = pid; 97 98 machine->id_hdr_size = 0; 99 machine->kptr_restrict_warned = false; 100 machine->comm_exec = false; 101 machine->kernel_start = 0; 102 machine->vmlinux_map = NULL; 103 104 machine->root_dir = strdup(root_dir); 105 if (machine->root_dir == NULL) 106 goto out; 107 108 if (machine__set_mmap_name(machine)) 109 goto out; 110 111 if (pid != HOST_KERNEL_ID) { 112 struct thread *thread = machine__findnew_thread(machine, -1, 113 pid); 114 115 if (thread == NULL) 116 goto out; 117 118 thread__set_guest_comm(thread, pid); 119 thread__put(thread); 120 } 121 122 machine->current_tid = NULL; 123 err = 0; 124 125 out: 126 if (err) { 127 zfree(&machine->kmaps); 128 zfree(&machine->root_dir); 129 zfree(&machine->mmap_name); 130 } 131 return 0; 132 } 133 134 struct machine *machine__new_host(void) 135 { 136 struct machine *machine = malloc(sizeof(*machine)); 137 138 if (machine != NULL) { 139 machine__init(machine, "", HOST_KERNEL_ID); 140 141 if (machine__create_kernel_maps(machine) < 0) 142 goto out_delete; 143 } 144 145 return machine; 146 out_delete: 147 free(machine); 148 return NULL; 149 } 150 151 struct machine *machine__new_kallsyms(void) 152 { 153 struct machine *machine = machine__new_host(); 154 /* 155 * FIXME: 156 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 157 * ask for not using the kcore parsing code, once this one is fixed 158 * to create a map per module. 159 */ 160 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 161 machine__delete(machine); 162 machine = NULL; 163 } 164 165 return machine; 166 } 167 168 static void dsos__purge(struct dsos *dsos) 169 { 170 struct dso *pos, *n; 171 172 down_write(&dsos->lock); 173 174 list_for_each_entry_safe(pos, n, &dsos->head, node) { 175 RB_CLEAR_NODE(&pos->rb_node); 176 pos->root = NULL; 177 list_del_init(&pos->node); 178 dso__put(pos); 179 } 180 181 up_write(&dsos->lock); 182 } 183 184 static void dsos__exit(struct dsos *dsos) 185 { 186 dsos__purge(dsos); 187 exit_rwsem(&dsos->lock); 188 } 189 190 void machine__delete_threads(struct machine *machine) 191 { 192 threads__remove_all_threads(&machine->threads); 193 } 194 195 void machine__exit(struct machine *machine) 196 { 197 if (machine == NULL) 198 return; 199 200 machine__destroy_kernel_maps(machine); 201 maps__zput(machine->kmaps); 202 dsos__exit(&machine->dsos); 203 machine__exit_vdso(machine); 204 zfree(&machine->root_dir); 205 zfree(&machine->mmap_name); 206 zfree(&machine->current_tid); 207 zfree(&machine->kallsyms_filename); 208 209 threads__exit(&machine->threads); 210 } 211 212 void machine__delete(struct machine *machine) 213 { 214 if (machine) { 215 machine__exit(machine); 216 free(machine); 217 } 218 } 219 220 void machines__init(struct machines *machines) 221 { 222 machine__init(&machines->host, "", HOST_KERNEL_ID); 223 machines->guests = RB_ROOT_CACHED; 224 } 225 226 void machines__exit(struct machines *machines) 227 { 228 machine__exit(&machines->host); 229 /* XXX exit guest */ 230 } 231 232 struct machine *machines__add(struct machines *machines, pid_t pid, 233 const char *root_dir) 234 { 235 struct rb_node **p = &machines->guests.rb_root.rb_node; 236 struct rb_node *parent = NULL; 237 struct machine *pos, *machine = malloc(sizeof(*machine)); 238 bool leftmost = true; 239 240 if (machine == NULL) 241 return NULL; 242 243 if (machine__init(machine, root_dir, pid) != 0) { 244 free(machine); 245 return NULL; 246 } 247 248 while (*p != NULL) { 249 parent = *p; 250 pos = rb_entry(parent, struct machine, rb_node); 251 if (pid < pos->pid) 252 p = &(*p)->rb_left; 253 else { 254 p = &(*p)->rb_right; 255 leftmost = false; 256 } 257 } 258 259 rb_link_node(&machine->rb_node, parent, p); 260 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 261 262 machine->machines = machines; 263 264 return machine; 265 } 266 267 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 268 { 269 struct rb_node *nd; 270 271 machines->host.comm_exec = comm_exec; 272 273 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 274 struct machine *machine = rb_entry(nd, struct machine, rb_node); 275 276 machine->comm_exec = comm_exec; 277 } 278 } 279 280 struct machine *machines__find(struct machines *machines, pid_t pid) 281 { 282 struct rb_node **p = &machines->guests.rb_root.rb_node; 283 struct rb_node *parent = NULL; 284 struct machine *machine; 285 struct machine *default_machine = NULL; 286 287 if (pid == HOST_KERNEL_ID) 288 return &machines->host; 289 290 while (*p != NULL) { 291 parent = *p; 292 machine = rb_entry(parent, struct machine, rb_node); 293 if (pid < machine->pid) 294 p = &(*p)->rb_left; 295 else if (pid > machine->pid) 296 p = &(*p)->rb_right; 297 else 298 return machine; 299 if (!machine->pid) 300 default_machine = machine; 301 } 302 303 return default_machine; 304 } 305 306 struct machine *machines__findnew(struct machines *machines, pid_t pid) 307 { 308 char path[PATH_MAX]; 309 const char *root_dir = ""; 310 struct machine *machine = machines__find(machines, pid); 311 312 if (machine && (machine->pid == pid)) 313 goto out; 314 315 if ((pid != HOST_KERNEL_ID) && 316 (pid != DEFAULT_GUEST_KERNEL_ID) && 317 (symbol_conf.guestmount)) { 318 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 319 if (access(path, R_OK)) { 320 static struct strlist *seen; 321 322 if (!seen) 323 seen = strlist__new(NULL, NULL); 324 325 if (!strlist__has_entry(seen, path)) { 326 pr_err("Can't access file %s\n", path); 327 strlist__add(seen, path); 328 } 329 machine = NULL; 330 goto out; 331 } 332 root_dir = path; 333 } 334 335 machine = machines__add(machines, pid, root_dir); 336 out: 337 return machine; 338 } 339 340 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 341 { 342 struct machine *machine = machines__find(machines, pid); 343 344 if (!machine) 345 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 346 return machine; 347 } 348 349 /* 350 * A common case for KVM test programs is that the test program acts as the 351 * hypervisor, creating, running and destroying the virtual machine, and 352 * providing the guest object code from its own object code. In this case, 353 * the VM is not running an OS, but only the functions loaded into it by the 354 * hypervisor test program, and conveniently, loaded at the same virtual 355 * addresses. 356 * 357 * Normally to resolve addresses, MMAP events are needed to map addresses 358 * back to the object code and debug symbols for that object code. 359 * 360 * Currently, there is no way to get such mapping information from guests 361 * but, in the scenario described above, the guest has the same mappings 362 * as the hypervisor, so support for that scenario can be achieved. 363 * 364 * To support that, copy the host thread's maps to the guest thread's maps. 365 * Note, we do not discover the guest until we encounter a guest event, 366 * which works well because it is not until then that we know that the host 367 * thread's maps have been set up. 368 * 369 * This function returns the guest thread. Apart from keeping the data 370 * structures sane, using a thread belonging to the guest machine, instead 371 * of the host thread, allows it to have its own comm (refer 372 * thread__set_guest_comm()). 373 */ 374 static struct thread *findnew_guest_code(struct machine *machine, 375 struct machine *host_machine, 376 pid_t pid) 377 { 378 struct thread *host_thread; 379 struct thread *thread; 380 int err; 381 382 if (!machine) 383 return NULL; 384 385 thread = machine__findnew_thread(machine, -1, pid); 386 if (!thread) 387 return NULL; 388 389 /* Assume maps are set up if there are any */ 390 if (!maps__empty(thread__maps(thread))) 391 return thread; 392 393 host_thread = machine__find_thread(host_machine, -1, pid); 394 if (!host_thread) 395 goto out_err; 396 397 thread__set_guest_comm(thread, pid); 398 399 /* 400 * Guest code can be found in hypervisor process at the same address 401 * so copy host maps. 402 */ 403 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread)); 404 thread__put(host_thread); 405 if (err) 406 goto out_err; 407 408 return thread; 409 410 out_err: 411 thread__zput(thread); 412 return NULL; 413 } 414 415 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 416 { 417 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 418 struct machine *machine = machines__findnew(machines, pid); 419 420 return findnew_guest_code(machine, host_machine, pid); 421 } 422 423 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 424 { 425 struct machines *machines = machine->machines; 426 struct machine *host_machine; 427 428 if (!machines) 429 return NULL; 430 431 host_machine = machines__find(machines, HOST_KERNEL_ID); 432 433 return findnew_guest_code(machine, host_machine, pid); 434 } 435 436 void machines__process_guests(struct machines *machines, 437 machine__process_t process, void *data) 438 { 439 struct rb_node *nd; 440 441 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 442 struct machine *pos = rb_entry(nd, struct machine, rb_node); 443 process(pos, data); 444 } 445 } 446 447 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 448 { 449 struct rb_node *node; 450 struct machine *machine; 451 452 machines->host.id_hdr_size = id_hdr_size; 453 454 for (node = rb_first_cached(&machines->guests); node; 455 node = rb_next(node)) { 456 machine = rb_entry(node, struct machine, rb_node); 457 machine->id_hdr_size = id_hdr_size; 458 } 459 460 return; 461 } 462 463 static void machine__update_thread_pid(struct machine *machine, 464 struct thread *th, pid_t pid) 465 { 466 struct thread *leader; 467 468 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1) 469 return; 470 471 thread__set_pid(th, pid); 472 473 if (thread__pid(th) == thread__tid(th)) 474 return; 475 476 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th)); 477 if (!leader) 478 goto out_err; 479 480 if (!thread__maps(leader)) 481 thread__set_maps(leader, maps__new(machine)); 482 483 if (!thread__maps(leader)) 484 goto out_err; 485 486 if (thread__maps(th) == thread__maps(leader)) 487 goto out_put; 488 489 if (thread__maps(th)) { 490 /* 491 * Maps are created from MMAP events which provide the pid and 492 * tid. Consequently there never should be any maps on a thread 493 * with an unknown pid. Just print an error if there are. 494 */ 495 if (!maps__empty(thread__maps(th))) 496 pr_err("Discarding thread maps for %d:%d\n", 497 thread__pid(th), thread__tid(th)); 498 maps__put(thread__maps(th)); 499 } 500 501 thread__set_maps(th, maps__get(thread__maps(leader))); 502 out_put: 503 thread__put(leader); 504 return; 505 out_err: 506 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th)); 507 goto out_put; 508 } 509 510 /* 511 * Caller must eventually drop thread->refcnt returned with a successful 512 * lookup/new thread inserted. 513 */ 514 static struct thread *__machine__findnew_thread(struct machine *machine, 515 pid_t pid, 516 pid_t tid, 517 bool create) 518 { 519 struct thread *th = threads__find(&machine->threads, tid); 520 bool created; 521 522 if (th) { 523 machine__update_thread_pid(machine, th, pid); 524 return th; 525 } 526 if (!create) 527 return NULL; 528 529 th = threads__findnew(&machine->threads, pid, tid, &created); 530 if (created) { 531 /* 532 * We have to initialize maps separately after rb tree is 533 * updated. 534 * 535 * The reason is that we call machine__findnew_thread within 536 * thread__init_maps to find the thread leader and that would 537 * screwed the rb tree. 538 */ 539 if (thread__init_maps(th, machine)) { 540 pr_err("Thread init failed thread %d\n", pid); 541 threads__remove(&machine->threads, th); 542 thread__put(th); 543 return NULL; 544 } 545 } else 546 machine__update_thread_pid(machine, th, pid); 547 548 return th; 549 } 550 551 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 552 { 553 return __machine__findnew_thread(machine, pid, tid, /*create=*/true); 554 } 555 556 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 557 pid_t tid) 558 { 559 return __machine__findnew_thread(machine, pid, tid, /*create=*/false); 560 } 561 562 /* 563 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 564 * So here a single thread is created for that, but actually there is a separate 565 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 566 * is only 1. That causes problems for some tools, requiring workarounds. For 567 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 568 */ 569 struct thread *machine__idle_thread(struct machine *machine) 570 { 571 struct thread *thread = machine__findnew_thread(machine, 0, 0); 572 573 if (!thread || thread__set_comm(thread, "swapper", 0) || 574 thread__set_namespaces(thread, 0, NULL)) 575 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 576 577 return thread; 578 } 579 580 struct comm *machine__thread_exec_comm(struct machine *machine, 581 struct thread *thread) 582 { 583 if (machine->comm_exec) 584 return thread__exec_comm(thread); 585 else 586 return thread__comm(thread); 587 } 588 589 int machine__process_comm_event(struct machine *machine, union perf_event *event, 590 struct perf_sample *sample) 591 { 592 struct thread *thread = machine__findnew_thread(machine, 593 event->comm.pid, 594 event->comm.tid); 595 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 596 int err = 0; 597 598 if (exec) 599 machine->comm_exec = true; 600 601 if (dump_trace) 602 perf_event__fprintf_comm(event, stdout); 603 604 if (thread == NULL || 605 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 606 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 607 err = -1; 608 } 609 610 thread__put(thread); 611 612 return err; 613 } 614 615 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 616 union perf_event *event, 617 struct perf_sample *sample __maybe_unused) 618 { 619 struct thread *thread = machine__findnew_thread(machine, 620 event->namespaces.pid, 621 event->namespaces.tid); 622 int err = 0; 623 624 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 625 "\nWARNING: kernel seems to support more namespaces than perf" 626 " tool.\nTry updating the perf tool..\n\n"); 627 628 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 629 "\nWARNING: perf tool seems to support more namespaces than" 630 " the kernel.\nTry updating the kernel..\n\n"); 631 632 if (dump_trace) 633 perf_event__fprintf_namespaces(event, stdout); 634 635 if (thread == NULL || 636 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 637 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 638 err = -1; 639 } 640 641 thread__put(thread); 642 643 return err; 644 } 645 646 int machine__process_cgroup_event(struct machine *machine, 647 union perf_event *event, 648 struct perf_sample *sample __maybe_unused) 649 { 650 struct cgroup *cgrp; 651 652 if (dump_trace) 653 perf_event__fprintf_cgroup(event, stdout); 654 655 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 656 if (cgrp == NULL) 657 return -ENOMEM; 658 659 return 0; 660 } 661 662 int machine__process_lost_event(struct machine *machine __maybe_unused, 663 union perf_event *event, struct perf_sample *sample __maybe_unused) 664 { 665 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 666 event->lost.id, event->lost.lost); 667 return 0; 668 } 669 670 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 671 union perf_event *event, struct perf_sample *sample) 672 { 673 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 674 sample->id, event->lost_samples.lost); 675 return 0; 676 } 677 678 static struct dso *machine__findnew_module_dso(struct machine *machine, 679 struct kmod_path *m, 680 const char *filename) 681 { 682 struct dso *dso; 683 684 down_write(&machine->dsos.lock); 685 686 dso = __dsos__find(&machine->dsos, m->name, true); 687 if (!dso) { 688 dso = __dsos__addnew(&machine->dsos, m->name); 689 if (dso == NULL) 690 goto out_unlock; 691 692 dso__set_module_info(dso, m, machine); 693 dso__set_long_name(dso, strdup(filename), true); 694 dso->kernel = DSO_SPACE__KERNEL; 695 } 696 697 dso__get(dso); 698 out_unlock: 699 up_write(&machine->dsos.lock); 700 return dso; 701 } 702 703 int machine__process_aux_event(struct machine *machine __maybe_unused, 704 union perf_event *event) 705 { 706 if (dump_trace) 707 perf_event__fprintf_aux(event, stdout); 708 return 0; 709 } 710 711 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 712 union perf_event *event) 713 { 714 if (dump_trace) 715 perf_event__fprintf_itrace_start(event, stdout); 716 return 0; 717 } 718 719 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 720 union perf_event *event) 721 { 722 if (dump_trace) 723 perf_event__fprintf_aux_output_hw_id(event, stdout); 724 return 0; 725 } 726 727 int machine__process_switch_event(struct machine *machine __maybe_unused, 728 union perf_event *event) 729 { 730 if (dump_trace) 731 perf_event__fprintf_switch(event, stdout); 732 return 0; 733 } 734 735 static int machine__process_ksymbol_register(struct machine *machine, 736 union perf_event *event, 737 struct perf_sample *sample __maybe_unused) 738 { 739 struct symbol *sym; 740 struct dso *dso; 741 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 742 int err = 0; 743 744 if (!map) { 745 dso = dso__new(event->ksymbol.name); 746 747 if (!dso) { 748 err = -ENOMEM; 749 goto out; 750 } 751 dso->kernel = DSO_SPACE__KERNEL; 752 map = map__new2(0, dso); 753 dso__put(dso); 754 if (!map) { 755 err = -ENOMEM; 756 goto out; 757 } 758 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 759 dso->binary_type = DSO_BINARY_TYPE__OOL; 760 dso->data.file_size = event->ksymbol.len; 761 dso__set_loaded(dso); 762 } 763 764 map__set_start(map, event->ksymbol.addr); 765 map__set_end(map, map__start(map) + event->ksymbol.len); 766 err = maps__insert(machine__kernel_maps(machine), map); 767 if (err) { 768 err = -ENOMEM; 769 goto out; 770 } 771 772 dso__set_loaded(dso); 773 774 if (is_bpf_image(event->ksymbol.name)) { 775 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 776 dso__set_long_name(dso, "", false); 777 } 778 } else { 779 dso = map__dso(map); 780 } 781 782 sym = symbol__new(map__map_ip(map, map__start(map)), 783 event->ksymbol.len, 784 0, 0, event->ksymbol.name); 785 if (!sym) { 786 err = -ENOMEM; 787 goto out; 788 } 789 dso__insert_symbol(dso, sym); 790 out: 791 map__put(map); 792 return err; 793 } 794 795 static int machine__process_ksymbol_unregister(struct machine *machine, 796 union perf_event *event, 797 struct perf_sample *sample __maybe_unused) 798 { 799 struct symbol *sym; 800 struct map *map; 801 802 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 803 if (!map) 804 return 0; 805 806 if (!RC_CHK_EQUAL(map, machine->vmlinux_map)) 807 maps__remove(machine__kernel_maps(machine), map); 808 else { 809 struct dso *dso = map__dso(map); 810 811 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map))); 812 if (sym) 813 dso__delete_symbol(dso, sym); 814 } 815 map__put(map); 816 return 0; 817 } 818 819 int machine__process_ksymbol(struct machine *machine __maybe_unused, 820 union perf_event *event, 821 struct perf_sample *sample) 822 { 823 if (dump_trace) 824 perf_event__fprintf_ksymbol(event, stdout); 825 826 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 827 return machine__process_ksymbol_unregister(machine, event, 828 sample); 829 return machine__process_ksymbol_register(machine, event, sample); 830 } 831 832 int machine__process_text_poke(struct machine *machine, union perf_event *event, 833 struct perf_sample *sample __maybe_unused) 834 { 835 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 836 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 837 struct dso *dso = map ? map__dso(map) : NULL; 838 839 if (dump_trace) 840 perf_event__fprintf_text_poke(event, machine, stdout); 841 842 if (!event->text_poke.new_len) 843 goto out; 844 845 if (cpumode != PERF_RECORD_MISC_KERNEL) { 846 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 847 goto out; 848 } 849 850 if (dso) { 851 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 852 int ret; 853 854 /* 855 * Kernel maps might be changed when loading symbols so loading 856 * must be done prior to using kernel maps. 857 */ 858 map__load(map); 859 ret = dso__data_write_cache_addr(dso, map, machine, 860 event->text_poke.addr, 861 new_bytes, 862 event->text_poke.new_len); 863 if (ret != event->text_poke.new_len) 864 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 865 event->text_poke.addr); 866 } else { 867 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 868 event->text_poke.addr); 869 } 870 out: 871 map__put(map); 872 return 0; 873 } 874 875 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 876 const char *filename) 877 { 878 struct map *map = NULL; 879 struct kmod_path m; 880 struct dso *dso; 881 int err; 882 883 if (kmod_path__parse_name(&m, filename)) 884 return NULL; 885 886 dso = machine__findnew_module_dso(machine, &m, filename); 887 if (dso == NULL) 888 goto out; 889 890 map = map__new2(start, dso); 891 if (map == NULL) 892 goto out; 893 894 err = maps__insert(machine__kernel_maps(machine), map); 895 /* If maps__insert failed, return NULL. */ 896 if (err) { 897 map__put(map); 898 map = NULL; 899 } 900 out: 901 /* put the dso here, corresponding to machine__findnew_module_dso */ 902 dso__put(dso); 903 zfree(&m.name); 904 return map; 905 } 906 907 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 908 { 909 struct rb_node *nd; 910 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 911 912 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 913 struct machine *pos = rb_entry(nd, struct machine, rb_node); 914 ret += __dsos__fprintf(&pos->dsos.head, fp); 915 } 916 917 return ret; 918 } 919 920 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 921 bool (skip)(struct dso *dso, int parm), int parm) 922 { 923 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 924 } 925 926 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 927 bool (skip)(struct dso *dso, int parm), int parm) 928 { 929 struct rb_node *nd; 930 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 931 932 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 933 struct machine *pos = rb_entry(nd, struct machine, rb_node); 934 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 935 } 936 return ret; 937 } 938 939 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 940 { 941 int i; 942 size_t printed = 0; 943 struct dso *kdso = machine__kernel_dso(machine); 944 945 if (kdso->has_build_id) { 946 char filename[PATH_MAX]; 947 if (dso__build_id_filename(kdso, filename, sizeof(filename), 948 false)) 949 printed += fprintf(fp, "[0] %s\n", filename); 950 } 951 952 for (i = 0; i < vmlinux_path__nr_entries; ++i) 953 printed += fprintf(fp, "[%d] %s\n", 954 i + kdso->has_build_id, vmlinux_path[i]); 955 956 return printed; 957 } 958 959 struct machine_fprintf_cb_args { 960 FILE *fp; 961 size_t printed; 962 }; 963 964 static int machine_fprintf_cb(struct thread *thread, void *data) 965 { 966 struct machine_fprintf_cb_args *args = data; 967 968 /* TODO: handle fprintf errors. */ 969 args->printed += thread__fprintf(thread, args->fp); 970 return 0; 971 } 972 973 size_t machine__fprintf(struct machine *machine, FILE *fp) 974 { 975 struct machine_fprintf_cb_args args = { 976 .fp = fp, 977 .printed = 0, 978 }; 979 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads)); 980 981 machine__for_each_thread(machine, machine_fprintf_cb, &args); 982 return ret + args.printed; 983 } 984 985 static struct dso *machine__get_kernel(struct machine *machine) 986 { 987 const char *vmlinux_name = machine->mmap_name; 988 struct dso *kernel; 989 990 if (machine__is_host(machine)) { 991 if (symbol_conf.vmlinux_name) 992 vmlinux_name = symbol_conf.vmlinux_name; 993 994 kernel = machine__findnew_kernel(machine, vmlinux_name, 995 "[kernel]", DSO_SPACE__KERNEL); 996 } else { 997 if (symbol_conf.default_guest_vmlinux_name) 998 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 999 1000 kernel = machine__findnew_kernel(machine, vmlinux_name, 1001 "[guest.kernel]", 1002 DSO_SPACE__KERNEL_GUEST); 1003 } 1004 1005 if (kernel != NULL && (!kernel->has_build_id)) 1006 dso__read_running_kernel_build_id(kernel, machine); 1007 1008 return kernel; 1009 } 1010 1011 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1012 size_t bufsz) 1013 { 1014 if (machine__is_default_guest(machine)) 1015 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1016 else 1017 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1018 } 1019 1020 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1021 1022 /* Figure out the start address of kernel map from /proc/kallsyms. 1023 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1024 * symbol_name if it's not that important. 1025 */ 1026 static int machine__get_running_kernel_start(struct machine *machine, 1027 const char **symbol_name, 1028 u64 *start, u64 *end) 1029 { 1030 char filename[PATH_MAX]; 1031 int i, err = -1; 1032 const char *name; 1033 u64 addr = 0; 1034 1035 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1036 1037 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1038 return 0; 1039 1040 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1041 err = kallsyms__get_function_start(filename, name, &addr); 1042 if (!err) 1043 break; 1044 } 1045 1046 if (err) 1047 return -1; 1048 1049 if (symbol_name) 1050 *symbol_name = name; 1051 1052 *start = addr; 1053 1054 err = kallsyms__get_symbol_start(filename, "_edata", &addr); 1055 if (err) 1056 err = kallsyms__get_function_start(filename, "_etext", &addr); 1057 if (!err) 1058 *end = addr; 1059 1060 return 0; 1061 } 1062 1063 int machine__create_extra_kernel_map(struct machine *machine, 1064 struct dso *kernel, 1065 struct extra_kernel_map *xm) 1066 { 1067 struct kmap *kmap; 1068 struct map *map; 1069 int err; 1070 1071 map = map__new2(xm->start, kernel); 1072 if (!map) 1073 return -ENOMEM; 1074 1075 map__set_end(map, xm->end); 1076 map__set_pgoff(map, xm->pgoff); 1077 1078 kmap = map__kmap(map); 1079 1080 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1081 1082 err = maps__insert(machine__kernel_maps(machine), map); 1083 1084 if (!err) { 1085 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1086 kmap->name, map__start(map), map__end(map)); 1087 } 1088 1089 map__put(map); 1090 1091 return err; 1092 } 1093 1094 static u64 find_entry_trampoline(struct dso *dso) 1095 { 1096 /* Duplicates are removed so lookup all aliases */ 1097 const char *syms[] = { 1098 "_entry_trampoline", 1099 "__entry_trampoline_start", 1100 "entry_SYSCALL_64_trampoline", 1101 }; 1102 struct symbol *sym = dso__first_symbol(dso); 1103 unsigned int i; 1104 1105 for (; sym; sym = dso__next_symbol(sym)) { 1106 if (sym->binding != STB_GLOBAL) 1107 continue; 1108 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1109 if (!strcmp(sym->name, syms[i])) 1110 return sym->start; 1111 } 1112 } 1113 1114 return 0; 1115 } 1116 1117 /* 1118 * These values can be used for kernels that do not have symbols for the entry 1119 * trampolines in kallsyms. 1120 */ 1121 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1122 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1123 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1124 1125 struct machine__map_x86_64_entry_trampolines_args { 1126 struct maps *kmaps; 1127 bool found; 1128 }; 1129 1130 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data) 1131 { 1132 struct machine__map_x86_64_entry_trampolines_args *args = data; 1133 struct map *dest_map; 1134 struct kmap *kmap = __map__kmap(map); 1135 1136 if (!kmap || !is_entry_trampoline(kmap->name)) 1137 return 0; 1138 1139 dest_map = maps__find(args->kmaps, map__pgoff(map)); 1140 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map)) 1141 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map))); 1142 1143 map__put(dest_map); 1144 args->found = true; 1145 return 0; 1146 } 1147 1148 /* Map x86_64 PTI entry trampolines */ 1149 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1150 struct dso *kernel) 1151 { 1152 struct machine__map_x86_64_entry_trampolines_args args = { 1153 .kmaps = machine__kernel_maps(machine), 1154 .found = false, 1155 }; 1156 int nr_cpus_avail, cpu; 1157 u64 pgoff; 1158 1159 /* 1160 * In the vmlinux case, pgoff is a virtual address which must now be 1161 * mapped to a vmlinux offset. 1162 */ 1163 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args); 1164 1165 if (args.found || machine->trampolines_mapped) 1166 return 0; 1167 1168 pgoff = find_entry_trampoline(kernel); 1169 if (!pgoff) 1170 return 0; 1171 1172 nr_cpus_avail = machine__nr_cpus_avail(machine); 1173 1174 /* Add a 1 page map for each CPU's entry trampoline */ 1175 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1176 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1177 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1178 X86_64_ENTRY_TRAMPOLINE; 1179 struct extra_kernel_map xm = { 1180 .start = va, 1181 .end = va + page_size, 1182 .pgoff = pgoff, 1183 }; 1184 1185 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1186 1187 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1188 return -1; 1189 } 1190 1191 machine->trampolines_mapped = nr_cpus_avail; 1192 1193 return 0; 1194 } 1195 1196 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1197 struct dso *kernel __maybe_unused) 1198 { 1199 return 0; 1200 } 1201 1202 static int 1203 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1204 { 1205 /* In case of renewal the kernel map, destroy previous one */ 1206 machine__destroy_kernel_maps(machine); 1207 1208 map__put(machine->vmlinux_map); 1209 machine->vmlinux_map = map__new2(0, kernel); 1210 if (machine->vmlinux_map == NULL) 1211 return -ENOMEM; 1212 1213 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY); 1214 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1215 } 1216 1217 void machine__destroy_kernel_maps(struct machine *machine) 1218 { 1219 struct kmap *kmap; 1220 struct map *map = machine__kernel_map(machine); 1221 1222 if (map == NULL) 1223 return; 1224 1225 kmap = map__kmap(map); 1226 maps__remove(machine__kernel_maps(machine), map); 1227 if (kmap && kmap->ref_reloc_sym) { 1228 zfree((char **)&kmap->ref_reloc_sym->name); 1229 zfree(&kmap->ref_reloc_sym); 1230 } 1231 1232 map__zput(machine->vmlinux_map); 1233 } 1234 1235 int machines__create_guest_kernel_maps(struct machines *machines) 1236 { 1237 int ret = 0; 1238 struct dirent **namelist = NULL; 1239 int i, items = 0; 1240 char path[PATH_MAX]; 1241 pid_t pid; 1242 char *endp; 1243 1244 if (symbol_conf.default_guest_vmlinux_name || 1245 symbol_conf.default_guest_modules || 1246 symbol_conf.default_guest_kallsyms) { 1247 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1248 } 1249 1250 if (symbol_conf.guestmount) { 1251 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1252 if (items <= 0) 1253 return -ENOENT; 1254 for (i = 0; i < items; i++) { 1255 if (!isdigit(namelist[i]->d_name[0])) { 1256 /* Filter out . and .. */ 1257 continue; 1258 } 1259 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1260 if ((*endp != '\0') || 1261 (endp == namelist[i]->d_name) || 1262 (errno == ERANGE)) { 1263 pr_debug("invalid directory (%s). Skipping.\n", 1264 namelist[i]->d_name); 1265 continue; 1266 } 1267 sprintf(path, "%s/%s/proc/kallsyms", 1268 symbol_conf.guestmount, 1269 namelist[i]->d_name); 1270 ret = access(path, R_OK); 1271 if (ret) { 1272 pr_debug("Can't access file %s\n", path); 1273 goto failure; 1274 } 1275 machines__create_kernel_maps(machines, pid); 1276 } 1277 failure: 1278 free(namelist); 1279 } 1280 1281 return ret; 1282 } 1283 1284 void machines__destroy_kernel_maps(struct machines *machines) 1285 { 1286 struct rb_node *next = rb_first_cached(&machines->guests); 1287 1288 machine__destroy_kernel_maps(&machines->host); 1289 1290 while (next) { 1291 struct machine *pos = rb_entry(next, struct machine, rb_node); 1292 1293 next = rb_next(&pos->rb_node); 1294 rb_erase_cached(&pos->rb_node, &machines->guests); 1295 machine__delete(pos); 1296 } 1297 } 1298 1299 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1300 { 1301 struct machine *machine = machines__findnew(machines, pid); 1302 1303 if (machine == NULL) 1304 return -1; 1305 1306 return machine__create_kernel_maps(machine); 1307 } 1308 1309 int machine__load_kallsyms(struct machine *machine, const char *filename) 1310 { 1311 struct map *map = machine__kernel_map(machine); 1312 struct dso *dso = map__dso(map); 1313 int ret = __dso__load_kallsyms(dso, filename, map, true); 1314 1315 if (ret > 0) { 1316 dso__set_loaded(dso); 1317 /* 1318 * Since /proc/kallsyms will have multiple sessions for the 1319 * kernel, with modules between them, fixup the end of all 1320 * sections. 1321 */ 1322 maps__fixup_end(machine__kernel_maps(machine)); 1323 } 1324 1325 return ret; 1326 } 1327 1328 int machine__load_vmlinux_path(struct machine *machine) 1329 { 1330 struct map *map = machine__kernel_map(machine); 1331 struct dso *dso = map__dso(map); 1332 int ret = dso__load_vmlinux_path(dso, map); 1333 1334 if (ret > 0) 1335 dso__set_loaded(dso); 1336 1337 return ret; 1338 } 1339 1340 static char *get_kernel_version(const char *root_dir) 1341 { 1342 char version[PATH_MAX]; 1343 FILE *file; 1344 char *name, *tmp; 1345 const char *prefix = "Linux version "; 1346 1347 sprintf(version, "%s/proc/version", root_dir); 1348 file = fopen(version, "r"); 1349 if (!file) 1350 return NULL; 1351 1352 tmp = fgets(version, sizeof(version), file); 1353 fclose(file); 1354 if (!tmp) 1355 return NULL; 1356 1357 name = strstr(version, prefix); 1358 if (!name) 1359 return NULL; 1360 name += strlen(prefix); 1361 tmp = strchr(name, ' '); 1362 if (tmp) 1363 *tmp = '\0'; 1364 1365 return strdup(name); 1366 } 1367 1368 static bool is_kmod_dso(struct dso *dso) 1369 { 1370 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1371 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1372 } 1373 1374 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1375 { 1376 char *long_name; 1377 struct dso *dso; 1378 struct map *map = maps__find_by_name(maps, m->name); 1379 1380 if (map == NULL) 1381 return 0; 1382 1383 long_name = strdup(path); 1384 if (long_name == NULL) { 1385 map__put(map); 1386 return -ENOMEM; 1387 } 1388 1389 dso = map__dso(map); 1390 dso__set_long_name(dso, long_name, true); 1391 dso__kernel_module_get_build_id(dso, ""); 1392 1393 /* 1394 * Full name could reveal us kmod compression, so 1395 * we need to update the symtab_type if needed. 1396 */ 1397 if (m->comp && is_kmod_dso(dso)) { 1398 dso->symtab_type++; 1399 dso->comp = m->comp; 1400 } 1401 map__put(map); 1402 return 0; 1403 } 1404 1405 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1406 { 1407 struct dirent *dent; 1408 DIR *dir = opendir(dir_name); 1409 int ret = 0; 1410 1411 if (!dir) { 1412 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1413 return -1; 1414 } 1415 1416 while ((dent = readdir(dir)) != NULL) { 1417 char path[PATH_MAX]; 1418 struct stat st; 1419 1420 /*sshfs might return bad dent->d_type, so we have to stat*/ 1421 path__join(path, sizeof(path), dir_name, dent->d_name); 1422 if (stat(path, &st)) 1423 continue; 1424 1425 if (S_ISDIR(st.st_mode)) { 1426 if (!strcmp(dent->d_name, ".") || 1427 !strcmp(dent->d_name, "..")) 1428 continue; 1429 1430 /* Do not follow top-level source and build symlinks */ 1431 if (depth == 0) { 1432 if (!strcmp(dent->d_name, "source") || 1433 !strcmp(dent->d_name, "build")) 1434 continue; 1435 } 1436 1437 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1438 if (ret < 0) 1439 goto out; 1440 } else { 1441 struct kmod_path m; 1442 1443 ret = kmod_path__parse_name(&m, dent->d_name); 1444 if (ret) 1445 goto out; 1446 1447 if (m.kmod) 1448 ret = maps__set_module_path(maps, path, &m); 1449 1450 zfree(&m.name); 1451 1452 if (ret) 1453 goto out; 1454 } 1455 } 1456 1457 out: 1458 closedir(dir); 1459 return ret; 1460 } 1461 1462 static int machine__set_modules_path(struct machine *machine) 1463 { 1464 char *version; 1465 char modules_path[PATH_MAX]; 1466 1467 version = get_kernel_version(machine->root_dir); 1468 if (!version) 1469 return -1; 1470 1471 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1472 machine->root_dir, version); 1473 free(version); 1474 1475 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1476 } 1477 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1478 u64 *size __maybe_unused, 1479 const char *name __maybe_unused) 1480 { 1481 return 0; 1482 } 1483 1484 static int machine__create_module(void *arg, const char *name, u64 start, 1485 u64 size) 1486 { 1487 struct machine *machine = arg; 1488 struct map *map; 1489 1490 if (arch__fix_module_text_start(&start, &size, name) < 0) 1491 return -1; 1492 1493 map = machine__addnew_module_map(machine, start, name); 1494 if (map == NULL) 1495 return -1; 1496 map__set_end(map, start + size); 1497 1498 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); 1499 map__put(map); 1500 return 0; 1501 } 1502 1503 static int machine__create_modules(struct machine *machine) 1504 { 1505 const char *modules; 1506 char path[PATH_MAX]; 1507 1508 if (machine__is_default_guest(machine)) { 1509 modules = symbol_conf.default_guest_modules; 1510 } else { 1511 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1512 modules = path; 1513 } 1514 1515 if (symbol__restricted_filename(modules, "/proc/modules")) 1516 return -1; 1517 1518 if (modules__parse(modules, machine, machine__create_module)) 1519 return -1; 1520 1521 if (!machine__set_modules_path(machine)) 1522 return 0; 1523 1524 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1525 1526 return 0; 1527 } 1528 1529 static void machine__set_kernel_mmap(struct machine *machine, 1530 u64 start, u64 end) 1531 { 1532 map__set_start(machine->vmlinux_map, start); 1533 map__set_end(machine->vmlinux_map, end); 1534 /* 1535 * Be a bit paranoid here, some perf.data file came with 1536 * a zero sized synthesized MMAP event for the kernel. 1537 */ 1538 if (start == 0 && end == 0) 1539 map__set_end(machine->vmlinux_map, ~0ULL); 1540 } 1541 1542 static int machine__update_kernel_mmap(struct machine *machine, 1543 u64 start, u64 end) 1544 { 1545 struct map *orig, *updated; 1546 int err; 1547 1548 orig = machine->vmlinux_map; 1549 updated = map__get(orig); 1550 1551 machine->vmlinux_map = updated; 1552 machine__set_kernel_mmap(machine, start, end); 1553 maps__remove(machine__kernel_maps(machine), orig); 1554 err = maps__insert(machine__kernel_maps(machine), updated); 1555 map__put(orig); 1556 1557 return err; 1558 } 1559 1560 int machine__create_kernel_maps(struct machine *machine) 1561 { 1562 struct dso *kernel = machine__get_kernel(machine); 1563 const char *name = NULL; 1564 u64 start = 0, end = ~0ULL; 1565 int ret; 1566 1567 if (kernel == NULL) 1568 return -1; 1569 1570 ret = __machine__create_kernel_maps(machine, kernel); 1571 if (ret < 0) 1572 goto out_put; 1573 1574 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1575 if (machine__is_host(machine)) 1576 pr_debug("Problems creating module maps, " 1577 "continuing anyway...\n"); 1578 else 1579 pr_debug("Problems creating module maps for guest %d, " 1580 "continuing anyway...\n", machine->pid); 1581 } 1582 1583 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1584 if (name && 1585 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1586 machine__destroy_kernel_maps(machine); 1587 ret = -1; 1588 goto out_put; 1589 } 1590 1591 /* 1592 * we have a real start address now, so re-order the kmaps 1593 * assume it's the last in the kmaps 1594 */ 1595 ret = machine__update_kernel_mmap(machine, start, end); 1596 if (ret < 0) 1597 goto out_put; 1598 } 1599 1600 if (machine__create_extra_kernel_maps(machine, kernel)) 1601 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1602 1603 if (end == ~0ULL) { 1604 /* update end address of the kernel map using adjacent module address */ 1605 struct map *next = maps__find_next_entry(machine__kernel_maps(machine), 1606 machine__kernel_map(machine)); 1607 1608 if (next) { 1609 machine__set_kernel_mmap(machine, start, map__start(next)); 1610 map__put(next); 1611 } 1612 } 1613 1614 out_put: 1615 dso__put(kernel); 1616 return ret; 1617 } 1618 1619 static bool machine__uses_kcore(struct machine *machine) 1620 { 1621 struct dso *dso; 1622 1623 list_for_each_entry(dso, &machine->dsos.head, node) { 1624 if (dso__is_kcore(dso)) 1625 return true; 1626 } 1627 1628 return false; 1629 } 1630 1631 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1632 struct extra_kernel_map *xm) 1633 { 1634 return machine__is(machine, "x86_64") && 1635 is_entry_trampoline(xm->name); 1636 } 1637 1638 static int machine__process_extra_kernel_map(struct machine *machine, 1639 struct extra_kernel_map *xm) 1640 { 1641 struct dso *kernel = machine__kernel_dso(machine); 1642 1643 if (kernel == NULL) 1644 return -1; 1645 1646 return machine__create_extra_kernel_map(machine, kernel, xm); 1647 } 1648 1649 static int machine__process_kernel_mmap_event(struct machine *machine, 1650 struct extra_kernel_map *xm, 1651 struct build_id *bid) 1652 { 1653 enum dso_space_type dso_space; 1654 bool is_kernel_mmap; 1655 const char *mmap_name = machine->mmap_name; 1656 1657 /* If we have maps from kcore then we do not need or want any others */ 1658 if (machine__uses_kcore(machine)) 1659 return 0; 1660 1661 if (machine__is_host(machine)) 1662 dso_space = DSO_SPACE__KERNEL; 1663 else 1664 dso_space = DSO_SPACE__KERNEL_GUEST; 1665 1666 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1667 if (!is_kernel_mmap && !machine__is_host(machine)) { 1668 /* 1669 * If the event was recorded inside the guest and injected into 1670 * the host perf.data file, then it will match a host mmap_name, 1671 * so try that - see machine__set_mmap_name(). 1672 */ 1673 mmap_name = "[kernel.kallsyms]"; 1674 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1675 } 1676 if (xm->name[0] == '/' || 1677 (!is_kernel_mmap && xm->name[0] == '[')) { 1678 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name); 1679 1680 if (map == NULL) 1681 goto out_problem; 1682 1683 map__set_end(map, map__start(map) + xm->end - xm->start); 1684 1685 if (build_id__is_defined(bid)) 1686 dso__set_build_id(map__dso(map), bid); 1687 1688 map__put(map); 1689 } else if (is_kernel_mmap) { 1690 const char *symbol_name = xm->name + strlen(mmap_name); 1691 /* 1692 * Should be there already, from the build-id table in 1693 * the header. 1694 */ 1695 struct dso *kernel = NULL; 1696 struct dso *dso; 1697 1698 down_read(&machine->dsos.lock); 1699 1700 list_for_each_entry(dso, &machine->dsos.head, node) { 1701 1702 /* 1703 * The cpumode passed to is_kernel_module is not the 1704 * cpumode of *this* event. If we insist on passing 1705 * correct cpumode to is_kernel_module, we should 1706 * record the cpumode when we adding this dso to the 1707 * linked list. 1708 * 1709 * However we don't really need passing correct 1710 * cpumode. We know the correct cpumode must be kernel 1711 * mode (if not, we should not link it onto kernel_dsos 1712 * list). 1713 * 1714 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1715 * is_kernel_module() treats it as a kernel cpumode. 1716 */ 1717 1718 if (!dso->kernel || 1719 is_kernel_module(dso->long_name, 1720 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1721 continue; 1722 1723 1724 kernel = dso__get(dso); 1725 break; 1726 } 1727 1728 up_read(&machine->dsos.lock); 1729 1730 if (kernel == NULL) 1731 kernel = machine__findnew_dso(machine, machine->mmap_name); 1732 if (kernel == NULL) 1733 goto out_problem; 1734 1735 kernel->kernel = dso_space; 1736 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1737 dso__put(kernel); 1738 goto out_problem; 1739 } 1740 1741 if (strstr(kernel->long_name, "vmlinux")) 1742 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1743 1744 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { 1745 dso__put(kernel); 1746 goto out_problem; 1747 } 1748 1749 if (build_id__is_defined(bid)) 1750 dso__set_build_id(kernel, bid); 1751 1752 /* 1753 * Avoid using a zero address (kptr_restrict) for the ref reloc 1754 * symbol. Effectively having zero here means that at record 1755 * time /proc/sys/kernel/kptr_restrict was non zero. 1756 */ 1757 if (xm->pgoff != 0) { 1758 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1759 symbol_name, 1760 xm->pgoff); 1761 } 1762 1763 if (machine__is_default_guest(machine)) { 1764 /* 1765 * preload dso of guest kernel and modules 1766 */ 1767 dso__load(kernel, machine__kernel_map(machine)); 1768 } 1769 dso__put(kernel); 1770 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1771 return machine__process_extra_kernel_map(machine, xm); 1772 } 1773 return 0; 1774 out_problem: 1775 return -1; 1776 } 1777 1778 int machine__process_mmap2_event(struct machine *machine, 1779 union perf_event *event, 1780 struct perf_sample *sample) 1781 { 1782 struct thread *thread; 1783 struct map *map; 1784 struct dso_id dso_id = { 1785 .maj = event->mmap2.maj, 1786 .min = event->mmap2.min, 1787 .ino = event->mmap2.ino, 1788 .ino_generation = event->mmap2.ino_generation, 1789 }; 1790 struct build_id __bid, *bid = NULL; 1791 int ret = 0; 1792 1793 if (dump_trace) 1794 perf_event__fprintf_mmap2(event, stdout); 1795 1796 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1797 bid = &__bid; 1798 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1799 } 1800 1801 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1802 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1803 struct extra_kernel_map xm = { 1804 .start = event->mmap2.start, 1805 .end = event->mmap2.start + event->mmap2.len, 1806 .pgoff = event->mmap2.pgoff, 1807 }; 1808 1809 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1810 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1811 if (ret < 0) 1812 goto out_problem; 1813 return 0; 1814 } 1815 1816 thread = machine__findnew_thread(machine, event->mmap2.pid, 1817 event->mmap2.tid); 1818 if (thread == NULL) 1819 goto out_problem; 1820 1821 map = map__new(machine, event->mmap2.start, 1822 event->mmap2.len, event->mmap2.pgoff, 1823 &dso_id, event->mmap2.prot, 1824 event->mmap2.flags, bid, 1825 event->mmap2.filename, thread); 1826 1827 if (map == NULL) 1828 goto out_problem_map; 1829 1830 ret = thread__insert_map(thread, map); 1831 if (ret) 1832 goto out_problem_insert; 1833 1834 thread__put(thread); 1835 map__put(map); 1836 return 0; 1837 1838 out_problem_insert: 1839 map__put(map); 1840 out_problem_map: 1841 thread__put(thread); 1842 out_problem: 1843 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1844 return 0; 1845 } 1846 1847 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1848 struct perf_sample *sample) 1849 { 1850 struct thread *thread; 1851 struct map *map; 1852 u32 prot = 0; 1853 int ret = 0; 1854 1855 if (dump_trace) 1856 perf_event__fprintf_mmap(event, stdout); 1857 1858 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1859 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1860 struct extra_kernel_map xm = { 1861 .start = event->mmap.start, 1862 .end = event->mmap.start + event->mmap.len, 1863 .pgoff = event->mmap.pgoff, 1864 }; 1865 1866 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1867 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1868 if (ret < 0) 1869 goto out_problem; 1870 return 0; 1871 } 1872 1873 thread = machine__findnew_thread(machine, event->mmap.pid, 1874 event->mmap.tid); 1875 if (thread == NULL) 1876 goto out_problem; 1877 1878 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1879 prot = PROT_EXEC; 1880 1881 map = map__new(machine, event->mmap.start, 1882 event->mmap.len, event->mmap.pgoff, 1883 NULL, prot, 0, NULL, event->mmap.filename, thread); 1884 1885 if (map == NULL) 1886 goto out_problem_map; 1887 1888 ret = thread__insert_map(thread, map); 1889 if (ret) 1890 goto out_problem_insert; 1891 1892 thread__put(thread); 1893 map__put(map); 1894 return 0; 1895 1896 out_problem_insert: 1897 map__put(map); 1898 out_problem_map: 1899 thread__put(thread); 1900 out_problem: 1901 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1902 return 0; 1903 } 1904 1905 void machine__remove_thread(struct machine *machine, struct thread *th) 1906 { 1907 return threads__remove(&machine->threads, th); 1908 } 1909 1910 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1911 struct perf_sample *sample) 1912 { 1913 struct thread *thread = machine__find_thread(machine, 1914 event->fork.pid, 1915 event->fork.tid); 1916 struct thread *parent = machine__findnew_thread(machine, 1917 event->fork.ppid, 1918 event->fork.ptid); 1919 bool do_maps_clone = true; 1920 int err = 0; 1921 1922 if (dump_trace) 1923 perf_event__fprintf_task(event, stdout); 1924 1925 /* 1926 * There may be an existing thread that is not actually the parent, 1927 * either because we are processing events out of order, or because the 1928 * (fork) event that would have removed the thread was lost. Assume the 1929 * latter case and continue on as best we can. 1930 */ 1931 if (thread__pid(parent) != (pid_t)event->fork.ppid) { 1932 dump_printf("removing erroneous parent thread %d/%d\n", 1933 thread__pid(parent), thread__tid(parent)); 1934 machine__remove_thread(machine, parent); 1935 thread__put(parent); 1936 parent = machine__findnew_thread(machine, event->fork.ppid, 1937 event->fork.ptid); 1938 } 1939 1940 /* if a thread currently exists for the thread id remove it */ 1941 if (thread != NULL) { 1942 machine__remove_thread(machine, thread); 1943 thread__put(thread); 1944 } 1945 1946 thread = machine__findnew_thread(machine, event->fork.pid, 1947 event->fork.tid); 1948 /* 1949 * When synthesizing FORK events, we are trying to create thread 1950 * objects for the already running tasks on the machine. 1951 * 1952 * Normally, for a kernel FORK event, we want to clone the parent's 1953 * maps because that is what the kernel just did. 1954 * 1955 * But when synthesizing, this should not be done. If we do, we end up 1956 * with overlapping maps as we process the synthesized MMAP2 events that 1957 * get delivered shortly thereafter. 1958 * 1959 * Use the FORK event misc flags in an internal way to signal this 1960 * situation, so we can elide the map clone when appropriate. 1961 */ 1962 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1963 do_maps_clone = false; 1964 1965 if (thread == NULL || parent == NULL || 1966 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1967 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1968 err = -1; 1969 } 1970 thread__put(thread); 1971 thread__put(parent); 1972 1973 return err; 1974 } 1975 1976 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1977 struct perf_sample *sample __maybe_unused) 1978 { 1979 struct thread *thread = machine__find_thread(machine, 1980 event->fork.pid, 1981 event->fork.tid); 1982 1983 if (dump_trace) 1984 perf_event__fprintf_task(event, stdout); 1985 1986 if (thread != NULL) { 1987 if (symbol_conf.keep_exited_threads) 1988 thread__set_exited(thread, /*exited=*/true); 1989 else 1990 machine__remove_thread(machine, thread); 1991 } 1992 thread__put(thread); 1993 return 0; 1994 } 1995 1996 int machine__process_event(struct machine *machine, union perf_event *event, 1997 struct perf_sample *sample) 1998 { 1999 int ret; 2000 2001 switch (event->header.type) { 2002 case PERF_RECORD_COMM: 2003 ret = machine__process_comm_event(machine, event, sample); break; 2004 case PERF_RECORD_MMAP: 2005 ret = machine__process_mmap_event(machine, event, sample); break; 2006 case PERF_RECORD_NAMESPACES: 2007 ret = machine__process_namespaces_event(machine, event, sample); break; 2008 case PERF_RECORD_CGROUP: 2009 ret = machine__process_cgroup_event(machine, event, sample); break; 2010 case PERF_RECORD_MMAP2: 2011 ret = machine__process_mmap2_event(machine, event, sample); break; 2012 case PERF_RECORD_FORK: 2013 ret = machine__process_fork_event(machine, event, sample); break; 2014 case PERF_RECORD_EXIT: 2015 ret = machine__process_exit_event(machine, event, sample); break; 2016 case PERF_RECORD_LOST: 2017 ret = machine__process_lost_event(machine, event, sample); break; 2018 case PERF_RECORD_AUX: 2019 ret = machine__process_aux_event(machine, event); break; 2020 case PERF_RECORD_ITRACE_START: 2021 ret = machine__process_itrace_start_event(machine, event); break; 2022 case PERF_RECORD_LOST_SAMPLES: 2023 ret = machine__process_lost_samples_event(machine, event, sample); break; 2024 case PERF_RECORD_SWITCH: 2025 case PERF_RECORD_SWITCH_CPU_WIDE: 2026 ret = machine__process_switch_event(machine, event); break; 2027 case PERF_RECORD_KSYMBOL: 2028 ret = machine__process_ksymbol(machine, event, sample); break; 2029 case PERF_RECORD_BPF_EVENT: 2030 ret = machine__process_bpf(machine, event, sample); break; 2031 case PERF_RECORD_TEXT_POKE: 2032 ret = machine__process_text_poke(machine, event, sample); break; 2033 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2034 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2035 default: 2036 ret = -1; 2037 break; 2038 } 2039 2040 return ret; 2041 } 2042 2043 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2044 { 2045 return regexec(regex, sym->name, 0, NULL, 0) == 0; 2046 } 2047 2048 static void ip__resolve_ams(struct thread *thread, 2049 struct addr_map_symbol *ams, 2050 u64 ip) 2051 { 2052 struct addr_location al; 2053 2054 addr_location__init(&al); 2055 /* 2056 * We cannot use the header.misc hint to determine whether a 2057 * branch stack address is user, kernel, guest, hypervisor. 2058 * Branches may straddle the kernel/user/hypervisor boundaries. 2059 * Thus, we have to try consecutively until we find a match 2060 * or else, the symbol is unknown 2061 */ 2062 thread__find_cpumode_addr_location(thread, ip, &al); 2063 2064 ams->addr = ip; 2065 ams->al_addr = al.addr; 2066 ams->al_level = al.level; 2067 ams->ms.maps = maps__get(al.maps); 2068 ams->ms.sym = al.sym; 2069 ams->ms.map = map__get(al.map); 2070 ams->phys_addr = 0; 2071 ams->data_page_size = 0; 2072 addr_location__exit(&al); 2073 } 2074 2075 static void ip__resolve_data(struct thread *thread, 2076 u8 m, struct addr_map_symbol *ams, 2077 u64 addr, u64 phys_addr, u64 daddr_page_size) 2078 { 2079 struct addr_location al; 2080 2081 addr_location__init(&al); 2082 2083 thread__find_symbol(thread, m, addr, &al); 2084 2085 ams->addr = addr; 2086 ams->al_addr = al.addr; 2087 ams->al_level = al.level; 2088 ams->ms.maps = maps__get(al.maps); 2089 ams->ms.sym = al.sym; 2090 ams->ms.map = map__get(al.map); 2091 ams->phys_addr = phys_addr; 2092 ams->data_page_size = daddr_page_size; 2093 addr_location__exit(&al); 2094 } 2095 2096 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2097 struct addr_location *al) 2098 { 2099 struct mem_info *mi = mem_info__new(); 2100 2101 if (!mi) 2102 return NULL; 2103 2104 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2105 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2106 sample->addr, sample->phys_addr, 2107 sample->data_page_size); 2108 mi->data_src.val = sample->data_src; 2109 2110 return mi; 2111 } 2112 2113 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2114 { 2115 struct map *map = ms->map; 2116 char *srcline = NULL; 2117 struct dso *dso; 2118 2119 if (!map || callchain_param.key == CCKEY_FUNCTION) 2120 return srcline; 2121 2122 dso = map__dso(map); 2123 srcline = srcline__tree_find(&dso->srclines, ip); 2124 if (!srcline) { 2125 bool show_sym = false; 2126 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2127 2128 srcline = get_srcline(dso, map__rip_2objdump(map, ip), 2129 ms->sym, show_sym, show_addr, ip); 2130 srcline__tree_insert(&dso->srclines, ip, srcline); 2131 } 2132 2133 return srcline; 2134 } 2135 2136 struct iterations { 2137 int nr_loop_iter; 2138 u64 cycles; 2139 }; 2140 2141 static int add_callchain_ip(struct thread *thread, 2142 struct callchain_cursor *cursor, 2143 struct symbol **parent, 2144 struct addr_location *root_al, 2145 u8 *cpumode, 2146 u64 ip, 2147 bool branch, 2148 struct branch_flags *flags, 2149 struct iterations *iter, 2150 u64 branch_from) 2151 { 2152 struct map_symbol ms = {}; 2153 struct addr_location al; 2154 int nr_loop_iter = 0, err = 0; 2155 u64 iter_cycles = 0; 2156 const char *srcline = NULL; 2157 2158 addr_location__init(&al); 2159 al.filtered = 0; 2160 al.sym = NULL; 2161 al.srcline = NULL; 2162 if (!cpumode) { 2163 thread__find_cpumode_addr_location(thread, ip, &al); 2164 } else { 2165 if (ip >= PERF_CONTEXT_MAX) { 2166 switch (ip) { 2167 case PERF_CONTEXT_HV: 2168 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2169 break; 2170 case PERF_CONTEXT_KERNEL: 2171 *cpumode = PERF_RECORD_MISC_KERNEL; 2172 break; 2173 case PERF_CONTEXT_USER: 2174 *cpumode = PERF_RECORD_MISC_USER; 2175 break; 2176 default: 2177 pr_debug("invalid callchain context: " 2178 "%"PRId64"\n", (s64) ip); 2179 /* 2180 * It seems the callchain is corrupted. 2181 * Discard all. 2182 */ 2183 callchain_cursor_reset(cursor); 2184 err = 1; 2185 goto out; 2186 } 2187 goto out; 2188 } 2189 thread__find_symbol(thread, *cpumode, ip, &al); 2190 } 2191 2192 if (al.sym != NULL) { 2193 if (perf_hpp_list.parent && !*parent && 2194 symbol__match_regex(al.sym, &parent_regex)) 2195 *parent = al.sym; 2196 else if (have_ignore_callees && root_al && 2197 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2198 /* Treat this symbol as the root, 2199 forgetting its callees. */ 2200 addr_location__copy(root_al, &al); 2201 callchain_cursor_reset(cursor); 2202 } 2203 } 2204 2205 if (symbol_conf.hide_unresolved && al.sym == NULL) 2206 goto out; 2207 2208 if (iter) { 2209 nr_loop_iter = iter->nr_loop_iter; 2210 iter_cycles = iter->cycles; 2211 } 2212 2213 ms.maps = maps__get(al.maps); 2214 ms.map = map__get(al.map); 2215 ms.sym = al.sym; 2216 srcline = callchain_srcline(&ms, al.addr); 2217 err = callchain_cursor_append(cursor, ip, &ms, 2218 branch, flags, nr_loop_iter, 2219 iter_cycles, branch_from, srcline); 2220 out: 2221 addr_location__exit(&al); 2222 map_symbol__exit(&ms); 2223 return err; 2224 } 2225 2226 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2227 struct addr_location *al) 2228 { 2229 unsigned int i; 2230 const struct branch_stack *bs = sample->branch_stack; 2231 struct branch_entry *entries = perf_sample__branch_entries(sample); 2232 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2233 2234 if (!bi) 2235 return NULL; 2236 2237 for (i = 0; i < bs->nr; i++) { 2238 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2239 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2240 bi[i].flags = entries[i].flags; 2241 } 2242 return bi; 2243 } 2244 2245 static void save_iterations(struct iterations *iter, 2246 struct branch_entry *be, int nr) 2247 { 2248 int i; 2249 2250 iter->nr_loop_iter++; 2251 iter->cycles = 0; 2252 2253 for (i = 0; i < nr; i++) 2254 iter->cycles += be[i].flags.cycles; 2255 } 2256 2257 #define CHASHSZ 127 2258 #define CHASHBITS 7 2259 #define NO_ENTRY 0xff 2260 2261 #define PERF_MAX_BRANCH_DEPTH 127 2262 2263 /* Remove loops. */ 2264 static int remove_loops(struct branch_entry *l, int nr, 2265 struct iterations *iter) 2266 { 2267 int i, j, off; 2268 unsigned char chash[CHASHSZ]; 2269 2270 memset(chash, NO_ENTRY, sizeof(chash)); 2271 2272 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2273 2274 for (i = 0; i < nr; i++) { 2275 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2276 2277 /* no collision handling for now */ 2278 if (chash[h] == NO_ENTRY) { 2279 chash[h] = i; 2280 } else if (l[chash[h]].from == l[i].from) { 2281 bool is_loop = true; 2282 /* check if it is a real loop */ 2283 off = 0; 2284 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2285 if (l[j].from != l[i + off].from) { 2286 is_loop = false; 2287 break; 2288 } 2289 if (is_loop) { 2290 j = nr - (i + off); 2291 if (j > 0) { 2292 save_iterations(iter + i + off, 2293 l + i, off); 2294 2295 memmove(iter + i, iter + i + off, 2296 j * sizeof(*iter)); 2297 2298 memmove(l + i, l + i + off, 2299 j * sizeof(*l)); 2300 } 2301 2302 nr -= off; 2303 } 2304 } 2305 } 2306 return nr; 2307 } 2308 2309 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2310 struct callchain_cursor *cursor, 2311 struct perf_sample *sample, 2312 struct symbol **parent, 2313 struct addr_location *root_al, 2314 u64 branch_from, 2315 bool callee, int end) 2316 { 2317 struct ip_callchain *chain = sample->callchain; 2318 u8 cpumode = PERF_RECORD_MISC_USER; 2319 int err, i; 2320 2321 if (callee) { 2322 for (i = 0; i < end + 1; i++) { 2323 err = add_callchain_ip(thread, cursor, parent, 2324 root_al, &cpumode, chain->ips[i], 2325 false, NULL, NULL, branch_from); 2326 if (err) 2327 return err; 2328 } 2329 return 0; 2330 } 2331 2332 for (i = end; i >= 0; i--) { 2333 err = add_callchain_ip(thread, cursor, parent, 2334 root_al, &cpumode, chain->ips[i], 2335 false, NULL, NULL, branch_from); 2336 if (err) 2337 return err; 2338 } 2339 2340 return 0; 2341 } 2342 2343 static void save_lbr_cursor_node(struct thread *thread, 2344 struct callchain_cursor *cursor, 2345 int idx) 2346 { 2347 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2348 2349 if (!lbr_stitch) 2350 return; 2351 2352 if (cursor->pos == cursor->nr) { 2353 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2354 return; 2355 } 2356 2357 if (!cursor->curr) 2358 cursor->curr = cursor->first; 2359 else 2360 cursor->curr = cursor->curr->next; 2361 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2362 sizeof(struct callchain_cursor_node)); 2363 2364 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2365 cursor->pos++; 2366 } 2367 2368 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2369 struct callchain_cursor *cursor, 2370 struct perf_sample *sample, 2371 struct symbol **parent, 2372 struct addr_location *root_al, 2373 u64 *branch_from, 2374 bool callee) 2375 { 2376 struct branch_stack *lbr_stack = sample->branch_stack; 2377 struct branch_entry *entries = perf_sample__branch_entries(sample); 2378 u8 cpumode = PERF_RECORD_MISC_USER; 2379 int lbr_nr = lbr_stack->nr; 2380 struct branch_flags *flags; 2381 int err, i; 2382 u64 ip; 2383 2384 /* 2385 * The curr and pos are not used in writing session. They are cleared 2386 * in callchain_cursor_commit() when the writing session is closed. 2387 * Using curr and pos to track the current cursor node. 2388 */ 2389 if (thread__lbr_stitch(thread)) { 2390 cursor->curr = NULL; 2391 cursor->pos = cursor->nr; 2392 if (cursor->nr) { 2393 cursor->curr = cursor->first; 2394 for (i = 0; i < (int)(cursor->nr - 1); i++) 2395 cursor->curr = cursor->curr->next; 2396 } 2397 } 2398 2399 if (callee) { 2400 /* Add LBR ip from first entries.to */ 2401 ip = entries[0].to; 2402 flags = &entries[0].flags; 2403 *branch_from = entries[0].from; 2404 err = add_callchain_ip(thread, cursor, parent, 2405 root_al, &cpumode, ip, 2406 true, flags, NULL, 2407 *branch_from); 2408 if (err) 2409 return err; 2410 2411 /* 2412 * The number of cursor node increases. 2413 * Move the current cursor node. 2414 * But does not need to save current cursor node for entry 0. 2415 * It's impossible to stitch the whole LBRs of previous sample. 2416 */ 2417 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) { 2418 if (!cursor->curr) 2419 cursor->curr = cursor->first; 2420 else 2421 cursor->curr = cursor->curr->next; 2422 cursor->pos++; 2423 } 2424 2425 /* Add LBR ip from entries.from one by one. */ 2426 for (i = 0; i < lbr_nr; i++) { 2427 ip = entries[i].from; 2428 flags = &entries[i].flags; 2429 err = add_callchain_ip(thread, cursor, parent, 2430 root_al, &cpumode, ip, 2431 true, flags, NULL, 2432 *branch_from); 2433 if (err) 2434 return err; 2435 save_lbr_cursor_node(thread, cursor, i); 2436 } 2437 return 0; 2438 } 2439 2440 /* Add LBR ip from entries.from one by one. */ 2441 for (i = lbr_nr - 1; i >= 0; i--) { 2442 ip = entries[i].from; 2443 flags = &entries[i].flags; 2444 err = add_callchain_ip(thread, cursor, parent, 2445 root_al, &cpumode, ip, 2446 true, flags, NULL, 2447 *branch_from); 2448 if (err) 2449 return err; 2450 save_lbr_cursor_node(thread, cursor, i); 2451 } 2452 2453 if (lbr_nr > 0) { 2454 /* Add LBR ip from first entries.to */ 2455 ip = entries[0].to; 2456 flags = &entries[0].flags; 2457 *branch_from = entries[0].from; 2458 err = add_callchain_ip(thread, cursor, parent, 2459 root_al, &cpumode, ip, 2460 true, flags, NULL, 2461 *branch_from); 2462 if (err) 2463 return err; 2464 } 2465 2466 return 0; 2467 } 2468 2469 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2470 struct callchain_cursor *cursor) 2471 { 2472 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2473 struct callchain_cursor_node *cnode; 2474 struct stitch_list *stitch_node; 2475 int err; 2476 2477 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2478 cnode = &stitch_node->cursor; 2479 2480 err = callchain_cursor_append(cursor, cnode->ip, 2481 &cnode->ms, 2482 cnode->branch, 2483 &cnode->branch_flags, 2484 cnode->nr_loop_iter, 2485 cnode->iter_cycles, 2486 cnode->branch_from, 2487 cnode->srcline); 2488 if (err) 2489 return err; 2490 } 2491 return 0; 2492 } 2493 2494 static struct stitch_list *get_stitch_node(struct thread *thread) 2495 { 2496 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2497 struct stitch_list *stitch_node; 2498 2499 if (!list_empty(&lbr_stitch->free_lists)) { 2500 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2501 struct stitch_list, node); 2502 list_del(&stitch_node->node); 2503 2504 return stitch_node; 2505 } 2506 2507 return malloc(sizeof(struct stitch_list)); 2508 } 2509 2510 static bool has_stitched_lbr(struct thread *thread, 2511 struct perf_sample *cur, 2512 struct perf_sample *prev, 2513 unsigned int max_lbr, 2514 bool callee) 2515 { 2516 struct branch_stack *cur_stack = cur->branch_stack; 2517 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2518 struct branch_stack *prev_stack = prev->branch_stack; 2519 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2520 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2521 int i, j, nr_identical_branches = 0; 2522 struct stitch_list *stitch_node; 2523 u64 cur_base, distance; 2524 2525 if (!cur_stack || !prev_stack) 2526 return false; 2527 2528 /* Find the physical index of the base-of-stack for current sample. */ 2529 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2530 2531 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2532 (max_lbr + prev_stack->hw_idx - cur_base); 2533 /* Previous sample has shorter stack. Nothing can be stitched. */ 2534 if (distance + 1 > prev_stack->nr) 2535 return false; 2536 2537 /* 2538 * Check if there are identical LBRs between two samples. 2539 * Identical LBRs must have same from, to and flags values. Also, 2540 * they have to be saved in the same LBR registers (same physical 2541 * index). 2542 * 2543 * Starts from the base-of-stack of current sample. 2544 */ 2545 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2546 if ((prev_entries[i].from != cur_entries[j].from) || 2547 (prev_entries[i].to != cur_entries[j].to) || 2548 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2549 break; 2550 nr_identical_branches++; 2551 } 2552 2553 if (!nr_identical_branches) 2554 return false; 2555 2556 /* 2557 * Save the LBRs between the base-of-stack of previous sample 2558 * and the base-of-stack of current sample into lbr_stitch->lists. 2559 * These LBRs will be stitched later. 2560 */ 2561 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2562 2563 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2564 continue; 2565 2566 stitch_node = get_stitch_node(thread); 2567 if (!stitch_node) 2568 return false; 2569 2570 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2571 sizeof(struct callchain_cursor_node)); 2572 2573 if (callee) 2574 list_add(&stitch_node->node, &lbr_stitch->lists); 2575 else 2576 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2577 } 2578 2579 return true; 2580 } 2581 2582 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2583 { 2584 if (thread__lbr_stitch(thread)) 2585 return true; 2586 2587 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch))); 2588 if (!thread__lbr_stitch(thread)) 2589 goto err; 2590 2591 thread__lbr_stitch(thread)->prev_lbr_cursor = 2592 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2593 if (!thread__lbr_stitch(thread)->prev_lbr_cursor) 2594 goto free_lbr_stitch; 2595 2596 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists); 2597 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists); 2598 2599 return true; 2600 2601 free_lbr_stitch: 2602 free(thread__lbr_stitch(thread)); 2603 thread__set_lbr_stitch(thread, NULL); 2604 err: 2605 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2606 thread__set_lbr_stitch_enable(thread, false); 2607 return false; 2608 } 2609 2610 /* 2611 * Resolve LBR callstack chain sample 2612 * Return: 2613 * 1 on success get LBR callchain information 2614 * 0 no available LBR callchain information, should try fp 2615 * negative error code on other errors. 2616 */ 2617 static int resolve_lbr_callchain_sample(struct thread *thread, 2618 struct callchain_cursor *cursor, 2619 struct perf_sample *sample, 2620 struct symbol **parent, 2621 struct addr_location *root_al, 2622 int max_stack, 2623 unsigned int max_lbr) 2624 { 2625 bool callee = (callchain_param.order == ORDER_CALLEE); 2626 struct ip_callchain *chain = sample->callchain; 2627 int chain_nr = min(max_stack, (int)chain->nr), i; 2628 struct lbr_stitch *lbr_stitch; 2629 bool stitched_lbr = false; 2630 u64 branch_from = 0; 2631 int err; 2632 2633 for (i = 0; i < chain_nr; i++) { 2634 if (chain->ips[i] == PERF_CONTEXT_USER) 2635 break; 2636 } 2637 2638 /* LBR only affects the user callchain */ 2639 if (i == chain_nr) 2640 return 0; 2641 2642 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx && 2643 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2644 lbr_stitch = thread__lbr_stitch(thread); 2645 2646 stitched_lbr = has_stitched_lbr(thread, sample, 2647 &lbr_stitch->prev_sample, 2648 max_lbr, callee); 2649 2650 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2651 list_replace_init(&lbr_stitch->lists, 2652 &lbr_stitch->free_lists); 2653 } 2654 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2655 } 2656 2657 if (callee) { 2658 /* Add kernel ip */ 2659 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2660 parent, root_al, branch_from, 2661 true, i); 2662 if (err) 2663 goto error; 2664 2665 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2666 root_al, &branch_from, true); 2667 if (err) 2668 goto error; 2669 2670 if (stitched_lbr) { 2671 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2672 if (err) 2673 goto error; 2674 } 2675 2676 } else { 2677 if (stitched_lbr) { 2678 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2679 if (err) 2680 goto error; 2681 } 2682 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2683 root_al, &branch_from, false); 2684 if (err) 2685 goto error; 2686 2687 /* Add kernel ip */ 2688 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2689 parent, root_al, branch_from, 2690 false, i); 2691 if (err) 2692 goto error; 2693 } 2694 return 1; 2695 2696 error: 2697 return (err < 0) ? err : 0; 2698 } 2699 2700 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2701 struct callchain_cursor *cursor, 2702 struct symbol **parent, 2703 struct addr_location *root_al, 2704 u8 *cpumode, int ent) 2705 { 2706 int err = 0; 2707 2708 while (--ent >= 0) { 2709 u64 ip = chain->ips[ent]; 2710 2711 if (ip >= PERF_CONTEXT_MAX) { 2712 err = add_callchain_ip(thread, cursor, parent, 2713 root_al, cpumode, ip, 2714 false, NULL, NULL, 0); 2715 break; 2716 } 2717 } 2718 return err; 2719 } 2720 2721 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2722 struct thread *thread, int usr_idx) 2723 { 2724 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64")) 2725 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2726 else 2727 return 0; 2728 } 2729 2730 static int thread__resolve_callchain_sample(struct thread *thread, 2731 struct callchain_cursor *cursor, 2732 struct evsel *evsel, 2733 struct perf_sample *sample, 2734 struct symbol **parent, 2735 struct addr_location *root_al, 2736 int max_stack) 2737 { 2738 struct branch_stack *branch = sample->branch_stack; 2739 struct branch_entry *entries = perf_sample__branch_entries(sample); 2740 struct ip_callchain *chain = sample->callchain; 2741 int chain_nr = 0; 2742 u8 cpumode = PERF_RECORD_MISC_USER; 2743 int i, j, err, nr_entries, usr_idx; 2744 int skip_idx = -1; 2745 int first_call = 0; 2746 u64 leaf_frame_caller; 2747 2748 if (chain) 2749 chain_nr = chain->nr; 2750 2751 if (evsel__has_branch_callstack(evsel)) { 2752 struct perf_env *env = evsel__env(evsel); 2753 2754 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2755 root_al, max_stack, 2756 !env ? 0 : env->max_branches); 2757 if (err) 2758 return (err < 0) ? err : 0; 2759 } 2760 2761 /* 2762 * Based on DWARF debug information, some architectures skip 2763 * a callchain entry saved by the kernel. 2764 */ 2765 skip_idx = arch_skip_callchain_idx(thread, chain); 2766 2767 /* 2768 * Add branches to call stack for easier browsing. This gives 2769 * more context for a sample than just the callers. 2770 * 2771 * This uses individual histograms of paths compared to the 2772 * aggregated histograms the normal LBR mode uses. 2773 * 2774 * Limitations for now: 2775 * - No extra filters 2776 * - No annotations (should annotate somehow) 2777 */ 2778 2779 if (branch && callchain_param.branch_callstack) { 2780 int nr = min(max_stack, (int)branch->nr); 2781 struct branch_entry be[nr]; 2782 struct iterations iter[nr]; 2783 2784 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2785 pr_warning("corrupted branch chain. skipping...\n"); 2786 goto check_calls; 2787 } 2788 2789 for (i = 0; i < nr; i++) { 2790 if (callchain_param.order == ORDER_CALLEE) { 2791 be[i] = entries[i]; 2792 2793 if (chain == NULL) 2794 continue; 2795 2796 /* 2797 * Check for overlap into the callchain. 2798 * The return address is one off compared to 2799 * the branch entry. To adjust for this 2800 * assume the calling instruction is not longer 2801 * than 8 bytes. 2802 */ 2803 if (i == skip_idx || 2804 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2805 first_call++; 2806 else if (be[i].from < chain->ips[first_call] && 2807 be[i].from >= chain->ips[first_call] - 8) 2808 first_call++; 2809 } else 2810 be[i] = entries[branch->nr - i - 1]; 2811 } 2812 2813 memset(iter, 0, sizeof(struct iterations) * nr); 2814 nr = remove_loops(be, nr, iter); 2815 2816 for (i = 0; i < nr; i++) { 2817 err = add_callchain_ip(thread, cursor, parent, 2818 root_al, 2819 NULL, be[i].to, 2820 true, &be[i].flags, 2821 NULL, be[i].from); 2822 2823 if (!err) 2824 err = add_callchain_ip(thread, cursor, parent, root_al, 2825 NULL, be[i].from, 2826 true, &be[i].flags, 2827 &iter[i], 0); 2828 if (err == -EINVAL) 2829 break; 2830 if (err) 2831 return err; 2832 } 2833 2834 if (chain_nr == 0) 2835 return 0; 2836 2837 chain_nr -= nr; 2838 } 2839 2840 check_calls: 2841 if (chain && callchain_param.order != ORDER_CALLEE) { 2842 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2843 &cpumode, chain->nr - first_call); 2844 if (err) 2845 return (err < 0) ? err : 0; 2846 } 2847 for (i = first_call, nr_entries = 0; 2848 i < chain_nr && nr_entries < max_stack; i++) { 2849 u64 ip; 2850 2851 if (callchain_param.order == ORDER_CALLEE) 2852 j = i; 2853 else 2854 j = chain->nr - i - 1; 2855 2856 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2857 if (j == skip_idx) 2858 continue; 2859 #endif 2860 ip = chain->ips[j]; 2861 if (ip < PERF_CONTEXT_MAX) 2862 ++nr_entries; 2863 else if (callchain_param.order != ORDER_CALLEE) { 2864 err = find_prev_cpumode(chain, thread, cursor, parent, 2865 root_al, &cpumode, j); 2866 if (err) 2867 return (err < 0) ? err : 0; 2868 continue; 2869 } 2870 2871 /* 2872 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 2873 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 2874 * the index will be different in order to add the missing frame 2875 * at the right place. 2876 */ 2877 2878 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 2879 2880 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 2881 2882 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 2883 2884 /* 2885 * check if leaf_frame_Caller != ip to not add the same 2886 * value twice. 2887 */ 2888 2889 if (leaf_frame_caller && leaf_frame_caller != ip) { 2890 2891 err = add_callchain_ip(thread, cursor, parent, 2892 root_al, &cpumode, leaf_frame_caller, 2893 false, NULL, NULL, 0); 2894 if (err) 2895 return (err < 0) ? err : 0; 2896 } 2897 } 2898 2899 err = add_callchain_ip(thread, cursor, parent, 2900 root_al, &cpumode, ip, 2901 false, NULL, NULL, 0); 2902 2903 if (err) 2904 return (err < 0) ? err : 0; 2905 } 2906 2907 return 0; 2908 } 2909 2910 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2911 { 2912 struct symbol *sym = ms->sym; 2913 struct map *map = ms->map; 2914 struct inline_node *inline_node; 2915 struct inline_list *ilist; 2916 struct dso *dso; 2917 u64 addr; 2918 int ret = 1; 2919 struct map_symbol ilist_ms; 2920 2921 if (!symbol_conf.inline_name || !map || !sym) 2922 return ret; 2923 2924 addr = map__dso_map_ip(map, ip); 2925 addr = map__rip_2objdump(map, addr); 2926 dso = map__dso(map); 2927 2928 inline_node = inlines__tree_find(&dso->inlined_nodes, addr); 2929 if (!inline_node) { 2930 inline_node = dso__parse_addr_inlines(dso, addr, sym); 2931 if (!inline_node) 2932 return ret; 2933 inlines__tree_insert(&dso->inlined_nodes, inline_node); 2934 } 2935 2936 ilist_ms = (struct map_symbol) { 2937 .maps = maps__get(ms->maps), 2938 .map = map__get(map), 2939 }; 2940 list_for_each_entry(ilist, &inline_node->val, list) { 2941 ilist_ms.sym = ilist->symbol; 2942 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2943 NULL, 0, 0, 0, ilist->srcline); 2944 2945 if (ret != 0) 2946 return ret; 2947 } 2948 map_symbol__exit(&ilist_ms); 2949 2950 return ret; 2951 } 2952 2953 static int unwind_entry(struct unwind_entry *entry, void *arg) 2954 { 2955 struct callchain_cursor *cursor = arg; 2956 const char *srcline = NULL; 2957 u64 addr = entry->ip; 2958 2959 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2960 return 0; 2961 2962 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2963 return 0; 2964 2965 /* 2966 * Convert entry->ip from a virtual address to an offset in 2967 * its corresponding binary. 2968 */ 2969 if (entry->ms.map) 2970 addr = map__dso_map_ip(entry->ms.map, entry->ip); 2971 2972 srcline = callchain_srcline(&entry->ms, addr); 2973 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2974 false, NULL, 0, 0, 0, srcline); 2975 } 2976 2977 static int thread__resolve_callchain_unwind(struct thread *thread, 2978 struct callchain_cursor *cursor, 2979 struct evsel *evsel, 2980 struct perf_sample *sample, 2981 int max_stack) 2982 { 2983 /* Can we do dwarf post unwind? */ 2984 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2985 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2986 return 0; 2987 2988 /* Bail out if nothing was captured. */ 2989 if ((!sample->user_regs.regs) || 2990 (!sample->user_stack.size)) 2991 return 0; 2992 2993 return unwind__get_entries(unwind_entry, cursor, 2994 thread, sample, max_stack, false); 2995 } 2996 2997 int thread__resolve_callchain(struct thread *thread, 2998 struct callchain_cursor *cursor, 2999 struct evsel *evsel, 3000 struct perf_sample *sample, 3001 struct symbol **parent, 3002 struct addr_location *root_al, 3003 int max_stack) 3004 { 3005 int ret = 0; 3006 3007 if (cursor == NULL) 3008 return -ENOMEM; 3009 3010 callchain_cursor_reset(cursor); 3011 3012 if (callchain_param.order == ORDER_CALLEE) { 3013 ret = thread__resolve_callchain_sample(thread, cursor, 3014 evsel, sample, 3015 parent, root_al, 3016 max_stack); 3017 if (ret) 3018 return ret; 3019 ret = thread__resolve_callchain_unwind(thread, cursor, 3020 evsel, sample, 3021 max_stack); 3022 } else { 3023 ret = thread__resolve_callchain_unwind(thread, cursor, 3024 evsel, sample, 3025 max_stack); 3026 if (ret) 3027 return ret; 3028 ret = thread__resolve_callchain_sample(thread, cursor, 3029 evsel, sample, 3030 parent, root_al, 3031 max_stack); 3032 } 3033 3034 return ret; 3035 } 3036 3037 int machine__for_each_thread(struct machine *machine, 3038 int (*fn)(struct thread *thread, void *p), 3039 void *priv) 3040 { 3041 return threads__for_each_thread(&machine->threads, fn, priv); 3042 } 3043 3044 int machines__for_each_thread(struct machines *machines, 3045 int (*fn)(struct thread *thread, void *p), 3046 void *priv) 3047 { 3048 struct rb_node *nd; 3049 int rc = 0; 3050 3051 rc = machine__for_each_thread(&machines->host, fn, priv); 3052 if (rc != 0) 3053 return rc; 3054 3055 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3056 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3057 3058 rc = machine__for_each_thread(machine, fn, priv); 3059 if (rc != 0) 3060 return rc; 3061 } 3062 return rc; 3063 } 3064 3065 3066 static int thread_list_cb(struct thread *thread, void *data) 3067 { 3068 struct list_head *list = data; 3069 struct thread_list *entry = malloc(sizeof(*entry)); 3070 3071 if (!entry) 3072 return -ENOMEM; 3073 3074 entry->thread = thread__get(thread); 3075 list_add_tail(&entry->list, list); 3076 return 0; 3077 } 3078 3079 int machine__thread_list(struct machine *machine, struct list_head *list) 3080 { 3081 return machine__for_each_thread(machine, thread_list_cb, list); 3082 } 3083 3084 void thread_list__delete(struct list_head *list) 3085 { 3086 struct thread_list *pos, *next; 3087 3088 list_for_each_entry_safe(pos, next, list, list) { 3089 thread__zput(pos->thread); 3090 list_del(&pos->list); 3091 free(pos); 3092 } 3093 } 3094 3095 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3096 { 3097 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3098 return -1; 3099 3100 return machine->current_tid[cpu]; 3101 } 3102 3103 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3104 pid_t tid) 3105 { 3106 struct thread *thread; 3107 const pid_t init_val = -1; 3108 3109 if (cpu < 0) 3110 return -EINVAL; 3111 3112 if (realloc_array_as_needed(machine->current_tid, 3113 machine->current_tid_sz, 3114 (unsigned int)cpu, 3115 &init_val)) 3116 return -ENOMEM; 3117 3118 machine->current_tid[cpu] = tid; 3119 3120 thread = machine__findnew_thread(machine, pid, tid); 3121 if (!thread) 3122 return -ENOMEM; 3123 3124 thread__set_cpu(thread, cpu); 3125 thread__put(thread); 3126 3127 return 0; 3128 } 3129 3130 /* 3131 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3132 * machine__normalized_is() if a normalized arch is needed. 3133 */ 3134 bool machine__is(struct machine *machine, const char *arch) 3135 { 3136 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3137 } 3138 3139 bool machine__normalized_is(struct machine *machine, const char *arch) 3140 { 3141 return machine && !strcmp(perf_env__arch(machine->env), arch); 3142 } 3143 3144 int machine__nr_cpus_avail(struct machine *machine) 3145 { 3146 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3147 } 3148 3149 int machine__get_kernel_start(struct machine *machine) 3150 { 3151 struct map *map = machine__kernel_map(machine); 3152 int err = 0; 3153 3154 /* 3155 * The only addresses above 2^63 are kernel addresses of a 64-bit 3156 * kernel. Note that addresses are unsigned so that on a 32-bit system 3157 * all addresses including kernel addresses are less than 2^32. In 3158 * that case (32-bit system), if the kernel mapping is unknown, all 3159 * addresses will be assumed to be in user space - see 3160 * machine__kernel_ip(). 3161 */ 3162 machine->kernel_start = 1ULL << 63; 3163 if (map) { 3164 err = map__load(map); 3165 /* 3166 * On x86_64, PTI entry trampolines are less than the 3167 * start of kernel text, but still above 2^63. So leave 3168 * kernel_start = 1ULL << 63 for x86_64. 3169 */ 3170 if (!err && !machine__is(machine, "x86_64")) 3171 machine->kernel_start = map__start(map); 3172 } 3173 return err; 3174 } 3175 3176 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3177 { 3178 u8 addr_cpumode = cpumode; 3179 bool kernel_ip; 3180 3181 if (!machine->single_address_space) 3182 goto out; 3183 3184 kernel_ip = machine__kernel_ip(machine, addr); 3185 switch (cpumode) { 3186 case PERF_RECORD_MISC_KERNEL: 3187 case PERF_RECORD_MISC_USER: 3188 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3189 PERF_RECORD_MISC_USER; 3190 break; 3191 case PERF_RECORD_MISC_GUEST_KERNEL: 3192 case PERF_RECORD_MISC_GUEST_USER: 3193 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3194 PERF_RECORD_MISC_GUEST_USER; 3195 break; 3196 default: 3197 break; 3198 } 3199 out: 3200 return addr_cpumode; 3201 } 3202 3203 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3204 { 3205 return dsos__findnew_id(&machine->dsos, filename, id); 3206 } 3207 3208 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3209 { 3210 return machine__findnew_dso_id(machine, filename, NULL); 3211 } 3212 3213 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3214 { 3215 struct machine *machine = vmachine; 3216 struct map *map; 3217 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3218 3219 if (sym == NULL) 3220 return NULL; 3221 3222 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL; 3223 *addrp = map__unmap_ip(map, sym->start); 3224 return sym->name; 3225 } 3226 3227 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3228 { 3229 struct dso *pos; 3230 int err = 0; 3231 3232 list_for_each_entry(pos, &machine->dsos.head, node) { 3233 if (fn(pos, machine, priv)) 3234 err = -1; 3235 } 3236 return err; 3237 } 3238 3239 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3240 { 3241 struct maps *maps = machine__kernel_maps(machine); 3242 3243 return maps__for_each_map(maps, fn, priv); 3244 } 3245 3246 bool machine__is_lock_function(struct machine *machine, u64 addr) 3247 { 3248 if (!machine->sched.text_start) { 3249 struct map *kmap; 3250 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3251 3252 if (!sym) { 3253 /* to avoid retry */ 3254 machine->sched.text_start = 1; 3255 return false; 3256 } 3257 3258 machine->sched.text_start = map__unmap_ip(kmap, sym->start); 3259 3260 /* should not fail from here */ 3261 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3262 machine->sched.text_end = map__unmap_ip(kmap, sym->start); 3263 3264 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3265 machine->lock.text_start = map__unmap_ip(kmap, sym->start); 3266 3267 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3268 machine->lock.text_end = map__unmap_ip(kmap, sym->start); 3269 } 3270 3271 /* failed to get kernel symbols */ 3272 if (machine->sched.text_start == 1) 3273 return false; 3274 3275 /* mutex and rwsem functions are in sched text section */ 3276 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3277 return true; 3278 3279 /* spinlock functions are in lock text section */ 3280 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3281 return true; 3282 3283 return false; 3284 } 3285