1 #include "callchain.h" 2 #include "debug.h" 3 #include "event.h" 4 #include "evsel.h" 5 #include "hist.h" 6 #include "machine.h" 7 #include "map.h" 8 #include "sort.h" 9 #include "strlist.h" 10 #include "thread.h" 11 #include "vdso.h" 12 #include <stdbool.h> 13 #include <symbol/kallsyms.h> 14 #include "unwind.h" 15 #include "linux/hash.h" 16 17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 18 19 static void dsos__init(struct dsos *dsos) 20 { 21 INIT_LIST_HEAD(&dsos->head); 22 dsos->root = RB_ROOT; 23 pthread_rwlock_init(&dsos->lock, NULL); 24 } 25 26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 27 { 28 map_groups__init(&machine->kmaps, machine); 29 RB_CLEAR_NODE(&machine->rb_node); 30 dsos__init(&machine->dsos); 31 32 machine->threads = RB_ROOT; 33 pthread_rwlock_init(&machine->threads_lock, NULL); 34 INIT_LIST_HEAD(&machine->dead_threads); 35 machine->last_match = NULL; 36 37 machine->vdso_info = NULL; 38 39 machine->pid = pid; 40 41 machine->symbol_filter = NULL; 42 machine->id_hdr_size = 0; 43 machine->comm_exec = false; 44 machine->kernel_start = 0; 45 46 machine->root_dir = strdup(root_dir); 47 if (machine->root_dir == NULL) 48 return -ENOMEM; 49 50 if (pid != HOST_KERNEL_ID) { 51 struct thread *thread = machine__findnew_thread(machine, -1, 52 pid); 53 char comm[64]; 54 55 if (thread == NULL) 56 return -ENOMEM; 57 58 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 59 thread__set_comm(thread, comm, 0); 60 thread__put(thread); 61 } 62 63 machine->current_tid = NULL; 64 65 return 0; 66 } 67 68 struct machine *machine__new_host(void) 69 { 70 struct machine *machine = malloc(sizeof(*machine)); 71 72 if (machine != NULL) { 73 machine__init(machine, "", HOST_KERNEL_ID); 74 75 if (machine__create_kernel_maps(machine) < 0) 76 goto out_delete; 77 } 78 79 return machine; 80 out_delete: 81 free(machine); 82 return NULL; 83 } 84 85 static void dsos__purge(struct dsos *dsos) 86 { 87 struct dso *pos, *n; 88 89 pthread_rwlock_wrlock(&dsos->lock); 90 91 list_for_each_entry_safe(pos, n, &dsos->head, node) { 92 RB_CLEAR_NODE(&pos->rb_node); 93 list_del_init(&pos->node); 94 dso__put(pos); 95 } 96 97 pthread_rwlock_unlock(&dsos->lock); 98 } 99 100 static void dsos__exit(struct dsos *dsos) 101 { 102 dsos__purge(dsos); 103 pthread_rwlock_destroy(&dsos->lock); 104 } 105 106 void machine__delete_threads(struct machine *machine) 107 { 108 struct rb_node *nd; 109 110 pthread_rwlock_wrlock(&machine->threads_lock); 111 nd = rb_first(&machine->threads); 112 while (nd) { 113 struct thread *t = rb_entry(nd, struct thread, rb_node); 114 115 nd = rb_next(nd); 116 __machine__remove_thread(machine, t, false); 117 } 118 pthread_rwlock_unlock(&machine->threads_lock); 119 } 120 121 void machine__exit(struct machine *machine) 122 { 123 map_groups__exit(&machine->kmaps); 124 dsos__exit(&machine->dsos); 125 machine__exit_vdso(machine); 126 zfree(&machine->root_dir); 127 zfree(&machine->current_tid); 128 pthread_rwlock_destroy(&machine->threads_lock); 129 } 130 131 void machine__delete(struct machine *machine) 132 { 133 machine__exit(machine); 134 free(machine); 135 } 136 137 void machines__init(struct machines *machines) 138 { 139 machine__init(&machines->host, "", HOST_KERNEL_ID); 140 machines->guests = RB_ROOT; 141 machines->symbol_filter = NULL; 142 } 143 144 void machines__exit(struct machines *machines) 145 { 146 machine__exit(&machines->host); 147 /* XXX exit guest */ 148 } 149 150 struct machine *machines__add(struct machines *machines, pid_t pid, 151 const char *root_dir) 152 { 153 struct rb_node **p = &machines->guests.rb_node; 154 struct rb_node *parent = NULL; 155 struct machine *pos, *machine = malloc(sizeof(*machine)); 156 157 if (machine == NULL) 158 return NULL; 159 160 if (machine__init(machine, root_dir, pid) != 0) { 161 free(machine); 162 return NULL; 163 } 164 165 machine->symbol_filter = machines->symbol_filter; 166 167 while (*p != NULL) { 168 parent = *p; 169 pos = rb_entry(parent, struct machine, rb_node); 170 if (pid < pos->pid) 171 p = &(*p)->rb_left; 172 else 173 p = &(*p)->rb_right; 174 } 175 176 rb_link_node(&machine->rb_node, parent, p); 177 rb_insert_color(&machine->rb_node, &machines->guests); 178 179 return machine; 180 } 181 182 void machines__set_symbol_filter(struct machines *machines, 183 symbol_filter_t symbol_filter) 184 { 185 struct rb_node *nd; 186 187 machines->symbol_filter = symbol_filter; 188 machines->host.symbol_filter = symbol_filter; 189 190 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 191 struct machine *machine = rb_entry(nd, struct machine, rb_node); 192 193 machine->symbol_filter = symbol_filter; 194 } 195 } 196 197 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 198 { 199 struct rb_node *nd; 200 201 machines->host.comm_exec = comm_exec; 202 203 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 204 struct machine *machine = rb_entry(nd, struct machine, rb_node); 205 206 machine->comm_exec = comm_exec; 207 } 208 } 209 210 struct machine *machines__find(struct machines *machines, pid_t pid) 211 { 212 struct rb_node **p = &machines->guests.rb_node; 213 struct rb_node *parent = NULL; 214 struct machine *machine; 215 struct machine *default_machine = NULL; 216 217 if (pid == HOST_KERNEL_ID) 218 return &machines->host; 219 220 while (*p != NULL) { 221 parent = *p; 222 machine = rb_entry(parent, struct machine, rb_node); 223 if (pid < machine->pid) 224 p = &(*p)->rb_left; 225 else if (pid > machine->pid) 226 p = &(*p)->rb_right; 227 else 228 return machine; 229 if (!machine->pid) 230 default_machine = machine; 231 } 232 233 return default_machine; 234 } 235 236 struct machine *machines__findnew(struct machines *machines, pid_t pid) 237 { 238 char path[PATH_MAX]; 239 const char *root_dir = ""; 240 struct machine *machine = machines__find(machines, pid); 241 242 if (machine && (machine->pid == pid)) 243 goto out; 244 245 if ((pid != HOST_KERNEL_ID) && 246 (pid != DEFAULT_GUEST_KERNEL_ID) && 247 (symbol_conf.guestmount)) { 248 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 249 if (access(path, R_OK)) { 250 static struct strlist *seen; 251 252 if (!seen) 253 seen = strlist__new(true, NULL); 254 255 if (!strlist__has_entry(seen, path)) { 256 pr_err("Can't access file %s\n", path); 257 strlist__add(seen, path); 258 } 259 machine = NULL; 260 goto out; 261 } 262 root_dir = path; 263 } 264 265 machine = machines__add(machines, pid, root_dir); 266 out: 267 return machine; 268 } 269 270 void machines__process_guests(struct machines *machines, 271 machine__process_t process, void *data) 272 { 273 struct rb_node *nd; 274 275 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 276 struct machine *pos = rb_entry(nd, struct machine, rb_node); 277 process(pos, data); 278 } 279 } 280 281 char *machine__mmap_name(struct machine *machine, char *bf, size_t size) 282 { 283 if (machine__is_host(machine)) 284 snprintf(bf, size, "[%s]", "kernel.kallsyms"); 285 else if (machine__is_default_guest(machine)) 286 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms"); 287 else { 288 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms", 289 machine->pid); 290 } 291 292 return bf; 293 } 294 295 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 296 { 297 struct rb_node *node; 298 struct machine *machine; 299 300 machines->host.id_hdr_size = id_hdr_size; 301 302 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 303 machine = rb_entry(node, struct machine, rb_node); 304 machine->id_hdr_size = id_hdr_size; 305 } 306 307 return; 308 } 309 310 static void machine__update_thread_pid(struct machine *machine, 311 struct thread *th, pid_t pid) 312 { 313 struct thread *leader; 314 315 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 316 return; 317 318 th->pid_ = pid; 319 320 if (th->pid_ == th->tid) 321 return; 322 323 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 324 if (!leader) 325 goto out_err; 326 327 if (!leader->mg) 328 leader->mg = map_groups__new(machine); 329 330 if (!leader->mg) 331 goto out_err; 332 333 if (th->mg == leader->mg) 334 return; 335 336 if (th->mg) { 337 /* 338 * Maps are created from MMAP events which provide the pid and 339 * tid. Consequently there never should be any maps on a thread 340 * with an unknown pid. Just print an error if there are. 341 */ 342 if (!map_groups__empty(th->mg)) 343 pr_err("Discarding thread maps for %d:%d\n", 344 th->pid_, th->tid); 345 map_groups__put(th->mg); 346 } 347 348 th->mg = map_groups__get(leader->mg); 349 350 return; 351 352 out_err: 353 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 354 } 355 356 static struct thread *____machine__findnew_thread(struct machine *machine, 357 pid_t pid, pid_t tid, 358 bool create) 359 { 360 struct rb_node **p = &machine->threads.rb_node; 361 struct rb_node *parent = NULL; 362 struct thread *th; 363 364 /* 365 * Front-end cache - TID lookups come in blocks, 366 * so most of the time we dont have to look up 367 * the full rbtree: 368 */ 369 th = machine->last_match; 370 if (th != NULL) { 371 if (th->tid == tid) { 372 machine__update_thread_pid(machine, th, pid); 373 return th; 374 } 375 376 machine->last_match = NULL; 377 } 378 379 while (*p != NULL) { 380 parent = *p; 381 th = rb_entry(parent, struct thread, rb_node); 382 383 if (th->tid == tid) { 384 machine->last_match = th; 385 machine__update_thread_pid(machine, th, pid); 386 return th; 387 } 388 389 if (tid < th->tid) 390 p = &(*p)->rb_left; 391 else 392 p = &(*p)->rb_right; 393 } 394 395 if (!create) 396 return NULL; 397 398 th = thread__new(pid, tid); 399 if (th != NULL) { 400 rb_link_node(&th->rb_node, parent, p); 401 rb_insert_color(&th->rb_node, &machine->threads); 402 403 /* 404 * We have to initialize map_groups separately 405 * after rb tree is updated. 406 * 407 * The reason is that we call machine__findnew_thread 408 * within thread__init_map_groups to find the thread 409 * leader and that would screwed the rb tree. 410 */ 411 if (thread__init_map_groups(th, machine)) { 412 rb_erase_init(&th->rb_node, &machine->threads); 413 RB_CLEAR_NODE(&th->rb_node); 414 thread__delete(th); 415 return NULL; 416 } 417 /* 418 * It is now in the rbtree, get a ref 419 */ 420 thread__get(th); 421 machine->last_match = th; 422 } 423 424 return th; 425 } 426 427 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 428 { 429 return ____machine__findnew_thread(machine, pid, tid, true); 430 } 431 432 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 433 pid_t tid) 434 { 435 struct thread *th; 436 437 pthread_rwlock_wrlock(&machine->threads_lock); 438 th = thread__get(__machine__findnew_thread(machine, pid, tid)); 439 pthread_rwlock_unlock(&machine->threads_lock); 440 return th; 441 } 442 443 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 444 pid_t tid) 445 { 446 struct thread *th; 447 pthread_rwlock_rdlock(&machine->threads_lock); 448 th = thread__get(____machine__findnew_thread(machine, pid, tid, false)); 449 pthread_rwlock_unlock(&machine->threads_lock); 450 return th; 451 } 452 453 struct comm *machine__thread_exec_comm(struct machine *machine, 454 struct thread *thread) 455 { 456 if (machine->comm_exec) 457 return thread__exec_comm(thread); 458 else 459 return thread__comm(thread); 460 } 461 462 int machine__process_comm_event(struct machine *machine, union perf_event *event, 463 struct perf_sample *sample) 464 { 465 struct thread *thread = machine__findnew_thread(machine, 466 event->comm.pid, 467 event->comm.tid); 468 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 469 int err = 0; 470 471 if (exec) 472 machine->comm_exec = true; 473 474 if (dump_trace) 475 perf_event__fprintf_comm(event, stdout); 476 477 if (thread == NULL || 478 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 479 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 480 err = -1; 481 } 482 483 thread__put(thread); 484 485 return err; 486 } 487 488 int machine__process_lost_event(struct machine *machine __maybe_unused, 489 union perf_event *event, struct perf_sample *sample __maybe_unused) 490 { 491 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 492 event->lost.id, event->lost.lost); 493 return 0; 494 } 495 496 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 497 union perf_event *event, struct perf_sample *sample) 498 { 499 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 500 sample->id, event->lost_samples.lost); 501 return 0; 502 } 503 504 static struct dso *machine__findnew_module_dso(struct machine *machine, 505 struct kmod_path *m, 506 const char *filename) 507 { 508 struct dso *dso; 509 510 pthread_rwlock_wrlock(&machine->dsos.lock); 511 512 dso = __dsos__find(&machine->dsos, m->name, true); 513 if (!dso) { 514 dso = __dsos__addnew(&machine->dsos, m->name); 515 if (dso == NULL) 516 goto out_unlock; 517 518 if (machine__is_host(machine)) 519 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE; 520 else 521 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE; 522 523 /* _KMODULE_COMP should be next to _KMODULE */ 524 if (m->kmod && m->comp) 525 dso->symtab_type++; 526 527 dso__set_short_name(dso, strdup(m->name), true); 528 dso__set_long_name(dso, strdup(filename), true); 529 } 530 531 dso__get(dso); 532 out_unlock: 533 pthread_rwlock_unlock(&machine->dsos.lock); 534 return dso; 535 } 536 537 int machine__process_aux_event(struct machine *machine __maybe_unused, 538 union perf_event *event) 539 { 540 if (dump_trace) 541 perf_event__fprintf_aux(event, stdout); 542 return 0; 543 } 544 545 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 546 union perf_event *event) 547 { 548 if (dump_trace) 549 perf_event__fprintf_itrace_start(event, stdout); 550 return 0; 551 } 552 553 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 554 const char *filename) 555 { 556 struct map *map = NULL; 557 struct dso *dso; 558 struct kmod_path m; 559 560 if (kmod_path__parse_name(&m, filename)) 561 return NULL; 562 563 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION, 564 m.name); 565 if (map) 566 goto out; 567 568 dso = machine__findnew_module_dso(machine, &m, filename); 569 if (dso == NULL) 570 goto out; 571 572 map = map__new2(start, dso, MAP__FUNCTION); 573 if (map == NULL) 574 goto out; 575 576 map_groups__insert(&machine->kmaps, map); 577 578 out: 579 free(m.name); 580 return map; 581 } 582 583 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 584 { 585 struct rb_node *nd; 586 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 587 588 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 589 struct machine *pos = rb_entry(nd, struct machine, rb_node); 590 ret += __dsos__fprintf(&pos->dsos.head, fp); 591 } 592 593 return ret; 594 } 595 596 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 597 bool (skip)(struct dso *dso, int parm), int parm) 598 { 599 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 600 } 601 602 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 603 bool (skip)(struct dso *dso, int parm), int parm) 604 { 605 struct rb_node *nd; 606 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 607 608 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 609 struct machine *pos = rb_entry(nd, struct machine, rb_node); 610 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 611 } 612 return ret; 613 } 614 615 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 616 { 617 int i; 618 size_t printed = 0; 619 struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso; 620 621 if (kdso->has_build_id) { 622 char filename[PATH_MAX]; 623 if (dso__build_id_filename(kdso, filename, sizeof(filename))) 624 printed += fprintf(fp, "[0] %s\n", filename); 625 } 626 627 for (i = 0; i < vmlinux_path__nr_entries; ++i) 628 printed += fprintf(fp, "[%d] %s\n", 629 i + kdso->has_build_id, vmlinux_path[i]); 630 631 return printed; 632 } 633 634 size_t machine__fprintf(struct machine *machine, FILE *fp) 635 { 636 size_t ret = 0; 637 struct rb_node *nd; 638 639 pthread_rwlock_rdlock(&machine->threads_lock); 640 641 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 642 struct thread *pos = rb_entry(nd, struct thread, rb_node); 643 644 ret += thread__fprintf(pos, fp); 645 } 646 647 pthread_rwlock_unlock(&machine->threads_lock); 648 649 return ret; 650 } 651 652 static struct dso *machine__get_kernel(struct machine *machine) 653 { 654 const char *vmlinux_name = NULL; 655 struct dso *kernel; 656 657 if (machine__is_host(machine)) { 658 vmlinux_name = symbol_conf.vmlinux_name; 659 if (!vmlinux_name) 660 vmlinux_name = "[kernel.kallsyms]"; 661 662 kernel = machine__findnew_kernel(machine, vmlinux_name, 663 "[kernel]", DSO_TYPE_KERNEL); 664 } else { 665 char bf[PATH_MAX]; 666 667 if (machine__is_default_guest(machine)) 668 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 669 if (!vmlinux_name) 670 vmlinux_name = machine__mmap_name(machine, bf, 671 sizeof(bf)); 672 673 kernel = machine__findnew_kernel(machine, vmlinux_name, 674 "[guest.kernel]", 675 DSO_TYPE_GUEST_KERNEL); 676 } 677 678 if (kernel != NULL && (!kernel->has_build_id)) 679 dso__read_running_kernel_build_id(kernel, machine); 680 681 return kernel; 682 } 683 684 struct process_args { 685 u64 start; 686 }; 687 688 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 689 size_t bufsz) 690 { 691 if (machine__is_default_guest(machine)) 692 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 693 else 694 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 695 } 696 697 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 698 699 /* Figure out the start address of kernel map from /proc/kallsyms. 700 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 701 * symbol_name if it's not that important. 702 */ 703 static u64 machine__get_running_kernel_start(struct machine *machine, 704 const char **symbol_name) 705 { 706 char filename[PATH_MAX]; 707 int i; 708 const char *name; 709 u64 addr = 0; 710 711 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 712 713 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 714 return 0; 715 716 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 717 addr = kallsyms__get_function_start(filename, name); 718 if (addr) 719 break; 720 } 721 722 if (symbol_name) 723 *symbol_name = name; 724 725 return addr; 726 } 727 728 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 729 { 730 enum map_type type; 731 u64 start = machine__get_running_kernel_start(machine, NULL); 732 733 for (type = 0; type < MAP__NR_TYPES; ++type) { 734 struct kmap *kmap; 735 736 machine->vmlinux_maps[type] = map__new2(start, kernel, type); 737 if (machine->vmlinux_maps[type] == NULL) 738 return -1; 739 740 machine->vmlinux_maps[type]->map_ip = 741 machine->vmlinux_maps[type]->unmap_ip = 742 identity__map_ip; 743 kmap = map__kmap(machine->vmlinux_maps[type]); 744 if (!kmap) 745 return -1; 746 747 kmap->kmaps = &machine->kmaps; 748 map_groups__insert(&machine->kmaps, 749 machine->vmlinux_maps[type]); 750 } 751 752 return 0; 753 } 754 755 void machine__destroy_kernel_maps(struct machine *machine) 756 { 757 enum map_type type; 758 759 for (type = 0; type < MAP__NR_TYPES; ++type) { 760 struct kmap *kmap; 761 762 if (machine->vmlinux_maps[type] == NULL) 763 continue; 764 765 kmap = map__kmap(machine->vmlinux_maps[type]); 766 map_groups__remove(&machine->kmaps, 767 machine->vmlinux_maps[type]); 768 if (kmap && kmap->ref_reloc_sym) { 769 /* 770 * ref_reloc_sym is shared among all maps, so free just 771 * on one of them. 772 */ 773 if (type == MAP__FUNCTION) { 774 zfree((char **)&kmap->ref_reloc_sym->name); 775 zfree(&kmap->ref_reloc_sym); 776 } else 777 kmap->ref_reloc_sym = NULL; 778 } 779 780 machine->vmlinux_maps[type] = NULL; 781 } 782 } 783 784 int machines__create_guest_kernel_maps(struct machines *machines) 785 { 786 int ret = 0; 787 struct dirent **namelist = NULL; 788 int i, items = 0; 789 char path[PATH_MAX]; 790 pid_t pid; 791 char *endp; 792 793 if (symbol_conf.default_guest_vmlinux_name || 794 symbol_conf.default_guest_modules || 795 symbol_conf.default_guest_kallsyms) { 796 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 797 } 798 799 if (symbol_conf.guestmount) { 800 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 801 if (items <= 0) 802 return -ENOENT; 803 for (i = 0; i < items; i++) { 804 if (!isdigit(namelist[i]->d_name[0])) { 805 /* Filter out . and .. */ 806 continue; 807 } 808 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 809 if ((*endp != '\0') || 810 (endp == namelist[i]->d_name) || 811 (errno == ERANGE)) { 812 pr_debug("invalid directory (%s). Skipping.\n", 813 namelist[i]->d_name); 814 continue; 815 } 816 sprintf(path, "%s/%s/proc/kallsyms", 817 symbol_conf.guestmount, 818 namelist[i]->d_name); 819 ret = access(path, R_OK); 820 if (ret) { 821 pr_debug("Can't access file %s\n", path); 822 goto failure; 823 } 824 machines__create_kernel_maps(machines, pid); 825 } 826 failure: 827 free(namelist); 828 } 829 830 return ret; 831 } 832 833 void machines__destroy_kernel_maps(struct machines *machines) 834 { 835 struct rb_node *next = rb_first(&machines->guests); 836 837 machine__destroy_kernel_maps(&machines->host); 838 839 while (next) { 840 struct machine *pos = rb_entry(next, struct machine, rb_node); 841 842 next = rb_next(&pos->rb_node); 843 rb_erase(&pos->rb_node, &machines->guests); 844 machine__delete(pos); 845 } 846 } 847 848 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 849 { 850 struct machine *machine = machines__findnew(machines, pid); 851 852 if (machine == NULL) 853 return -1; 854 855 return machine__create_kernel_maps(machine); 856 } 857 858 int machine__load_kallsyms(struct machine *machine, const char *filename, 859 enum map_type type, symbol_filter_t filter) 860 { 861 struct map *map = machine->vmlinux_maps[type]; 862 int ret = dso__load_kallsyms(map->dso, filename, map, filter); 863 864 if (ret > 0) { 865 dso__set_loaded(map->dso, type); 866 /* 867 * Since /proc/kallsyms will have multiple sessions for the 868 * kernel, with modules between them, fixup the end of all 869 * sections. 870 */ 871 __map_groups__fixup_end(&machine->kmaps, type); 872 } 873 874 return ret; 875 } 876 877 int machine__load_vmlinux_path(struct machine *machine, enum map_type type, 878 symbol_filter_t filter) 879 { 880 struct map *map = machine->vmlinux_maps[type]; 881 int ret = dso__load_vmlinux_path(map->dso, map, filter); 882 883 if (ret > 0) 884 dso__set_loaded(map->dso, type); 885 886 return ret; 887 } 888 889 static void map_groups__fixup_end(struct map_groups *mg) 890 { 891 int i; 892 for (i = 0; i < MAP__NR_TYPES; ++i) 893 __map_groups__fixup_end(mg, i); 894 } 895 896 static char *get_kernel_version(const char *root_dir) 897 { 898 char version[PATH_MAX]; 899 FILE *file; 900 char *name, *tmp; 901 const char *prefix = "Linux version "; 902 903 sprintf(version, "%s/proc/version", root_dir); 904 file = fopen(version, "r"); 905 if (!file) 906 return NULL; 907 908 version[0] = '\0'; 909 tmp = fgets(version, sizeof(version), file); 910 fclose(file); 911 912 name = strstr(version, prefix); 913 if (!name) 914 return NULL; 915 name += strlen(prefix); 916 tmp = strchr(name, ' '); 917 if (tmp) 918 *tmp = '\0'; 919 920 return strdup(name); 921 } 922 923 static bool is_kmod_dso(struct dso *dso) 924 { 925 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 926 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 927 } 928 929 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 930 struct kmod_path *m) 931 { 932 struct map *map; 933 char *long_name; 934 935 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name); 936 if (map == NULL) 937 return 0; 938 939 long_name = strdup(path); 940 if (long_name == NULL) 941 return -ENOMEM; 942 943 dso__set_long_name(map->dso, long_name, true); 944 dso__kernel_module_get_build_id(map->dso, ""); 945 946 /* 947 * Full name could reveal us kmod compression, so 948 * we need to update the symtab_type if needed. 949 */ 950 if (m->comp && is_kmod_dso(map->dso)) 951 map->dso->symtab_type++; 952 953 return 0; 954 } 955 956 static int map_groups__set_modules_path_dir(struct map_groups *mg, 957 const char *dir_name, int depth) 958 { 959 struct dirent *dent; 960 DIR *dir = opendir(dir_name); 961 int ret = 0; 962 963 if (!dir) { 964 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 965 return -1; 966 } 967 968 while ((dent = readdir(dir)) != NULL) { 969 char path[PATH_MAX]; 970 struct stat st; 971 972 /*sshfs might return bad dent->d_type, so we have to stat*/ 973 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 974 if (stat(path, &st)) 975 continue; 976 977 if (S_ISDIR(st.st_mode)) { 978 if (!strcmp(dent->d_name, ".") || 979 !strcmp(dent->d_name, "..")) 980 continue; 981 982 /* Do not follow top-level source and build symlinks */ 983 if (depth == 0) { 984 if (!strcmp(dent->d_name, "source") || 985 !strcmp(dent->d_name, "build")) 986 continue; 987 } 988 989 ret = map_groups__set_modules_path_dir(mg, path, 990 depth + 1); 991 if (ret < 0) 992 goto out; 993 } else { 994 struct kmod_path m; 995 996 ret = kmod_path__parse_name(&m, dent->d_name); 997 if (ret) 998 goto out; 999 1000 if (m.kmod) 1001 ret = map_groups__set_module_path(mg, path, &m); 1002 1003 free(m.name); 1004 1005 if (ret) 1006 goto out; 1007 } 1008 } 1009 1010 out: 1011 closedir(dir); 1012 return ret; 1013 } 1014 1015 static int machine__set_modules_path(struct machine *machine) 1016 { 1017 char *version; 1018 char modules_path[PATH_MAX]; 1019 1020 version = get_kernel_version(machine->root_dir); 1021 if (!version) 1022 return -1; 1023 1024 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1025 machine->root_dir, version); 1026 free(version); 1027 1028 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1029 } 1030 1031 static int machine__create_module(void *arg, const char *name, u64 start) 1032 { 1033 struct machine *machine = arg; 1034 struct map *map; 1035 1036 map = machine__findnew_module_map(machine, start, name); 1037 if (map == NULL) 1038 return -1; 1039 1040 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1041 1042 return 0; 1043 } 1044 1045 static int machine__create_modules(struct machine *machine) 1046 { 1047 const char *modules; 1048 char path[PATH_MAX]; 1049 1050 if (machine__is_default_guest(machine)) { 1051 modules = symbol_conf.default_guest_modules; 1052 } else { 1053 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1054 modules = path; 1055 } 1056 1057 if (symbol__restricted_filename(modules, "/proc/modules")) 1058 return -1; 1059 1060 if (modules__parse(modules, machine, machine__create_module)) 1061 return -1; 1062 1063 if (!machine__set_modules_path(machine)) 1064 return 0; 1065 1066 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1067 1068 return 0; 1069 } 1070 1071 int machine__create_kernel_maps(struct machine *machine) 1072 { 1073 struct dso *kernel = machine__get_kernel(machine); 1074 const char *name; 1075 u64 addr = machine__get_running_kernel_start(machine, &name); 1076 if (!addr) 1077 return -1; 1078 1079 if (kernel == NULL || 1080 __machine__create_kernel_maps(machine, kernel) < 0) 1081 return -1; 1082 1083 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1084 if (machine__is_host(machine)) 1085 pr_debug("Problems creating module maps, " 1086 "continuing anyway...\n"); 1087 else 1088 pr_debug("Problems creating module maps for guest %d, " 1089 "continuing anyway...\n", machine->pid); 1090 } 1091 1092 /* 1093 * Now that we have all the maps created, just set the ->end of them: 1094 */ 1095 map_groups__fixup_end(&machine->kmaps); 1096 1097 if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, 1098 addr)) { 1099 machine__destroy_kernel_maps(machine); 1100 return -1; 1101 } 1102 1103 return 0; 1104 } 1105 1106 static void machine__set_kernel_mmap_len(struct machine *machine, 1107 union perf_event *event) 1108 { 1109 int i; 1110 1111 for (i = 0; i < MAP__NR_TYPES; i++) { 1112 machine->vmlinux_maps[i]->start = event->mmap.start; 1113 machine->vmlinux_maps[i]->end = (event->mmap.start + 1114 event->mmap.len); 1115 /* 1116 * Be a bit paranoid here, some perf.data file came with 1117 * a zero sized synthesized MMAP event for the kernel. 1118 */ 1119 if (machine->vmlinux_maps[i]->end == 0) 1120 machine->vmlinux_maps[i]->end = ~0ULL; 1121 } 1122 } 1123 1124 static bool machine__uses_kcore(struct machine *machine) 1125 { 1126 struct dso *dso; 1127 1128 list_for_each_entry(dso, &machine->dsos.head, node) { 1129 if (dso__is_kcore(dso)) 1130 return true; 1131 } 1132 1133 return false; 1134 } 1135 1136 static int machine__process_kernel_mmap_event(struct machine *machine, 1137 union perf_event *event) 1138 { 1139 struct map *map; 1140 char kmmap_prefix[PATH_MAX]; 1141 enum dso_kernel_type kernel_type; 1142 bool is_kernel_mmap; 1143 1144 /* If we have maps from kcore then we do not need or want any others */ 1145 if (machine__uses_kcore(machine)) 1146 return 0; 1147 1148 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix)); 1149 if (machine__is_host(machine)) 1150 kernel_type = DSO_TYPE_KERNEL; 1151 else 1152 kernel_type = DSO_TYPE_GUEST_KERNEL; 1153 1154 is_kernel_mmap = memcmp(event->mmap.filename, 1155 kmmap_prefix, 1156 strlen(kmmap_prefix) - 1) == 0; 1157 if (event->mmap.filename[0] == '/' || 1158 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1159 map = machine__findnew_module_map(machine, event->mmap.start, 1160 event->mmap.filename); 1161 if (map == NULL) 1162 goto out_problem; 1163 1164 map->end = map->start + event->mmap.len; 1165 } else if (is_kernel_mmap) { 1166 const char *symbol_name = (event->mmap.filename + 1167 strlen(kmmap_prefix)); 1168 /* 1169 * Should be there already, from the build-id table in 1170 * the header. 1171 */ 1172 struct dso *kernel = NULL; 1173 struct dso *dso; 1174 1175 pthread_rwlock_rdlock(&machine->dsos.lock); 1176 1177 list_for_each_entry(dso, &machine->dsos.head, node) { 1178 1179 /* 1180 * The cpumode passed to is_kernel_module is not the 1181 * cpumode of *this* event. If we insist on passing 1182 * correct cpumode to is_kernel_module, we should 1183 * record the cpumode when we adding this dso to the 1184 * linked list. 1185 * 1186 * However we don't really need passing correct 1187 * cpumode. We know the correct cpumode must be kernel 1188 * mode (if not, we should not link it onto kernel_dsos 1189 * list). 1190 * 1191 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1192 * is_kernel_module() treats it as a kernel cpumode. 1193 */ 1194 1195 if (!dso->kernel || 1196 is_kernel_module(dso->long_name, 1197 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1198 continue; 1199 1200 1201 kernel = dso; 1202 break; 1203 } 1204 1205 pthread_rwlock_unlock(&machine->dsos.lock); 1206 1207 if (kernel == NULL) 1208 kernel = machine__findnew_dso(machine, kmmap_prefix); 1209 if (kernel == NULL) 1210 goto out_problem; 1211 1212 kernel->kernel = kernel_type; 1213 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1214 dso__put(kernel); 1215 goto out_problem; 1216 } 1217 1218 if (strstr(kernel->long_name, "vmlinux")) 1219 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1220 1221 machine__set_kernel_mmap_len(machine, event); 1222 1223 /* 1224 * Avoid using a zero address (kptr_restrict) for the ref reloc 1225 * symbol. Effectively having zero here means that at record 1226 * time /proc/sys/kernel/kptr_restrict was non zero. 1227 */ 1228 if (event->mmap.pgoff != 0) { 1229 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1230 symbol_name, 1231 event->mmap.pgoff); 1232 } 1233 1234 if (machine__is_default_guest(machine)) { 1235 /* 1236 * preload dso of guest kernel and modules 1237 */ 1238 dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION], 1239 NULL); 1240 } 1241 } 1242 return 0; 1243 out_problem: 1244 return -1; 1245 } 1246 1247 int machine__process_mmap2_event(struct machine *machine, 1248 union perf_event *event, 1249 struct perf_sample *sample __maybe_unused) 1250 { 1251 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1252 struct thread *thread; 1253 struct map *map; 1254 enum map_type type; 1255 int ret = 0; 1256 1257 if (dump_trace) 1258 perf_event__fprintf_mmap2(event, stdout); 1259 1260 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1261 cpumode == PERF_RECORD_MISC_KERNEL) { 1262 ret = machine__process_kernel_mmap_event(machine, event); 1263 if (ret < 0) 1264 goto out_problem; 1265 return 0; 1266 } 1267 1268 thread = machine__findnew_thread(machine, event->mmap2.pid, 1269 event->mmap2.tid); 1270 if (thread == NULL) 1271 goto out_problem; 1272 1273 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1274 type = MAP__VARIABLE; 1275 else 1276 type = MAP__FUNCTION; 1277 1278 map = map__new(machine, event->mmap2.start, 1279 event->mmap2.len, event->mmap2.pgoff, 1280 event->mmap2.pid, event->mmap2.maj, 1281 event->mmap2.min, event->mmap2.ino, 1282 event->mmap2.ino_generation, 1283 event->mmap2.prot, 1284 event->mmap2.flags, 1285 event->mmap2.filename, type, thread); 1286 1287 if (map == NULL) 1288 goto out_problem_map; 1289 1290 thread__insert_map(thread, map); 1291 thread__put(thread); 1292 map__put(map); 1293 return 0; 1294 1295 out_problem_map: 1296 thread__put(thread); 1297 out_problem: 1298 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1299 return 0; 1300 } 1301 1302 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1303 struct perf_sample *sample __maybe_unused) 1304 { 1305 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1306 struct thread *thread; 1307 struct map *map; 1308 enum map_type type; 1309 int ret = 0; 1310 1311 if (dump_trace) 1312 perf_event__fprintf_mmap(event, stdout); 1313 1314 if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1315 cpumode == PERF_RECORD_MISC_KERNEL) { 1316 ret = machine__process_kernel_mmap_event(machine, event); 1317 if (ret < 0) 1318 goto out_problem; 1319 return 0; 1320 } 1321 1322 thread = machine__findnew_thread(machine, event->mmap.pid, 1323 event->mmap.tid); 1324 if (thread == NULL) 1325 goto out_problem; 1326 1327 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1328 type = MAP__VARIABLE; 1329 else 1330 type = MAP__FUNCTION; 1331 1332 map = map__new(machine, event->mmap.start, 1333 event->mmap.len, event->mmap.pgoff, 1334 event->mmap.pid, 0, 0, 0, 0, 0, 0, 1335 event->mmap.filename, 1336 type, thread); 1337 1338 if (map == NULL) 1339 goto out_problem_map; 1340 1341 thread__insert_map(thread, map); 1342 thread__put(thread); 1343 map__put(map); 1344 return 0; 1345 1346 out_problem_map: 1347 thread__put(thread); 1348 out_problem: 1349 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1350 return 0; 1351 } 1352 1353 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1354 { 1355 if (machine->last_match == th) 1356 machine->last_match = NULL; 1357 1358 BUG_ON(atomic_read(&th->refcnt) == 0); 1359 if (lock) 1360 pthread_rwlock_wrlock(&machine->threads_lock); 1361 rb_erase_init(&th->rb_node, &machine->threads); 1362 RB_CLEAR_NODE(&th->rb_node); 1363 /* 1364 * Move it first to the dead_threads list, then drop the reference, 1365 * if this is the last reference, then the thread__delete destructor 1366 * will be called and we will remove it from the dead_threads list. 1367 */ 1368 list_add_tail(&th->node, &machine->dead_threads); 1369 if (lock) 1370 pthread_rwlock_unlock(&machine->threads_lock); 1371 thread__put(th); 1372 } 1373 1374 void machine__remove_thread(struct machine *machine, struct thread *th) 1375 { 1376 return __machine__remove_thread(machine, th, true); 1377 } 1378 1379 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1380 struct perf_sample *sample) 1381 { 1382 struct thread *thread = machine__find_thread(machine, 1383 event->fork.pid, 1384 event->fork.tid); 1385 struct thread *parent = machine__findnew_thread(machine, 1386 event->fork.ppid, 1387 event->fork.ptid); 1388 int err = 0; 1389 1390 if (dump_trace) 1391 perf_event__fprintf_task(event, stdout); 1392 1393 /* 1394 * There may be an existing thread that is not actually the parent, 1395 * either because we are processing events out of order, or because the 1396 * (fork) event that would have removed the thread was lost. Assume the 1397 * latter case and continue on as best we can. 1398 */ 1399 if (parent->pid_ != (pid_t)event->fork.ppid) { 1400 dump_printf("removing erroneous parent thread %d/%d\n", 1401 parent->pid_, parent->tid); 1402 machine__remove_thread(machine, parent); 1403 thread__put(parent); 1404 parent = machine__findnew_thread(machine, event->fork.ppid, 1405 event->fork.ptid); 1406 } 1407 1408 /* if a thread currently exists for the thread id remove it */ 1409 if (thread != NULL) { 1410 machine__remove_thread(machine, thread); 1411 thread__put(thread); 1412 } 1413 1414 thread = machine__findnew_thread(machine, event->fork.pid, 1415 event->fork.tid); 1416 1417 if (thread == NULL || parent == NULL || 1418 thread__fork(thread, parent, sample->time) < 0) { 1419 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1420 err = -1; 1421 } 1422 thread__put(thread); 1423 thread__put(parent); 1424 1425 return err; 1426 } 1427 1428 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1429 struct perf_sample *sample __maybe_unused) 1430 { 1431 struct thread *thread = machine__find_thread(machine, 1432 event->fork.pid, 1433 event->fork.tid); 1434 1435 if (dump_trace) 1436 perf_event__fprintf_task(event, stdout); 1437 1438 if (thread != NULL) { 1439 thread__exited(thread); 1440 thread__put(thread); 1441 } 1442 1443 return 0; 1444 } 1445 1446 int machine__process_event(struct machine *machine, union perf_event *event, 1447 struct perf_sample *sample) 1448 { 1449 int ret; 1450 1451 switch (event->header.type) { 1452 case PERF_RECORD_COMM: 1453 ret = machine__process_comm_event(machine, event, sample); break; 1454 case PERF_RECORD_MMAP: 1455 ret = machine__process_mmap_event(machine, event, sample); break; 1456 case PERF_RECORD_MMAP2: 1457 ret = machine__process_mmap2_event(machine, event, sample); break; 1458 case PERF_RECORD_FORK: 1459 ret = machine__process_fork_event(machine, event, sample); break; 1460 case PERF_RECORD_EXIT: 1461 ret = machine__process_exit_event(machine, event, sample); break; 1462 case PERF_RECORD_LOST: 1463 ret = machine__process_lost_event(machine, event, sample); break; 1464 case PERF_RECORD_AUX: 1465 ret = machine__process_aux_event(machine, event); break; 1466 case PERF_RECORD_ITRACE_START: 1467 ret = machine__process_itrace_start_event(machine, event); break; 1468 case PERF_RECORD_LOST_SAMPLES: 1469 ret = machine__process_lost_samples_event(machine, event, sample); break; 1470 default: 1471 ret = -1; 1472 break; 1473 } 1474 1475 return ret; 1476 } 1477 1478 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1479 { 1480 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0)) 1481 return 1; 1482 return 0; 1483 } 1484 1485 static void ip__resolve_ams(struct thread *thread, 1486 struct addr_map_symbol *ams, 1487 u64 ip) 1488 { 1489 struct addr_location al; 1490 1491 memset(&al, 0, sizeof(al)); 1492 /* 1493 * We cannot use the header.misc hint to determine whether a 1494 * branch stack address is user, kernel, guest, hypervisor. 1495 * Branches may straddle the kernel/user/hypervisor boundaries. 1496 * Thus, we have to try consecutively until we find a match 1497 * or else, the symbol is unknown 1498 */ 1499 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1500 1501 ams->addr = ip; 1502 ams->al_addr = al.addr; 1503 ams->sym = al.sym; 1504 ams->map = al.map; 1505 } 1506 1507 static void ip__resolve_data(struct thread *thread, 1508 u8 m, struct addr_map_symbol *ams, u64 addr) 1509 { 1510 struct addr_location al; 1511 1512 memset(&al, 0, sizeof(al)); 1513 1514 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1515 if (al.map == NULL) { 1516 /* 1517 * some shared data regions have execute bit set which puts 1518 * their mapping in the MAP__FUNCTION type array. 1519 * Check there as a fallback option before dropping the sample. 1520 */ 1521 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1522 } 1523 1524 ams->addr = addr; 1525 ams->al_addr = al.addr; 1526 ams->sym = al.sym; 1527 ams->map = al.map; 1528 } 1529 1530 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1531 struct addr_location *al) 1532 { 1533 struct mem_info *mi = zalloc(sizeof(*mi)); 1534 1535 if (!mi) 1536 return NULL; 1537 1538 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1539 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr); 1540 mi->data_src.val = sample->data_src; 1541 1542 return mi; 1543 } 1544 1545 static int add_callchain_ip(struct thread *thread, 1546 struct symbol **parent, 1547 struct addr_location *root_al, 1548 u8 *cpumode, 1549 u64 ip) 1550 { 1551 struct addr_location al; 1552 1553 al.filtered = 0; 1554 al.sym = NULL; 1555 if (!cpumode) { 1556 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1557 ip, &al); 1558 } else { 1559 if (ip >= PERF_CONTEXT_MAX) { 1560 switch (ip) { 1561 case PERF_CONTEXT_HV: 1562 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1563 break; 1564 case PERF_CONTEXT_KERNEL: 1565 *cpumode = PERF_RECORD_MISC_KERNEL; 1566 break; 1567 case PERF_CONTEXT_USER: 1568 *cpumode = PERF_RECORD_MISC_USER; 1569 break; 1570 default: 1571 pr_debug("invalid callchain context: " 1572 "%"PRId64"\n", (s64) ip); 1573 /* 1574 * It seems the callchain is corrupted. 1575 * Discard all. 1576 */ 1577 callchain_cursor_reset(&callchain_cursor); 1578 return 1; 1579 } 1580 return 0; 1581 } 1582 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION, 1583 ip, &al); 1584 } 1585 1586 if (al.sym != NULL) { 1587 if (sort__has_parent && !*parent && 1588 symbol__match_regex(al.sym, &parent_regex)) 1589 *parent = al.sym; 1590 else if (have_ignore_callees && root_al && 1591 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1592 /* Treat this symbol as the root, 1593 forgetting its callees. */ 1594 *root_al = al; 1595 callchain_cursor_reset(&callchain_cursor); 1596 } 1597 } 1598 1599 return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym); 1600 } 1601 1602 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1603 struct addr_location *al) 1604 { 1605 unsigned int i; 1606 const struct branch_stack *bs = sample->branch_stack; 1607 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1608 1609 if (!bi) 1610 return NULL; 1611 1612 for (i = 0; i < bs->nr; i++) { 1613 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1614 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1615 bi[i].flags = bs->entries[i].flags; 1616 } 1617 return bi; 1618 } 1619 1620 #define CHASHSZ 127 1621 #define CHASHBITS 7 1622 #define NO_ENTRY 0xff 1623 1624 #define PERF_MAX_BRANCH_DEPTH 127 1625 1626 /* Remove loops. */ 1627 static int remove_loops(struct branch_entry *l, int nr) 1628 { 1629 int i, j, off; 1630 unsigned char chash[CHASHSZ]; 1631 1632 memset(chash, NO_ENTRY, sizeof(chash)); 1633 1634 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1635 1636 for (i = 0; i < nr; i++) { 1637 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1638 1639 /* no collision handling for now */ 1640 if (chash[h] == NO_ENTRY) { 1641 chash[h] = i; 1642 } else if (l[chash[h]].from == l[i].from) { 1643 bool is_loop = true; 1644 /* check if it is a real loop */ 1645 off = 0; 1646 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1647 if (l[j].from != l[i + off].from) { 1648 is_loop = false; 1649 break; 1650 } 1651 if (is_loop) { 1652 memmove(l + i, l + i + off, 1653 (nr - (i + off)) * sizeof(*l)); 1654 nr -= off; 1655 } 1656 } 1657 } 1658 return nr; 1659 } 1660 1661 /* 1662 * Recolve LBR callstack chain sample 1663 * Return: 1664 * 1 on success get LBR callchain information 1665 * 0 no available LBR callchain information, should try fp 1666 * negative error code on other errors. 1667 */ 1668 static int resolve_lbr_callchain_sample(struct thread *thread, 1669 struct perf_sample *sample, 1670 struct symbol **parent, 1671 struct addr_location *root_al, 1672 int max_stack) 1673 { 1674 struct ip_callchain *chain = sample->callchain; 1675 int chain_nr = min(max_stack, (int)chain->nr); 1676 u8 cpumode = PERF_RECORD_MISC_USER; 1677 int i, j, err; 1678 u64 ip; 1679 1680 for (i = 0; i < chain_nr; i++) { 1681 if (chain->ips[i] == PERF_CONTEXT_USER) 1682 break; 1683 } 1684 1685 /* LBR only affects the user callchain */ 1686 if (i != chain_nr) { 1687 struct branch_stack *lbr_stack = sample->branch_stack; 1688 int lbr_nr = lbr_stack->nr; 1689 /* 1690 * LBR callstack can only get user call chain. 1691 * The mix_chain_nr is kernel call chain 1692 * number plus LBR user call chain number. 1693 * i is kernel call chain number, 1694 * 1 is PERF_CONTEXT_USER, 1695 * lbr_nr + 1 is the user call chain number. 1696 * For details, please refer to the comments 1697 * in callchain__printf 1698 */ 1699 int mix_chain_nr = i + 1 + lbr_nr + 1; 1700 1701 if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) { 1702 pr_warning("corrupted callchain. skipping...\n"); 1703 return 0; 1704 } 1705 1706 for (j = 0; j < mix_chain_nr; j++) { 1707 if (callchain_param.order == ORDER_CALLEE) { 1708 if (j < i + 1) 1709 ip = chain->ips[j]; 1710 else if (j > i + 1) 1711 ip = lbr_stack->entries[j - i - 2].from; 1712 else 1713 ip = lbr_stack->entries[0].to; 1714 } else { 1715 if (j < lbr_nr) 1716 ip = lbr_stack->entries[lbr_nr - j - 1].from; 1717 else if (j > lbr_nr) 1718 ip = chain->ips[i + 1 - (j - lbr_nr)]; 1719 else 1720 ip = lbr_stack->entries[0].to; 1721 } 1722 1723 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip); 1724 if (err) 1725 return (err < 0) ? err : 0; 1726 } 1727 return 1; 1728 } 1729 1730 return 0; 1731 } 1732 1733 static int thread__resolve_callchain_sample(struct thread *thread, 1734 struct perf_evsel *evsel, 1735 struct perf_sample *sample, 1736 struct symbol **parent, 1737 struct addr_location *root_al, 1738 int max_stack) 1739 { 1740 struct branch_stack *branch = sample->branch_stack; 1741 struct ip_callchain *chain = sample->callchain; 1742 int chain_nr = min(max_stack, (int)chain->nr); 1743 u8 cpumode = PERF_RECORD_MISC_USER; 1744 int i, j, err; 1745 int skip_idx = -1; 1746 int first_call = 0; 1747 1748 callchain_cursor_reset(&callchain_cursor); 1749 1750 if (has_branch_callstack(evsel)) { 1751 err = resolve_lbr_callchain_sample(thread, sample, parent, 1752 root_al, max_stack); 1753 if (err) 1754 return (err < 0) ? err : 0; 1755 } 1756 1757 /* 1758 * Based on DWARF debug information, some architectures skip 1759 * a callchain entry saved by the kernel. 1760 */ 1761 if (chain->nr < PERF_MAX_STACK_DEPTH) 1762 skip_idx = arch_skip_callchain_idx(thread, chain); 1763 1764 /* 1765 * Add branches to call stack for easier browsing. This gives 1766 * more context for a sample than just the callers. 1767 * 1768 * This uses individual histograms of paths compared to the 1769 * aggregated histograms the normal LBR mode uses. 1770 * 1771 * Limitations for now: 1772 * - No extra filters 1773 * - No annotations (should annotate somehow) 1774 */ 1775 1776 if (branch && callchain_param.branch_callstack) { 1777 int nr = min(max_stack, (int)branch->nr); 1778 struct branch_entry be[nr]; 1779 1780 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 1781 pr_warning("corrupted branch chain. skipping...\n"); 1782 goto check_calls; 1783 } 1784 1785 for (i = 0; i < nr; i++) { 1786 if (callchain_param.order == ORDER_CALLEE) { 1787 be[i] = branch->entries[i]; 1788 /* 1789 * Check for overlap into the callchain. 1790 * The return address is one off compared to 1791 * the branch entry. To adjust for this 1792 * assume the calling instruction is not longer 1793 * than 8 bytes. 1794 */ 1795 if (i == skip_idx || 1796 chain->ips[first_call] >= PERF_CONTEXT_MAX) 1797 first_call++; 1798 else if (be[i].from < chain->ips[first_call] && 1799 be[i].from >= chain->ips[first_call] - 8) 1800 first_call++; 1801 } else 1802 be[i] = branch->entries[branch->nr - i - 1]; 1803 } 1804 1805 nr = remove_loops(be, nr); 1806 1807 for (i = 0; i < nr; i++) { 1808 err = add_callchain_ip(thread, parent, root_al, 1809 NULL, be[i].to); 1810 if (!err) 1811 err = add_callchain_ip(thread, parent, root_al, 1812 NULL, be[i].from); 1813 if (err == -EINVAL) 1814 break; 1815 if (err) 1816 return err; 1817 } 1818 chain_nr -= nr; 1819 } 1820 1821 check_calls: 1822 if (chain->nr > PERF_MAX_STACK_DEPTH) { 1823 pr_warning("corrupted callchain. skipping...\n"); 1824 return 0; 1825 } 1826 1827 for (i = first_call; i < chain_nr; i++) { 1828 u64 ip; 1829 1830 if (callchain_param.order == ORDER_CALLEE) 1831 j = i; 1832 else 1833 j = chain->nr - i - 1; 1834 1835 #ifdef HAVE_SKIP_CALLCHAIN_IDX 1836 if (j == skip_idx) 1837 continue; 1838 #endif 1839 ip = chain->ips[j]; 1840 1841 err = add_callchain_ip(thread, parent, root_al, &cpumode, ip); 1842 1843 if (err) 1844 return (err < 0) ? err : 0; 1845 } 1846 1847 return 0; 1848 } 1849 1850 static int unwind_entry(struct unwind_entry *entry, void *arg) 1851 { 1852 struct callchain_cursor *cursor = arg; 1853 return callchain_cursor_append(cursor, entry->ip, 1854 entry->map, entry->sym); 1855 } 1856 1857 int thread__resolve_callchain(struct thread *thread, 1858 struct perf_evsel *evsel, 1859 struct perf_sample *sample, 1860 struct symbol **parent, 1861 struct addr_location *root_al, 1862 int max_stack) 1863 { 1864 int ret = thread__resolve_callchain_sample(thread, evsel, 1865 sample, parent, 1866 root_al, max_stack); 1867 if (ret) 1868 return ret; 1869 1870 /* Can we do dwarf post unwind? */ 1871 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 1872 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 1873 return 0; 1874 1875 /* Bail out if nothing was captured. */ 1876 if ((!sample->user_regs.regs) || 1877 (!sample->user_stack.size)) 1878 return 0; 1879 1880 return unwind__get_entries(unwind_entry, &callchain_cursor, 1881 thread, sample, max_stack); 1882 1883 } 1884 1885 int machine__for_each_thread(struct machine *machine, 1886 int (*fn)(struct thread *thread, void *p), 1887 void *priv) 1888 { 1889 struct rb_node *nd; 1890 struct thread *thread; 1891 int rc = 0; 1892 1893 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 1894 thread = rb_entry(nd, struct thread, rb_node); 1895 rc = fn(thread, priv); 1896 if (rc != 0) 1897 return rc; 1898 } 1899 1900 list_for_each_entry(thread, &machine->dead_threads, node) { 1901 rc = fn(thread, priv); 1902 if (rc != 0) 1903 return rc; 1904 } 1905 return rc; 1906 } 1907 1908 int machines__for_each_thread(struct machines *machines, 1909 int (*fn)(struct thread *thread, void *p), 1910 void *priv) 1911 { 1912 struct rb_node *nd; 1913 int rc = 0; 1914 1915 rc = machine__for_each_thread(&machines->host, fn, priv); 1916 if (rc != 0) 1917 return rc; 1918 1919 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 1920 struct machine *machine = rb_entry(nd, struct machine, rb_node); 1921 1922 rc = machine__for_each_thread(machine, fn, priv); 1923 if (rc != 0) 1924 return rc; 1925 } 1926 return rc; 1927 } 1928 1929 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 1930 struct target *target, struct thread_map *threads, 1931 perf_event__handler_t process, bool data_mmap, 1932 unsigned int proc_map_timeout) 1933 { 1934 if (target__has_task(target)) 1935 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 1936 else if (target__has_cpu(target)) 1937 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout); 1938 /* command specified */ 1939 return 0; 1940 } 1941 1942 pid_t machine__get_current_tid(struct machine *machine, int cpu) 1943 { 1944 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 1945 return -1; 1946 1947 return machine->current_tid[cpu]; 1948 } 1949 1950 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 1951 pid_t tid) 1952 { 1953 struct thread *thread; 1954 1955 if (cpu < 0) 1956 return -EINVAL; 1957 1958 if (!machine->current_tid) { 1959 int i; 1960 1961 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 1962 if (!machine->current_tid) 1963 return -ENOMEM; 1964 for (i = 0; i < MAX_NR_CPUS; i++) 1965 machine->current_tid[i] = -1; 1966 } 1967 1968 if (cpu >= MAX_NR_CPUS) { 1969 pr_err("Requested CPU %d too large. ", cpu); 1970 pr_err("Consider raising MAX_NR_CPUS\n"); 1971 return -EINVAL; 1972 } 1973 1974 machine->current_tid[cpu] = tid; 1975 1976 thread = machine__findnew_thread(machine, pid, tid); 1977 if (!thread) 1978 return -ENOMEM; 1979 1980 thread->cpu = cpu; 1981 thread__put(thread); 1982 1983 return 0; 1984 } 1985 1986 int machine__get_kernel_start(struct machine *machine) 1987 { 1988 struct map *map = machine__kernel_map(machine, MAP__FUNCTION); 1989 int err = 0; 1990 1991 /* 1992 * The only addresses above 2^63 are kernel addresses of a 64-bit 1993 * kernel. Note that addresses are unsigned so that on a 32-bit system 1994 * all addresses including kernel addresses are less than 2^32. In 1995 * that case (32-bit system), if the kernel mapping is unknown, all 1996 * addresses will be assumed to be in user space - see 1997 * machine__kernel_ip(). 1998 */ 1999 machine->kernel_start = 1ULL << 63; 2000 if (map) { 2001 err = map__load(map, machine->symbol_filter); 2002 if (map->start) 2003 machine->kernel_start = map->start; 2004 } 2005 return err; 2006 } 2007 2008 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2009 { 2010 return dsos__findnew(&machine->dsos, filename); 2011 } 2012