1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "event.h" 9 #include "evsel.h" 10 #include "hist.h" 11 #include "machine.h" 12 #include "map.h" 13 #include "sort.h" 14 #include "strlist.h" 15 #include "thread.h" 16 #include "vdso.h" 17 #include <stdbool.h> 18 #include <sys/types.h> 19 #include <sys/stat.h> 20 #include <unistd.h> 21 #include "unwind.h" 22 #include "linux/hash.h" 23 #include "asm/bug.h" 24 25 #include "sane_ctype.h" 26 #include <symbol/kallsyms.h> 27 #include <linux/mman.h> 28 29 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 30 31 static void dsos__init(struct dsos *dsos) 32 { 33 INIT_LIST_HEAD(&dsos->head); 34 dsos->root = RB_ROOT; 35 init_rwsem(&dsos->lock); 36 } 37 38 static void machine__threads_init(struct machine *machine) 39 { 40 int i; 41 42 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 43 struct threads *threads = &machine->threads[i]; 44 threads->entries = RB_ROOT; 45 init_rwsem(&threads->lock); 46 threads->nr = 0; 47 INIT_LIST_HEAD(&threads->dead); 48 threads->last_match = NULL; 49 } 50 } 51 52 static int machine__set_mmap_name(struct machine *machine) 53 { 54 if (machine__is_host(machine)) 55 machine->mmap_name = strdup("[kernel.kallsyms]"); 56 else if (machine__is_default_guest(machine)) 57 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 58 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 59 machine->pid) < 0) 60 machine->mmap_name = NULL; 61 62 return machine->mmap_name ? 0 : -ENOMEM; 63 } 64 65 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 66 { 67 int err = -ENOMEM; 68 69 memset(machine, 0, sizeof(*machine)); 70 map_groups__init(&machine->kmaps, machine); 71 RB_CLEAR_NODE(&machine->rb_node); 72 dsos__init(&machine->dsos); 73 74 machine__threads_init(machine); 75 76 machine->vdso_info = NULL; 77 machine->env = NULL; 78 79 machine->pid = pid; 80 81 machine->id_hdr_size = 0; 82 machine->kptr_restrict_warned = false; 83 machine->comm_exec = false; 84 machine->kernel_start = 0; 85 machine->vmlinux_map = NULL; 86 87 machine->root_dir = strdup(root_dir); 88 if (machine->root_dir == NULL) 89 return -ENOMEM; 90 91 if (machine__set_mmap_name(machine)) 92 goto out; 93 94 if (pid != HOST_KERNEL_ID) { 95 struct thread *thread = machine__findnew_thread(machine, -1, 96 pid); 97 char comm[64]; 98 99 if (thread == NULL) 100 goto out; 101 102 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 103 thread__set_comm(thread, comm, 0); 104 thread__put(thread); 105 } 106 107 machine->current_tid = NULL; 108 err = 0; 109 110 out: 111 if (err) { 112 zfree(&machine->root_dir); 113 zfree(&machine->mmap_name); 114 } 115 return 0; 116 } 117 118 struct machine *machine__new_host(void) 119 { 120 struct machine *machine = malloc(sizeof(*machine)); 121 122 if (machine != NULL) { 123 machine__init(machine, "", HOST_KERNEL_ID); 124 125 if (machine__create_kernel_maps(machine) < 0) 126 goto out_delete; 127 } 128 129 return machine; 130 out_delete: 131 free(machine); 132 return NULL; 133 } 134 135 struct machine *machine__new_kallsyms(void) 136 { 137 struct machine *machine = machine__new_host(); 138 /* 139 * FIXME: 140 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely 141 * ask for not using the kcore parsing code, once this one is fixed 142 * to create a map per module. 143 */ 144 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 145 machine__delete(machine); 146 machine = NULL; 147 } 148 149 return machine; 150 } 151 152 static void dsos__purge(struct dsos *dsos) 153 { 154 struct dso *pos, *n; 155 156 down_write(&dsos->lock); 157 158 list_for_each_entry_safe(pos, n, &dsos->head, node) { 159 RB_CLEAR_NODE(&pos->rb_node); 160 pos->root = NULL; 161 list_del_init(&pos->node); 162 dso__put(pos); 163 } 164 165 up_write(&dsos->lock); 166 } 167 168 static void dsos__exit(struct dsos *dsos) 169 { 170 dsos__purge(dsos); 171 exit_rwsem(&dsos->lock); 172 } 173 174 void machine__delete_threads(struct machine *machine) 175 { 176 struct rb_node *nd; 177 int i; 178 179 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 180 struct threads *threads = &machine->threads[i]; 181 down_write(&threads->lock); 182 nd = rb_first(&threads->entries); 183 while (nd) { 184 struct thread *t = rb_entry(nd, struct thread, rb_node); 185 186 nd = rb_next(nd); 187 __machine__remove_thread(machine, t, false); 188 } 189 up_write(&threads->lock); 190 } 191 } 192 193 void machine__exit(struct machine *machine) 194 { 195 int i; 196 197 if (machine == NULL) 198 return; 199 200 machine__destroy_kernel_maps(machine); 201 map_groups__exit(&machine->kmaps); 202 dsos__exit(&machine->dsos); 203 machine__exit_vdso(machine); 204 zfree(&machine->root_dir); 205 zfree(&machine->mmap_name); 206 zfree(&machine->current_tid); 207 208 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 209 struct threads *threads = &machine->threads[i]; 210 exit_rwsem(&threads->lock); 211 } 212 } 213 214 void machine__delete(struct machine *machine) 215 { 216 if (machine) { 217 machine__exit(machine); 218 free(machine); 219 } 220 } 221 222 void machines__init(struct machines *machines) 223 { 224 machine__init(&machines->host, "", HOST_KERNEL_ID); 225 machines->guests = RB_ROOT; 226 } 227 228 void machines__exit(struct machines *machines) 229 { 230 machine__exit(&machines->host); 231 /* XXX exit guest */ 232 } 233 234 struct machine *machines__add(struct machines *machines, pid_t pid, 235 const char *root_dir) 236 { 237 struct rb_node **p = &machines->guests.rb_node; 238 struct rb_node *parent = NULL; 239 struct machine *pos, *machine = malloc(sizeof(*machine)); 240 241 if (machine == NULL) 242 return NULL; 243 244 if (machine__init(machine, root_dir, pid) != 0) { 245 free(machine); 246 return NULL; 247 } 248 249 while (*p != NULL) { 250 parent = *p; 251 pos = rb_entry(parent, struct machine, rb_node); 252 if (pid < pos->pid) 253 p = &(*p)->rb_left; 254 else 255 p = &(*p)->rb_right; 256 } 257 258 rb_link_node(&machine->rb_node, parent, p); 259 rb_insert_color(&machine->rb_node, &machines->guests); 260 261 return machine; 262 } 263 264 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 265 { 266 struct rb_node *nd; 267 268 machines->host.comm_exec = comm_exec; 269 270 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 271 struct machine *machine = rb_entry(nd, struct machine, rb_node); 272 273 machine->comm_exec = comm_exec; 274 } 275 } 276 277 struct machine *machines__find(struct machines *machines, pid_t pid) 278 { 279 struct rb_node **p = &machines->guests.rb_node; 280 struct rb_node *parent = NULL; 281 struct machine *machine; 282 struct machine *default_machine = NULL; 283 284 if (pid == HOST_KERNEL_ID) 285 return &machines->host; 286 287 while (*p != NULL) { 288 parent = *p; 289 machine = rb_entry(parent, struct machine, rb_node); 290 if (pid < machine->pid) 291 p = &(*p)->rb_left; 292 else if (pid > machine->pid) 293 p = &(*p)->rb_right; 294 else 295 return machine; 296 if (!machine->pid) 297 default_machine = machine; 298 } 299 300 return default_machine; 301 } 302 303 struct machine *machines__findnew(struct machines *machines, pid_t pid) 304 { 305 char path[PATH_MAX]; 306 const char *root_dir = ""; 307 struct machine *machine = machines__find(machines, pid); 308 309 if (machine && (machine->pid == pid)) 310 goto out; 311 312 if ((pid != HOST_KERNEL_ID) && 313 (pid != DEFAULT_GUEST_KERNEL_ID) && 314 (symbol_conf.guestmount)) { 315 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 316 if (access(path, R_OK)) { 317 static struct strlist *seen; 318 319 if (!seen) 320 seen = strlist__new(NULL, NULL); 321 322 if (!strlist__has_entry(seen, path)) { 323 pr_err("Can't access file %s\n", path); 324 strlist__add(seen, path); 325 } 326 machine = NULL; 327 goto out; 328 } 329 root_dir = path; 330 } 331 332 machine = machines__add(machines, pid, root_dir); 333 out: 334 return machine; 335 } 336 337 void machines__process_guests(struct machines *machines, 338 machine__process_t process, void *data) 339 { 340 struct rb_node *nd; 341 342 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 343 struct machine *pos = rb_entry(nd, struct machine, rb_node); 344 process(pos, data); 345 } 346 } 347 348 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 349 { 350 struct rb_node *node; 351 struct machine *machine; 352 353 machines->host.id_hdr_size = id_hdr_size; 354 355 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 356 machine = rb_entry(node, struct machine, rb_node); 357 machine->id_hdr_size = id_hdr_size; 358 } 359 360 return; 361 } 362 363 static void machine__update_thread_pid(struct machine *machine, 364 struct thread *th, pid_t pid) 365 { 366 struct thread *leader; 367 368 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 369 return; 370 371 th->pid_ = pid; 372 373 if (th->pid_ == th->tid) 374 return; 375 376 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 377 if (!leader) 378 goto out_err; 379 380 if (!leader->mg) 381 leader->mg = map_groups__new(machine); 382 383 if (!leader->mg) 384 goto out_err; 385 386 if (th->mg == leader->mg) 387 return; 388 389 if (th->mg) { 390 /* 391 * Maps are created from MMAP events which provide the pid and 392 * tid. Consequently there never should be any maps on a thread 393 * with an unknown pid. Just print an error if there are. 394 */ 395 if (!map_groups__empty(th->mg)) 396 pr_err("Discarding thread maps for %d:%d\n", 397 th->pid_, th->tid); 398 map_groups__put(th->mg); 399 } 400 401 th->mg = map_groups__get(leader->mg); 402 out_put: 403 thread__put(leader); 404 return; 405 out_err: 406 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 407 goto out_put; 408 } 409 410 /* 411 * Front-end cache - TID lookups come in blocks, 412 * so most of the time we dont have to look up 413 * the full rbtree: 414 */ 415 static struct thread* 416 __threads__get_last_match(struct threads *threads, struct machine *machine, 417 int pid, int tid) 418 { 419 struct thread *th; 420 421 th = threads->last_match; 422 if (th != NULL) { 423 if (th->tid == tid) { 424 machine__update_thread_pid(machine, th, pid); 425 return thread__get(th); 426 } 427 428 threads->last_match = NULL; 429 } 430 431 return NULL; 432 } 433 434 static struct thread* 435 threads__get_last_match(struct threads *threads, struct machine *machine, 436 int pid, int tid) 437 { 438 struct thread *th = NULL; 439 440 if (perf_singlethreaded) 441 th = __threads__get_last_match(threads, machine, pid, tid); 442 443 return th; 444 } 445 446 static void 447 __threads__set_last_match(struct threads *threads, struct thread *th) 448 { 449 threads->last_match = th; 450 } 451 452 static void 453 threads__set_last_match(struct threads *threads, struct thread *th) 454 { 455 if (perf_singlethreaded) 456 __threads__set_last_match(threads, th); 457 } 458 459 /* 460 * Caller must eventually drop thread->refcnt returned with a successful 461 * lookup/new thread inserted. 462 */ 463 static struct thread *____machine__findnew_thread(struct machine *machine, 464 struct threads *threads, 465 pid_t pid, pid_t tid, 466 bool create) 467 { 468 struct rb_node **p = &threads->entries.rb_node; 469 struct rb_node *parent = NULL; 470 struct thread *th; 471 472 th = threads__get_last_match(threads, machine, pid, tid); 473 if (th) 474 return th; 475 476 while (*p != NULL) { 477 parent = *p; 478 th = rb_entry(parent, struct thread, rb_node); 479 480 if (th->tid == tid) { 481 threads__set_last_match(threads, th); 482 machine__update_thread_pid(machine, th, pid); 483 return thread__get(th); 484 } 485 486 if (tid < th->tid) 487 p = &(*p)->rb_left; 488 else 489 p = &(*p)->rb_right; 490 } 491 492 if (!create) 493 return NULL; 494 495 th = thread__new(pid, tid); 496 if (th != NULL) { 497 rb_link_node(&th->rb_node, parent, p); 498 rb_insert_color(&th->rb_node, &threads->entries); 499 500 /* 501 * We have to initialize map_groups separately 502 * after rb tree is updated. 503 * 504 * The reason is that we call machine__findnew_thread 505 * within thread__init_map_groups to find the thread 506 * leader and that would screwed the rb tree. 507 */ 508 if (thread__init_map_groups(th, machine)) { 509 rb_erase_init(&th->rb_node, &threads->entries); 510 RB_CLEAR_NODE(&th->rb_node); 511 thread__put(th); 512 return NULL; 513 } 514 /* 515 * It is now in the rbtree, get a ref 516 */ 517 thread__get(th); 518 threads__set_last_match(threads, th); 519 ++threads->nr; 520 } 521 522 return th; 523 } 524 525 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 526 { 527 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 528 } 529 530 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 531 pid_t tid) 532 { 533 struct threads *threads = machine__threads(machine, tid); 534 struct thread *th; 535 536 down_write(&threads->lock); 537 th = __machine__findnew_thread(machine, pid, tid); 538 up_write(&threads->lock); 539 return th; 540 } 541 542 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 543 pid_t tid) 544 { 545 struct threads *threads = machine__threads(machine, tid); 546 struct thread *th; 547 548 down_read(&threads->lock); 549 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 550 up_read(&threads->lock); 551 return th; 552 } 553 554 struct comm *machine__thread_exec_comm(struct machine *machine, 555 struct thread *thread) 556 { 557 if (machine->comm_exec) 558 return thread__exec_comm(thread); 559 else 560 return thread__comm(thread); 561 } 562 563 int machine__process_comm_event(struct machine *machine, union perf_event *event, 564 struct perf_sample *sample) 565 { 566 struct thread *thread = machine__findnew_thread(machine, 567 event->comm.pid, 568 event->comm.tid); 569 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 570 int err = 0; 571 572 if (exec) 573 machine->comm_exec = true; 574 575 if (dump_trace) 576 perf_event__fprintf_comm(event, stdout); 577 578 if (thread == NULL || 579 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 580 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 581 err = -1; 582 } 583 584 thread__put(thread); 585 586 return err; 587 } 588 589 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 590 union perf_event *event, 591 struct perf_sample *sample __maybe_unused) 592 { 593 struct thread *thread = machine__findnew_thread(machine, 594 event->namespaces.pid, 595 event->namespaces.tid); 596 int err = 0; 597 598 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 599 "\nWARNING: kernel seems to support more namespaces than perf" 600 " tool.\nTry updating the perf tool..\n\n"); 601 602 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 603 "\nWARNING: perf tool seems to support more namespaces than" 604 " the kernel.\nTry updating the kernel..\n\n"); 605 606 if (dump_trace) 607 perf_event__fprintf_namespaces(event, stdout); 608 609 if (thread == NULL || 610 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 611 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 612 err = -1; 613 } 614 615 thread__put(thread); 616 617 return err; 618 } 619 620 int machine__process_lost_event(struct machine *machine __maybe_unused, 621 union perf_event *event, struct perf_sample *sample __maybe_unused) 622 { 623 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 624 event->lost.id, event->lost.lost); 625 return 0; 626 } 627 628 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 629 union perf_event *event, struct perf_sample *sample) 630 { 631 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 632 sample->id, event->lost_samples.lost); 633 return 0; 634 } 635 636 static struct dso *machine__findnew_module_dso(struct machine *machine, 637 struct kmod_path *m, 638 const char *filename) 639 { 640 struct dso *dso; 641 642 down_write(&machine->dsos.lock); 643 644 dso = __dsos__find(&machine->dsos, m->name, true); 645 if (!dso) { 646 dso = __dsos__addnew(&machine->dsos, m->name); 647 if (dso == NULL) 648 goto out_unlock; 649 650 dso__set_module_info(dso, m, machine); 651 dso__set_long_name(dso, strdup(filename), true); 652 } 653 654 dso__get(dso); 655 out_unlock: 656 up_write(&machine->dsos.lock); 657 return dso; 658 } 659 660 int machine__process_aux_event(struct machine *machine __maybe_unused, 661 union perf_event *event) 662 { 663 if (dump_trace) 664 perf_event__fprintf_aux(event, stdout); 665 return 0; 666 } 667 668 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 669 union perf_event *event) 670 { 671 if (dump_trace) 672 perf_event__fprintf_itrace_start(event, stdout); 673 return 0; 674 } 675 676 int machine__process_switch_event(struct machine *machine __maybe_unused, 677 union perf_event *event) 678 { 679 if (dump_trace) 680 perf_event__fprintf_switch(event, stdout); 681 return 0; 682 } 683 684 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 685 { 686 const char *dup_filename; 687 688 if (!filename || !dso || !dso->long_name) 689 return; 690 if (dso->long_name[0] != '[') 691 return; 692 if (!strchr(filename, '/')) 693 return; 694 695 dup_filename = strdup(filename); 696 if (!dup_filename) 697 return; 698 699 dso__set_long_name(dso, dup_filename, true); 700 } 701 702 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 703 const char *filename) 704 { 705 struct map *map = NULL; 706 struct dso *dso = NULL; 707 struct kmod_path m; 708 709 if (kmod_path__parse_name(&m, filename)) 710 return NULL; 711 712 map = map_groups__find_by_name(&machine->kmaps, m.name); 713 if (map) { 714 /* 715 * If the map's dso is an offline module, give dso__load() 716 * a chance to find the file path of that module by fixing 717 * long_name. 718 */ 719 dso__adjust_kmod_long_name(map->dso, filename); 720 goto out; 721 } 722 723 dso = machine__findnew_module_dso(machine, &m, filename); 724 if (dso == NULL) 725 goto out; 726 727 map = map__new2(start, dso); 728 if (map == NULL) 729 goto out; 730 731 map_groups__insert(&machine->kmaps, map); 732 733 /* Put the map here because map_groups__insert alread got it */ 734 map__put(map); 735 out: 736 /* put the dso here, corresponding to machine__findnew_module_dso */ 737 dso__put(dso); 738 free(m.name); 739 return map; 740 } 741 742 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 743 { 744 struct rb_node *nd; 745 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 746 747 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 748 struct machine *pos = rb_entry(nd, struct machine, rb_node); 749 ret += __dsos__fprintf(&pos->dsos.head, fp); 750 } 751 752 return ret; 753 } 754 755 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 756 bool (skip)(struct dso *dso, int parm), int parm) 757 { 758 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 759 } 760 761 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 762 bool (skip)(struct dso *dso, int parm), int parm) 763 { 764 struct rb_node *nd; 765 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 766 767 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 768 struct machine *pos = rb_entry(nd, struct machine, rb_node); 769 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 770 } 771 return ret; 772 } 773 774 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 775 { 776 int i; 777 size_t printed = 0; 778 struct dso *kdso = machine__kernel_map(machine)->dso; 779 780 if (kdso->has_build_id) { 781 char filename[PATH_MAX]; 782 if (dso__build_id_filename(kdso, filename, sizeof(filename), 783 false)) 784 printed += fprintf(fp, "[0] %s\n", filename); 785 } 786 787 for (i = 0; i < vmlinux_path__nr_entries; ++i) 788 printed += fprintf(fp, "[%d] %s\n", 789 i + kdso->has_build_id, vmlinux_path[i]); 790 791 return printed; 792 } 793 794 size_t machine__fprintf(struct machine *machine, FILE *fp) 795 { 796 struct rb_node *nd; 797 size_t ret; 798 int i; 799 800 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 801 struct threads *threads = &machine->threads[i]; 802 803 down_read(&threads->lock); 804 805 ret = fprintf(fp, "Threads: %u\n", threads->nr); 806 807 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) { 808 struct thread *pos = rb_entry(nd, struct thread, rb_node); 809 810 ret += thread__fprintf(pos, fp); 811 } 812 813 up_read(&threads->lock); 814 } 815 return ret; 816 } 817 818 static struct dso *machine__get_kernel(struct machine *machine) 819 { 820 const char *vmlinux_name = machine->mmap_name; 821 struct dso *kernel; 822 823 if (machine__is_host(machine)) { 824 if (symbol_conf.vmlinux_name) 825 vmlinux_name = symbol_conf.vmlinux_name; 826 827 kernel = machine__findnew_kernel(machine, vmlinux_name, 828 "[kernel]", DSO_TYPE_KERNEL); 829 } else { 830 if (symbol_conf.default_guest_vmlinux_name) 831 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 832 833 kernel = machine__findnew_kernel(machine, vmlinux_name, 834 "[guest.kernel]", 835 DSO_TYPE_GUEST_KERNEL); 836 } 837 838 if (kernel != NULL && (!kernel->has_build_id)) 839 dso__read_running_kernel_build_id(kernel, machine); 840 841 return kernel; 842 } 843 844 struct process_args { 845 u64 start; 846 }; 847 848 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 849 size_t bufsz) 850 { 851 if (machine__is_default_guest(machine)) 852 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 853 else 854 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 855 } 856 857 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 858 859 /* Figure out the start address of kernel map from /proc/kallsyms. 860 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 861 * symbol_name if it's not that important. 862 */ 863 static int machine__get_running_kernel_start(struct machine *machine, 864 const char **symbol_name, u64 *start) 865 { 866 char filename[PATH_MAX]; 867 int i, err = -1; 868 const char *name; 869 u64 addr = 0; 870 871 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 872 873 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 874 return 0; 875 876 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 877 err = kallsyms__get_function_start(filename, name, &addr); 878 if (!err) 879 break; 880 } 881 882 if (err) 883 return -1; 884 885 if (symbol_name) 886 *symbol_name = name; 887 888 *start = addr; 889 return 0; 890 } 891 892 int machine__create_extra_kernel_map(struct machine *machine, 893 struct dso *kernel, 894 struct extra_kernel_map *xm) 895 { 896 struct kmap *kmap; 897 struct map *map; 898 899 map = map__new2(xm->start, kernel); 900 if (!map) 901 return -1; 902 903 map->end = xm->end; 904 map->pgoff = xm->pgoff; 905 906 kmap = map__kmap(map); 907 908 kmap->kmaps = &machine->kmaps; 909 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 910 911 map_groups__insert(&machine->kmaps, map); 912 913 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 914 kmap->name, map->start, map->end); 915 916 map__put(map); 917 918 return 0; 919 } 920 921 static u64 find_entry_trampoline(struct dso *dso) 922 { 923 /* Duplicates are removed so lookup all aliases */ 924 const char *syms[] = { 925 "_entry_trampoline", 926 "__entry_trampoline_start", 927 "entry_SYSCALL_64_trampoline", 928 }; 929 struct symbol *sym = dso__first_symbol(dso); 930 unsigned int i; 931 932 for (; sym; sym = dso__next_symbol(sym)) { 933 if (sym->binding != STB_GLOBAL) 934 continue; 935 for (i = 0; i < ARRAY_SIZE(syms); i++) { 936 if (!strcmp(sym->name, syms[i])) 937 return sym->start; 938 } 939 } 940 941 return 0; 942 } 943 944 /* 945 * These values can be used for kernels that do not have symbols for the entry 946 * trampolines in kallsyms. 947 */ 948 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 949 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 950 #define X86_64_ENTRY_TRAMPOLINE 0x6000 951 952 /* Map x86_64 PTI entry trampolines */ 953 int machine__map_x86_64_entry_trampolines(struct machine *machine, 954 struct dso *kernel) 955 { 956 struct map_groups *kmaps = &machine->kmaps; 957 struct maps *maps = &kmaps->maps; 958 int nr_cpus_avail, cpu; 959 bool found = false; 960 struct map *map; 961 u64 pgoff; 962 963 /* 964 * In the vmlinux case, pgoff is a virtual address which must now be 965 * mapped to a vmlinux offset. 966 */ 967 for (map = maps__first(maps); map; map = map__next(map)) { 968 struct kmap *kmap = __map__kmap(map); 969 struct map *dest_map; 970 971 if (!kmap || !is_entry_trampoline(kmap->name)) 972 continue; 973 974 dest_map = map_groups__find(kmaps, map->pgoff); 975 if (dest_map != map) 976 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 977 found = true; 978 } 979 if (found || machine->trampolines_mapped) 980 return 0; 981 982 pgoff = find_entry_trampoline(kernel); 983 if (!pgoff) 984 return 0; 985 986 nr_cpus_avail = machine__nr_cpus_avail(machine); 987 988 /* Add a 1 page map for each CPU's entry trampoline */ 989 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 990 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 991 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 992 X86_64_ENTRY_TRAMPOLINE; 993 struct extra_kernel_map xm = { 994 .start = va, 995 .end = va + page_size, 996 .pgoff = pgoff, 997 }; 998 999 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1000 1001 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1002 return -1; 1003 } 1004 1005 machine->trampolines_mapped = nr_cpus_avail; 1006 1007 return 0; 1008 } 1009 1010 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1011 struct dso *kernel __maybe_unused) 1012 { 1013 return 0; 1014 } 1015 1016 static int 1017 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1018 { 1019 struct kmap *kmap; 1020 struct map *map; 1021 1022 /* In case of renewal the kernel map, destroy previous one */ 1023 machine__destroy_kernel_maps(machine); 1024 1025 machine->vmlinux_map = map__new2(0, kernel); 1026 if (machine->vmlinux_map == NULL) 1027 return -1; 1028 1029 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1030 map = machine__kernel_map(machine); 1031 kmap = map__kmap(map); 1032 if (!kmap) 1033 return -1; 1034 1035 kmap->kmaps = &machine->kmaps; 1036 map_groups__insert(&machine->kmaps, map); 1037 1038 return 0; 1039 } 1040 1041 void machine__destroy_kernel_maps(struct machine *machine) 1042 { 1043 struct kmap *kmap; 1044 struct map *map = machine__kernel_map(machine); 1045 1046 if (map == NULL) 1047 return; 1048 1049 kmap = map__kmap(map); 1050 map_groups__remove(&machine->kmaps, map); 1051 if (kmap && kmap->ref_reloc_sym) { 1052 zfree((char **)&kmap->ref_reloc_sym->name); 1053 zfree(&kmap->ref_reloc_sym); 1054 } 1055 1056 map__zput(machine->vmlinux_map); 1057 } 1058 1059 int machines__create_guest_kernel_maps(struct machines *machines) 1060 { 1061 int ret = 0; 1062 struct dirent **namelist = NULL; 1063 int i, items = 0; 1064 char path[PATH_MAX]; 1065 pid_t pid; 1066 char *endp; 1067 1068 if (symbol_conf.default_guest_vmlinux_name || 1069 symbol_conf.default_guest_modules || 1070 symbol_conf.default_guest_kallsyms) { 1071 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1072 } 1073 1074 if (symbol_conf.guestmount) { 1075 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1076 if (items <= 0) 1077 return -ENOENT; 1078 for (i = 0; i < items; i++) { 1079 if (!isdigit(namelist[i]->d_name[0])) { 1080 /* Filter out . and .. */ 1081 continue; 1082 } 1083 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1084 if ((*endp != '\0') || 1085 (endp == namelist[i]->d_name) || 1086 (errno == ERANGE)) { 1087 pr_debug("invalid directory (%s). Skipping.\n", 1088 namelist[i]->d_name); 1089 continue; 1090 } 1091 sprintf(path, "%s/%s/proc/kallsyms", 1092 symbol_conf.guestmount, 1093 namelist[i]->d_name); 1094 ret = access(path, R_OK); 1095 if (ret) { 1096 pr_debug("Can't access file %s\n", path); 1097 goto failure; 1098 } 1099 machines__create_kernel_maps(machines, pid); 1100 } 1101 failure: 1102 free(namelist); 1103 } 1104 1105 return ret; 1106 } 1107 1108 void machines__destroy_kernel_maps(struct machines *machines) 1109 { 1110 struct rb_node *next = rb_first(&machines->guests); 1111 1112 machine__destroy_kernel_maps(&machines->host); 1113 1114 while (next) { 1115 struct machine *pos = rb_entry(next, struct machine, rb_node); 1116 1117 next = rb_next(&pos->rb_node); 1118 rb_erase(&pos->rb_node, &machines->guests); 1119 machine__delete(pos); 1120 } 1121 } 1122 1123 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1124 { 1125 struct machine *machine = machines__findnew(machines, pid); 1126 1127 if (machine == NULL) 1128 return -1; 1129 1130 return machine__create_kernel_maps(machine); 1131 } 1132 1133 int machine__load_kallsyms(struct machine *machine, const char *filename) 1134 { 1135 struct map *map = machine__kernel_map(machine); 1136 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1137 1138 if (ret > 0) { 1139 dso__set_loaded(map->dso); 1140 /* 1141 * Since /proc/kallsyms will have multiple sessions for the 1142 * kernel, with modules between them, fixup the end of all 1143 * sections. 1144 */ 1145 map_groups__fixup_end(&machine->kmaps); 1146 } 1147 1148 return ret; 1149 } 1150 1151 int machine__load_vmlinux_path(struct machine *machine) 1152 { 1153 struct map *map = machine__kernel_map(machine); 1154 int ret = dso__load_vmlinux_path(map->dso, map); 1155 1156 if (ret > 0) 1157 dso__set_loaded(map->dso); 1158 1159 return ret; 1160 } 1161 1162 static char *get_kernel_version(const char *root_dir) 1163 { 1164 char version[PATH_MAX]; 1165 FILE *file; 1166 char *name, *tmp; 1167 const char *prefix = "Linux version "; 1168 1169 sprintf(version, "%s/proc/version", root_dir); 1170 file = fopen(version, "r"); 1171 if (!file) 1172 return NULL; 1173 1174 version[0] = '\0'; 1175 tmp = fgets(version, sizeof(version), file); 1176 fclose(file); 1177 1178 name = strstr(version, prefix); 1179 if (!name) 1180 return NULL; 1181 name += strlen(prefix); 1182 tmp = strchr(name, ' '); 1183 if (tmp) 1184 *tmp = '\0'; 1185 1186 return strdup(name); 1187 } 1188 1189 static bool is_kmod_dso(struct dso *dso) 1190 { 1191 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1192 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1193 } 1194 1195 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1196 struct kmod_path *m) 1197 { 1198 char *long_name; 1199 struct map *map = map_groups__find_by_name(mg, m->name); 1200 1201 if (map == NULL) 1202 return 0; 1203 1204 long_name = strdup(path); 1205 if (long_name == NULL) 1206 return -ENOMEM; 1207 1208 dso__set_long_name(map->dso, long_name, true); 1209 dso__kernel_module_get_build_id(map->dso, ""); 1210 1211 /* 1212 * Full name could reveal us kmod compression, so 1213 * we need to update the symtab_type if needed. 1214 */ 1215 if (m->comp && is_kmod_dso(map->dso)) 1216 map->dso->symtab_type++; 1217 1218 return 0; 1219 } 1220 1221 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1222 const char *dir_name, int depth) 1223 { 1224 struct dirent *dent; 1225 DIR *dir = opendir(dir_name); 1226 int ret = 0; 1227 1228 if (!dir) { 1229 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1230 return -1; 1231 } 1232 1233 while ((dent = readdir(dir)) != NULL) { 1234 char path[PATH_MAX]; 1235 struct stat st; 1236 1237 /*sshfs might return bad dent->d_type, so we have to stat*/ 1238 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1239 if (stat(path, &st)) 1240 continue; 1241 1242 if (S_ISDIR(st.st_mode)) { 1243 if (!strcmp(dent->d_name, ".") || 1244 !strcmp(dent->d_name, "..")) 1245 continue; 1246 1247 /* Do not follow top-level source and build symlinks */ 1248 if (depth == 0) { 1249 if (!strcmp(dent->d_name, "source") || 1250 !strcmp(dent->d_name, "build")) 1251 continue; 1252 } 1253 1254 ret = map_groups__set_modules_path_dir(mg, path, 1255 depth + 1); 1256 if (ret < 0) 1257 goto out; 1258 } else { 1259 struct kmod_path m; 1260 1261 ret = kmod_path__parse_name(&m, dent->d_name); 1262 if (ret) 1263 goto out; 1264 1265 if (m.kmod) 1266 ret = map_groups__set_module_path(mg, path, &m); 1267 1268 free(m.name); 1269 1270 if (ret) 1271 goto out; 1272 } 1273 } 1274 1275 out: 1276 closedir(dir); 1277 return ret; 1278 } 1279 1280 static int machine__set_modules_path(struct machine *machine) 1281 { 1282 char *version; 1283 char modules_path[PATH_MAX]; 1284 1285 version = get_kernel_version(machine->root_dir); 1286 if (!version) 1287 return -1; 1288 1289 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1290 machine->root_dir, version); 1291 free(version); 1292 1293 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1294 } 1295 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1296 const char *name __maybe_unused) 1297 { 1298 return 0; 1299 } 1300 1301 static int machine__create_module(void *arg, const char *name, u64 start, 1302 u64 size) 1303 { 1304 struct machine *machine = arg; 1305 struct map *map; 1306 1307 if (arch__fix_module_text_start(&start, name) < 0) 1308 return -1; 1309 1310 map = machine__findnew_module_map(machine, start, name); 1311 if (map == NULL) 1312 return -1; 1313 map->end = start + size; 1314 1315 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1316 1317 return 0; 1318 } 1319 1320 static int machine__create_modules(struct machine *machine) 1321 { 1322 const char *modules; 1323 char path[PATH_MAX]; 1324 1325 if (machine__is_default_guest(machine)) { 1326 modules = symbol_conf.default_guest_modules; 1327 } else { 1328 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1329 modules = path; 1330 } 1331 1332 if (symbol__restricted_filename(modules, "/proc/modules")) 1333 return -1; 1334 1335 if (modules__parse(modules, machine, machine__create_module)) 1336 return -1; 1337 1338 if (!machine__set_modules_path(machine)) 1339 return 0; 1340 1341 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1342 1343 return 0; 1344 } 1345 1346 static void machine__set_kernel_mmap(struct machine *machine, 1347 u64 start, u64 end) 1348 { 1349 machine->vmlinux_map->start = start; 1350 machine->vmlinux_map->end = end; 1351 /* 1352 * Be a bit paranoid here, some perf.data file came with 1353 * a zero sized synthesized MMAP event for the kernel. 1354 */ 1355 if (start == 0 && end == 0) 1356 machine->vmlinux_map->end = ~0ULL; 1357 } 1358 1359 int machine__create_kernel_maps(struct machine *machine) 1360 { 1361 struct dso *kernel = machine__get_kernel(machine); 1362 const char *name = NULL; 1363 struct map *map; 1364 u64 addr = 0; 1365 int ret; 1366 1367 if (kernel == NULL) 1368 return -1; 1369 1370 ret = __machine__create_kernel_maps(machine, kernel); 1371 if (ret < 0) 1372 goto out_put; 1373 1374 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1375 if (machine__is_host(machine)) 1376 pr_debug("Problems creating module maps, " 1377 "continuing anyway...\n"); 1378 else 1379 pr_debug("Problems creating module maps for guest %d, " 1380 "continuing anyway...\n", machine->pid); 1381 } 1382 1383 if (!machine__get_running_kernel_start(machine, &name, &addr)) { 1384 if (name && 1385 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) { 1386 machine__destroy_kernel_maps(machine); 1387 ret = -1; 1388 goto out_put; 1389 } 1390 1391 /* we have a real start address now, so re-order the kmaps */ 1392 map = machine__kernel_map(machine); 1393 1394 map__get(map); 1395 map_groups__remove(&machine->kmaps, map); 1396 1397 /* assume it's the last in the kmaps */ 1398 machine__set_kernel_mmap(machine, addr, ~0ULL); 1399 1400 map_groups__insert(&machine->kmaps, map); 1401 map__put(map); 1402 } 1403 1404 if (machine__create_extra_kernel_maps(machine, kernel)) 1405 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1406 1407 /* update end address of the kernel map using adjacent module address */ 1408 map = map__next(machine__kernel_map(machine)); 1409 if (map) 1410 machine__set_kernel_mmap(machine, addr, map->start); 1411 out_put: 1412 dso__put(kernel); 1413 return ret; 1414 } 1415 1416 static bool machine__uses_kcore(struct machine *machine) 1417 { 1418 struct dso *dso; 1419 1420 list_for_each_entry(dso, &machine->dsos.head, node) { 1421 if (dso__is_kcore(dso)) 1422 return true; 1423 } 1424 1425 return false; 1426 } 1427 1428 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1429 union perf_event *event) 1430 { 1431 return machine__is(machine, "x86_64") && 1432 is_entry_trampoline(event->mmap.filename); 1433 } 1434 1435 static int machine__process_extra_kernel_map(struct machine *machine, 1436 union perf_event *event) 1437 { 1438 struct map *kernel_map = machine__kernel_map(machine); 1439 struct dso *kernel = kernel_map ? kernel_map->dso : NULL; 1440 struct extra_kernel_map xm = { 1441 .start = event->mmap.start, 1442 .end = event->mmap.start + event->mmap.len, 1443 .pgoff = event->mmap.pgoff, 1444 }; 1445 1446 if (kernel == NULL) 1447 return -1; 1448 1449 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1450 1451 return machine__create_extra_kernel_map(machine, kernel, &xm); 1452 } 1453 1454 static int machine__process_kernel_mmap_event(struct machine *machine, 1455 union perf_event *event) 1456 { 1457 struct map *map; 1458 enum dso_kernel_type kernel_type; 1459 bool is_kernel_mmap; 1460 1461 /* If we have maps from kcore then we do not need or want any others */ 1462 if (machine__uses_kcore(machine)) 1463 return 0; 1464 1465 if (machine__is_host(machine)) 1466 kernel_type = DSO_TYPE_KERNEL; 1467 else 1468 kernel_type = DSO_TYPE_GUEST_KERNEL; 1469 1470 is_kernel_mmap = memcmp(event->mmap.filename, 1471 machine->mmap_name, 1472 strlen(machine->mmap_name) - 1) == 0; 1473 if (event->mmap.filename[0] == '/' || 1474 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1475 map = machine__findnew_module_map(machine, event->mmap.start, 1476 event->mmap.filename); 1477 if (map == NULL) 1478 goto out_problem; 1479 1480 map->end = map->start + event->mmap.len; 1481 } else if (is_kernel_mmap) { 1482 const char *symbol_name = (event->mmap.filename + 1483 strlen(machine->mmap_name)); 1484 /* 1485 * Should be there already, from the build-id table in 1486 * the header. 1487 */ 1488 struct dso *kernel = NULL; 1489 struct dso *dso; 1490 1491 down_read(&machine->dsos.lock); 1492 1493 list_for_each_entry(dso, &machine->dsos.head, node) { 1494 1495 /* 1496 * The cpumode passed to is_kernel_module is not the 1497 * cpumode of *this* event. If we insist on passing 1498 * correct cpumode to is_kernel_module, we should 1499 * record the cpumode when we adding this dso to the 1500 * linked list. 1501 * 1502 * However we don't really need passing correct 1503 * cpumode. We know the correct cpumode must be kernel 1504 * mode (if not, we should not link it onto kernel_dsos 1505 * list). 1506 * 1507 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1508 * is_kernel_module() treats it as a kernel cpumode. 1509 */ 1510 1511 if (!dso->kernel || 1512 is_kernel_module(dso->long_name, 1513 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1514 continue; 1515 1516 1517 kernel = dso; 1518 break; 1519 } 1520 1521 up_read(&machine->dsos.lock); 1522 1523 if (kernel == NULL) 1524 kernel = machine__findnew_dso(machine, machine->mmap_name); 1525 if (kernel == NULL) 1526 goto out_problem; 1527 1528 kernel->kernel = kernel_type; 1529 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1530 dso__put(kernel); 1531 goto out_problem; 1532 } 1533 1534 if (strstr(kernel->long_name, "vmlinux")) 1535 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1536 1537 machine__set_kernel_mmap(machine, event->mmap.start, 1538 event->mmap.start + event->mmap.len); 1539 1540 /* 1541 * Avoid using a zero address (kptr_restrict) for the ref reloc 1542 * symbol. Effectively having zero here means that at record 1543 * time /proc/sys/kernel/kptr_restrict was non zero. 1544 */ 1545 if (event->mmap.pgoff != 0) { 1546 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1547 symbol_name, 1548 event->mmap.pgoff); 1549 } 1550 1551 if (machine__is_default_guest(machine)) { 1552 /* 1553 * preload dso of guest kernel and modules 1554 */ 1555 dso__load(kernel, machine__kernel_map(machine)); 1556 } 1557 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1558 return machine__process_extra_kernel_map(machine, event); 1559 } 1560 return 0; 1561 out_problem: 1562 return -1; 1563 } 1564 1565 int machine__process_mmap2_event(struct machine *machine, 1566 union perf_event *event, 1567 struct perf_sample *sample) 1568 { 1569 struct thread *thread; 1570 struct map *map; 1571 int ret = 0; 1572 1573 if (dump_trace) 1574 perf_event__fprintf_mmap2(event, stdout); 1575 1576 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1577 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1578 ret = machine__process_kernel_mmap_event(machine, event); 1579 if (ret < 0) 1580 goto out_problem; 1581 return 0; 1582 } 1583 1584 thread = machine__findnew_thread(machine, event->mmap2.pid, 1585 event->mmap2.tid); 1586 if (thread == NULL) 1587 goto out_problem; 1588 1589 map = map__new(machine, event->mmap2.start, 1590 event->mmap2.len, event->mmap2.pgoff, 1591 event->mmap2.maj, 1592 event->mmap2.min, event->mmap2.ino, 1593 event->mmap2.ino_generation, 1594 event->mmap2.prot, 1595 event->mmap2.flags, 1596 event->mmap2.filename, thread); 1597 1598 if (map == NULL) 1599 goto out_problem_map; 1600 1601 ret = thread__insert_map(thread, map); 1602 if (ret) 1603 goto out_problem_insert; 1604 1605 thread__put(thread); 1606 map__put(map); 1607 return 0; 1608 1609 out_problem_insert: 1610 map__put(map); 1611 out_problem_map: 1612 thread__put(thread); 1613 out_problem: 1614 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1615 return 0; 1616 } 1617 1618 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1619 struct perf_sample *sample) 1620 { 1621 struct thread *thread; 1622 struct map *map; 1623 u32 prot = 0; 1624 int ret = 0; 1625 1626 if (dump_trace) 1627 perf_event__fprintf_mmap(event, stdout); 1628 1629 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1630 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1631 ret = machine__process_kernel_mmap_event(machine, event); 1632 if (ret < 0) 1633 goto out_problem; 1634 return 0; 1635 } 1636 1637 thread = machine__findnew_thread(machine, event->mmap.pid, 1638 event->mmap.tid); 1639 if (thread == NULL) 1640 goto out_problem; 1641 1642 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1643 prot = PROT_EXEC; 1644 1645 map = map__new(machine, event->mmap.start, 1646 event->mmap.len, event->mmap.pgoff, 1647 0, 0, 0, 0, prot, 0, 1648 event->mmap.filename, 1649 thread); 1650 1651 if (map == NULL) 1652 goto out_problem_map; 1653 1654 ret = thread__insert_map(thread, map); 1655 if (ret) 1656 goto out_problem_insert; 1657 1658 thread__put(thread); 1659 map__put(map); 1660 return 0; 1661 1662 out_problem_insert: 1663 map__put(map); 1664 out_problem_map: 1665 thread__put(thread); 1666 out_problem: 1667 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1668 return 0; 1669 } 1670 1671 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1672 { 1673 struct threads *threads = machine__threads(machine, th->tid); 1674 1675 if (threads->last_match == th) 1676 threads__set_last_match(threads, NULL); 1677 1678 BUG_ON(refcount_read(&th->refcnt) == 0); 1679 if (lock) 1680 down_write(&threads->lock); 1681 rb_erase_init(&th->rb_node, &threads->entries); 1682 RB_CLEAR_NODE(&th->rb_node); 1683 --threads->nr; 1684 /* 1685 * Move it first to the dead_threads list, then drop the reference, 1686 * if this is the last reference, then the thread__delete destructor 1687 * will be called and we will remove it from the dead_threads list. 1688 */ 1689 list_add_tail(&th->node, &threads->dead); 1690 if (lock) 1691 up_write(&threads->lock); 1692 thread__put(th); 1693 } 1694 1695 void machine__remove_thread(struct machine *machine, struct thread *th) 1696 { 1697 return __machine__remove_thread(machine, th, true); 1698 } 1699 1700 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1701 struct perf_sample *sample) 1702 { 1703 struct thread *thread = machine__find_thread(machine, 1704 event->fork.pid, 1705 event->fork.tid); 1706 struct thread *parent = machine__findnew_thread(machine, 1707 event->fork.ppid, 1708 event->fork.ptid); 1709 int err = 0; 1710 1711 if (dump_trace) 1712 perf_event__fprintf_task(event, stdout); 1713 1714 /* 1715 * There may be an existing thread that is not actually the parent, 1716 * either because we are processing events out of order, or because the 1717 * (fork) event that would have removed the thread was lost. Assume the 1718 * latter case and continue on as best we can. 1719 */ 1720 if (parent->pid_ != (pid_t)event->fork.ppid) { 1721 dump_printf("removing erroneous parent thread %d/%d\n", 1722 parent->pid_, parent->tid); 1723 machine__remove_thread(machine, parent); 1724 thread__put(parent); 1725 parent = machine__findnew_thread(machine, event->fork.ppid, 1726 event->fork.ptid); 1727 } 1728 1729 /* if a thread currently exists for the thread id remove it */ 1730 if (thread != NULL) { 1731 machine__remove_thread(machine, thread); 1732 thread__put(thread); 1733 } 1734 1735 thread = machine__findnew_thread(machine, event->fork.pid, 1736 event->fork.tid); 1737 1738 if (thread == NULL || parent == NULL || 1739 thread__fork(thread, parent, sample->time) < 0) { 1740 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1741 err = -1; 1742 } 1743 thread__put(thread); 1744 thread__put(parent); 1745 1746 return err; 1747 } 1748 1749 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1750 struct perf_sample *sample __maybe_unused) 1751 { 1752 struct thread *thread = machine__find_thread(machine, 1753 event->fork.pid, 1754 event->fork.tid); 1755 1756 if (dump_trace) 1757 perf_event__fprintf_task(event, stdout); 1758 1759 if (thread != NULL) { 1760 thread__exited(thread); 1761 thread__put(thread); 1762 } 1763 1764 return 0; 1765 } 1766 1767 int machine__process_event(struct machine *machine, union perf_event *event, 1768 struct perf_sample *sample) 1769 { 1770 int ret; 1771 1772 switch (event->header.type) { 1773 case PERF_RECORD_COMM: 1774 ret = machine__process_comm_event(machine, event, sample); break; 1775 case PERF_RECORD_MMAP: 1776 ret = machine__process_mmap_event(machine, event, sample); break; 1777 case PERF_RECORD_NAMESPACES: 1778 ret = machine__process_namespaces_event(machine, event, sample); break; 1779 case PERF_RECORD_MMAP2: 1780 ret = machine__process_mmap2_event(machine, event, sample); break; 1781 case PERF_RECORD_FORK: 1782 ret = machine__process_fork_event(machine, event, sample); break; 1783 case PERF_RECORD_EXIT: 1784 ret = machine__process_exit_event(machine, event, sample); break; 1785 case PERF_RECORD_LOST: 1786 ret = machine__process_lost_event(machine, event, sample); break; 1787 case PERF_RECORD_AUX: 1788 ret = machine__process_aux_event(machine, event); break; 1789 case PERF_RECORD_ITRACE_START: 1790 ret = machine__process_itrace_start_event(machine, event); break; 1791 case PERF_RECORD_LOST_SAMPLES: 1792 ret = machine__process_lost_samples_event(machine, event, sample); break; 1793 case PERF_RECORD_SWITCH: 1794 case PERF_RECORD_SWITCH_CPU_WIDE: 1795 ret = machine__process_switch_event(machine, event); break; 1796 default: 1797 ret = -1; 1798 break; 1799 } 1800 1801 return ret; 1802 } 1803 1804 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1805 { 1806 if (!regexec(regex, sym->name, 0, NULL, 0)) 1807 return 1; 1808 return 0; 1809 } 1810 1811 static void ip__resolve_ams(struct thread *thread, 1812 struct addr_map_symbol *ams, 1813 u64 ip) 1814 { 1815 struct addr_location al; 1816 1817 memset(&al, 0, sizeof(al)); 1818 /* 1819 * We cannot use the header.misc hint to determine whether a 1820 * branch stack address is user, kernel, guest, hypervisor. 1821 * Branches may straddle the kernel/user/hypervisor boundaries. 1822 * Thus, we have to try consecutively until we find a match 1823 * or else, the symbol is unknown 1824 */ 1825 thread__find_cpumode_addr_location(thread, ip, &al); 1826 1827 ams->addr = ip; 1828 ams->al_addr = al.addr; 1829 ams->sym = al.sym; 1830 ams->map = al.map; 1831 ams->phys_addr = 0; 1832 } 1833 1834 static void ip__resolve_data(struct thread *thread, 1835 u8 m, struct addr_map_symbol *ams, 1836 u64 addr, u64 phys_addr) 1837 { 1838 struct addr_location al; 1839 1840 memset(&al, 0, sizeof(al)); 1841 1842 thread__find_symbol(thread, m, addr, &al); 1843 1844 ams->addr = addr; 1845 ams->al_addr = al.addr; 1846 ams->sym = al.sym; 1847 ams->map = al.map; 1848 ams->phys_addr = phys_addr; 1849 } 1850 1851 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1852 struct addr_location *al) 1853 { 1854 struct mem_info *mi = mem_info__new(); 1855 1856 if (!mi) 1857 return NULL; 1858 1859 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1860 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1861 sample->addr, sample->phys_addr); 1862 mi->data_src.val = sample->data_src; 1863 1864 return mi; 1865 } 1866 1867 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 1868 { 1869 char *srcline = NULL; 1870 1871 if (!map || callchain_param.key == CCKEY_FUNCTION) 1872 return srcline; 1873 1874 srcline = srcline__tree_find(&map->dso->srclines, ip); 1875 if (!srcline) { 1876 bool show_sym = false; 1877 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 1878 1879 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 1880 sym, show_sym, show_addr, ip); 1881 srcline__tree_insert(&map->dso->srclines, ip, srcline); 1882 } 1883 1884 return srcline; 1885 } 1886 1887 struct iterations { 1888 int nr_loop_iter; 1889 u64 cycles; 1890 }; 1891 1892 static int add_callchain_ip(struct thread *thread, 1893 struct callchain_cursor *cursor, 1894 struct symbol **parent, 1895 struct addr_location *root_al, 1896 u8 *cpumode, 1897 u64 ip, 1898 bool branch, 1899 struct branch_flags *flags, 1900 struct iterations *iter, 1901 u64 branch_from) 1902 { 1903 struct addr_location al; 1904 int nr_loop_iter = 0; 1905 u64 iter_cycles = 0; 1906 const char *srcline = NULL; 1907 1908 al.filtered = 0; 1909 al.sym = NULL; 1910 if (!cpumode) { 1911 thread__find_cpumode_addr_location(thread, ip, &al); 1912 } else { 1913 if (ip >= PERF_CONTEXT_MAX) { 1914 switch (ip) { 1915 case PERF_CONTEXT_HV: 1916 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1917 break; 1918 case PERF_CONTEXT_KERNEL: 1919 *cpumode = PERF_RECORD_MISC_KERNEL; 1920 break; 1921 case PERF_CONTEXT_USER: 1922 *cpumode = PERF_RECORD_MISC_USER; 1923 break; 1924 default: 1925 pr_debug("invalid callchain context: " 1926 "%"PRId64"\n", (s64) ip); 1927 /* 1928 * It seems the callchain is corrupted. 1929 * Discard all. 1930 */ 1931 callchain_cursor_reset(cursor); 1932 return 1; 1933 } 1934 return 0; 1935 } 1936 thread__find_symbol(thread, *cpumode, ip, &al); 1937 } 1938 1939 if (al.sym != NULL) { 1940 if (perf_hpp_list.parent && !*parent && 1941 symbol__match_regex(al.sym, &parent_regex)) 1942 *parent = al.sym; 1943 else if (have_ignore_callees && root_al && 1944 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1945 /* Treat this symbol as the root, 1946 forgetting its callees. */ 1947 *root_al = al; 1948 callchain_cursor_reset(cursor); 1949 } 1950 } 1951 1952 if (symbol_conf.hide_unresolved && al.sym == NULL) 1953 return 0; 1954 1955 if (iter) { 1956 nr_loop_iter = iter->nr_loop_iter; 1957 iter_cycles = iter->cycles; 1958 } 1959 1960 srcline = callchain_srcline(al.map, al.sym, al.addr); 1961 return callchain_cursor_append(cursor, ip, al.map, al.sym, 1962 branch, flags, nr_loop_iter, 1963 iter_cycles, branch_from, srcline); 1964 } 1965 1966 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1967 struct addr_location *al) 1968 { 1969 unsigned int i; 1970 const struct branch_stack *bs = sample->branch_stack; 1971 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1972 1973 if (!bi) 1974 return NULL; 1975 1976 for (i = 0; i < bs->nr; i++) { 1977 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1978 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1979 bi[i].flags = bs->entries[i].flags; 1980 } 1981 return bi; 1982 } 1983 1984 static void save_iterations(struct iterations *iter, 1985 struct branch_entry *be, int nr) 1986 { 1987 int i; 1988 1989 iter->nr_loop_iter = nr; 1990 iter->cycles = 0; 1991 1992 for (i = 0; i < nr; i++) 1993 iter->cycles += be[i].flags.cycles; 1994 } 1995 1996 #define CHASHSZ 127 1997 #define CHASHBITS 7 1998 #define NO_ENTRY 0xff 1999 2000 #define PERF_MAX_BRANCH_DEPTH 127 2001 2002 /* Remove loops. */ 2003 static int remove_loops(struct branch_entry *l, int nr, 2004 struct iterations *iter) 2005 { 2006 int i, j, off; 2007 unsigned char chash[CHASHSZ]; 2008 2009 memset(chash, NO_ENTRY, sizeof(chash)); 2010 2011 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2012 2013 for (i = 0; i < nr; i++) { 2014 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2015 2016 /* no collision handling for now */ 2017 if (chash[h] == NO_ENTRY) { 2018 chash[h] = i; 2019 } else if (l[chash[h]].from == l[i].from) { 2020 bool is_loop = true; 2021 /* check if it is a real loop */ 2022 off = 0; 2023 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2024 if (l[j].from != l[i + off].from) { 2025 is_loop = false; 2026 break; 2027 } 2028 if (is_loop) { 2029 j = nr - (i + off); 2030 if (j > 0) { 2031 save_iterations(iter + i + off, 2032 l + i, off); 2033 2034 memmove(iter + i, iter + i + off, 2035 j * sizeof(*iter)); 2036 2037 memmove(l + i, l + i + off, 2038 j * sizeof(*l)); 2039 } 2040 2041 nr -= off; 2042 } 2043 } 2044 } 2045 return nr; 2046 } 2047 2048 /* 2049 * Recolve LBR callstack chain sample 2050 * Return: 2051 * 1 on success get LBR callchain information 2052 * 0 no available LBR callchain information, should try fp 2053 * negative error code on other errors. 2054 */ 2055 static int resolve_lbr_callchain_sample(struct thread *thread, 2056 struct callchain_cursor *cursor, 2057 struct perf_sample *sample, 2058 struct symbol **parent, 2059 struct addr_location *root_al, 2060 int max_stack) 2061 { 2062 struct ip_callchain *chain = sample->callchain; 2063 int chain_nr = min(max_stack, (int)chain->nr), i; 2064 u8 cpumode = PERF_RECORD_MISC_USER; 2065 u64 ip, branch_from = 0; 2066 2067 for (i = 0; i < chain_nr; i++) { 2068 if (chain->ips[i] == PERF_CONTEXT_USER) 2069 break; 2070 } 2071 2072 /* LBR only affects the user callchain */ 2073 if (i != chain_nr) { 2074 struct branch_stack *lbr_stack = sample->branch_stack; 2075 int lbr_nr = lbr_stack->nr, j, k; 2076 bool branch; 2077 struct branch_flags *flags; 2078 /* 2079 * LBR callstack can only get user call chain. 2080 * The mix_chain_nr is kernel call chain 2081 * number plus LBR user call chain number. 2082 * i is kernel call chain number, 2083 * 1 is PERF_CONTEXT_USER, 2084 * lbr_nr + 1 is the user call chain number. 2085 * For details, please refer to the comments 2086 * in callchain__printf 2087 */ 2088 int mix_chain_nr = i + 1 + lbr_nr + 1; 2089 2090 for (j = 0; j < mix_chain_nr; j++) { 2091 int err; 2092 branch = false; 2093 flags = NULL; 2094 2095 if (callchain_param.order == ORDER_CALLEE) { 2096 if (j < i + 1) 2097 ip = chain->ips[j]; 2098 else if (j > i + 1) { 2099 k = j - i - 2; 2100 ip = lbr_stack->entries[k].from; 2101 branch = true; 2102 flags = &lbr_stack->entries[k].flags; 2103 } else { 2104 ip = lbr_stack->entries[0].to; 2105 branch = true; 2106 flags = &lbr_stack->entries[0].flags; 2107 branch_from = 2108 lbr_stack->entries[0].from; 2109 } 2110 } else { 2111 if (j < lbr_nr) { 2112 k = lbr_nr - j - 1; 2113 ip = lbr_stack->entries[k].from; 2114 branch = true; 2115 flags = &lbr_stack->entries[k].flags; 2116 } 2117 else if (j > lbr_nr) 2118 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2119 else { 2120 ip = lbr_stack->entries[0].to; 2121 branch = true; 2122 flags = &lbr_stack->entries[0].flags; 2123 branch_from = 2124 lbr_stack->entries[0].from; 2125 } 2126 } 2127 2128 err = add_callchain_ip(thread, cursor, parent, 2129 root_al, &cpumode, ip, 2130 branch, flags, NULL, 2131 branch_from); 2132 if (err) 2133 return (err < 0) ? err : 0; 2134 } 2135 return 1; 2136 } 2137 2138 return 0; 2139 } 2140 2141 static int thread__resolve_callchain_sample(struct thread *thread, 2142 struct callchain_cursor *cursor, 2143 struct perf_evsel *evsel, 2144 struct perf_sample *sample, 2145 struct symbol **parent, 2146 struct addr_location *root_al, 2147 int max_stack) 2148 { 2149 struct branch_stack *branch = sample->branch_stack; 2150 struct ip_callchain *chain = sample->callchain; 2151 int chain_nr = 0; 2152 u8 cpumode = PERF_RECORD_MISC_USER; 2153 int i, j, err, nr_entries; 2154 int skip_idx = -1; 2155 int first_call = 0; 2156 2157 if (chain) 2158 chain_nr = chain->nr; 2159 2160 if (perf_evsel__has_branch_callstack(evsel)) { 2161 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2162 root_al, max_stack); 2163 if (err) 2164 return (err < 0) ? err : 0; 2165 } 2166 2167 /* 2168 * Based on DWARF debug information, some architectures skip 2169 * a callchain entry saved by the kernel. 2170 */ 2171 skip_idx = arch_skip_callchain_idx(thread, chain); 2172 2173 /* 2174 * Add branches to call stack for easier browsing. This gives 2175 * more context for a sample than just the callers. 2176 * 2177 * This uses individual histograms of paths compared to the 2178 * aggregated histograms the normal LBR mode uses. 2179 * 2180 * Limitations for now: 2181 * - No extra filters 2182 * - No annotations (should annotate somehow) 2183 */ 2184 2185 if (branch && callchain_param.branch_callstack) { 2186 int nr = min(max_stack, (int)branch->nr); 2187 struct branch_entry be[nr]; 2188 struct iterations iter[nr]; 2189 2190 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2191 pr_warning("corrupted branch chain. skipping...\n"); 2192 goto check_calls; 2193 } 2194 2195 for (i = 0; i < nr; i++) { 2196 if (callchain_param.order == ORDER_CALLEE) { 2197 be[i] = branch->entries[i]; 2198 2199 if (chain == NULL) 2200 continue; 2201 2202 /* 2203 * Check for overlap into the callchain. 2204 * The return address is one off compared to 2205 * the branch entry. To adjust for this 2206 * assume the calling instruction is not longer 2207 * than 8 bytes. 2208 */ 2209 if (i == skip_idx || 2210 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2211 first_call++; 2212 else if (be[i].from < chain->ips[first_call] && 2213 be[i].from >= chain->ips[first_call] - 8) 2214 first_call++; 2215 } else 2216 be[i] = branch->entries[branch->nr - i - 1]; 2217 } 2218 2219 memset(iter, 0, sizeof(struct iterations) * nr); 2220 nr = remove_loops(be, nr, iter); 2221 2222 for (i = 0; i < nr; i++) { 2223 err = add_callchain_ip(thread, cursor, parent, 2224 root_al, 2225 NULL, be[i].to, 2226 true, &be[i].flags, 2227 NULL, be[i].from); 2228 2229 if (!err) 2230 err = add_callchain_ip(thread, cursor, parent, root_al, 2231 NULL, be[i].from, 2232 true, &be[i].flags, 2233 &iter[i], 0); 2234 if (err == -EINVAL) 2235 break; 2236 if (err) 2237 return err; 2238 } 2239 2240 if (chain_nr == 0) 2241 return 0; 2242 2243 chain_nr -= nr; 2244 } 2245 2246 check_calls: 2247 for (i = first_call, nr_entries = 0; 2248 i < chain_nr && nr_entries < max_stack; i++) { 2249 u64 ip; 2250 2251 if (callchain_param.order == ORDER_CALLEE) 2252 j = i; 2253 else 2254 j = chain->nr - i - 1; 2255 2256 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2257 if (j == skip_idx) 2258 continue; 2259 #endif 2260 ip = chain->ips[j]; 2261 2262 if (ip < PERF_CONTEXT_MAX) 2263 ++nr_entries; 2264 2265 err = add_callchain_ip(thread, cursor, parent, 2266 root_al, &cpumode, ip, 2267 false, NULL, NULL, 0); 2268 2269 if (err) 2270 return (err < 0) ? err : 0; 2271 } 2272 2273 return 0; 2274 } 2275 2276 static int append_inlines(struct callchain_cursor *cursor, 2277 struct map *map, struct symbol *sym, u64 ip) 2278 { 2279 struct inline_node *inline_node; 2280 struct inline_list *ilist; 2281 u64 addr; 2282 int ret = 1; 2283 2284 if (!symbol_conf.inline_name || !map || !sym) 2285 return ret; 2286 2287 addr = map__rip_2objdump(map, ip); 2288 2289 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2290 if (!inline_node) { 2291 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2292 if (!inline_node) 2293 return ret; 2294 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2295 } 2296 2297 list_for_each_entry(ilist, &inline_node->val, list) { 2298 ret = callchain_cursor_append(cursor, ip, map, 2299 ilist->symbol, false, 2300 NULL, 0, 0, 0, ilist->srcline); 2301 2302 if (ret != 0) 2303 return ret; 2304 } 2305 2306 return ret; 2307 } 2308 2309 static int unwind_entry(struct unwind_entry *entry, void *arg) 2310 { 2311 struct callchain_cursor *cursor = arg; 2312 const char *srcline = NULL; 2313 u64 addr; 2314 2315 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2316 return 0; 2317 2318 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2319 return 0; 2320 2321 /* 2322 * Convert entry->ip from a virtual address to an offset in 2323 * its corresponding binary. 2324 */ 2325 addr = map__map_ip(entry->map, entry->ip); 2326 2327 srcline = callchain_srcline(entry->map, entry->sym, addr); 2328 return callchain_cursor_append(cursor, entry->ip, 2329 entry->map, entry->sym, 2330 false, NULL, 0, 0, 0, srcline); 2331 } 2332 2333 static int thread__resolve_callchain_unwind(struct thread *thread, 2334 struct callchain_cursor *cursor, 2335 struct perf_evsel *evsel, 2336 struct perf_sample *sample, 2337 int max_stack) 2338 { 2339 /* Can we do dwarf post unwind? */ 2340 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2341 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2342 return 0; 2343 2344 /* Bail out if nothing was captured. */ 2345 if ((!sample->user_regs.regs) || 2346 (!sample->user_stack.size)) 2347 return 0; 2348 2349 return unwind__get_entries(unwind_entry, cursor, 2350 thread, sample, max_stack); 2351 } 2352 2353 int thread__resolve_callchain(struct thread *thread, 2354 struct callchain_cursor *cursor, 2355 struct perf_evsel *evsel, 2356 struct perf_sample *sample, 2357 struct symbol **parent, 2358 struct addr_location *root_al, 2359 int max_stack) 2360 { 2361 int ret = 0; 2362 2363 callchain_cursor_reset(cursor); 2364 2365 if (callchain_param.order == ORDER_CALLEE) { 2366 ret = thread__resolve_callchain_sample(thread, cursor, 2367 evsel, sample, 2368 parent, root_al, 2369 max_stack); 2370 if (ret) 2371 return ret; 2372 ret = thread__resolve_callchain_unwind(thread, cursor, 2373 evsel, sample, 2374 max_stack); 2375 } else { 2376 ret = thread__resolve_callchain_unwind(thread, cursor, 2377 evsel, sample, 2378 max_stack); 2379 if (ret) 2380 return ret; 2381 ret = thread__resolve_callchain_sample(thread, cursor, 2382 evsel, sample, 2383 parent, root_al, 2384 max_stack); 2385 } 2386 2387 return ret; 2388 } 2389 2390 int machine__for_each_thread(struct machine *machine, 2391 int (*fn)(struct thread *thread, void *p), 2392 void *priv) 2393 { 2394 struct threads *threads; 2395 struct rb_node *nd; 2396 struct thread *thread; 2397 int rc = 0; 2398 int i; 2399 2400 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2401 threads = &machine->threads[i]; 2402 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) { 2403 thread = rb_entry(nd, struct thread, rb_node); 2404 rc = fn(thread, priv); 2405 if (rc != 0) 2406 return rc; 2407 } 2408 2409 list_for_each_entry(thread, &threads->dead, node) { 2410 rc = fn(thread, priv); 2411 if (rc != 0) 2412 return rc; 2413 } 2414 } 2415 return rc; 2416 } 2417 2418 int machines__for_each_thread(struct machines *machines, 2419 int (*fn)(struct thread *thread, void *p), 2420 void *priv) 2421 { 2422 struct rb_node *nd; 2423 int rc = 0; 2424 2425 rc = machine__for_each_thread(&machines->host, fn, priv); 2426 if (rc != 0) 2427 return rc; 2428 2429 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 2430 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2431 2432 rc = machine__for_each_thread(machine, fn, priv); 2433 if (rc != 0) 2434 return rc; 2435 } 2436 return rc; 2437 } 2438 2439 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2440 struct target *target, struct thread_map *threads, 2441 perf_event__handler_t process, bool data_mmap, 2442 unsigned int proc_map_timeout, 2443 unsigned int nr_threads_synthesize) 2444 { 2445 if (target__has_task(target)) 2446 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 2447 else if (target__has_cpu(target)) 2448 return perf_event__synthesize_threads(tool, process, 2449 machine, data_mmap, 2450 proc_map_timeout, 2451 nr_threads_synthesize); 2452 /* command specified */ 2453 return 0; 2454 } 2455 2456 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2457 { 2458 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2459 return -1; 2460 2461 return machine->current_tid[cpu]; 2462 } 2463 2464 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2465 pid_t tid) 2466 { 2467 struct thread *thread; 2468 2469 if (cpu < 0) 2470 return -EINVAL; 2471 2472 if (!machine->current_tid) { 2473 int i; 2474 2475 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2476 if (!machine->current_tid) 2477 return -ENOMEM; 2478 for (i = 0; i < MAX_NR_CPUS; i++) 2479 machine->current_tid[i] = -1; 2480 } 2481 2482 if (cpu >= MAX_NR_CPUS) { 2483 pr_err("Requested CPU %d too large. ", cpu); 2484 pr_err("Consider raising MAX_NR_CPUS\n"); 2485 return -EINVAL; 2486 } 2487 2488 machine->current_tid[cpu] = tid; 2489 2490 thread = machine__findnew_thread(machine, pid, tid); 2491 if (!thread) 2492 return -ENOMEM; 2493 2494 thread->cpu = cpu; 2495 thread__put(thread); 2496 2497 return 0; 2498 } 2499 2500 /* 2501 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2502 * normalized arch is needed. 2503 */ 2504 bool machine__is(struct machine *machine, const char *arch) 2505 { 2506 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2507 } 2508 2509 int machine__nr_cpus_avail(struct machine *machine) 2510 { 2511 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2512 } 2513 2514 int machine__get_kernel_start(struct machine *machine) 2515 { 2516 struct map *map = machine__kernel_map(machine); 2517 int err = 0; 2518 2519 /* 2520 * The only addresses above 2^63 are kernel addresses of a 64-bit 2521 * kernel. Note that addresses are unsigned so that on a 32-bit system 2522 * all addresses including kernel addresses are less than 2^32. In 2523 * that case (32-bit system), if the kernel mapping is unknown, all 2524 * addresses will be assumed to be in user space - see 2525 * machine__kernel_ip(). 2526 */ 2527 machine->kernel_start = 1ULL << 63; 2528 if (map) { 2529 err = map__load(map); 2530 /* 2531 * On x86_64, PTI entry trampolines are less than the 2532 * start of kernel text, but still above 2^63. So leave 2533 * kernel_start = 1ULL << 63 for x86_64. 2534 */ 2535 if (!err && !machine__is(machine, "x86_64")) 2536 machine->kernel_start = map->start; 2537 } 2538 return err; 2539 } 2540 2541 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2542 { 2543 return dsos__findnew(&machine->dsos, filename); 2544 } 2545 2546 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2547 { 2548 struct machine *machine = vmachine; 2549 struct map *map; 2550 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2551 2552 if (sym == NULL) 2553 return NULL; 2554 2555 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2556 *addrp = map->unmap_ip(map, sym->start); 2557 return sym->name; 2558 } 2559