xref: /linux/tools/perf/util/machine.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16 
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18 
19 static void dsos__init(struct dsos *dsos)
20 {
21 	INIT_LIST_HEAD(&dsos->head);
22 	dsos->root = RB_ROOT;
23 	pthread_rwlock_init(&dsos->lock, NULL);
24 }
25 
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 	map_groups__init(&machine->kmaps, machine);
29 	RB_CLEAR_NODE(&machine->rb_node);
30 	dsos__init(&machine->dsos);
31 
32 	machine->threads = RB_ROOT;
33 	pthread_rwlock_init(&machine->threads_lock, NULL);
34 	INIT_LIST_HEAD(&machine->dead_threads);
35 	machine->last_match = NULL;
36 
37 	machine->vdso_info = NULL;
38 
39 	machine->pid = pid;
40 
41 	machine->symbol_filter = NULL;
42 	machine->id_hdr_size = 0;
43 	machine->comm_exec = false;
44 	machine->kernel_start = 0;
45 
46 	machine->root_dir = strdup(root_dir);
47 	if (machine->root_dir == NULL)
48 		return -ENOMEM;
49 
50 	if (pid != HOST_KERNEL_ID) {
51 		struct thread *thread = machine__findnew_thread(machine, -1,
52 								pid);
53 		char comm[64];
54 
55 		if (thread == NULL)
56 			return -ENOMEM;
57 
58 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
59 		thread__set_comm(thread, comm, 0);
60 		thread__put(thread);
61 	}
62 
63 	machine->current_tid = NULL;
64 
65 	return 0;
66 }
67 
68 struct machine *machine__new_host(void)
69 {
70 	struct machine *machine = malloc(sizeof(*machine));
71 
72 	if (machine != NULL) {
73 		machine__init(machine, "", HOST_KERNEL_ID);
74 
75 		if (machine__create_kernel_maps(machine) < 0)
76 			goto out_delete;
77 	}
78 
79 	return machine;
80 out_delete:
81 	free(machine);
82 	return NULL;
83 }
84 
85 static void dsos__purge(struct dsos *dsos)
86 {
87 	struct dso *pos, *n;
88 
89 	pthread_rwlock_wrlock(&dsos->lock);
90 
91 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
92 		RB_CLEAR_NODE(&pos->rb_node);
93 		list_del_init(&pos->node);
94 		dso__put(pos);
95 	}
96 
97 	pthread_rwlock_unlock(&dsos->lock);
98 }
99 
100 static void dsos__exit(struct dsos *dsos)
101 {
102 	dsos__purge(dsos);
103 	pthread_rwlock_destroy(&dsos->lock);
104 }
105 
106 void machine__delete_threads(struct machine *machine)
107 {
108 	struct rb_node *nd;
109 
110 	pthread_rwlock_wrlock(&machine->threads_lock);
111 	nd = rb_first(&machine->threads);
112 	while (nd) {
113 		struct thread *t = rb_entry(nd, struct thread, rb_node);
114 
115 		nd = rb_next(nd);
116 		__machine__remove_thread(machine, t, false);
117 	}
118 	pthread_rwlock_unlock(&machine->threads_lock);
119 }
120 
121 void machine__exit(struct machine *machine)
122 {
123 	map_groups__exit(&machine->kmaps);
124 	dsos__exit(&machine->dsos);
125 	machine__exit_vdso(machine);
126 	zfree(&machine->root_dir);
127 	zfree(&machine->current_tid);
128 	pthread_rwlock_destroy(&machine->threads_lock);
129 }
130 
131 void machine__delete(struct machine *machine)
132 {
133 	machine__exit(machine);
134 	free(machine);
135 }
136 
137 void machines__init(struct machines *machines)
138 {
139 	machine__init(&machines->host, "", HOST_KERNEL_ID);
140 	machines->guests = RB_ROOT;
141 	machines->symbol_filter = NULL;
142 }
143 
144 void machines__exit(struct machines *machines)
145 {
146 	machine__exit(&machines->host);
147 	/* XXX exit guest */
148 }
149 
150 struct machine *machines__add(struct machines *machines, pid_t pid,
151 			      const char *root_dir)
152 {
153 	struct rb_node **p = &machines->guests.rb_node;
154 	struct rb_node *parent = NULL;
155 	struct machine *pos, *machine = malloc(sizeof(*machine));
156 
157 	if (machine == NULL)
158 		return NULL;
159 
160 	if (machine__init(machine, root_dir, pid) != 0) {
161 		free(machine);
162 		return NULL;
163 	}
164 
165 	machine->symbol_filter = machines->symbol_filter;
166 
167 	while (*p != NULL) {
168 		parent = *p;
169 		pos = rb_entry(parent, struct machine, rb_node);
170 		if (pid < pos->pid)
171 			p = &(*p)->rb_left;
172 		else
173 			p = &(*p)->rb_right;
174 	}
175 
176 	rb_link_node(&machine->rb_node, parent, p);
177 	rb_insert_color(&machine->rb_node, &machines->guests);
178 
179 	return machine;
180 }
181 
182 void machines__set_symbol_filter(struct machines *machines,
183 				 symbol_filter_t symbol_filter)
184 {
185 	struct rb_node *nd;
186 
187 	machines->symbol_filter = symbol_filter;
188 	machines->host.symbol_filter = symbol_filter;
189 
190 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
191 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
192 
193 		machine->symbol_filter = symbol_filter;
194 	}
195 }
196 
197 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
198 {
199 	struct rb_node *nd;
200 
201 	machines->host.comm_exec = comm_exec;
202 
203 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
204 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
205 
206 		machine->comm_exec = comm_exec;
207 	}
208 }
209 
210 struct machine *machines__find(struct machines *machines, pid_t pid)
211 {
212 	struct rb_node **p = &machines->guests.rb_node;
213 	struct rb_node *parent = NULL;
214 	struct machine *machine;
215 	struct machine *default_machine = NULL;
216 
217 	if (pid == HOST_KERNEL_ID)
218 		return &machines->host;
219 
220 	while (*p != NULL) {
221 		parent = *p;
222 		machine = rb_entry(parent, struct machine, rb_node);
223 		if (pid < machine->pid)
224 			p = &(*p)->rb_left;
225 		else if (pid > machine->pid)
226 			p = &(*p)->rb_right;
227 		else
228 			return machine;
229 		if (!machine->pid)
230 			default_machine = machine;
231 	}
232 
233 	return default_machine;
234 }
235 
236 struct machine *machines__findnew(struct machines *machines, pid_t pid)
237 {
238 	char path[PATH_MAX];
239 	const char *root_dir = "";
240 	struct machine *machine = machines__find(machines, pid);
241 
242 	if (machine && (machine->pid == pid))
243 		goto out;
244 
245 	if ((pid != HOST_KERNEL_ID) &&
246 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
247 	    (symbol_conf.guestmount)) {
248 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
249 		if (access(path, R_OK)) {
250 			static struct strlist *seen;
251 
252 			if (!seen)
253 				seen = strlist__new(true, NULL);
254 
255 			if (!strlist__has_entry(seen, path)) {
256 				pr_err("Can't access file %s\n", path);
257 				strlist__add(seen, path);
258 			}
259 			machine = NULL;
260 			goto out;
261 		}
262 		root_dir = path;
263 	}
264 
265 	machine = machines__add(machines, pid, root_dir);
266 out:
267 	return machine;
268 }
269 
270 void machines__process_guests(struct machines *machines,
271 			      machine__process_t process, void *data)
272 {
273 	struct rb_node *nd;
274 
275 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
276 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
277 		process(pos, data);
278 	}
279 }
280 
281 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
282 {
283 	if (machine__is_host(machine))
284 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
285 	else if (machine__is_default_guest(machine))
286 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
287 	else {
288 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
289 			 machine->pid);
290 	}
291 
292 	return bf;
293 }
294 
295 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
296 {
297 	struct rb_node *node;
298 	struct machine *machine;
299 
300 	machines->host.id_hdr_size = id_hdr_size;
301 
302 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
303 		machine = rb_entry(node, struct machine, rb_node);
304 		machine->id_hdr_size = id_hdr_size;
305 	}
306 
307 	return;
308 }
309 
310 static void machine__update_thread_pid(struct machine *machine,
311 				       struct thread *th, pid_t pid)
312 {
313 	struct thread *leader;
314 
315 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
316 		return;
317 
318 	th->pid_ = pid;
319 
320 	if (th->pid_ == th->tid)
321 		return;
322 
323 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
324 	if (!leader)
325 		goto out_err;
326 
327 	if (!leader->mg)
328 		leader->mg = map_groups__new(machine);
329 
330 	if (!leader->mg)
331 		goto out_err;
332 
333 	if (th->mg == leader->mg)
334 		return;
335 
336 	if (th->mg) {
337 		/*
338 		 * Maps are created from MMAP events which provide the pid and
339 		 * tid.  Consequently there never should be any maps on a thread
340 		 * with an unknown pid.  Just print an error if there are.
341 		 */
342 		if (!map_groups__empty(th->mg))
343 			pr_err("Discarding thread maps for %d:%d\n",
344 			       th->pid_, th->tid);
345 		map_groups__put(th->mg);
346 	}
347 
348 	th->mg = map_groups__get(leader->mg);
349 
350 	return;
351 
352 out_err:
353 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
354 }
355 
356 static struct thread *____machine__findnew_thread(struct machine *machine,
357 						  pid_t pid, pid_t tid,
358 						  bool create)
359 {
360 	struct rb_node **p = &machine->threads.rb_node;
361 	struct rb_node *parent = NULL;
362 	struct thread *th;
363 
364 	/*
365 	 * Front-end cache - TID lookups come in blocks,
366 	 * so most of the time we dont have to look up
367 	 * the full rbtree:
368 	 */
369 	th = machine->last_match;
370 	if (th != NULL) {
371 		if (th->tid == tid) {
372 			machine__update_thread_pid(machine, th, pid);
373 			return th;
374 		}
375 
376 		machine->last_match = NULL;
377 	}
378 
379 	while (*p != NULL) {
380 		parent = *p;
381 		th = rb_entry(parent, struct thread, rb_node);
382 
383 		if (th->tid == tid) {
384 			machine->last_match = th;
385 			machine__update_thread_pid(machine, th, pid);
386 			return th;
387 		}
388 
389 		if (tid < th->tid)
390 			p = &(*p)->rb_left;
391 		else
392 			p = &(*p)->rb_right;
393 	}
394 
395 	if (!create)
396 		return NULL;
397 
398 	th = thread__new(pid, tid);
399 	if (th != NULL) {
400 		rb_link_node(&th->rb_node, parent, p);
401 		rb_insert_color(&th->rb_node, &machine->threads);
402 
403 		/*
404 		 * We have to initialize map_groups separately
405 		 * after rb tree is updated.
406 		 *
407 		 * The reason is that we call machine__findnew_thread
408 		 * within thread__init_map_groups to find the thread
409 		 * leader and that would screwed the rb tree.
410 		 */
411 		if (thread__init_map_groups(th, machine)) {
412 			rb_erase_init(&th->rb_node, &machine->threads);
413 			RB_CLEAR_NODE(&th->rb_node);
414 			thread__delete(th);
415 			return NULL;
416 		}
417 		/*
418 		 * It is now in the rbtree, get a ref
419 		 */
420 		thread__get(th);
421 		machine->last_match = th;
422 	}
423 
424 	return th;
425 }
426 
427 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
428 {
429 	return ____machine__findnew_thread(machine, pid, tid, true);
430 }
431 
432 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
433 				       pid_t tid)
434 {
435 	struct thread *th;
436 
437 	pthread_rwlock_wrlock(&machine->threads_lock);
438 	th = thread__get(__machine__findnew_thread(machine, pid, tid));
439 	pthread_rwlock_unlock(&machine->threads_lock);
440 	return th;
441 }
442 
443 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
444 				    pid_t tid)
445 {
446 	struct thread *th;
447 	pthread_rwlock_rdlock(&machine->threads_lock);
448 	th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
449 	pthread_rwlock_unlock(&machine->threads_lock);
450 	return th;
451 }
452 
453 struct comm *machine__thread_exec_comm(struct machine *machine,
454 				       struct thread *thread)
455 {
456 	if (machine->comm_exec)
457 		return thread__exec_comm(thread);
458 	else
459 		return thread__comm(thread);
460 }
461 
462 int machine__process_comm_event(struct machine *machine, union perf_event *event,
463 				struct perf_sample *sample)
464 {
465 	struct thread *thread = machine__findnew_thread(machine,
466 							event->comm.pid,
467 							event->comm.tid);
468 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
469 	int err = 0;
470 
471 	if (exec)
472 		machine->comm_exec = true;
473 
474 	if (dump_trace)
475 		perf_event__fprintf_comm(event, stdout);
476 
477 	if (thread == NULL ||
478 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
479 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
480 		err = -1;
481 	}
482 
483 	thread__put(thread);
484 
485 	return err;
486 }
487 
488 int machine__process_lost_event(struct machine *machine __maybe_unused,
489 				union perf_event *event, struct perf_sample *sample __maybe_unused)
490 {
491 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
492 		    event->lost.id, event->lost.lost);
493 	return 0;
494 }
495 
496 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
497 					union perf_event *event, struct perf_sample *sample)
498 {
499 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
500 		    sample->id, event->lost_samples.lost);
501 	return 0;
502 }
503 
504 static struct dso *machine__findnew_module_dso(struct machine *machine,
505 					       struct kmod_path *m,
506 					       const char *filename)
507 {
508 	struct dso *dso;
509 
510 	pthread_rwlock_wrlock(&machine->dsos.lock);
511 
512 	dso = __dsos__find(&machine->dsos, m->name, true);
513 	if (!dso) {
514 		dso = __dsos__addnew(&machine->dsos, m->name);
515 		if (dso == NULL)
516 			goto out_unlock;
517 
518 		if (machine__is_host(machine))
519 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
520 		else
521 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
522 
523 		/* _KMODULE_COMP should be next to _KMODULE */
524 		if (m->kmod && m->comp)
525 			dso->symtab_type++;
526 
527 		dso__set_short_name(dso, strdup(m->name), true);
528 		dso__set_long_name(dso, strdup(filename), true);
529 	}
530 
531 	dso__get(dso);
532 out_unlock:
533 	pthread_rwlock_unlock(&machine->dsos.lock);
534 	return dso;
535 }
536 
537 int machine__process_aux_event(struct machine *machine __maybe_unused,
538 			       union perf_event *event)
539 {
540 	if (dump_trace)
541 		perf_event__fprintf_aux(event, stdout);
542 	return 0;
543 }
544 
545 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
546 					union perf_event *event)
547 {
548 	if (dump_trace)
549 		perf_event__fprintf_itrace_start(event, stdout);
550 	return 0;
551 }
552 
553 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
554 					const char *filename)
555 {
556 	struct map *map = NULL;
557 	struct dso *dso;
558 	struct kmod_path m;
559 
560 	if (kmod_path__parse_name(&m, filename))
561 		return NULL;
562 
563 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
564 				       m.name);
565 	if (map)
566 		goto out;
567 
568 	dso = machine__findnew_module_dso(machine, &m, filename);
569 	if (dso == NULL)
570 		goto out;
571 
572 	map = map__new2(start, dso, MAP__FUNCTION);
573 	if (map == NULL)
574 		goto out;
575 
576 	map_groups__insert(&machine->kmaps, map);
577 
578 out:
579 	free(m.name);
580 	return map;
581 }
582 
583 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
584 {
585 	struct rb_node *nd;
586 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
587 
588 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
589 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
590 		ret += __dsos__fprintf(&pos->dsos.head, fp);
591 	}
592 
593 	return ret;
594 }
595 
596 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
597 				     bool (skip)(struct dso *dso, int parm), int parm)
598 {
599 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
600 }
601 
602 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
603 				     bool (skip)(struct dso *dso, int parm), int parm)
604 {
605 	struct rb_node *nd;
606 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
607 
608 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
609 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
610 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
611 	}
612 	return ret;
613 }
614 
615 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
616 {
617 	int i;
618 	size_t printed = 0;
619 	struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso;
620 
621 	if (kdso->has_build_id) {
622 		char filename[PATH_MAX];
623 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
624 			printed += fprintf(fp, "[0] %s\n", filename);
625 	}
626 
627 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
628 		printed += fprintf(fp, "[%d] %s\n",
629 				   i + kdso->has_build_id, vmlinux_path[i]);
630 
631 	return printed;
632 }
633 
634 size_t machine__fprintf(struct machine *machine, FILE *fp)
635 {
636 	size_t ret = 0;
637 	struct rb_node *nd;
638 
639 	pthread_rwlock_rdlock(&machine->threads_lock);
640 
641 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
642 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
643 
644 		ret += thread__fprintf(pos, fp);
645 	}
646 
647 	pthread_rwlock_unlock(&machine->threads_lock);
648 
649 	return ret;
650 }
651 
652 static struct dso *machine__get_kernel(struct machine *machine)
653 {
654 	const char *vmlinux_name = NULL;
655 	struct dso *kernel;
656 
657 	if (machine__is_host(machine)) {
658 		vmlinux_name = symbol_conf.vmlinux_name;
659 		if (!vmlinux_name)
660 			vmlinux_name = "[kernel.kallsyms]";
661 
662 		kernel = machine__findnew_kernel(machine, vmlinux_name,
663 						 "[kernel]", DSO_TYPE_KERNEL);
664 	} else {
665 		char bf[PATH_MAX];
666 
667 		if (machine__is_default_guest(machine))
668 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
669 		if (!vmlinux_name)
670 			vmlinux_name = machine__mmap_name(machine, bf,
671 							  sizeof(bf));
672 
673 		kernel = machine__findnew_kernel(machine, vmlinux_name,
674 						 "[guest.kernel]",
675 						 DSO_TYPE_GUEST_KERNEL);
676 	}
677 
678 	if (kernel != NULL && (!kernel->has_build_id))
679 		dso__read_running_kernel_build_id(kernel, machine);
680 
681 	return kernel;
682 }
683 
684 struct process_args {
685 	u64 start;
686 };
687 
688 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
689 					   size_t bufsz)
690 {
691 	if (machine__is_default_guest(machine))
692 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
693 	else
694 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
695 }
696 
697 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
698 
699 /* Figure out the start address of kernel map from /proc/kallsyms.
700  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
701  * symbol_name if it's not that important.
702  */
703 static u64 machine__get_running_kernel_start(struct machine *machine,
704 					     const char **symbol_name)
705 {
706 	char filename[PATH_MAX];
707 	int i;
708 	const char *name;
709 	u64 addr = 0;
710 
711 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
712 
713 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
714 		return 0;
715 
716 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
717 		addr = kallsyms__get_function_start(filename, name);
718 		if (addr)
719 			break;
720 	}
721 
722 	if (symbol_name)
723 		*symbol_name = name;
724 
725 	return addr;
726 }
727 
728 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
729 {
730 	enum map_type type;
731 	u64 start = machine__get_running_kernel_start(machine, NULL);
732 
733 	for (type = 0; type < MAP__NR_TYPES; ++type) {
734 		struct kmap *kmap;
735 
736 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
737 		if (machine->vmlinux_maps[type] == NULL)
738 			return -1;
739 
740 		machine->vmlinux_maps[type]->map_ip =
741 			machine->vmlinux_maps[type]->unmap_ip =
742 				identity__map_ip;
743 		kmap = map__kmap(machine->vmlinux_maps[type]);
744 		if (!kmap)
745 			return -1;
746 
747 		kmap->kmaps = &machine->kmaps;
748 		map_groups__insert(&machine->kmaps,
749 				   machine->vmlinux_maps[type]);
750 	}
751 
752 	return 0;
753 }
754 
755 void machine__destroy_kernel_maps(struct machine *machine)
756 {
757 	enum map_type type;
758 
759 	for (type = 0; type < MAP__NR_TYPES; ++type) {
760 		struct kmap *kmap;
761 
762 		if (machine->vmlinux_maps[type] == NULL)
763 			continue;
764 
765 		kmap = map__kmap(machine->vmlinux_maps[type]);
766 		map_groups__remove(&machine->kmaps,
767 				   machine->vmlinux_maps[type]);
768 		if (kmap && kmap->ref_reloc_sym) {
769 			/*
770 			 * ref_reloc_sym is shared among all maps, so free just
771 			 * on one of them.
772 			 */
773 			if (type == MAP__FUNCTION) {
774 				zfree((char **)&kmap->ref_reloc_sym->name);
775 				zfree(&kmap->ref_reloc_sym);
776 			} else
777 				kmap->ref_reloc_sym = NULL;
778 		}
779 
780 		machine->vmlinux_maps[type] = NULL;
781 	}
782 }
783 
784 int machines__create_guest_kernel_maps(struct machines *machines)
785 {
786 	int ret = 0;
787 	struct dirent **namelist = NULL;
788 	int i, items = 0;
789 	char path[PATH_MAX];
790 	pid_t pid;
791 	char *endp;
792 
793 	if (symbol_conf.default_guest_vmlinux_name ||
794 	    symbol_conf.default_guest_modules ||
795 	    symbol_conf.default_guest_kallsyms) {
796 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
797 	}
798 
799 	if (symbol_conf.guestmount) {
800 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
801 		if (items <= 0)
802 			return -ENOENT;
803 		for (i = 0; i < items; i++) {
804 			if (!isdigit(namelist[i]->d_name[0])) {
805 				/* Filter out . and .. */
806 				continue;
807 			}
808 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
809 			if ((*endp != '\0') ||
810 			    (endp == namelist[i]->d_name) ||
811 			    (errno == ERANGE)) {
812 				pr_debug("invalid directory (%s). Skipping.\n",
813 					 namelist[i]->d_name);
814 				continue;
815 			}
816 			sprintf(path, "%s/%s/proc/kallsyms",
817 				symbol_conf.guestmount,
818 				namelist[i]->d_name);
819 			ret = access(path, R_OK);
820 			if (ret) {
821 				pr_debug("Can't access file %s\n", path);
822 				goto failure;
823 			}
824 			machines__create_kernel_maps(machines, pid);
825 		}
826 failure:
827 		free(namelist);
828 	}
829 
830 	return ret;
831 }
832 
833 void machines__destroy_kernel_maps(struct machines *machines)
834 {
835 	struct rb_node *next = rb_first(&machines->guests);
836 
837 	machine__destroy_kernel_maps(&machines->host);
838 
839 	while (next) {
840 		struct machine *pos = rb_entry(next, struct machine, rb_node);
841 
842 		next = rb_next(&pos->rb_node);
843 		rb_erase(&pos->rb_node, &machines->guests);
844 		machine__delete(pos);
845 	}
846 }
847 
848 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
849 {
850 	struct machine *machine = machines__findnew(machines, pid);
851 
852 	if (machine == NULL)
853 		return -1;
854 
855 	return machine__create_kernel_maps(machine);
856 }
857 
858 int machine__load_kallsyms(struct machine *machine, const char *filename,
859 			   enum map_type type, symbol_filter_t filter)
860 {
861 	struct map *map = machine->vmlinux_maps[type];
862 	int ret = dso__load_kallsyms(map->dso, filename, map, filter);
863 
864 	if (ret > 0) {
865 		dso__set_loaded(map->dso, type);
866 		/*
867 		 * Since /proc/kallsyms will have multiple sessions for the
868 		 * kernel, with modules between them, fixup the end of all
869 		 * sections.
870 		 */
871 		__map_groups__fixup_end(&machine->kmaps, type);
872 	}
873 
874 	return ret;
875 }
876 
877 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
878 			       symbol_filter_t filter)
879 {
880 	struct map *map = machine->vmlinux_maps[type];
881 	int ret = dso__load_vmlinux_path(map->dso, map, filter);
882 
883 	if (ret > 0)
884 		dso__set_loaded(map->dso, type);
885 
886 	return ret;
887 }
888 
889 static void map_groups__fixup_end(struct map_groups *mg)
890 {
891 	int i;
892 	for (i = 0; i < MAP__NR_TYPES; ++i)
893 		__map_groups__fixup_end(mg, i);
894 }
895 
896 static char *get_kernel_version(const char *root_dir)
897 {
898 	char version[PATH_MAX];
899 	FILE *file;
900 	char *name, *tmp;
901 	const char *prefix = "Linux version ";
902 
903 	sprintf(version, "%s/proc/version", root_dir);
904 	file = fopen(version, "r");
905 	if (!file)
906 		return NULL;
907 
908 	version[0] = '\0';
909 	tmp = fgets(version, sizeof(version), file);
910 	fclose(file);
911 
912 	name = strstr(version, prefix);
913 	if (!name)
914 		return NULL;
915 	name += strlen(prefix);
916 	tmp = strchr(name, ' ');
917 	if (tmp)
918 		*tmp = '\0';
919 
920 	return strdup(name);
921 }
922 
923 static bool is_kmod_dso(struct dso *dso)
924 {
925 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
926 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
927 }
928 
929 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
930 				       struct kmod_path *m)
931 {
932 	struct map *map;
933 	char *long_name;
934 
935 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
936 	if (map == NULL)
937 		return 0;
938 
939 	long_name = strdup(path);
940 	if (long_name == NULL)
941 		return -ENOMEM;
942 
943 	dso__set_long_name(map->dso, long_name, true);
944 	dso__kernel_module_get_build_id(map->dso, "");
945 
946 	/*
947 	 * Full name could reveal us kmod compression, so
948 	 * we need to update the symtab_type if needed.
949 	 */
950 	if (m->comp && is_kmod_dso(map->dso))
951 		map->dso->symtab_type++;
952 
953 	return 0;
954 }
955 
956 static int map_groups__set_modules_path_dir(struct map_groups *mg,
957 				const char *dir_name, int depth)
958 {
959 	struct dirent *dent;
960 	DIR *dir = opendir(dir_name);
961 	int ret = 0;
962 
963 	if (!dir) {
964 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
965 		return -1;
966 	}
967 
968 	while ((dent = readdir(dir)) != NULL) {
969 		char path[PATH_MAX];
970 		struct stat st;
971 
972 		/*sshfs might return bad dent->d_type, so we have to stat*/
973 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
974 		if (stat(path, &st))
975 			continue;
976 
977 		if (S_ISDIR(st.st_mode)) {
978 			if (!strcmp(dent->d_name, ".") ||
979 			    !strcmp(dent->d_name, ".."))
980 				continue;
981 
982 			/* Do not follow top-level source and build symlinks */
983 			if (depth == 0) {
984 				if (!strcmp(dent->d_name, "source") ||
985 				    !strcmp(dent->d_name, "build"))
986 					continue;
987 			}
988 
989 			ret = map_groups__set_modules_path_dir(mg, path,
990 							       depth + 1);
991 			if (ret < 0)
992 				goto out;
993 		} else {
994 			struct kmod_path m;
995 
996 			ret = kmod_path__parse_name(&m, dent->d_name);
997 			if (ret)
998 				goto out;
999 
1000 			if (m.kmod)
1001 				ret = map_groups__set_module_path(mg, path, &m);
1002 
1003 			free(m.name);
1004 
1005 			if (ret)
1006 				goto out;
1007 		}
1008 	}
1009 
1010 out:
1011 	closedir(dir);
1012 	return ret;
1013 }
1014 
1015 static int machine__set_modules_path(struct machine *machine)
1016 {
1017 	char *version;
1018 	char modules_path[PATH_MAX];
1019 
1020 	version = get_kernel_version(machine->root_dir);
1021 	if (!version)
1022 		return -1;
1023 
1024 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1025 		 machine->root_dir, version);
1026 	free(version);
1027 
1028 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1029 }
1030 
1031 static int machine__create_module(void *arg, const char *name, u64 start)
1032 {
1033 	struct machine *machine = arg;
1034 	struct map *map;
1035 
1036 	map = machine__findnew_module_map(machine, start, name);
1037 	if (map == NULL)
1038 		return -1;
1039 
1040 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1041 
1042 	return 0;
1043 }
1044 
1045 static int machine__create_modules(struct machine *machine)
1046 {
1047 	const char *modules;
1048 	char path[PATH_MAX];
1049 
1050 	if (machine__is_default_guest(machine)) {
1051 		modules = symbol_conf.default_guest_modules;
1052 	} else {
1053 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1054 		modules = path;
1055 	}
1056 
1057 	if (symbol__restricted_filename(modules, "/proc/modules"))
1058 		return -1;
1059 
1060 	if (modules__parse(modules, machine, machine__create_module))
1061 		return -1;
1062 
1063 	if (!machine__set_modules_path(machine))
1064 		return 0;
1065 
1066 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1067 
1068 	return 0;
1069 }
1070 
1071 int machine__create_kernel_maps(struct machine *machine)
1072 {
1073 	struct dso *kernel = machine__get_kernel(machine);
1074 	const char *name;
1075 	u64 addr = machine__get_running_kernel_start(machine, &name);
1076 	if (!addr)
1077 		return -1;
1078 
1079 	if (kernel == NULL ||
1080 	    __machine__create_kernel_maps(machine, kernel) < 0)
1081 		return -1;
1082 
1083 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1084 		if (machine__is_host(machine))
1085 			pr_debug("Problems creating module maps, "
1086 				 "continuing anyway...\n");
1087 		else
1088 			pr_debug("Problems creating module maps for guest %d, "
1089 				 "continuing anyway...\n", machine->pid);
1090 	}
1091 
1092 	/*
1093 	 * Now that we have all the maps created, just set the ->end of them:
1094 	 */
1095 	map_groups__fixup_end(&machine->kmaps);
1096 
1097 	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1098 					     addr)) {
1099 		machine__destroy_kernel_maps(machine);
1100 		return -1;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static void machine__set_kernel_mmap_len(struct machine *machine,
1107 					 union perf_event *event)
1108 {
1109 	int i;
1110 
1111 	for (i = 0; i < MAP__NR_TYPES; i++) {
1112 		machine->vmlinux_maps[i]->start = event->mmap.start;
1113 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1114 						   event->mmap.len);
1115 		/*
1116 		 * Be a bit paranoid here, some perf.data file came with
1117 		 * a zero sized synthesized MMAP event for the kernel.
1118 		 */
1119 		if (machine->vmlinux_maps[i]->end == 0)
1120 			machine->vmlinux_maps[i]->end = ~0ULL;
1121 	}
1122 }
1123 
1124 static bool machine__uses_kcore(struct machine *machine)
1125 {
1126 	struct dso *dso;
1127 
1128 	list_for_each_entry(dso, &machine->dsos.head, node) {
1129 		if (dso__is_kcore(dso))
1130 			return true;
1131 	}
1132 
1133 	return false;
1134 }
1135 
1136 static int machine__process_kernel_mmap_event(struct machine *machine,
1137 					      union perf_event *event)
1138 {
1139 	struct map *map;
1140 	char kmmap_prefix[PATH_MAX];
1141 	enum dso_kernel_type kernel_type;
1142 	bool is_kernel_mmap;
1143 
1144 	/* If we have maps from kcore then we do not need or want any others */
1145 	if (machine__uses_kcore(machine))
1146 		return 0;
1147 
1148 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1149 	if (machine__is_host(machine))
1150 		kernel_type = DSO_TYPE_KERNEL;
1151 	else
1152 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1153 
1154 	is_kernel_mmap = memcmp(event->mmap.filename,
1155 				kmmap_prefix,
1156 				strlen(kmmap_prefix) - 1) == 0;
1157 	if (event->mmap.filename[0] == '/' ||
1158 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1159 		map = machine__findnew_module_map(machine, event->mmap.start,
1160 						  event->mmap.filename);
1161 		if (map == NULL)
1162 			goto out_problem;
1163 
1164 		map->end = map->start + event->mmap.len;
1165 	} else if (is_kernel_mmap) {
1166 		const char *symbol_name = (event->mmap.filename +
1167 				strlen(kmmap_prefix));
1168 		/*
1169 		 * Should be there already, from the build-id table in
1170 		 * the header.
1171 		 */
1172 		struct dso *kernel = NULL;
1173 		struct dso *dso;
1174 
1175 		pthread_rwlock_rdlock(&machine->dsos.lock);
1176 
1177 		list_for_each_entry(dso, &machine->dsos.head, node) {
1178 
1179 			/*
1180 			 * The cpumode passed to is_kernel_module is not the
1181 			 * cpumode of *this* event. If we insist on passing
1182 			 * correct cpumode to is_kernel_module, we should
1183 			 * record the cpumode when we adding this dso to the
1184 			 * linked list.
1185 			 *
1186 			 * However we don't really need passing correct
1187 			 * cpumode.  We know the correct cpumode must be kernel
1188 			 * mode (if not, we should not link it onto kernel_dsos
1189 			 * list).
1190 			 *
1191 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1192 			 * is_kernel_module() treats it as a kernel cpumode.
1193 			 */
1194 
1195 			if (!dso->kernel ||
1196 			    is_kernel_module(dso->long_name,
1197 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1198 				continue;
1199 
1200 
1201 			kernel = dso;
1202 			break;
1203 		}
1204 
1205 		pthread_rwlock_unlock(&machine->dsos.lock);
1206 
1207 		if (kernel == NULL)
1208 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1209 		if (kernel == NULL)
1210 			goto out_problem;
1211 
1212 		kernel->kernel = kernel_type;
1213 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1214 			dso__put(kernel);
1215 			goto out_problem;
1216 		}
1217 
1218 		if (strstr(kernel->long_name, "vmlinux"))
1219 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1220 
1221 		machine__set_kernel_mmap_len(machine, event);
1222 
1223 		/*
1224 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1225 		 * symbol. Effectively having zero here means that at record
1226 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1227 		 */
1228 		if (event->mmap.pgoff != 0) {
1229 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1230 							 symbol_name,
1231 							 event->mmap.pgoff);
1232 		}
1233 
1234 		if (machine__is_default_guest(machine)) {
1235 			/*
1236 			 * preload dso of guest kernel and modules
1237 			 */
1238 			dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION],
1239 				  NULL);
1240 		}
1241 	}
1242 	return 0;
1243 out_problem:
1244 	return -1;
1245 }
1246 
1247 int machine__process_mmap2_event(struct machine *machine,
1248 				 union perf_event *event,
1249 				 struct perf_sample *sample __maybe_unused)
1250 {
1251 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1252 	struct thread *thread;
1253 	struct map *map;
1254 	enum map_type type;
1255 	int ret = 0;
1256 
1257 	if (dump_trace)
1258 		perf_event__fprintf_mmap2(event, stdout);
1259 
1260 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1261 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1262 		ret = machine__process_kernel_mmap_event(machine, event);
1263 		if (ret < 0)
1264 			goto out_problem;
1265 		return 0;
1266 	}
1267 
1268 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1269 					event->mmap2.tid);
1270 	if (thread == NULL)
1271 		goto out_problem;
1272 
1273 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1274 		type = MAP__VARIABLE;
1275 	else
1276 		type = MAP__FUNCTION;
1277 
1278 	map = map__new(machine, event->mmap2.start,
1279 			event->mmap2.len, event->mmap2.pgoff,
1280 			event->mmap2.pid, event->mmap2.maj,
1281 			event->mmap2.min, event->mmap2.ino,
1282 			event->mmap2.ino_generation,
1283 			event->mmap2.prot,
1284 			event->mmap2.flags,
1285 			event->mmap2.filename, type, thread);
1286 
1287 	if (map == NULL)
1288 		goto out_problem_map;
1289 
1290 	thread__insert_map(thread, map);
1291 	thread__put(thread);
1292 	map__put(map);
1293 	return 0;
1294 
1295 out_problem_map:
1296 	thread__put(thread);
1297 out_problem:
1298 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1299 	return 0;
1300 }
1301 
1302 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1303 				struct perf_sample *sample __maybe_unused)
1304 {
1305 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1306 	struct thread *thread;
1307 	struct map *map;
1308 	enum map_type type;
1309 	int ret = 0;
1310 
1311 	if (dump_trace)
1312 		perf_event__fprintf_mmap(event, stdout);
1313 
1314 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1315 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1316 		ret = machine__process_kernel_mmap_event(machine, event);
1317 		if (ret < 0)
1318 			goto out_problem;
1319 		return 0;
1320 	}
1321 
1322 	thread = machine__findnew_thread(machine, event->mmap.pid,
1323 					 event->mmap.tid);
1324 	if (thread == NULL)
1325 		goto out_problem;
1326 
1327 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1328 		type = MAP__VARIABLE;
1329 	else
1330 		type = MAP__FUNCTION;
1331 
1332 	map = map__new(machine, event->mmap.start,
1333 			event->mmap.len, event->mmap.pgoff,
1334 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1335 			event->mmap.filename,
1336 			type, thread);
1337 
1338 	if (map == NULL)
1339 		goto out_problem_map;
1340 
1341 	thread__insert_map(thread, map);
1342 	thread__put(thread);
1343 	map__put(map);
1344 	return 0;
1345 
1346 out_problem_map:
1347 	thread__put(thread);
1348 out_problem:
1349 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1350 	return 0;
1351 }
1352 
1353 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1354 {
1355 	if (machine->last_match == th)
1356 		machine->last_match = NULL;
1357 
1358 	BUG_ON(atomic_read(&th->refcnt) == 0);
1359 	if (lock)
1360 		pthread_rwlock_wrlock(&machine->threads_lock);
1361 	rb_erase_init(&th->rb_node, &machine->threads);
1362 	RB_CLEAR_NODE(&th->rb_node);
1363 	/*
1364 	 * Move it first to the dead_threads list, then drop the reference,
1365 	 * if this is the last reference, then the thread__delete destructor
1366 	 * will be called and we will remove it from the dead_threads list.
1367 	 */
1368 	list_add_tail(&th->node, &machine->dead_threads);
1369 	if (lock)
1370 		pthread_rwlock_unlock(&machine->threads_lock);
1371 	thread__put(th);
1372 }
1373 
1374 void machine__remove_thread(struct machine *machine, struct thread *th)
1375 {
1376 	return __machine__remove_thread(machine, th, true);
1377 }
1378 
1379 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1380 				struct perf_sample *sample)
1381 {
1382 	struct thread *thread = machine__find_thread(machine,
1383 						     event->fork.pid,
1384 						     event->fork.tid);
1385 	struct thread *parent = machine__findnew_thread(machine,
1386 							event->fork.ppid,
1387 							event->fork.ptid);
1388 	int err = 0;
1389 
1390 	if (dump_trace)
1391 		perf_event__fprintf_task(event, stdout);
1392 
1393 	/*
1394 	 * There may be an existing thread that is not actually the parent,
1395 	 * either because we are processing events out of order, or because the
1396 	 * (fork) event that would have removed the thread was lost. Assume the
1397 	 * latter case and continue on as best we can.
1398 	 */
1399 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1400 		dump_printf("removing erroneous parent thread %d/%d\n",
1401 			    parent->pid_, parent->tid);
1402 		machine__remove_thread(machine, parent);
1403 		thread__put(parent);
1404 		parent = machine__findnew_thread(machine, event->fork.ppid,
1405 						 event->fork.ptid);
1406 	}
1407 
1408 	/* if a thread currently exists for the thread id remove it */
1409 	if (thread != NULL) {
1410 		machine__remove_thread(machine, thread);
1411 		thread__put(thread);
1412 	}
1413 
1414 	thread = machine__findnew_thread(machine, event->fork.pid,
1415 					 event->fork.tid);
1416 
1417 	if (thread == NULL || parent == NULL ||
1418 	    thread__fork(thread, parent, sample->time) < 0) {
1419 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1420 		err = -1;
1421 	}
1422 	thread__put(thread);
1423 	thread__put(parent);
1424 
1425 	return err;
1426 }
1427 
1428 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1429 				struct perf_sample *sample __maybe_unused)
1430 {
1431 	struct thread *thread = machine__find_thread(machine,
1432 						     event->fork.pid,
1433 						     event->fork.tid);
1434 
1435 	if (dump_trace)
1436 		perf_event__fprintf_task(event, stdout);
1437 
1438 	if (thread != NULL) {
1439 		thread__exited(thread);
1440 		thread__put(thread);
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 int machine__process_event(struct machine *machine, union perf_event *event,
1447 			   struct perf_sample *sample)
1448 {
1449 	int ret;
1450 
1451 	switch (event->header.type) {
1452 	case PERF_RECORD_COMM:
1453 		ret = machine__process_comm_event(machine, event, sample); break;
1454 	case PERF_RECORD_MMAP:
1455 		ret = machine__process_mmap_event(machine, event, sample); break;
1456 	case PERF_RECORD_MMAP2:
1457 		ret = machine__process_mmap2_event(machine, event, sample); break;
1458 	case PERF_RECORD_FORK:
1459 		ret = machine__process_fork_event(machine, event, sample); break;
1460 	case PERF_RECORD_EXIT:
1461 		ret = machine__process_exit_event(machine, event, sample); break;
1462 	case PERF_RECORD_LOST:
1463 		ret = machine__process_lost_event(machine, event, sample); break;
1464 	case PERF_RECORD_AUX:
1465 		ret = machine__process_aux_event(machine, event); break;
1466 	case PERF_RECORD_ITRACE_START:
1467 		ret = machine__process_itrace_start_event(machine, event); break;
1468 	case PERF_RECORD_LOST_SAMPLES:
1469 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1470 	default:
1471 		ret = -1;
1472 		break;
1473 	}
1474 
1475 	return ret;
1476 }
1477 
1478 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1479 {
1480 	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1481 		return 1;
1482 	return 0;
1483 }
1484 
1485 static void ip__resolve_ams(struct thread *thread,
1486 			    struct addr_map_symbol *ams,
1487 			    u64 ip)
1488 {
1489 	struct addr_location al;
1490 
1491 	memset(&al, 0, sizeof(al));
1492 	/*
1493 	 * We cannot use the header.misc hint to determine whether a
1494 	 * branch stack address is user, kernel, guest, hypervisor.
1495 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1496 	 * Thus, we have to try consecutively until we find a match
1497 	 * or else, the symbol is unknown
1498 	 */
1499 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1500 
1501 	ams->addr = ip;
1502 	ams->al_addr = al.addr;
1503 	ams->sym = al.sym;
1504 	ams->map = al.map;
1505 }
1506 
1507 static void ip__resolve_data(struct thread *thread,
1508 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1509 {
1510 	struct addr_location al;
1511 
1512 	memset(&al, 0, sizeof(al));
1513 
1514 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1515 	if (al.map == NULL) {
1516 		/*
1517 		 * some shared data regions have execute bit set which puts
1518 		 * their mapping in the MAP__FUNCTION type array.
1519 		 * Check there as a fallback option before dropping the sample.
1520 		 */
1521 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1522 	}
1523 
1524 	ams->addr = addr;
1525 	ams->al_addr = al.addr;
1526 	ams->sym = al.sym;
1527 	ams->map = al.map;
1528 }
1529 
1530 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1531 				     struct addr_location *al)
1532 {
1533 	struct mem_info *mi = zalloc(sizeof(*mi));
1534 
1535 	if (!mi)
1536 		return NULL;
1537 
1538 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1539 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1540 	mi->data_src.val = sample->data_src;
1541 
1542 	return mi;
1543 }
1544 
1545 static int add_callchain_ip(struct thread *thread,
1546 			    struct symbol **parent,
1547 			    struct addr_location *root_al,
1548 			    u8 *cpumode,
1549 			    u64 ip)
1550 {
1551 	struct addr_location al;
1552 
1553 	al.filtered = 0;
1554 	al.sym = NULL;
1555 	if (!cpumode) {
1556 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1557 						   ip, &al);
1558 	} else {
1559 		if (ip >= PERF_CONTEXT_MAX) {
1560 			switch (ip) {
1561 			case PERF_CONTEXT_HV:
1562 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1563 				break;
1564 			case PERF_CONTEXT_KERNEL:
1565 				*cpumode = PERF_RECORD_MISC_KERNEL;
1566 				break;
1567 			case PERF_CONTEXT_USER:
1568 				*cpumode = PERF_RECORD_MISC_USER;
1569 				break;
1570 			default:
1571 				pr_debug("invalid callchain context: "
1572 					 "%"PRId64"\n", (s64) ip);
1573 				/*
1574 				 * It seems the callchain is corrupted.
1575 				 * Discard all.
1576 				 */
1577 				callchain_cursor_reset(&callchain_cursor);
1578 				return 1;
1579 			}
1580 			return 0;
1581 		}
1582 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1583 					   ip, &al);
1584 	}
1585 
1586 	if (al.sym != NULL) {
1587 		if (sort__has_parent && !*parent &&
1588 		    symbol__match_regex(al.sym, &parent_regex))
1589 			*parent = al.sym;
1590 		else if (have_ignore_callees && root_al &&
1591 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1592 			/* Treat this symbol as the root,
1593 			   forgetting its callees. */
1594 			*root_al = al;
1595 			callchain_cursor_reset(&callchain_cursor);
1596 		}
1597 	}
1598 
1599 	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1600 }
1601 
1602 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1603 					   struct addr_location *al)
1604 {
1605 	unsigned int i;
1606 	const struct branch_stack *bs = sample->branch_stack;
1607 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1608 
1609 	if (!bi)
1610 		return NULL;
1611 
1612 	for (i = 0; i < bs->nr; i++) {
1613 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1614 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1615 		bi[i].flags = bs->entries[i].flags;
1616 	}
1617 	return bi;
1618 }
1619 
1620 #define CHASHSZ 127
1621 #define CHASHBITS 7
1622 #define NO_ENTRY 0xff
1623 
1624 #define PERF_MAX_BRANCH_DEPTH 127
1625 
1626 /* Remove loops. */
1627 static int remove_loops(struct branch_entry *l, int nr)
1628 {
1629 	int i, j, off;
1630 	unsigned char chash[CHASHSZ];
1631 
1632 	memset(chash, NO_ENTRY, sizeof(chash));
1633 
1634 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1635 
1636 	for (i = 0; i < nr; i++) {
1637 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1638 
1639 		/* no collision handling for now */
1640 		if (chash[h] == NO_ENTRY) {
1641 			chash[h] = i;
1642 		} else if (l[chash[h]].from == l[i].from) {
1643 			bool is_loop = true;
1644 			/* check if it is a real loop */
1645 			off = 0;
1646 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1647 				if (l[j].from != l[i + off].from) {
1648 					is_loop = false;
1649 					break;
1650 				}
1651 			if (is_loop) {
1652 				memmove(l + i, l + i + off,
1653 					(nr - (i + off)) * sizeof(*l));
1654 				nr -= off;
1655 			}
1656 		}
1657 	}
1658 	return nr;
1659 }
1660 
1661 /*
1662  * Recolve LBR callstack chain sample
1663  * Return:
1664  * 1 on success get LBR callchain information
1665  * 0 no available LBR callchain information, should try fp
1666  * negative error code on other errors.
1667  */
1668 static int resolve_lbr_callchain_sample(struct thread *thread,
1669 					struct perf_sample *sample,
1670 					struct symbol **parent,
1671 					struct addr_location *root_al,
1672 					int max_stack)
1673 {
1674 	struct ip_callchain *chain = sample->callchain;
1675 	int chain_nr = min(max_stack, (int)chain->nr);
1676 	u8 cpumode = PERF_RECORD_MISC_USER;
1677 	int i, j, err;
1678 	u64 ip;
1679 
1680 	for (i = 0; i < chain_nr; i++) {
1681 		if (chain->ips[i] == PERF_CONTEXT_USER)
1682 			break;
1683 	}
1684 
1685 	/* LBR only affects the user callchain */
1686 	if (i != chain_nr) {
1687 		struct branch_stack *lbr_stack = sample->branch_stack;
1688 		int lbr_nr = lbr_stack->nr;
1689 		/*
1690 		 * LBR callstack can only get user call chain.
1691 		 * The mix_chain_nr is kernel call chain
1692 		 * number plus LBR user call chain number.
1693 		 * i is kernel call chain number,
1694 		 * 1 is PERF_CONTEXT_USER,
1695 		 * lbr_nr + 1 is the user call chain number.
1696 		 * For details, please refer to the comments
1697 		 * in callchain__printf
1698 		 */
1699 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1700 
1701 		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1702 			pr_warning("corrupted callchain. skipping...\n");
1703 			return 0;
1704 		}
1705 
1706 		for (j = 0; j < mix_chain_nr; j++) {
1707 			if (callchain_param.order == ORDER_CALLEE) {
1708 				if (j < i + 1)
1709 					ip = chain->ips[j];
1710 				else if (j > i + 1)
1711 					ip = lbr_stack->entries[j - i - 2].from;
1712 				else
1713 					ip = lbr_stack->entries[0].to;
1714 			} else {
1715 				if (j < lbr_nr)
1716 					ip = lbr_stack->entries[lbr_nr - j - 1].from;
1717 				else if (j > lbr_nr)
1718 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1719 				else
1720 					ip = lbr_stack->entries[0].to;
1721 			}
1722 
1723 			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1724 			if (err)
1725 				return (err < 0) ? err : 0;
1726 		}
1727 		return 1;
1728 	}
1729 
1730 	return 0;
1731 }
1732 
1733 static int thread__resolve_callchain_sample(struct thread *thread,
1734 					    struct perf_evsel *evsel,
1735 					    struct perf_sample *sample,
1736 					    struct symbol **parent,
1737 					    struct addr_location *root_al,
1738 					    int max_stack)
1739 {
1740 	struct branch_stack *branch = sample->branch_stack;
1741 	struct ip_callchain *chain = sample->callchain;
1742 	int chain_nr = min(max_stack, (int)chain->nr);
1743 	u8 cpumode = PERF_RECORD_MISC_USER;
1744 	int i, j, err;
1745 	int skip_idx = -1;
1746 	int first_call = 0;
1747 
1748 	callchain_cursor_reset(&callchain_cursor);
1749 
1750 	if (has_branch_callstack(evsel)) {
1751 		err = resolve_lbr_callchain_sample(thread, sample, parent,
1752 						   root_al, max_stack);
1753 		if (err)
1754 			return (err < 0) ? err : 0;
1755 	}
1756 
1757 	/*
1758 	 * Based on DWARF debug information, some architectures skip
1759 	 * a callchain entry saved by the kernel.
1760 	 */
1761 	if (chain->nr < PERF_MAX_STACK_DEPTH)
1762 		skip_idx = arch_skip_callchain_idx(thread, chain);
1763 
1764 	/*
1765 	 * Add branches to call stack for easier browsing. This gives
1766 	 * more context for a sample than just the callers.
1767 	 *
1768 	 * This uses individual histograms of paths compared to the
1769 	 * aggregated histograms the normal LBR mode uses.
1770 	 *
1771 	 * Limitations for now:
1772 	 * - No extra filters
1773 	 * - No annotations (should annotate somehow)
1774 	 */
1775 
1776 	if (branch && callchain_param.branch_callstack) {
1777 		int nr = min(max_stack, (int)branch->nr);
1778 		struct branch_entry be[nr];
1779 
1780 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1781 			pr_warning("corrupted branch chain. skipping...\n");
1782 			goto check_calls;
1783 		}
1784 
1785 		for (i = 0; i < nr; i++) {
1786 			if (callchain_param.order == ORDER_CALLEE) {
1787 				be[i] = branch->entries[i];
1788 				/*
1789 				 * Check for overlap into the callchain.
1790 				 * The return address is one off compared to
1791 				 * the branch entry. To adjust for this
1792 				 * assume the calling instruction is not longer
1793 				 * than 8 bytes.
1794 				 */
1795 				if (i == skip_idx ||
1796 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1797 					first_call++;
1798 				else if (be[i].from < chain->ips[first_call] &&
1799 				    be[i].from >= chain->ips[first_call] - 8)
1800 					first_call++;
1801 			} else
1802 				be[i] = branch->entries[branch->nr - i - 1];
1803 		}
1804 
1805 		nr = remove_loops(be, nr);
1806 
1807 		for (i = 0; i < nr; i++) {
1808 			err = add_callchain_ip(thread, parent, root_al,
1809 					       NULL, be[i].to);
1810 			if (!err)
1811 				err = add_callchain_ip(thread, parent, root_al,
1812 						       NULL, be[i].from);
1813 			if (err == -EINVAL)
1814 				break;
1815 			if (err)
1816 				return err;
1817 		}
1818 		chain_nr -= nr;
1819 	}
1820 
1821 check_calls:
1822 	if (chain->nr > PERF_MAX_STACK_DEPTH) {
1823 		pr_warning("corrupted callchain. skipping...\n");
1824 		return 0;
1825 	}
1826 
1827 	for (i = first_call; i < chain_nr; i++) {
1828 		u64 ip;
1829 
1830 		if (callchain_param.order == ORDER_CALLEE)
1831 			j = i;
1832 		else
1833 			j = chain->nr - i - 1;
1834 
1835 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1836 		if (j == skip_idx)
1837 			continue;
1838 #endif
1839 		ip = chain->ips[j];
1840 
1841 		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1842 
1843 		if (err)
1844 			return (err < 0) ? err : 0;
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 static int unwind_entry(struct unwind_entry *entry, void *arg)
1851 {
1852 	struct callchain_cursor *cursor = arg;
1853 	return callchain_cursor_append(cursor, entry->ip,
1854 				       entry->map, entry->sym);
1855 }
1856 
1857 int thread__resolve_callchain(struct thread *thread,
1858 			      struct perf_evsel *evsel,
1859 			      struct perf_sample *sample,
1860 			      struct symbol **parent,
1861 			      struct addr_location *root_al,
1862 			      int max_stack)
1863 {
1864 	int ret = thread__resolve_callchain_sample(thread, evsel,
1865 						   sample, parent,
1866 						   root_al, max_stack);
1867 	if (ret)
1868 		return ret;
1869 
1870 	/* Can we do dwarf post unwind? */
1871 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1872 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1873 		return 0;
1874 
1875 	/* Bail out if nothing was captured. */
1876 	if ((!sample->user_regs.regs) ||
1877 	    (!sample->user_stack.size))
1878 		return 0;
1879 
1880 	return unwind__get_entries(unwind_entry, &callchain_cursor,
1881 				   thread, sample, max_stack);
1882 
1883 }
1884 
1885 int machine__for_each_thread(struct machine *machine,
1886 			     int (*fn)(struct thread *thread, void *p),
1887 			     void *priv)
1888 {
1889 	struct rb_node *nd;
1890 	struct thread *thread;
1891 	int rc = 0;
1892 
1893 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1894 		thread = rb_entry(nd, struct thread, rb_node);
1895 		rc = fn(thread, priv);
1896 		if (rc != 0)
1897 			return rc;
1898 	}
1899 
1900 	list_for_each_entry(thread, &machine->dead_threads, node) {
1901 		rc = fn(thread, priv);
1902 		if (rc != 0)
1903 			return rc;
1904 	}
1905 	return rc;
1906 }
1907 
1908 int machines__for_each_thread(struct machines *machines,
1909 			      int (*fn)(struct thread *thread, void *p),
1910 			      void *priv)
1911 {
1912 	struct rb_node *nd;
1913 	int rc = 0;
1914 
1915 	rc = machine__for_each_thread(&machines->host, fn, priv);
1916 	if (rc != 0)
1917 		return rc;
1918 
1919 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1920 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
1921 
1922 		rc = machine__for_each_thread(machine, fn, priv);
1923 		if (rc != 0)
1924 			return rc;
1925 	}
1926 	return rc;
1927 }
1928 
1929 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1930 				  struct target *target, struct thread_map *threads,
1931 				  perf_event__handler_t process, bool data_mmap,
1932 				  unsigned int proc_map_timeout)
1933 {
1934 	if (target__has_task(target))
1935 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1936 	else if (target__has_cpu(target))
1937 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1938 	/* command specified */
1939 	return 0;
1940 }
1941 
1942 pid_t machine__get_current_tid(struct machine *machine, int cpu)
1943 {
1944 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
1945 		return -1;
1946 
1947 	return machine->current_tid[cpu];
1948 }
1949 
1950 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
1951 			     pid_t tid)
1952 {
1953 	struct thread *thread;
1954 
1955 	if (cpu < 0)
1956 		return -EINVAL;
1957 
1958 	if (!machine->current_tid) {
1959 		int i;
1960 
1961 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
1962 		if (!machine->current_tid)
1963 			return -ENOMEM;
1964 		for (i = 0; i < MAX_NR_CPUS; i++)
1965 			machine->current_tid[i] = -1;
1966 	}
1967 
1968 	if (cpu >= MAX_NR_CPUS) {
1969 		pr_err("Requested CPU %d too large. ", cpu);
1970 		pr_err("Consider raising MAX_NR_CPUS\n");
1971 		return -EINVAL;
1972 	}
1973 
1974 	machine->current_tid[cpu] = tid;
1975 
1976 	thread = machine__findnew_thread(machine, pid, tid);
1977 	if (!thread)
1978 		return -ENOMEM;
1979 
1980 	thread->cpu = cpu;
1981 	thread__put(thread);
1982 
1983 	return 0;
1984 }
1985 
1986 int machine__get_kernel_start(struct machine *machine)
1987 {
1988 	struct map *map = machine__kernel_map(machine, MAP__FUNCTION);
1989 	int err = 0;
1990 
1991 	/*
1992 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
1993 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
1994 	 * all addresses including kernel addresses are less than 2^32.  In
1995 	 * that case (32-bit system), if the kernel mapping is unknown, all
1996 	 * addresses will be assumed to be in user space - see
1997 	 * machine__kernel_ip().
1998 	 */
1999 	machine->kernel_start = 1ULL << 63;
2000 	if (map) {
2001 		err = map__load(map, machine->symbol_filter);
2002 		if (map->start)
2003 			machine->kernel_start = map->start;
2004 	}
2005 	return err;
2006 }
2007 
2008 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2009 {
2010 	return dsos__findnew(&machine->dsos, filename);
2011 }
2012