1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "event.h" 9 #include "evsel.h" 10 #include "hist.h" 11 #include "machine.h" 12 #include "map.h" 13 #include "symbol.h" 14 #include "sort.h" 15 #include "strlist.h" 16 #include "thread.h" 17 #include "vdso.h" 18 #include <stdbool.h> 19 #include <sys/types.h> 20 #include <sys/stat.h> 21 #include <unistd.h> 22 #include "unwind.h" 23 #include "linux/hash.h" 24 #include "asm/bug.h" 25 #include "bpf-event.h" 26 27 #include "sane_ctype.h" 28 #include <symbol/kallsyms.h> 29 #include <linux/mman.h> 30 31 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 32 33 static void dsos__init(struct dsos *dsos) 34 { 35 INIT_LIST_HEAD(&dsos->head); 36 dsos->root = RB_ROOT; 37 init_rwsem(&dsos->lock); 38 } 39 40 static void machine__threads_init(struct machine *machine) 41 { 42 int i; 43 44 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 45 struct threads *threads = &machine->threads[i]; 46 threads->entries = RB_ROOT_CACHED; 47 init_rwsem(&threads->lock); 48 threads->nr = 0; 49 INIT_LIST_HEAD(&threads->dead); 50 threads->last_match = NULL; 51 } 52 } 53 54 static int machine__set_mmap_name(struct machine *machine) 55 { 56 if (machine__is_host(machine)) 57 machine->mmap_name = strdup("[kernel.kallsyms]"); 58 else if (machine__is_default_guest(machine)) 59 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 60 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 61 machine->pid) < 0) 62 machine->mmap_name = NULL; 63 64 return machine->mmap_name ? 0 : -ENOMEM; 65 } 66 67 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 68 { 69 int err = -ENOMEM; 70 71 memset(machine, 0, sizeof(*machine)); 72 map_groups__init(&machine->kmaps, machine); 73 RB_CLEAR_NODE(&machine->rb_node); 74 dsos__init(&machine->dsos); 75 76 machine__threads_init(machine); 77 78 machine->vdso_info = NULL; 79 machine->env = NULL; 80 81 machine->pid = pid; 82 83 machine->id_hdr_size = 0; 84 machine->kptr_restrict_warned = false; 85 machine->comm_exec = false; 86 machine->kernel_start = 0; 87 machine->vmlinux_map = NULL; 88 89 machine->root_dir = strdup(root_dir); 90 if (machine->root_dir == NULL) 91 return -ENOMEM; 92 93 if (machine__set_mmap_name(machine)) 94 goto out; 95 96 if (pid != HOST_KERNEL_ID) { 97 struct thread *thread = machine__findnew_thread(machine, -1, 98 pid); 99 char comm[64]; 100 101 if (thread == NULL) 102 goto out; 103 104 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 105 thread__set_comm(thread, comm, 0); 106 thread__put(thread); 107 } 108 109 machine->current_tid = NULL; 110 err = 0; 111 112 out: 113 if (err) { 114 zfree(&machine->root_dir); 115 zfree(&machine->mmap_name); 116 } 117 return 0; 118 } 119 120 struct machine *machine__new_host(void) 121 { 122 struct machine *machine = malloc(sizeof(*machine)); 123 124 if (machine != NULL) { 125 machine__init(machine, "", HOST_KERNEL_ID); 126 127 if (machine__create_kernel_maps(machine) < 0) 128 goto out_delete; 129 } 130 131 return machine; 132 out_delete: 133 free(machine); 134 return NULL; 135 } 136 137 struct machine *machine__new_kallsyms(void) 138 { 139 struct machine *machine = machine__new_host(); 140 /* 141 * FIXME: 142 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 143 * ask for not using the kcore parsing code, once this one is fixed 144 * to create a map per module. 145 */ 146 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 147 machine__delete(machine); 148 machine = NULL; 149 } 150 151 return machine; 152 } 153 154 static void dsos__purge(struct dsos *dsos) 155 { 156 struct dso *pos, *n; 157 158 down_write(&dsos->lock); 159 160 list_for_each_entry_safe(pos, n, &dsos->head, node) { 161 RB_CLEAR_NODE(&pos->rb_node); 162 pos->root = NULL; 163 list_del_init(&pos->node); 164 dso__put(pos); 165 } 166 167 up_write(&dsos->lock); 168 } 169 170 static void dsos__exit(struct dsos *dsos) 171 { 172 dsos__purge(dsos); 173 exit_rwsem(&dsos->lock); 174 } 175 176 void machine__delete_threads(struct machine *machine) 177 { 178 struct rb_node *nd; 179 int i; 180 181 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 182 struct threads *threads = &machine->threads[i]; 183 down_write(&threads->lock); 184 nd = rb_first_cached(&threads->entries); 185 while (nd) { 186 struct thread *t = rb_entry(nd, struct thread, rb_node); 187 188 nd = rb_next(nd); 189 __machine__remove_thread(machine, t, false); 190 } 191 up_write(&threads->lock); 192 } 193 } 194 195 void machine__exit(struct machine *machine) 196 { 197 int i; 198 199 if (machine == NULL) 200 return; 201 202 machine__destroy_kernel_maps(machine); 203 map_groups__exit(&machine->kmaps); 204 dsos__exit(&machine->dsos); 205 machine__exit_vdso(machine); 206 zfree(&machine->root_dir); 207 zfree(&machine->mmap_name); 208 zfree(&machine->current_tid); 209 210 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 211 struct threads *threads = &machine->threads[i]; 212 exit_rwsem(&threads->lock); 213 } 214 } 215 216 void machine__delete(struct machine *machine) 217 { 218 if (machine) { 219 machine__exit(machine); 220 free(machine); 221 } 222 } 223 224 void machines__init(struct machines *machines) 225 { 226 machine__init(&machines->host, "", HOST_KERNEL_ID); 227 machines->guests = RB_ROOT_CACHED; 228 } 229 230 void machines__exit(struct machines *machines) 231 { 232 machine__exit(&machines->host); 233 /* XXX exit guest */ 234 } 235 236 struct machine *machines__add(struct machines *machines, pid_t pid, 237 const char *root_dir) 238 { 239 struct rb_node **p = &machines->guests.rb_root.rb_node; 240 struct rb_node *parent = NULL; 241 struct machine *pos, *machine = malloc(sizeof(*machine)); 242 bool leftmost = true; 243 244 if (machine == NULL) 245 return NULL; 246 247 if (machine__init(machine, root_dir, pid) != 0) { 248 free(machine); 249 return NULL; 250 } 251 252 while (*p != NULL) { 253 parent = *p; 254 pos = rb_entry(parent, struct machine, rb_node); 255 if (pid < pos->pid) 256 p = &(*p)->rb_left; 257 else { 258 p = &(*p)->rb_right; 259 leftmost = false; 260 } 261 } 262 263 rb_link_node(&machine->rb_node, parent, p); 264 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 265 266 return machine; 267 } 268 269 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 270 { 271 struct rb_node *nd; 272 273 machines->host.comm_exec = comm_exec; 274 275 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 276 struct machine *machine = rb_entry(nd, struct machine, rb_node); 277 278 machine->comm_exec = comm_exec; 279 } 280 } 281 282 struct machine *machines__find(struct machines *machines, pid_t pid) 283 { 284 struct rb_node **p = &machines->guests.rb_root.rb_node; 285 struct rb_node *parent = NULL; 286 struct machine *machine; 287 struct machine *default_machine = NULL; 288 289 if (pid == HOST_KERNEL_ID) 290 return &machines->host; 291 292 while (*p != NULL) { 293 parent = *p; 294 machine = rb_entry(parent, struct machine, rb_node); 295 if (pid < machine->pid) 296 p = &(*p)->rb_left; 297 else if (pid > machine->pid) 298 p = &(*p)->rb_right; 299 else 300 return machine; 301 if (!machine->pid) 302 default_machine = machine; 303 } 304 305 return default_machine; 306 } 307 308 struct machine *machines__findnew(struct machines *machines, pid_t pid) 309 { 310 char path[PATH_MAX]; 311 const char *root_dir = ""; 312 struct machine *machine = machines__find(machines, pid); 313 314 if (machine && (machine->pid == pid)) 315 goto out; 316 317 if ((pid != HOST_KERNEL_ID) && 318 (pid != DEFAULT_GUEST_KERNEL_ID) && 319 (symbol_conf.guestmount)) { 320 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 321 if (access(path, R_OK)) { 322 static struct strlist *seen; 323 324 if (!seen) 325 seen = strlist__new(NULL, NULL); 326 327 if (!strlist__has_entry(seen, path)) { 328 pr_err("Can't access file %s\n", path); 329 strlist__add(seen, path); 330 } 331 machine = NULL; 332 goto out; 333 } 334 root_dir = path; 335 } 336 337 machine = machines__add(machines, pid, root_dir); 338 out: 339 return machine; 340 } 341 342 void machines__process_guests(struct machines *machines, 343 machine__process_t process, void *data) 344 { 345 struct rb_node *nd; 346 347 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 348 struct machine *pos = rb_entry(nd, struct machine, rb_node); 349 process(pos, data); 350 } 351 } 352 353 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 354 { 355 struct rb_node *node; 356 struct machine *machine; 357 358 machines->host.id_hdr_size = id_hdr_size; 359 360 for (node = rb_first_cached(&machines->guests); node; 361 node = rb_next(node)) { 362 machine = rb_entry(node, struct machine, rb_node); 363 machine->id_hdr_size = id_hdr_size; 364 } 365 366 return; 367 } 368 369 static void machine__update_thread_pid(struct machine *machine, 370 struct thread *th, pid_t pid) 371 { 372 struct thread *leader; 373 374 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 375 return; 376 377 th->pid_ = pid; 378 379 if (th->pid_ == th->tid) 380 return; 381 382 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 383 if (!leader) 384 goto out_err; 385 386 if (!leader->mg) 387 leader->mg = map_groups__new(machine); 388 389 if (!leader->mg) 390 goto out_err; 391 392 if (th->mg == leader->mg) 393 return; 394 395 if (th->mg) { 396 /* 397 * Maps are created from MMAP events which provide the pid and 398 * tid. Consequently there never should be any maps on a thread 399 * with an unknown pid. Just print an error if there are. 400 */ 401 if (!map_groups__empty(th->mg)) 402 pr_err("Discarding thread maps for %d:%d\n", 403 th->pid_, th->tid); 404 map_groups__put(th->mg); 405 } 406 407 th->mg = map_groups__get(leader->mg); 408 out_put: 409 thread__put(leader); 410 return; 411 out_err: 412 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 413 goto out_put; 414 } 415 416 /* 417 * Front-end cache - TID lookups come in blocks, 418 * so most of the time we dont have to look up 419 * the full rbtree: 420 */ 421 static struct thread* 422 __threads__get_last_match(struct threads *threads, struct machine *machine, 423 int pid, int tid) 424 { 425 struct thread *th; 426 427 th = threads->last_match; 428 if (th != NULL) { 429 if (th->tid == tid) { 430 machine__update_thread_pid(machine, th, pid); 431 return thread__get(th); 432 } 433 434 threads->last_match = NULL; 435 } 436 437 return NULL; 438 } 439 440 static struct thread* 441 threads__get_last_match(struct threads *threads, struct machine *machine, 442 int pid, int tid) 443 { 444 struct thread *th = NULL; 445 446 if (perf_singlethreaded) 447 th = __threads__get_last_match(threads, machine, pid, tid); 448 449 return th; 450 } 451 452 static void 453 __threads__set_last_match(struct threads *threads, struct thread *th) 454 { 455 threads->last_match = th; 456 } 457 458 static void 459 threads__set_last_match(struct threads *threads, struct thread *th) 460 { 461 if (perf_singlethreaded) 462 __threads__set_last_match(threads, th); 463 } 464 465 /* 466 * Caller must eventually drop thread->refcnt returned with a successful 467 * lookup/new thread inserted. 468 */ 469 static struct thread *____machine__findnew_thread(struct machine *machine, 470 struct threads *threads, 471 pid_t pid, pid_t tid, 472 bool create) 473 { 474 struct rb_node **p = &threads->entries.rb_root.rb_node; 475 struct rb_node *parent = NULL; 476 struct thread *th; 477 bool leftmost = true; 478 479 th = threads__get_last_match(threads, machine, pid, tid); 480 if (th) 481 return th; 482 483 while (*p != NULL) { 484 parent = *p; 485 th = rb_entry(parent, struct thread, rb_node); 486 487 if (th->tid == tid) { 488 threads__set_last_match(threads, th); 489 machine__update_thread_pid(machine, th, pid); 490 return thread__get(th); 491 } 492 493 if (tid < th->tid) 494 p = &(*p)->rb_left; 495 else { 496 p = &(*p)->rb_right; 497 leftmost = false; 498 } 499 } 500 501 if (!create) 502 return NULL; 503 504 th = thread__new(pid, tid); 505 if (th != NULL) { 506 rb_link_node(&th->rb_node, parent, p); 507 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 508 509 /* 510 * We have to initialize map_groups separately 511 * after rb tree is updated. 512 * 513 * The reason is that we call machine__findnew_thread 514 * within thread__init_map_groups to find the thread 515 * leader and that would screwed the rb tree. 516 */ 517 if (thread__init_map_groups(th, machine)) { 518 rb_erase_cached(&th->rb_node, &threads->entries); 519 RB_CLEAR_NODE(&th->rb_node); 520 thread__put(th); 521 return NULL; 522 } 523 /* 524 * It is now in the rbtree, get a ref 525 */ 526 thread__get(th); 527 threads__set_last_match(threads, th); 528 ++threads->nr; 529 } 530 531 return th; 532 } 533 534 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 535 { 536 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 537 } 538 539 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 540 pid_t tid) 541 { 542 struct threads *threads = machine__threads(machine, tid); 543 struct thread *th; 544 545 down_write(&threads->lock); 546 th = __machine__findnew_thread(machine, pid, tid); 547 up_write(&threads->lock); 548 return th; 549 } 550 551 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 552 pid_t tid) 553 { 554 struct threads *threads = machine__threads(machine, tid); 555 struct thread *th; 556 557 down_read(&threads->lock); 558 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 559 up_read(&threads->lock); 560 return th; 561 } 562 563 struct comm *machine__thread_exec_comm(struct machine *machine, 564 struct thread *thread) 565 { 566 if (machine->comm_exec) 567 return thread__exec_comm(thread); 568 else 569 return thread__comm(thread); 570 } 571 572 int machine__process_comm_event(struct machine *machine, union perf_event *event, 573 struct perf_sample *sample) 574 { 575 struct thread *thread = machine__findnew_thread(machine, 576 event->comm.pid, 577 event->comm.tid); 578 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 579 int err = 0; 580 581 if (exec) 582 machine->comm_exec = true; 583 584 if (dump_trace) 585 perf_event__fprintf_comm(event, stdout); 586 587 if (thread == NULL || 588 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 589 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 590 err = -1; 591 } 592 593 thread__put(thread); 594 595 return err; 596 } 597 598 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 599 union perf_event *event, 600 struct perf_sample *sample __maybe_unused) 601 { 602 struct thread *thread = machine__findnew_thread(machine, 603 event->namespaces.pid, 604 event->namespaces.tid); 605 int err = 0; 606 607 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 608 "\nWARNING: kernel seems to support more namespaces than perf" 609 " tool.\nTry updating the perf tool..\n\n"); 610 611 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 612 "\nWARNING: perf tool seems to support more namespaces than" 613 " the kernel.\nTry updating the kernel..\n\n"); 614 615 if (dump_trace) 616 perf_event__fprintf_namespaces(event, stdout); 617 618 if (thread == NULL || 619 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 620 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 621 err = -1; 622 } 623 624 thread__put(thread); 625 626 return err; 627 } 628 629 int machine__process_lost_event(struct machine *machine __maybe_unused, 630 union perf_event *event, struct perf_sample *sample __maybe_unused) 631 { 632 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 633 event->lost.id, event->lost.lost); 634 return 0; 635 } 636 637 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 638 union perf_event *event, struct perf_sample *sample) 639 { 640 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 641 sample->id, event->lost_samples.lost); 642 return 0; 643 } 644 645 static struct dso *machine__findnew_module_dso(struct machine *machine, 646 struct kmod_path *m, 647 const char *filename) 648 { 649 struct dso *dso; 650 651 down_write(&machine->dsos.lock); 652 653 dso = __dsos__find(&machine->dsos, m->name, true); 654 if (!dso) { 655 dso = __dsos__addnew(&machine->dsos, m->name); 656 if (dso == NULL) 657 goto out_unlock; 658 659 dso__set_module_info(dso, m, machine); 660 dso__set_long_name(dso, strdup(filename), true); 661 } 662 663 dso__get(dso); 664 out_unlock: 665 up_write(&machine->dsos.lock); 666 return dso; 667 } 668 669 int machine__process_aux_event(struct machine *machine __maybe_unused, 670 union perf_event *event) 671 { 672 if (dump_trace) 673 perf_event__fprintf_aux(event, stdout); 674 return 0; 675 } 676 677 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 678 union perf_event *event) 679 { 680 if (dump_trace) 681 perf_event__fprintf_itrace_start(event, stdout); 682 return 0; 683 } 684 685 int machine__process_switch_event(struct machine *machine __maybe_unused, 686 union perf_event *event) 687 { 688 if (dump_trace) 689 perf_event__fprintf_switch(event, stdout); 690 return 0; 691 } 692 693 static int machine__process_ksymbol_register(struct machine *machine, 694 union perf_event *event, 695 struct perf_sample *sample __maybe_unused) 696 { 697 struct symbol *sym; 698 struct map *map; 699 700 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr); 701 if (!map) { 702 map = dso__new_map(event->ksymbol_event.name); 703 if (!map) 704 return -ENOMEM; 705 706 map->start = event->ksymbol_event.addr; 707 map->pgoff = map->start; 708 map->end = map->start + event->ksymbol_event.len; 709 map_groups__insert(&machine->kmaps, map); 710 } 711 712 sym = symbol__new(event->ksymbol_event.addr, event->ksymbol_event.len, 713 0, 0, event->ksymbol_event.name); 714 if (!sym) 715 return -ENOMEM; 716 dso__insert_symbol(map->dso, sym); 717 return 0; 718 } 719 720 static int machine__process_ksymbol_unregister(struct machine *machine, 721 union perf_event *event, 722 struct perf_sample *sample __maybe_unused) 723 { 724 struct map *map; 725 726 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr); 727 if (map) 728 map_groups__remove(&machine->kmaps, map); 729 730 return 0; 731 } 732 733 int machine__process_ksymbol(struct machine *machine __maybe_unused, 734 union perf_event *event, 735 struct perf_sample *sample) 736 { 737 if (dump_trace) 738 perf_event__fprintf_ksymbol(event, stdout); 739 740 if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 741 return machine__process_ksymbol_unregister(machine, event, 742 sample); 743 return machine__process_ksymbol_register(machine, event, sample); 744 } 745 746 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 747 { 748 const char *dup_filename; 749 750 if (!filename || !dso || !dso->long_name) 751 return; 752 if (dso->long_name[0] != '[') 753 return; 754 if (!strchr(filename, '/')) 755 return; 756 757 dup_filename = strdup(filename); 758 if (!dup_filename) 759 return; 760 761 dso__set_long_name(dso, dup_filename, true); 762 } 763 764 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 765 const char *filename) 766 { 767 struct map *map = NULL; 768 struct dso *dso = NULL; 769 struct kmod_path m; 770 771 if (kmod_path__parse_name(&m, filename)) 772 return NULL; 773 774 map = map_groups__find_by_name(&machine->kmaps, m.name); 775 if (map) { 776 /* 777 * If the map's dso is an offline module, give dso__load() 778 * a chance to find the file path of that module by fixing 779 * long_name. 780 */ 781 dso__adjust_kmod_long_name(map->dso, filename); 782 goto out; 783 } 784 785 dso = machine__findnew_module_dso(machine, &m, filename); 786 if (dso == NULL) 787 goto out; 788 789 map = map__new2(start, dso); 790 if (map == NULL) 791 goto out; 792 793 map_groups__insert(&machine->kmaps, map); 794 795 /* Put the map here because map_groups__insert alread got it */ 796 map__put(map); 797 out: 798 /* put the dso here, corresponding to machine__findnew_module_dso */ 799 dso__put(dso); 800 free(m.name); 801 return map; 802 } 803 804 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 805 { 806 struct rb_node *nd; 807 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 808 809 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 810 struct machine *pos = rb_entry(nd, struct machine, rb_node); 811 ret += __dsos__fprintf(&pos->dsos.head, fp); 812 } 813 814 return ret; 815 } 816 817 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 818 bool (skip)(struct dso *dso, int parm), int parm) 819 { 820 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 821 } 822 823 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 824 bool (skip)(struct dso *dso, int parm), int parm) 825 { 826 struct rb_node *nd; 827 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 828 829 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 830 struct machine *pos = rb_entry(nd, struct machine, rb_node); 831 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 832 } 833 return ret; 834 } 835 836 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 837 { 838 int i; 839 size_t printed = 0; 840 struct dso *kdso = machine__kernel_map(machine)->dso; 841 842 if (kdso->has_build_id) { 843 char filename[PATH_MAX]; 844 if (dso__build_id_filename(kdso, filename, sizeof(filename), 845 false)) 846 printed += fprintf(fp, "[0] %s\n", filename); 847 } 848 849 for (i = 0; i < vmlinux_path__nr_entries; ++i) 850 printed += fprintf(fp, "[%d] %s\n", 851 i + kdso->has_build_id, vmlinux_path[i]); 852 853 return printed; 854 } 855 856 size_t machine__fprintf(struct machine *machine, FILE *fp) 857 { 858 struct rb_node *nd; 859 size_t ret; 860 int i; 861 862 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 863 struct threads *threads = &machine->threads[i]; 864 865 down_read(&threads->lock); 866 867 ret = fprintf(fp, "Threads: %u\n", threads->nr); 868 869 for (nd = rb_first_cached(&threads->entries); nd; 870 nd = rb_next(nd)) { 871 struct thread *pos = rb_entry(nd, struct thread, rb_node); 872 873 ret += thread__fprintf(pos, fp); 874 } 875 876 up_read(&threads->lock); 877 } 878 return ret; 879 } 880 881 static struct dso *machine__get_kernel(struct machine *machine) 882 { 883 const char *vmlinux_name = machine->mmap_name; 884 struct dso *kernel; 885 886 if (machine__is_host(machine)) { 887 if (symbol_conf.vmlinux_name) 888 vmlinux_name = symbol_conf.vmlinux_name; 889 890 kernel = machine__findnew_kernel(machine, vmlinux_name, 891 "[kernel]", DSO_TYPE_KERNEL); 892 } else { 893 if (symbol_conf.default_guest_vmlinux_name) 894 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 895 896 kernel = machine__findnew_kernel(machine, vmlinux_name, 897 "[guest.kernel]", 898 DSO_TYPE_GUEST_KERNEL); 899 } 900 901 if (kernel != NULL && (!kernel->has_build_id)) 902 dso__read_running_kernel_build_id(kernel, machine); 903 904 return kernel; 905 } 906 907 struct process_args { 908 u64 start; 909 }; 910 911 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 912 size_t bufsz) 913 { 914 if (machine__is_default_guest(machine)) 915 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 916 else 917 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 918 } 919 920 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 921 922 /* Figure out the start address of kernel map from /proc/kallsyms. 923 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 924 * symbol_name if it's not that important. 925 */ 926 static int machine__get_running_kernel_start(struct machine *machine, 927 const char **symbol_name, 928 u64 *start, u64 *end) 929 { 930 char filename[PATH_MAX]; 931 int i, err = -1; 932 const char *name; 933 u64 addr = 0; 934 935 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 936 937 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 938 return 0; 939 940 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 941 err = kallsyms__get_function_start(filename, name, &addr); 942 if (!err) 943 break; 944 } 945 946 if (err) 947 return -1; 948 949 if (symbol_name) 950 *symbol_name = name; 951 952 *start = addr; 953 954 err = kallsyms__get_function_start(filename, "_etext", &addr); 955 if (!err) 956 *end = addr; 957 958 return 0; 959 } 960 961 int machine__create_extra_kernel_map(struct machine *machine, 962 struct dso *kernel, 963 struct extra_kernel_map *xm) 964 { 965 struct kmap *kmap; 966 struct map *map; 967 968 map = map__new2(xm->start, kernel); 969 if (!map) 970 return -1; 971 972 map->end = xm->end; 973 map->pgoff = xm->pgoff; 974 975 kmap = map__kmap(map); 976 977 kmap->kmaps = &machine->kmaps; 978 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 979 980 map_groups__insert(&machine->kmaps, map); 981 982 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 983 kmap->name, map->start, map->end); 984 985 map__put(map); 986 987 return 0; 988 } 989 990 static u64 find_entry_trampoline(struct dso *dso) 991 { 992 /* Duplicates are removed so lookup all aliases */ 993 const char *syms[] = { 994 "_entry_trampoline", 995 "__entry_trampoline_start", 996 "entry_SYSCALL_64_trampoline", 997 }; 998 struct symbol *sym = dso__first_symbol(dso); 999 unsigned int i; 1000 1001 for (; sym; sym = dso__next_symbol(sym)) { 1002 if (sym->binding != STB_GLOBAL) 1003 continue; 1004 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1005 if (!strcmp(sym->name, syms[i])) 1006 return sym->start; 1007 } 1008 } 1009 1010 return 0; 1011 } 1012 1013 /* 1014 * These values can be used for kernels that do not have symbols for the entry 1015 * trampolines in kallsyms. 1016 */ 1017 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1018 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1019 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1020 1021 /* Map x86_64 PTI entry trampolines */ 1022 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1023 struct dso *kernel) 1024 { 1025 struct map_groups *kmaps = &machine->kmaps; 1026 struct maps *maps = &kmaps->maps; 1027 int nr_cpus_avail, cpu; 1028 bool found = false; 1029 struct map *map; 1030 u64 pgoff; 1031 1032 /* 1033 * In the vmlinux case, pgoff is a virtual address which must now be 1034 * mapped to a vmlinux offset. 1035 */ 1036 for (map = maps__first(maps); map; map = map__next(map)) { 1037 struct kmap *kmap = __map__kmap(map); 1038 struct map *dest_map; 1039 1040 if (!kmap || !is_entry_trampoline(kmap->name)) 1041 continue; 1042 1043 dest_map = map_groups__find(kmaps, map->pgoff); 1044 if (dest_map != map) 1045 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1046 found = true; 1047 } 1048 if (found || machine->trampolines_mapped) 1049 return 0; 1050 1051 pgoff = find_entry_trampoline(kernel); 1052 if (!pgoff) 1053 return 0; 1054 1055 nr_cpus_avail = machine__nr_cpus_avail(machine); 1056 1057 /* Add a 1 page map for each CPU's entry trampoline */ 1058 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1059 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1060 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1061 X86_64_ENTRY_TRAMPOLINE; 1062 struct extra_kernel_map xm = { 1063 .start = va, 1064 .end = va + page_size, 1065 .pgoff = pgoff, 1066 }; 1067 1068 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1069 1070 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1071 return -1; 1072 } 1073 1074 machine->trampolines_mapped = nr_cpus_avail; 1075 1076 return 0; 1077 } 1078 1079 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1080 struct dso *kernel __maybe_unused) 1081 { 1082 return 0; 1083 } 1084 1085 static int 1086 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1087 { 1088 struct kmap *kmap; 1089 struct map *map; 1090 1091 /* In case of renewal the kernel map, destroy previous one */ 1092 machine__destroy_kernel_maps(machine); 1093 1094 machine->vmlinux_map = map__new2(0, kernel); 1095 if (machine->vmlinux_map == NULL) 1096 return -1; 1097 1098 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1099 map = machine__kernel_map(machine); 1100 kmap = map__kmap(map); 1101 if (!kmap) 1102 return -1; 1103 1104 kmap->kmaps = &machine->kmaps; 1105 map_groups__insert(&machine->kmaps, map); 1106 1107 return 0; 1108 } 1109 1110 void machine__destroy_kernel_maps(struct machine *machine) 1111 { 1112 struct kmap *kmap; 1113 struct map *map = machine__kernel_map(machine); 1114 1115 if (map == NULL) 1116 return; 1117 1118 kmap = map__kmap(map); 1119 map_groups__remove(&machine->kmaps, map); 1120 if (kmap && kmap->ref_reloc_sym) { 1121 zfree((char **)&kmap->ref_reloc_sym->name); 1122 zfree(&kmap->ref_reloc_sym); 1123 } 1124 1125 map__zput(machine->vmlinux_map); 1126 } 1127 1128 int machines__create_guest_kernel_maps(struct machines *machines) 1129 { 1130 int ret = 0; 1131 struct dirent **namelist = NULL; 1132 int i, items = 0; 1133 char path[PATH_MAX]; 1134 pid_t pid; 1135 char *endp; 1136 1137 if (symbol_conf.default_guest_vmlinux_name || 1138 symbol_conf.default_guest_modules || 1139 symbol_conf.default_guest_kallsyms) { 1140 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1141 } 1142 1143 if (symbol_conf.guestmount) { 1144 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1145 if (items <= 0) 1146 return -ENOENT; 1147 for (i = 0; i < items; i++) { 1148 if (!isdigit(namelist[i]->d_name[0])) { 1149 /* Filter out . and .. */ 1150 continue; 1151 } 1152 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1153 if ((*endp != '\0') || 1154 (endp == namelist[i]->d_name) || 1155 (errno == ERANGE)) { 1156 pr_debug("invalid directory (%s). Skipping.\n", 1157 namelist[i]->d_name); 1158 continue; 1159 } 1160 sprintf(path, "%s/%s/proc/kallsyms", 1161 symbol_conf.guestmount, 1162 namelist[i]->d_name); 1163 ret = access(path, R_OK); 1164 if (ret) { 1165 pr_debug("Can't access file %s\n", path); 1166 goto failure; 1167 } 1168 machines__create_kernel_maps(machines, pid); 1169 } 1170 failure: 1171 free(namelist); 1172 } 1173 1174 return ret; 1175 } 1176 1177 void machines__destroy_kernel_maps(struct machines *machines) 1178 { 1179 struct rb_node *next = rb_first_cached(&machines->guests); 1180 1181 machine__destroy_kernel_maps(&machines->host); 1182 1183 while (next) { 1184 struct machine *pos = rb_entry(next, struct machine, rb_node); 1185 1186 next = rb_next(&pos->rb_node); 1187 rb_erase_cached(&pos->rb_node, &machines->guests); 1188 machine__delete(pos); 1189 } 1190 } 1191 1192 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1193 { 1194 struct machine *machine = machines__findnew(machines, pid); 1195 1196 if (machine == NULL) 1197 return -1; 1198 1199 return machine__create_kernel_maps(machine); 1200 } 1201 1202 int machine__load_kallsyms(struct machine *machine, const char *filename) 1203 { 1204 struct map *map = machine__kernel_map(machine); 1205 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1206 1207 if (ret > 0) { 1208 dso__set_loaded(map->dso); 1209 /* 1210 * Since /proc/kallsyms will have multiple sessions for the 1211 * kernel, with modules between them, fixup the end of all 1212 * sections. 1213 */ 1214 map_groups__fixup_end(&machine->kmaps); 1215 } 1216 1217 return ret; 1218 } 1219 1220 int machine__load_vmlinux_path(struct machine *machine) 1221 { 1222 struct map *map = machine__kernel_map(machine); 1223 int ret = dso__load_vmlinux_path(map->dso, map); 1224 1225 if (ret > 0) 1226 dso__set_loaded(map->dso); 1227 1228 return ret; 1229 } 1230 1231 static char *get_kernel_version(const char *root_dir) 1232 { 1233 char version[PATH_MAX]; 1234 FILE *file; 1235 char *name, *tmp; 1236 const char *prefix = "Linux version "; 1237 1238 sprintf(version, "%s/proc/version", root_dir); 1239 file = fopen(version, "r"); 1240 if (!file) 1241 return NULL; 1242 1243 tmp = fgets(version, sizeof(version), file); 1244 if (!tmp) 1245 *version = '\0'; 1246 fclose(file); 1247 1248 name = strstr(version, prefix); 1249 if (!name) 1250 return NULL; 1251 name += strlen(prefix); 1252 tmp = strchr(name, ' '); 1253 if (tmp) 1254 *tmp = '\0'; 1255 1256 return strdup(name); 1257 } 1258 1259 static bool is_kmod_dso(struct dso *dso) 1260 { 1261 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1262 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1263 } 1264 1265 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1266 struct kmod_path *m) 1267 { 1268 char *long_name; 1269 struct map *map = map_groups__find_by_name(mg, m->name); 1270 1271 if (map == NULL) 1272 return 0; 1273 1274 long_name = strdup(path); 1275 if (long_name == NULL) 1276 return -ENOMEM; 1277 1278 dso__set_long_name(map->dso, long_name, true); 1279 dso__kernel_module_get_build_id(map->dso, ""); 1280 1281 /* 1282 * Full name could reveal us kmod compression, so 1283 * we need to update the symtab_type if needed. 1284 */ 1285 if (m->comp && is_kmod_dso(map->dso)) { 1286 map->dso->symtab_type++; 1287 map->dso->comp = m->comp; 1288 } 1289 1290 return 0; 1291 } 1292 1293 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1294 const char *dir_name, int depth) 1295 { 1296 struct dirent *dent; 1297 DIR *dir = opendir(dir_name); 1298 int ret = 0; 1299 1300 if (!dir) { 1301 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1302 return -1; 1303 } 1304 1305 while ((dent = readdir(dir)) != NULL) { 1306 char path[PATH_MAX]; 1307 struct stat st; 1308 1309 /*sshfs might return bad dent->d_type, so we have to stat*/ 1310 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1311 if (stat(path, &st)) 1312 continue; 1313 1314 if (S_ISDIR(st.st_mode)) { 1315 if (!strcmp(dent->d_name, ".") || 1316 !strcmp(dent->d_name, "..")) 1317 continue; 1318 1319 /* Do not follow top-level source and build symlinks */ 1320 if (depth == 0) { 1321 if (!strcmp(dent->d_name, "source") || 1322 !strcmp(dent->d_name, "build")) 1323 continue; 1324 } 1325 1326 ret = map_groups__set_modules_path_dir(mg, path, 1327 depth + 1); 1328 if (ret < 0) 1329 goto out; 1330 } else { 1331 struct kmod_path m; 1332 1333 ret = kmod_path__parse_name(&m, dent->d_name); 1334 if (ret) 1335 goto out; 1336 1337 if (m.kmod) 1338 ret = map_groups__set_module_path(mg, path, &m); 1339 1340 free(m.name); 1341 1342 if (ret) 1343 goto out; 1344 } 1345 } 1346 1347 out: 1348 closedir(dir); 1349 return ret; 1350 } 1351 1352 static int machine__set_modules_path(struct machine *machine) 1353 { 1354 char *version; 1355 char modules_path[PATH_MAX]; 1356 1357 version = get_kernel_version(machine->root_dir); 1358 if (!version) 1359 return -1; 1360 1361 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1362 machine->root_dir, version); 1363 free(version); 1364 1365 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1366 } 1367 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1368 const char *name __maybe_unused) 1369 { 1370 return 0; 1371 } 1372 1373 static int machine__create_module(void *arg, const char *name, u64 start, 1374 u64 size) 1375 { 1376 struct machine *machine = arg; 1377 struct map *map; 1378 1379 if (arch__fix_module_text_start(&start, name) < 0) 1380 return -1; 1381 1382 map = machine__findnew_module_map(machine, start, name); 1383 if (map == NULL) 1384 return -1; 1385 map->end = start + size; 1386 1387 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1388 1389 return 0; 1390 } 1391 1392 static int machine__create_modules(struct machine *machine) 1393 { 1394 const char *modules; 1395 char path[PATH_MAX]; 1396 1397 if (machine__is_default_guest(machine)) { 1398 modules = symbol_conf.default_guest_modules; 1399 } else { 1400 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1401 modules = path; 1402 } 1403 1404 if (symbol__restricted_filename(modules, "/proc/modules")) 1405 return -1; 1406 1407 if (modules__parse(modules, machine, machine__create_module)) 1408 return -1; 1409 1410 if (!machine__set_modules_path(machine)) 1411 return 0; 1412 1413 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1414 1415 return 0; 1416 } 1417 1418 static void machine__set_kernel_mmap(struct machine *machine, 1419 u64 start, u64 end) 1420 { 1421 machine->vmlinux_map->start = start; 1422 machine->vmlinux_map->end = end; 1423 /* 1424 * Be a bit paranoid here, some perf.data file came with 1425 * a zero sized synthesized MMAP event for the kernel. 1426 */ 1427 if (start == 0 && end == 0) 1428 machine->vmlinux_map->end = ~0ULL; 1429 } 1430 1431 static void machine__update_kernel_mmap(struct machine *machine, 1432 u64 start, u64 end) 1433 { 1434 struct map *map = machine__kernel_map(machine); 1435 1436 map__get(map); 1437 map_groups__remove(&machine->kmaps, map); 1438 1439 machine__set_kernel_mmap(machine, start, end); 1440 1441 map_groups__insert(&machine->kmaps, map); 1442 map__put(map); 1443 } 1444 1445 int machine__create_kernel_maps(struct machine *machine) 1446 { 1447 struct dso *kernel = machine__get_kernel(machine); 1448 const char *name = NULL; 1449 struct map *map; 1450 u64 start = 0, end = ~0ULL; 1451 int ret; 1452 1453 if (kernel == NULL) 1454 return -1; 1455 1456 ret = __machine__create_kernel_maps(machine, kernel); 1457 if (ret < 0) 1458 goto out_put; 1459 1460 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1461 if (machine__is_host(machine)) 1462 pr_debug("Problems creating module maps, " 1463 "continuing anyway...\n"); 1464 else 1465 pr_debug("Problems creating module maps for guest %d, " 1466 "continuing anyway...\n", machine->pid); 1467 } 1468 1469 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1470 if (name && 1471 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1472 machine__destroy_kernel_maps(machine); 1473 ret = -1; 1474 goto out_put; 1475 } 1476 1477 /* 1478 * we have a real start address now, so re-order the kmaps 1479 * assume it's the last in the kmaps 1480 */ 1481 machine__update_kernel_mmap(machine, start, end); 1482 } 1483 1484 if (machine__create_extra_kernel_maps(machine, kernel)) 1485 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1486 1487 if (end == ~0ULL) { 1488 /* update end address of the kernel map using adjacent module address */ 1489 map = map__next(machine__kernel_map(machine)); 1490 if (map) 1491 machine__set_kernel_mmap(machine, start, map->start); 1492 } 1493 1494 out_put: 1495 dso__put(kernel); 1496 return ret; 1497 } 1498 1499 static bool machine__uses_kcore(struct machine *machine) 1500 { 1501 struct dso *dso; 1502 1503 list_for_each_entry(dso, &machine->dsos.head, node) { 1504 if (dso__is_kcore(dso)) 1505 return true; 1506 } 1507 1508 return false; 1509 } 1510 1511 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1512 union perf_event *event) 1513 { 1514 return machine__is(machine, "x86_64") && 1515 is_entry_trampoline(event->mmap.filename); 1516 } 1517 1518 static int machine__process_extra_kernel_map(struct machine *machine, 1519 union perf_event *event) 1520 { 1521 struct map *kernel_map = machine__kernel_map(machine); 1522 struct dso *kernel = kernel_map ? kernel_map->dso : NULL; 1523 struct extra_kernel_map xm = { 1524 .start = event->mmap.start, 1525 .end = event->mmap.start + event->mmap.len, 1526 .pgoff = event->mmap.pgoff, 1527 }; 1528 1529 if (kernel == NULL) 1530 return -1; 1531 1532 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1533 1534 return machine__create_extra_kernel_map(machine, kernel, &xm); 1535 } 1536 1537 static int machine__process_kernel_mmap_event(struct machine *machine, 1538 union perf_event *event) 1539 { 1540 struct map *map; 1541 enum dso_kernel_type kernel_type; 1542 bool is_kernel_mmap; 1543 1544 /* If we have maps from kcore then we do not need or want any others */ 1545 if (machine__uses_kcore(machine)) 1546 return 0; 1547 1548 if (machine__is_host(machine)) 1549 kernel_type = DSO_TYPE_KERNEL; 1550 else 1551 kernel_type = DSO_TYPE_GUEST_KERNEL; 1552 1553 is_kernel_mmap = memcmp(event->mmap.filename, 1554 machine->mmap_name, 1555 strlen(machine->mmap_name) - 1) == 0; 1556 if (event->mmap.filename[0] == '/' || 1557 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1558 map = machine__findnew_module_map(machine, event->mmap.start, 1559 event->mmap.filename); 1560 if (map == NULL) 1561 goto out_problem; 1562 1563 map->end = map->start + event->mmap.len; 1564 } else if (is_kernel_mmap) { 1565 const char *symbol_name = (event->mmap.filename + 1566 strlen(machine->mmap_name)); 1567 /* 1568 * Should be there already, from the build-id table in 1569 * the header. 1570 */ 1571 struct dso *kernel = NULL; 1572 struct dso *dso; 1573 1574 down_read(&machine->dsos.lock); 1575 1576 list_for_each_entry(dso, &machine->dsos.head, node) { 1577 1578 /* 1579 * The cpumode passed to is_kernel_module is not the 1580 * cpumode of *this* event. If we insist on passing 1581 * correct cpumode to is_kernel_module, we should 1582 * record the cpumode when we adding this dso to the 1583 * linked list. 1584 * 1585 * However we don't really need passing correct 1586 * cpumode. We know the correct cpumode must be kernel 1587 * mode (if not, we should not link it onto kernel_dsos 1588 * list). 1589 * 1590 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1591 * is_kernel_module() treats it as a kernel cpumode. 1592 */ 1593 1594 if (!dso->kernel || 1595 is_kernel_module(dso->long_name, 1596 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1597 continue; 1598 1599 1600 kernel = dso; 1601 break; 1602 } 1603 1604 up_read(&machine->dsos.lock); 1605 1606 if (kernel == NULL) 1607 kernel = machine__findnew_dso(machine, machine->mmap_name); 1608 if (kernel == NULL) 1609 goto out_problem; 1610 1611 kernel->kernel = kernel_type; 1612 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1613 dso__put(kernel); 1614 goto out_problem; 1615 } 1616 1617 if (strstr(kernel->long_name, "vmlinux")) 1618 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1619 1620 machine__update_kernel_mmap(machine, event->mmap.start, 1621 event->mmap.start + event->mmap.len); 1622 1623 /* 1624 * Avoid using a zero address (kptr_restrict) for the ref reloc 1625 * symbol. Effectively having zero here means that at record 1626 * time /proc/sys/kernel/kptr_restrict was non zero. 1627 */ 1628 if (event->mmap.pgoff != 0) { 1629 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1630 symbol_name, 1631 event->mmap.pgoff); 1632 } 1633 1634 if (machine__is_default_guest(machine)) { 1635 /* 1636 * preload dso of guest kernel and modules 1637 */ 1638 dso__load(kernel, machine__kernel_map(machine)); 1639 } 1640 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1641 return machine__process_extra_kernel_map(machine, event); 1642 } 1643 return 0; 1644 out_problem: 1645 return -1; 1646 } 1647 1648 int machine__process_mmap2_event(struct machine *machine, 1649 union perf_event *event, 1650 struct perf_sample *sample) 1651 { 1652 struct thread *thread; 1653 struct map *map; 1654 int ret = 0; 1655 1656 if (dump_trace) 1657 perf_event__fprintf_mmap2(event, stdout); 1658 1659 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1660 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1661 ret = machine__process_kernel_mmap_event(machine, event); 1662 if (ret < 0) 1663 goto out_problem; 1664 return 0; 1665 } 1666 1667 thread = machine__findnew_thread(machine, event->mmap2.pid, 1668 event->mmap2.tid); 1669 if (thread == NULL) 1670 goto out_problem; 1671 1672 map = map__new(machine, event->mmap2.start, 1673 event->mmap2.len, event->mmap2.pgoff, 1674 event->mmap2.maj, 1675 event->mmap2.min, event->mmap2.ino, 1676 event->mmap2.ino_generation, 1677 event->mmap2.prot, 1678 event->mmap2.flags, 1679 event->mmap2.filename, thread); 1680 1681 if (map == NULL) 1682 goto out_problem_map; 1683 1684 ret = thread__insert_map(thread, map); 1685 if (ret) 1686 goto out_problem_insert; 1687 1688 thread__put(thread); 1689 map__put(map); 1690 return 0; 1691 1692 out_problem_insert: 1693 map__put(map); 1694 out_problem_map: 1695 thread__put(thread); 1696 out_problem: 1697 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1698 return 0; 1699 } 1700 1701 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1702 struct perf_sample *sample) 1703 { 1704 struct thread *thread; 1705 struct map *map; 1706 u32 prot = 0; 1707 int ret = 0; 1708 1709 if (dump_trace) 1710 perf_event__fprintf_mmap(event, stdout); 1711 1712 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1713 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1714 ret = machine__process_kernel_mmap_event(machine, event); 1715 if (ret < 0) 1716 goto out_problem; 1717 return 0; 1718 } 1719 1720 thread = machine__findnew_thread(machine, event->mmap.pid, 1721 event->mmap.tid); 1722 if (thread == NULL) 1723 goto out_problem; 1724 1725 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1726 prot = PROT_EXEC; 1727 1728 map = map__new(machine, event->mmap.start, 1729 event->mmap.len, event->mmap.pgoff, 1730 0, 0, 0, 0, prot, 0, 1731 event->mmap.filename, 1732 thread); 1733 1734 if (map == NULL) 1735 goto out_problem_map; 1736 1737 ret = thread__insert_map(thread, map); 1738 if (ret) 1739 goto out_problem_insert; 1740 1741 thread__put(thread); 1742 map__put(map); 1743 return 0; 1744 1745 out_problem_insert: 1746 map__put(map); 1747 out_problem_map: 1748 thread__put(thread); 1749 out_problem: 1750 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1751 return 0; 1752 } 1753 1754 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1755 { 1756 struct threads *threads = machine__threads(machine, th->tid); 1757 1758 if (threads->last_match == th) 1759 threads__set_last_match(threads, NULL); 1760 1761 BUG_ON(refcount_read(&th->refcnt) == 0); 1762 if (lock) 1763 down_write(&threads->lock); 1764 rb_erase_cached(&th->rb_node, &threads->entries); 1765 RB_CLEAR_NODE(&th->rb_node); 1766 --threads->nr; 1767 /* 1768 * Move it first to the dead_threads list, then drop the reference, 1769 * if this is the last reference, then the thread__delete destructor 1770 * will be called and we will remove it from the dead_threads list. 1771 */ 1772 list_add_tail(&th->node, &threads->dead); 1773 if (lock) 1774 up_write(&threads->lock); 1775 thread__put(th); 1776 } 1777 1778 void machine__remove_thread(struct machine *machine, struct thread *th) 1779 { 1780 return __machine__remove_thread(machine, th, true); 1781 } 1782 1783 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1784 struct perf_sample *sample) 1785 { 1786 struct thread *thread = machine__find_thread(machine, 1787 event->fork.pid, 1788 event->fork.tid); 1789 struct thread *parent = machine__findnew_thread(machine, 1790 event->fork.ppid, 1791 event->fork.ptid); 1792 bool do_maps_clone = true; 1793 int err = 0; 1794 1795 if (dump_trace) 1796 perf_event__fprintf_task(event, stdout); 1797 1798 /* 1799 * There may be an existing thread that is not actually the parent, 1800 * either because we are processing events out of order, or because the 1801 * (fork) event that would have removed the thread was lost. Assume the 1802 * latter case and continue on as best we can. 1803 */ 1804 if (parent->pid_ != (pid_t)event->fork.ppid) { 1805 dump_printf("removing erroneous parent thread %d/%d\n", 1806 parent->pid_, parent->tid); 1807 machine__remove_thread(machine, parent); 1808 thread__put(parent); 1809 parent = machine__findnew_thread(machine, event->fork.ppid, 1810 event->fork.ptid); 1811 } 1812 1813 /* if a thread currently exists for the thread id remove it */ 1814 if (thread != NULL) { 1815 machine__remove_thread(machine, thread); 1816 thread__put(thread); 1817 } 1818 1819 thread = machine__findnew_thread(machine, event->fork.pid, 1820 event->fork.tid); 1821 /* 1822 * When synthesizing FORK events, we are trying to create thread 1823 * objects for the already running tasks on the machine. 1824 * 1825 * Normally, for a kernel FORK event, we want to clone the parent's 1826 * maps because that is what the kernel just did. 1827 * 1828 * But when synthesizing, this should not be done. If we do, we end up 1829 * with overlapping maps as we process the sythesized MMAP2 events that 1830 * get delivered shortly thereafter. 1831 * 1832 * Use the FORK event misc flags in an internal way to signal this 1833 * situation, so we can elide the map clone when appropriate. 1834 */ 1835 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1836 do_maps_clone = false; 1837 1838 if (thread == NULL || parent == NULL || 1839 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1840 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1841 err = -1; 1842 } 1843 thread__put(thread); 1844 thread__put(parent); 1845 1846 return err; 1847 } 1848 1849 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1850 struct perf_sample *sample __maybe_unused) 1851 { 1852 struct thread *thread = machine__find_thread(machine, 1853 event->fork.pid, 1854 event->fork.tid); 1855 1856 if (dump_trace) 1857 perf_event__fprintf_task(event, stdout); 1858 1859 if (thread != NULL) { 1860 thread__exited(thread); 1861 thread__put(thread); 1862 } 1863 1864 return 0; 1865 } 1866 1867 int machine__process_event(struct machine *machine, union perf_event *event, 1868 struct perf_sample *sample) 1869 { 1870 int ret; 1871 1872 switch (event->header.type) { 1873 case PERF_RECORD_COMM: 1874 ret = machine__process_comm_event(machine, event, sample); break; 1875 case PERF_RECORD_MMAP: 1876 ret = machine__process_mmap_event(machine, event, sample); break; 1877 case PERF_RECORD_NAMESPACES: 1878 ret = machine__process_namespaces_event(machine, event, sample); break; 1879 case PERF_RECORD_MMAP2: 1880 ret = machine__process_mmap2_event(machine, event, sample); break; 1881 case PERF_RECORD_FORK: 1882 ret = machine__process_fork_event(machine, event, sample); break; 1883 case PERF_RECORD_EXIT: 1884 ret = machine__process_exit_event(machine, event, sample); break; 1885 case PERF_RECORD_LOST: 1886 ret = machine__process_lost_event(machine, event, sample); break; 1887 case PERF_RECORD_AUX: 1888 ret = machine__process_aux_event(machine, event); break; 1889 case PERF_RECORD_ITRACE_START: 1890 ret = machine__process_itrace_start_event(machine, event); break; 1891 case PERF_RECORD_LOST_SAMPLES: 1892 ret = machine__process_lost_samples_event(machine, event, sample); break; 1893 case PERF_RECORD_SWITCH: 1894 case PERF_RECORD_SWITCH_CPU_WIDE: 1895 ret = machine__process_switch_event(machine, event); break; 1896 case PERF_RECORD_KSYMBOL: 1897 ret = machine__process_ksymbol(machine, event, sample); break; 1898 case PERF_RECORD_BPF_EVENT: 1899 ret = machine__process_bpf_event(machine, event, sample); break; 1900 default: 1901 ret = -1; 1902 break; 1903 } 1904 1905 return ret; 1906 } 1907 1908 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1909 { 1910 if (!regexec(regex, sym->name, 0, NULL, 0)) 1911 return 1; 1912 return 0; 1913 } 1914 1915 static void ip__resolve_ams(struct thread *thread, 1916 struct addr_map_symbol *ams, 1917 u64 ip) 1918 { 1919 struct addr_location al; 1920 1921 memset(&al, 0, sizeof(al)); 1922 /* 1923 * We cannot use the header.misc hint to determine whether a 1924 * branch stack address is user, kernel, guest, hypervisor. 1925 * Branches may straddle the kernel/user/hypervisor boundaries. 1926 * Thus, we have to try consecutively until we find a match 1927 * or else, the symbol is unknown 1928 */ 1929 thread__find_cpumode_addr_location(thread, ip, &al); 1930 1931 ams->addr = ip; 1932 ams->al_addr = al.addr; 1933 ams->sym = al.sym; 1934 ams->map = al.map; 1935 ams->phys_addr = 0; 1936 } 1937 1938 static void ip__resolve_data(struct thread *thread, 1939 u8 m, struct addr_map_symbol *ams, 1940 u64 addr, u64 phys_addr) 1941 { 1942 struct addr_location al; 1943 1944 memset(&al, 0, sizeof(al)); 1945 1946 thread__find_symbol(thread, m, addr, &al); 1947 1948 ams->addr = addr; 1949 ams->al_addr = al.addr; 1950 ams->sym = al.sym; 1951 ams->map = al.map; 1952 ams->phys_addr = phys_addr; 1953 } 1954 1955 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1956 struct addr_location *al) 1957 { 1958 struct mem_info *mi = mem_info__new(); 1959 1960 if (!mi) 1961 return NULL; 1962 1963 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1964 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1965 sample->addr, sample->phys_addr); 1966 mi->data_src.val = sample->data_src; 1967 1968 return mi; 1969 } 1970 1971 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 1972 { 1973 char *srcline = NULL; 1974 1975 if (!map || callchain_param.key == CCKEY_FUNCTION) 1976 return srcline; 1977 1978 srcline = srcline__tree_find(&map->dso->srclines, ip); 1979 if (!srcline) { 1980 bool show_sym = false; 1981 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 1982 1983 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 1984 sym, show_sym, show_addr, ip); 1985 srcline__tree_insert(&map->dso->srclines, ip, srcline); 1986 } 1987 1988 return srcline; 1989 } 1990 1991 struct iterations { 1992 int nr_loop_iter; 1993 u64 cycles; 1994 }; 1995 1996 static int add_callchain_ip(struct thread *thread, 1997 struct callchain_cursor *cursor, 1998 struct symbol **parent, 1999 struct addr_location *root_al, 2000 u8 *cpumode, 2001 u64 ip, 2002 bool branch, 2003 struct branch_flags *flags, 2004 struct iterations *iter, 2005 u64 branch_from) 2006 { 2007 struct addr_location al; 2008 int nr_loop_iter = 0; 2009 u64 iter_cycles = 0; 2010 const char *srcline = NULL; 2011 2012 al.filtered = 0; 2013 al.sym = NULL; 2014 if (!cpumode) { 2015 thread__find_cpumode_addr_location(thread, ip, &al); 2016 } else { 2017 if (ip >= PERF_CONTEXT_MAX) { 2018 switch (ip) { 2019 case PERF_CONTEXT_HV: 2020 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2021 break; 2022 case PERF_CONTEXT_KERNEL: 2023 *cpumode = PERF_RECORD_MISC_KERNEL; 2024 break; 2025 case PERF_CONTEXT_USER: 2026 *cpumode = PERF_RECORD_MISC_USER; 2027 break; 2028 default: 2029 pr_debug("invalid callchain context: " 2030 "%"PRId64"\n", (s64) ip); 2031 /* 2032 * It seems the callchain is corrupted. 2033 * Discard all. 2034 */ 2035 callchain_cursor_reset(cursor); 2036 return 1; 2037 } 2038 return 0; 2039 } 2040 thread__find_symbol(thread, *cpumode, ip, &al); 2041 } 2042 2043 if (al.sym != NULL) { 2044 if (perf_hpp_list.parent && !*parent && 2045 symbol__match_regex(al.sym, &parent_regex)) 2046 *parent = al.sym; 2047 else if (have_ignore_callees && root_al && 2048 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2049 /* Treat this symbol as the root, 2050 forgetting its callees. */ 2051 *root_al = al; 2052 callchain_cursor_reset(cursor); 2053 } 2054 } 2055 2056 if (symbol_conf.hide_unresolved && al.sym == NULL) 2057 return 0; 2058 2059 if (iter) { 2060 nr_loop_iter = iter->nr_loop_iter; 2061 iter_cycles = iter->cycles; 2062 } 2063 2064 srcline = callchain_srcline(al.map, al.sym, al.addr); 2065 return callchain_cursor_append(cursor, ip, al.map, al.sym, 2066 branch, flags, nr_loop_iter, 2067 iter_cycles, branch_from, srcline); 2068 } 2069 2070 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2071 struct addr_location *al) 2072 { 2073 unsigned int i; 2074 const struct branch_stack *bs = sample->branch_stack; 2075 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2076 2077 if (!bi) 2078 return NULL; 2079 2080 for (i = 0; i < bs->nr; i++) { 2081 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 2082 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 2083 bi[i].flags = bs->entries[i].flags; 2084 } 2085 return bi; 2086 } 2087 2088 static void save_iterations(struct iterations *iter, 2089 struct branch_entry *be, int nr) 2090 { 2091 int i; 2092 2093 iter->nr_loop_iter++; 2094 iter->cycles = 0; 2095 2096 for (i = 0; i < nr; i++) 2097 iter->cycles += be[i].flags.cycles; 2098 } 2099 2100 #define CHASHSZ 127 2101 #define CHASHBITS 7 2102 #define NO_ENTRY 0xff 2103 2104 #define PERF_MAX_BRANCH_DEPTH 127 2105 2106 /* Remove loops. */ 2107 static int remove_loops(struct branch_entry *l, int nr, 2108 struct iterations *iter) 2109 { 2110 int i, j, off; 2111 unsigned char chash[CHASHSZ]; 2112 2113 memset(chash, NO_ENTRY, sizeof(chash)); 2114 2115 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2116 2117 for (i = 0; i < nr; i++) { 2118 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2119 2120 /* no collision handling for now */ 2121 if (chash[h] == NO_ENTRY) { 2122 chash[h] = i; 2123 } else if (l[chash[h]].from == l[i].from) { 2124 bool is_loop = true; 2125 /* check if it is a real loop */ 2126 off = 0; 2127 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2128 if (l[j].from != l[i + off].from) { 2129 is_loop = false; 2130 break; 2131 } 2132 if (is_loop) { 2133 j = nr - (i + off); 2134 if (j > 0) { 2135 save_iterations(iter + i + off, 2136 l + i, off); 2137 2138 memmove(iter + i, iter + i + off, 2139 j * sizeof(*iter)); 2140 2141 memmove(l + i, l + i + off, 2142 j * sizeof(*l)); 2143 } 2144 2145 nr -= off; 2146 } 2147 } 2148 } 2149 return nr; 2150 } 2151 2152 /* 2153 * Recolve LBR callstack chain sample 2154 * Return: 2155 * 1 on success get LBR callchain information 2156 * 0 no available LBR callchain information, should try fp 2157 * negative error code on other errors. 2158 */ 2159 static int resolve_lbr_callchain_sample(struct thread *thread, 2160 struct callchain_cursor *cursor, 2161 struct perf_sample *sample, 2162 struct symbol **parent, 2163 struct addr_location *root_al, 2164 int max_stack) 2165 { 2166 struct ip_callchain *chain = sample->callchain; 2167 int chain_nr = min(max_stack, (int)chain->nr), i; 2168 u8 cpumode = PERF_RECORD_MISC_USER; 2169 u64 ip, branch_from = 0; 2170 2171 for (i = 0; i < chain_nr; i++) { 2172 if (chain->ips[i] == PERF_CONTEXT_USER) 2173 break; 2174 } 2175 2176 /* LBR only affects the user callchain */ 2177 if (i != chain_nr) { 2178 struct branch_stack *lbr_stack = sample->branch_stack; 2179 int lbr_nr = lbr_stack->nr, j, k; 2180 bool branch; 2181 struct branch_flags *flags; 2182 /* 2183 * LBR callstack can only get user call chain. 2184 * The mix_chain_nr is kernel call chain 2185 * number plus LBR user call chain number. 2186 * i is kernel call chain number, 2187 * 1 is PERF_CONTEXT_USER, 2188 * lbr_nr + 1 is the user call chain number. 2189 * For details, please refer to the comments 2190 * in callchain__printf 2191 */ 2192 int mix_chain_nr = i + 1 + lbr_nr + 1; 2193 2194 for (j = 0; j < mix_chain_nr; j++) { 2195 int err; 2196 branch = false; 2197 flags = NULL; 2198 2199 if (callchain_param.order == ORDER_CALLEE) { 2200 if (j < i + 1) 2201 ip = chain->ips[j]; 2202 else if (j > i + 1) { 2203 k = j - i - 2; 2204 ip = lbr_stack->entries[k].from; 2205 branch = true; 2206 flags = &lbr_stack->entries[k].flags; 2207 } else { 2208 ip = lbr_stack->entries[0].to; 2209 branch = true; 2210 flags = &lbr_stack->entries[0].flags; 2211 branch_from = 2212 lbr_stack->entries[0].from; 2213 } 2214 } else { 2215 if (j < lbr_nr) { 2216 k = lbr_nr - j - 1; 2217 ip = lbr_stack->entries[k].from; 2218 branch = true; 2219 flags = &lbr_stack->entries[k].flags; 2220 } 2221 else if (j > lbr_nr) 2222 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2223 else { 2224 ip = lbr_stack->entries[0].to; 2225 branch = true; 2226 flags = &lbr_stack->entries[0].flags; 2227 branch_from = 2228 lbr_stack->entries[0].from; 2229 } 2230 } 2231 2232 err = add_callchain_ip(thread, cursor, parent, 2233 root_al, &cpumode, ip, 2234 branch, flags, NULL, 2235 branch_from); 2236 if (err) 2237 return (err < 0) ? err : 0; 2238 } 2239 return 1; 2240 } 2241 2242 return 0; 2243 } 2244 2245 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2246 struct callchain_cursor *cursor, 2247 struct symbol **parent, 2248 struct addr_location *root_al, 2249 u8 *cpumode, int ent) 2250 { 2251 int err = 0; 2252 2253 while (--ent >= 0) { 2254 u64 ip = chain->ips[ent]; 2255 2256 if (ip >= PERF_CONTEXT_MAX) { 2257 err = add_callchain_ip(thread, cursor, parent, 2258 root_al, cpumode, ip, 2259 false, NULL, NULL, 0); 2260 break; 2261 } 2262 } 2263 return err; 2264 } 2265 2266 static int thread__resolve_callchain_sample(struct thread *thread, 2267 struct callchain_cursor *cursor, 2268 struct perf_evsel *evsel, 2269 struct perf_sample *sample, 2270 struct symbol **parent, 2271 struct addr_location *root_al, 2272 int max_stack) 2273 { 2274 struct branch_stack *branch = sample->branch_stack; 2275 struct ip_callchain *chain = sample->callchain; 2276 int chain_nr = 0; 2277 u8 cpumode = PERF_RECORD_MISC_USER; 2278 int i, j, err, nr_entries; 2279 int skip_idx = -1; 2280 int first_call = 0; 2281 2282 if (chain) 2283 chain_nr = chain->nr; 2284 2285 if (perf_evsel__has_branch_callstack(evsel)) { 2286 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2287 root_al, max_stack); 2288 if (err) 2289 return (err < 0) ? err : 0; 2290 } 2291 2292 /* 2293 * Based on DWARF debug information, some architectures skip 2294 * a callchain entry saved by the kernel. 2295 */ 2296 skip_idx = arch_skip_callchain_idx(thread, chain); 2297 2298 /* 2299 * Add branches to call stack for easier browsing. This gives 2300 * more context for a sample than just the callers. 2301 * 2302 * This uses individual histograms of paths compared to the 2303 * aggregated histograms the normal LBR mode uses. 2304 * 2305 * Limitations for now: 2306 * - No extra filters 2307 * - No annotations (should annotate somehow) 2308 */ 2309 2310 if (branch && callchain_param.branch_callstack) { 2311 int nr = min(max_stack, (int)branch->nr); 2312 struct branch_entry be[nr]; 2313 struct iterations iter[nr]; 2314 2315 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2316 pr_warning("corrupted branch chain. skipping...\n"); 2317 goto check_calls; 2318 } 2319 2320 for (i = 0; i < nr; i++) { 2321 if (callchain_param.order == ORDER_CALLEE) { 2322 be[i] = branch->entries[i]; 2323 2324 if (chain == NULL) 2325 continue; 2326 2327 /* 2328 * Check for overlap into the callchain. 2329 * The return address is one off compared to 2330 * the branch entry. To adjust for this 2331 * assume the calling instruction is not longer 2332 * than 8 bytes. 2333 */ 2334 if (i == skip_idx || 2335 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2336 first_call++; 2337 else if (be[i].from < chain->ips[first_call] && 2338 be[i].from >= chain->ips[first_call] - 8) 2339 first_call++; 2340 } else 2341 be[i] = branch->entries[branch->nr - i - 1]; 2342 } 2343 2344 memset(iter, 0, sizeof(struct iterations) * nr); 2345 nr = remove_loops(be, nr, iter); 2346 2347 for (i = 0; i < nr; i++) { 2348 err = add_callchain_ip(thread, cursor, parent, 2349 root_al, 2350 NULL, be[i].to, 2351 true, &be[i].flags, 2352 NULL, be[i].from); 2353 2354 if (!err) 2355 err = add_callchain_ip(thread, cursor, parent, root_al, 2356 NULL, be[i].from, 2357 true, &be[i].flags, 2358 &iter[i], 0); 2359 if (err == -EINVAL) 2360 break; 2361 if (err) 2362 return err; 2363 } 2364 2365 if (chain_nr == 0) 2366 return 0; 2367 2368 chain_nr -= nr; 2369 } 2370 2371 check_calls: 2372 if (callchain_param.order != ORDER_CALLEE) { 2373 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2374 &cpumode, chain->nr - first_call); 2375 if (err) 2376 return (err < 0) ? err : 0; 2377 } 2378 for (i = first_call, nr_entries = 0; 2379 i < chain_nr && nr_entries < max_stack; i++) { 2380 u64 ip; 2381 2382 if (callchain_param.order == ORDER_CALLEE) 2383 j = i; 2384 else 2385 j = chain->nr - i - 1; 2386 2387 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2388 if (j == skip_idx) 2389 continue; 2390 #endif 2391 ip = chain->ips[j]; 2392 if (ip < PERF_CONTEXT_MAX) 2393 ++nr_entries; 2394 else if (callchain_param.order != ORDER_CALLEE) { 2395 err = find_prev_cpumode(chain, thread, cursor, parent, 2396 root_al, &cpumode, j); 2397 if (err) 2398 return (err < 0) ? err : 0; 2399 continue; 2400 } 2401 2402 err = add_callchain_ip(thread, cursor, parent, 2403 root_al, &cpumode, ip, 2404 false, NULL, NULL, 0); 2405 2406 if (err) 2407 return (err < 0) ? err : 0; 2408 } 2409 2410 return 0; 2411 } 2412 2413 static int append_inlines(struct callchain_cursor *cursor, 2414 struct map *map, struct symbol *sym, u64 ip) 2415 { 2416 struct inline_node *inline_node; 2417 struct inline_list *ilist; 2418 u64 addr; 2419 int ret = 1; 2420 2421 if (!symbol_conf.inline_name || !map || !sym) 2422 return ret; 2423 2424 addr = map__map_ip(map, ip); 2425 addr = map__rip_2objdump(map, addr); 2426 2427 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2428 if (!inline_node) { 2429 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2430 if (!inline_node) 2431 return ret; 2432 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2433 } 2434 2435 list_for_each_entry(ilist, &inline_node->val, list) { 2436 ret = callchain_cursor_append(cursor, ip, map, 2437 ilist->symbol, false, 2438 NULL, 0, 0, 0, ilist->srcline); 2439 2440 if (ret != 0) 2441 return ret; 2442 } 2443 2444 return ret; 2445 } 2446 2447 static int unwind_entry(struct unwind_entry *entry, void *arg) 2448 { 2449 struct callchain_cursor *cursor = arg; 2450 const char *srcline = NULL; 2451 u64 addr = entry->ip; 2452 2453 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2454 return 0; 2455 2456 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2457 return 0; 2458 2459 /* 2460 * Convert entry->ip from a virtual address to an offset in 2461 * its corresponding binary. 2462 */ 2463 if (entry->map) 2464 addr = map__map_ip(entry->map, entry->ip); 2465 2466 srcline = callchain_srcline(entry->map, entry->sym, addr); 2467 return callchain_cursor_append(cursor, entry->ip, 2468 entry->map, entry->sym, 2469 false, NULL, 0, 0, 0, srcline); 2470 } 2471 2472 static int thread__resolve_callchain_unwind(struct thread *thread, 2473 struct callchain_cursor *cursor, 2474 struct perf_evsel *evsel, 2475 struct perf_sample *sample, 2476 int max_stack) 2477 { 2478 /* Can we do dwarf post unwind? */ 2479 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2480 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2481 return 0; 2482 2483 /* Bail out if nothing was captured. */ 2484 if ((!sample->user_regs.regs) || 2485 (!sample->user_stack.size)) 2486 return 0; 2487 2488 return unwind__get_entries(unwind_entry, cursor, 2489 thread, sample, max_stack); 2490 } 2491 2492 int thread__resolve_callchain(struct thread *thread, 2493 struct callchain_cursor *cursor, 2494 struct perf_evsel *evsel, 2495 struct perf_sample *sample, 2496 struct symbol **parent, 2497 struct addr_location *root_al, 2498 int max_stack) 2499 { 2500 int ret = 0; 2501 2502 callchain_cursor_reset(cursor); 2503 2504 if (callchain_param.order == ORDER_CALLEE) { 2505 ret = thread__resolve_callchain_sample(thread, cursor, 2506 evsel, sample, 2507 parent, root_al, 2508 max_stack); 2509 if (ret) 2510 return ret; 2511 ret = thread__resolve_callchain_unwind(thread, cursor, 2512 evsel, sample, 2513 max_stack); 2514 } else { 2515 ret = thread__resolve_callchain_unwind(thread, cursor, 2516 evsel, sample, 2517 max_stack); 2518 if (ret) 2519 return ret; 2520 ret = thread__resolve_callchain_sample(thread, cursor, 2521 evsel, sample, 2522 parent, root_al, 2523 max_stack); 2524 } 2525 2526 return ret; 2527 } 2528 2529 int machine__for_each_thread(struct machine *machine, 2530 int (*fn)(struct thread *thread, void *p), 2531 void *priv) 2532 { 2533 struct threads *threads; 2534 struct rb_node *nd; 2535 struct thread *thread; 2536 int rc = 0; 2537 int i; 2538 2539 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2540 threads = &machine->threads[i]; 2541 for (nd = rb_first_cached(&threads->entries); nd; 2542 nd = rb_next(nd)) { 2543 thread = rb_entry(nd, struct thread, rb_node); 2544 rc = fn(thread, priv); 2545 if (rc != 0) 2546 return rc; 2547 } 2548 2549 list_for_each_entry(thread, &threads->dead, node) { 2550 rc = fn(thread, priv); 2551 if (rc != 0) 2552 return rc; 2553 } 2554 } 2555 return rc; 2556 } 2557 2558 int machines__for_each_thread(struct machines *machines, 2559 int (*fn)(struct thread *thread, void *p), 2560 void *priv) 2561 { 2562 struct rb_node *nd; 2563 int rc = 0; 2564 2565 rc = machine__for_each_thread(&machines->host, fn, priv); 2566 if (rc != 0) 2567 return rc; 2568 2569 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2570 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2571 2572 rc = machine__for_each_thread(machine, fn, priv); 2573 if (rc != 0) 2574 return rc; 2575 } 2576 return rc; 2577 } 2578 2579 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2580 struct target *target, struct thread_map *threads, 2581 perf_event__handler_t process, bool data_mmap, 2582 unsigned int nr_threads_synthesize) 2583 { 2584 if (target__has_task(target)) 2585 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap); 2586 else if (target__has_cpu(target)) 2587 return perf_event__synthesize_threads(tool, process, 2588 machine, data_mmap, 2589 nr_threads_synthesize); 2590 /* command specified */ 2591 return 0; 2592 } 2593 2594 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2595 { 2596 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2597 return -1; 2598 2599 return machine->current_tid[cpu]; 2600 } 2601 2602 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2603 pid_t tid) 2604 { 2605 struct thread *thread; 2606 2607 if (cpu < 0) 2608 return -EINVAL; 2609 2610 if (!machine->current_tid) { 2611 int i; 2612 2613 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2614 if (!machine->current_tid) 2615 return -ENOMEM; 2616 for (i = 0; i < MAX_NR_CPUS; i++) 2617 machine->current_tid[i] = -1; 2618 } 2619 2620 if (cpu >= MAX_NR_CPUS) { 2621 pr_err("Requested CPU %d too large. ", cpu); 2622 pr_err("Consider raising MAX_NR_CPUS\n"); 2623 return -EINVAL; 2624 } 2625 2626 machine->current_tid[cpu] = tid; 2627 2628 thread = machine__findnew_thread(machine, pid, tid); 2629 if (!thread) 2630 return -ENOMEM; 2631 2632 thread->cpu = cpu; 2633 thread__put(thread); 2634 2635 return 0; 2636 } 2637 2638 /* 2639 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2640 * normalized arch is needed. 2641 */ 2642 bool machine__is(struct machine *machine, const char *arch) 2643 { 2644 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2645 } 2646 2647 int machine__nr_cpus_avail(struct machine *machine) 2648 { 2649 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2650 } 2651 2652 int machine__get_kernel_start(struct machine *machine) 2653 { 2654 struct map *map = machine__kernel_map(machine); 2655 int err = 0; 2656 2657 /* 2658 * The only addresses above 2^63 are kernel addresses of a 64-bit 2659 * kernel. Note that addresses are unsigned so that on a 32-bit system 2660 * all addresses including kernel addresses are less than 2^32. In 2661 * that case (32-bit system), if the kernel mapping is unknown, all 2662 * addresses will be assumed to be in user space - see 2663 * machine__kernel_ip(). 2664 */ 2665 machine->kernel_start = 1ULL << 63; 2666 if (map) { 2667 err = map__load(map); 2668 /* 2669 * On x86_64, PTI entry trampolines are less than the 2670 * start of kernel text, but still above 2^63. So leave 2671 * kernel_start = 1ULL << 63 for x86_64. 2672 */ 2673 if (!err && !machine__is(machine, "x86_64")) 2674 machine->kernel_start = map->start; 2675 } 2676 return err; 2677 } 2678 2679 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 2680 { 2681 u8 addr_cpumode = cpumode; 2682 bool kernel_ip; 2683 2684 if (!machine->single_address_space) 2685 goto out; 2686 2687 kernel_ip = machine__kernel_ip(machine, addr); 2688 switch (cpumode) { 2689 case PERF_RECORD_MISC_KERNEL: 2690 case PERF_RECORD_MISC_USER: 2691 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 2692 PERF_RECORD_MISC_USER; 2693 break; 2694 case PERF_RECORD_MISC_GUEST_KERNEL: 2695 case PERF_RECORD_MISC_GUEST_USER: 2696 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 2697 PERF_RECORD_MISC_GUEST_USER; 2698 break; 2699 default: 2700 break; 2701 } 2702 out: 2703 return addr_cpumode; 2704 } 2705 2706 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2707 { 2708 return dsos__findnew(&machine->dsos, filename); 2709 } 2710 2711 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2712 { 2713 struct machine *machine = vmachine; 2714 struct map *map; 2715 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2716 2717 if (sym == NULL) 2718 return NULL; 2719 2720 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2721 *addrp = map->unmap_ip(map, sym->start); 2722 return sym->name; 2723 } 2724