xref: /linux/tools/perf/util/machine.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "symbol.h"
14 #include "sort.h"
15 #include "strlist.h"
16 #include "thread.h"
17 #include "vdso.h"
18 #include <stdbool.h>
19 #include <sys/types.h>
20 #include <sys/stat.h>
21 #include <unistd.h>
22 #include "unwind.h"
23 #include "linux/hash.h"
24 #include "asm/bug.h"
25 #include "bpf-event.h"
26 
27 #include "sane_ctype.h"
28 #include <symbol/kallsyms.h>
29 #include <linux/mman.h>
30 
31 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
32 
33 static void dsos__init(struct dsos *dsos)
34 {
35 	INIT_LIST_HEAD(&dsos->head);
36 	dsos->root = RB_ROOT;
37 	init_rwsem(&dsos->lock);
38 }
39 
40 static void machine__threads_init(struct machine *machine)
41 {
42 	int i;
43 
44 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
45 		struct threads *threads = &machine->threads[i];
46 		threads->entries = RB_ROOT_CACHED;
47 		init_rwsem(&threads->lock);
48 		threads->nr = 0;
49 		INIT_LIST_HEAD(&threads->dead);
50 		threads->last_match = NULL;
51 	}
52 }
53 
54 static int machine__set_mmap_name(struct machine *machine)
55 {
56 	if (machine__is_host(machine))
57 		machine->mmap_name = strdup("[kernel.kallsyms]");
58 	else if (machine__is_default_guest(machine))
59 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
60 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
61 			  machine->pid) < 0)
62 		machine->mmap_name = NULL;
63 
64 	return machine->mmap_name ? 0 : -ENOMEM;
65 }
66 
67 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
68 {
69 	int err = -ENOMEM;
70 
71 	memset(machine, 0, sizeof(*machine));
72 	map_groups__init(&machine->kmaps, machine);
73 	RB_CLEAR_NODE(&machine->rb_node);
74 	dsos__init(&machine->dsos);
75 
76 	machine__threads_init(machine);
77 
78 	machine->vdso_info = NULL;
79 	machine->env = NULL;
80 
81 	machine->pid = pid;
82 
83 	machine->id_hdr_size = 0;
84 	machine->kptr_restrict_warned = false;
85 	machine->comm_exec = false;
86 	machine->kernel_start = 0;
87 	machine->vmlinux_map = NULL;
88 
89 	machine->root_dir = strdup(root_dir);
90 	if (machine->root_dir == NULL)
91 		return -ENOMEM;
92 
93 	if (machine__set_mmap_name(machine))
94 		goto out;
95 
96 	if (pid != HOST_KERNEL_ID) {
97 		struct thread *thread = machine__findnew_thread(machine, -1,
98 								pid);
99 		char comm[64];
100 
101 		if (thread == NULL)
102 			goto out;
103 
104 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
105 		thread__set_comm(thread, comm, 0);
106 		thread__put(thread);
107 	}
108 
109 	machine->current_tid = NULL;
110 	err = 0;
111 
112 out:
113 	if (err) {
114 		zfree(&machine->root_dir);
115 		zfree(&machine->mmap_name);
116 	}
117 	return 0;
118 }
119 
120 struct machine *machine__new_host(void)
121 {
122 	struct machine *machine = malloc(sizeof(*machine));
123 
124 	if (machine != NULL) {
125 		machine__init(machine, "", HOST_KERNEL_ID);
126 
127 		if (machine__create_kernel_maps(machine) < 0)
128 			goto out_delete;
129 	}
130 
131 	return machine;
132 out_delete:
133 	free(machine);
134 	return NULL;
135 }
136 
137 struct machine *machine__new_kallsyms(void)
138 {
139 	struct machine *machine = machine__new_host();
140 	/*
141 	 * FIXME:
142 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
143 	 *    ask for not using the kcore parsing code, once this one is fixed
144 	 *    to create a map per module.
145 	 */
146 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
147 		machine__delete(machine);
148 		machine = NULL;
149 	}
150 
151 	return machine;
152 }
153 
154 static void dsos__purge(struct dsos *dsos)
155 {
156 	struct dso *pos, *n;
157 
158 	down_write(&dsos->lock);
159 
160 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
161 		RB_CLEAR_NODE(&pos->rb_node);
162 		pos->root = NULL;
163 		list_del_init(&pos->node);
164 		dso__put(pos);
165 	}
166 
167 	up_write(&dsos->lock);
168 }
169 
170 static void dsos__exit(struct dsos *dsos)
171 {
172 	dsos__purge(dsos);
173 	exit_rwsem(&dsos->lock);
174 }
175 
176 void machine__delete_threads(struct machine *machine)
177 {
178 	struct rb_node *nd;
179 	int i;
180 
181 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
182 		struct threads *threads = &machine->threads[i];
183 		down_write(&threads->lock);
184 		nd = rb_first_cached(&threads->entries);
185 		while (nd) {
186 			struct thread *t = rb_entry(nd, struct thread, rb_node);
187 
188 			nd = rb_next(nd);
189 			__machine__remove_thread(machine, t, false);
190 		}
191 		up_write(&threads->lock);
192 	}
193 }
194 
195 void machine__exit(struct machine *machine)
196 {
197 	int i;
198 
199 	if (machine == NULL)
200 		return;
201 
202 	machine__destroy_kernel_maps(machine);
203 	map_groups__exit(&machine->kmaps);
204 	dsos__exit(&machine->dsos);
205 	machine__exit_vdso(machine);
206 	zfree(&machine->root_dir);
207 	zfree(&machine->mmap_name);
208 	zfree(&machine->current_tid);
209 
210 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
211 		struct threads *threads = &machine->threads[i];
212 		exit_rwsem(&threads->lock);
213 	}
214 }
215 
216 void machine__delete(struct machine *machine)
217 {
218 	if (machine) {
219 		machine__exit(machine);
220 		free(machine);
221 	}
222 }
223 
224 void machines__init(struct machines *machines)
225 {
226 	machine__init(&machines->host, "", HOST_KERNEL_ID);
227 	machines->guests = RB_ROOT_CACHED;
228 }
229 
230 void machines__exit(struct machines *machines)
231 {
232 	machine__exit(&machines->host);
233 	/* XXX exit guest */
234 }
235 
236 struct machine *machines__add(struct machines *machines, pid_t pid,
237 			      const char *root_dir)
238 {
239 	struct rb_node **p = &machines->guests.rb_root.rb_node;
240 	struct rb_node *parent = NULL;
241 	struct machine *pos, *machine = malloc(sizeof(*machine));
242 	bool leftmost = true;
243 
244 	if (machine == NULL)
245 		return NULL;
246 
247 	if (machine__init(machine, root_dir, pid) != 0) {
248 		free(machine);
249 		return NULL;
250 	}
251 
252 	while (*p != NULL) {
253 		parent = *p;
254 		pos = rb_entry(parent, struct machine, rb_node);
255 		if (pid < pos->pid)
256 			p = &(*p)->rb_left;
257 		else {
258 			p = &(*p)->rb_right;
259 			leftmost = false;
260 		}
261 	}
262 
263 	rb_link_node(&machine->rb_node, parent, p);
264 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
265 
266 	return machine;
267 }
268 
269 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
270 {
271 	struct rb_node *nd;
272 
273 	machines->host.comm_exec = comm_exec;
274 
275 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
276 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
277 
278 		machine->comm_exec = comm_exec;
279 	}
280 }
281 
282 struct machine *machines__find(struct machines *machines, pid_t pid)
283 {
284 	struct rb_node **p = &machines->guests.rb_root.rb_node;
285 	struct rb_node *parent = NULL;
286 	struct machine *machine;
287 	struct machine *default_machine = NULL;
288 
289 	if (pid == HOST_KERNEL_ID)
290 		return &machines->host;
291 
292 	while (*p != NULL) {
293 		parent = *p;
294 		machine = rb_entry(parent, struct machine, rb_node);
295 		if (pid < machine->pid)
296 			p = &(*p)->rb_left;
297 		else if (pid > machine->pid)
298 			p = &(*p)->rb_right;
299 		else
300 			return machine;
301 		if (!machine->pid)
302 			default_machine = machine;
303 	}
304 
305 	return default_machine;
306 }
307 
308 struct machine *machines__findnew(struct machines *machines, pid_t pid)
309 {
310 	char path[PATH_MAX];
311 	const char *root_dir = "";
312 	struct machine *machine = machines__find(machines, pid);
313 
314 	if (machine && (machine->pid == pid))
315 		goto out;
316 
317 	if ((pid != HOST_KERNEL_ID) &&
318 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
319 	    (symbol_conf.guestmount)) {
320 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
321 		if (access(path, R_OK)) {
322 			static struct strlist *seen;
323 
324 			if (!seen)
325 				seen = strlist__new(NULL, NULL);
326 
327 			if (!strlist__has_entry(seen, path)) {
328 				pr_err("Can't access file %s\n", path);
329 				strlist__add(seen, path);
330 			}
331 			machine = NULL;
332 			goto out;
333 		}
334 		root_dir = path;
335 	}
336 
337 	machine = machines__add(machines, pid, root_dir);
338 out:
339 	return machine;
340 }
341 
342 void machines__process_guests(struct machines *machines,
343 			      machine__process_t process, void *data)
344 {
345 	struct rb_node *nd;
346 
347 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
348 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
349 		process(pos, data);
350 	}
351 }
352 
353 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
354 {
355 	struct rb_node *node;
356 	struct machine *machine;
357 
358 	machines->host.id_hdr_size = id_hdr_size;
359 
360 	for (node = rb_first_cached(&machines->guests); node;
361 	     node = rb_next(node)) {
362 		machine = rb_entry(node, struct machine, rb_node);
363 		machine->id_hdr_size = id_hdr_size;
364 	}
365 
366 	return;
367 }
368 
369 static void machine__update_thread_pid(struct machine *machine,
370 				       struct thread *th, pid_t pid)
371 {
372 	struct thread *leader;
373 
374 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
375 		return;
376 
377 	th->pid_ = pid;
378 
379 	if (th->pid_ == th->tid)
380 		return;
381 
382 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
383 	if (!leader)
384 		goto out_err;
385 
386 	if (!leader->mg)
387 		leader->mg = map_groups__new(machine);
388 
389 	if (!leader->mg)
390 		goto out_err;
391 
392 	if (th->mg == leader->mg)
393 		return;
394 
395 	if (th->mg) {
396 		/*
397 		 * Maps are created from MMAP events which provide the pid and
398 		 * tid.  Consequently there never should be any maps on a thread
399 		 * with an unknown pid.  Just print an error if there are.
400 		 */
401 		if (!map_groups__empty(th->mg))
402 			pr_err("Discarding thread maps for %d:%d\n",
403 			       th->pid_, th->tid);
404 		map_groups__put(th->mg);
405 	}
406 
407 	th->mg = map_groups__get(leader->mg);
408 out_put:
409 	thread__put(leader);
410 	return;
411 out_err:
412 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
413 	goto out_put;
414 }
415 
416 /*
417  * Front-end cache - TID lookups come in blocks,
418  * so most of the time we dont have to look up
419  * the full rbtree:
420  */
421 static struct thread*
422 __threads__get_last_match(struct threads *threads, struct machine *machine,
423 			  int pid, int tid)
424 {
425 	struct thread *th;
426 
427 	th = threads->last_match;
428 	if (th != NULL) {
429 		if (th->tid == tid) {
430 			machine__update_thread_pid(machine, th, pid);
431 			return thread__get(th);
432 		}
433 
434 		threads->last_match = NULL;
435 	}
436 
437 	return NULL;
438 }
439 
440 static struct thread*
441 threads__get_last_match(struct threads *threads, struct machine *machine,
442 			int pid, int tid)
443 {
444 	struct thread *th = NULL;
445 
446 	if (perf_singlethreaded)
447 		th = __threads__get_last_match(threads, machine, pid, tid);
448 
449 	return th;
450 }
451 
452 static void
453 __threads__set_last_match(struct threads *threads, struct thread *th)
454 {
455 	threads->last_match = th;
456 }
457 
458 static void
459 threads__set_last_match(struct threads *threads, struct thread *th)
460 {
461 	if (perf_singlethreaded)
462 		__threads__set_last_match(threads, th);
463 }
464 
465 /*
466  * Caller must eventually drop thread->refcnt returned with a successful
467  * lookup/new thread inserted.
468  */
469 static struct thread *____machine__findnew_thread(struct machine *machine,
470 						  struct threads *threads,
471 						  pid_t pid, pid_t tid,
472 						  bool create)
473 {
474 	struct rb_node **p = &threads->entries.rb_root.rb_node;
475 	struct rb_node *parent = NULL;
476 	struct thread *th;
477 	bool leftmost = true;
478 
479 	th = threads__get_last_match(threads, machine, pid, tid);
480 	if (th)
481 		return th;
482 
483 	while (*p != NULL) {
484 		parent = *p;
485 		th = rb_entry(parent, struct thread, rb_node);
486 
487 		if (th->tid == tid) {
488 			threads__set_last_match(threads, th);
489 			machine__update_thread_pid(machine, th, pid);
490 			return thread__get(th);
491 		}
492 
493 		if (tid < th->tid)
494 			p = &(*p)->rb_left;
495 		else {
496 			p = &(*p)->rb_right;
497 			leftmost = false;
498 		}
499 	}
500 
501 	if (!create)
502 		return NULL;
503 
504 	th = thread__new(pid, tid);
505 	if (th != NULL) {
506 		rb_link_node(&th->rb_node, parent, p);
507 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
508 
509 		/*
510 		 * We have to initialize map_groups separately
511 		 * after rb tree is updated.
512 		 *
513 		 * The reason is that we call machine__findnew_thread
514 		 * within thread__init_map_groups to find the thread
515 		 * leader and that would screwed the rb tree.
516 		 */
517 		if (thread__init_map_groups(th, machine)) {
518 			rb_erase_cached(&th->rb_node, &threads->entries);
519 			RB_CLEAR_NODE(&th->rb_node);
520 			thread__put(th);
521 			return NULL;
522 		}
523 		/*
524 		 * It is now in the rbtree, get a ref
525 		 */
526 		thread__get(th);
527 		threads__set_last_match(threads, th);
528 		++threads->nr;
529 	}
530 
531 	return th;
532 }
533 
534 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
535 {
536 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
537 }
538 
539 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
540 				       pid_t tid)
541 {
542 	struct threads *threads = machine__threads(machine, tid);
543 	struct thread *th;
544 
545 	down_write(&threads->lock);
546 	th = __machine__findnew_thread(machine, pid, tid);
547 	up_write(&threads->lock);
548 	return th;
549 }
550 
551 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
552 				    pid_t tid)
553 {
554 	struct threads *threads = machine__threads(machine, tid);
555 	struct thread *th;
556 
557 	down_read(&threads->lock);
558 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
559 	up_read(&threads->lock);
560 	return th;
561 }
562 
563 struct comm *machine__thread_exec_comm(struct machine *machine,
564 				       struct thread *thread)
565 {
566 	if (machine->comm_exec)
567 		return thread__exec_comm(thread);
568 	else
569 		return thread__comm(thread);
570 }
571 
572 int machine__process_comm_event(struct machine *machine, union perf_event *event,
573 				struct perf_sample *sample)
574 {
575 	struct thread *thread = machine__findnew_thread(machine,
576 							event->comm.pid,
577 							event->comm.tid);
578 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
579 	int err = 0;
580 
581 	if (exec)
582 		machine->comm_exec = true;
583 
584 	if (dump_trace)
585 		perf_event__fprintf_comm(event, stdout);
586 
587 	if (thread == NULL ||
588 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
589 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
590 		err = -1;
591 	}
592 
593 	thread__put(thread);
594 
595 	return err;
596 }
597 
598 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
599 				      union perf_event *event,
600 				      struct perf_sample *sample __maybe_unused)
601 {
602 	struct thread *thread = machine__findnew_thread(machine,
603 							event->namespaces.pid,
604 							event->namespaces.tid);
605 	int err = 0;
606 
607 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
608 		  "\nWARNING: kernel seems to support more namespaces than perf"
609 		  " tool.\nTry updating the perf tool..\n\n");
610 
611 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
612 		  "\nWARNING: perf tool seems to support more namespaces than"
613 		  " the kernel.\nTry updating the kernel..\n\n");
614 
615 	if (dump_trace)
616 		perf_event__fprintf_namespaces(event, stdout);
617 
618 	if (thread == NULL ||
619 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
620 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
621 		err = -1;
622 	}
623 
624 	thread__put(thread);
625 
626 	return err;
627 }
628 
629 int machine__process_lost_event(struct machine *machine __maybe_unused,
630 				union perf_event *event, struct perf_sample *sample __maybe_unused)
631 {
632 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
633 		    event->lost.id, event->lost.lost);
634 	return 0;
635 }
636 
637 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
638 					union perf_event *event, struct perf_sample *sample)
639 {
640 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
641 		    sample->id, event->lost_samples.lost);
642 	return 0;
643 }
644 
645 static struct dso *machine__findnew_module_dso(struct machine *machine,
646 					       struct kmod_path *m,
647 					       const char *filename)
648 {
649 	struct dso *dso;
650 
651 	down_write(&machine->dsos.lock);
652 
653 	dso = __dsos__find(&machine->dsos, m->name, true);
654 	if (!dso) {
655 		dso = __dsos__addnew(&machine->dsos, m->name);
656 		if (dso == NULL)
657 			goto out_unlock;
658 
659 		dso__set_module_info(dso, m, machine);
660 		dso__set_long_name(dso, strdup(filename), true);
661 	}
662 
663 	dso__get(dso);
664 out_unlock:
665 	up_write(&machine->dsos.lock);
666 	return dso;
667 }
668 
669 int machine__process_aux_event(struct machine *machine __maybe_unused,
670 			       union perf_event *event)
671 {
672 	if (dump_trace)
673 		perf_event__fprintf_aux(event, stdout);
674 	return 0;
675 }
676 
677 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
678 					union perf_event *event)
679 {
680 	if (dump_trace)
681 		perf_event__fprintf_itrace_start(event, stdout);
682 	return 0;
683 }
684 
685 int machine__process_switch_event(struct machine *machine __maybe_unused,
686 				  union perf_event *event)
687 {
688 	if (dump_trace)
689 		perf_event__fprintf_switch(event, stdout);
690 	return 0;
691 }
692 
693 static int machine__process_ksymbol_register(struct machine *machine,
694 					     union perf_event *event,
695 					     struct perf_sample *sample __maybe_unused)
696 {
697 	struct symbol *sym;
698 	struct map *map;
699 
700 	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
701 	if (!map) {
702 		map = dso__new_map(event->ksymbol_event.name);
703 		if (!map)
704 			return -ENOMEM;
705 
706 		map->start = event->ksymbol_event.addr;
707 		map->pgoff = map->start;
708 		map->end = map->start + event->ksymbol_event.len;
709 		map_groups__insert(&machine->kmaps, map);
710 	}
711 
712 	sym = symbol__new(event->ksymbol_event.addr, event->ksymbol_event.len,
713 			  0, 0, event->ksymbol_event.name);
714 	if (!sym)
715 		return -ENOMEM;
716 	dso__insert_symbol(map->dso, sym);
717 	return 0;
718 }
719 
720 static int machine__process_ksymbol_unregister(struct machine *machine,
721 					       union perf_event *event,
722 					       struct perf_sample *sample __maybe_unused)
723 {
724 	struct map *map;
725 
726 	map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
727 	if (map)
728 		map_groups__remove(&machine->kmaps, map);
729 
730 	return 0;
731 }
732 
733 int machine__process_ksymbol(struct machine *machine __maybe_unused,
734 			     union perf_event *event,
735 			     struct perf_sample *sample)
736 {
737 	if (dump_trace)
738 		perf_event__fprintf_ksymbol(event, stdout);
739 
740 	if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
741 		return machine__process_ksymbol_unregister(machine, event,
742 							   sample);
743 	return machine__process_ksymbol_register(machine, event, sample);
744 }
745 
746 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
747 {
748 	const char *dup_filename;
749 
750 	if (!filename || !dso || !dso->long_name)
751 		return;
752 	if (dso->long_name[0] != '[')
753 		return;
754 	if (!strchr(filename, '/'))
755 		return;
756 
757 	dup_filename = strdup(filename);
758 	if (!dup_filename)
759 		return;
760 
761 	dso__set_long_name(dso, dup_filename, true);
762 }
763 
764 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
765 					const char *filename)
766 {
767 	struct map *map = NULL;
768 	struct dso *dso = NULL;
769 	struct kmod_path m;
770 
771 	if (kmod_path__parse_name(&m, filename))
772 		return NULL;
773 
774 	map = map_groups__find_by_name(&machine->kmaps, m.name);
775 	if (map) {
776 		/*
777 		 * If the map's dso is an offline module, give dso__load()
778 		 * a chance to find the file path of that module by fixing
779 		 * long_name.
780 		 */
781 		dso__adjust_kmod_long_name(map->dso, filename);
782 		goto out;
783 	}
784 
785 	dso = machine__findnew_module_dso(machine, &m, filename);
786 	if (dso == NULL)
787 		goto out;
788 
789 	map = map__new2(start, dso);
790 	if (map == NULL)
791 		goto out;
792 
793 	map_groups__insert(&machine->kmaps, map);
794 
795 	/* Put the map here because map_groups__insert alread got it */
796 	map__put(map);
797 out:
798 	/* put the dso here, corresponding to  machine__findnew_module_dso */
799 	dso__put(dso);
800 	free(m.name);
801 	return map;
802 }
803 
804 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
805 {
806 	struct rb_node *nd;
807 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
808 
809 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
810 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
811 		ret += __dsos__fprintf(&pos->dsos.head, fp);
812 	}
813 
814 	return ret;
815 }
816 
817 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
818 				     bool (skip)(struct dso *dso, int parm), int parm)
819 {
820 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
821 }
822 
823 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
824 				     bool (skip)(struct dso *dso, int parm), int parm)
825 {
826 	struct rb_node *nd;
827 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
828 
829 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
830 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
831 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
832 	}
833 	return ret;
834 }
835 
836 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
837 {
838 	int i;
839 	size_t printed = 0;
840 	struct dso *kdso = machine__kernel_map(machine)->dso;
841 
842 	if (kdso->has_build_id) {
843 		char filename[PATH_MAX];
844 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
845 					   false))
846 			printed += fprintf(fp, "[0] %s\n", filename);
847 	}
848 
849 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
850 		printed += fprintf(fp, "[%d] %s\n",
851 				   i + kdso->has_build_id, vmlinux_path[i]);
852 
853 	return printed;
854 }
855 
856 size_t machine__fprintf(struct machine *machine, FILE *fp)
857 {
858 	struct rb_node *nd;
859 	size_t ret;
860 	int i;
861 
862 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
863 		struct threads *threads = &machine->threads[i];
864 
865 		down_read(&threads->lock);
866 
867 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
868 
869 		for (nd = rb_first_cached(&threads->entries); nd;
870 		     nd = rb_next(nd)) {
871 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
872 
873 			ret += thread__fprintf(pos, fp);
874 		}
875 
876 		up_read(&threads->lock);
877 	}
878 	return ret;
879 }
880 
881 static struct dso *machine__get_kernel(struct machine *machine)
882 {
883 	const char *vmlinux_name = machine->mmap_name;
884 	struct dso *kernel;
885 
886 	if (machine__is_host(machine)) {
887 		if (symbol_conf.vmlinux_name)
888 			vmlinux_name = symbol_conf.vmlinux_name;
889 
890 		kernel = machine__findnew_kernel(machine, vmlinux_name,
891 						 "[kernel]", DSO_TYPE_KERNEL);
892 	} else {
893 		if (symbol_conf.default_guest_vmlinux_name)
894 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
895 
896 		kernel = machine__findnew_kernel(machine, vmlinux_name,
897 						 "[guest.kernel]",
898 						 DSO_TYPE_GUEST_KERNEL);
899 	}
900 
901 	if (kernel != NULL && (!kernel->has_build_id))
902 		dso__read_running_kernel_build_id(kernel, machine);
903 
904 	return kernel;
905 }
906 
907 struct process_args {
908 	u64 start;
909 };
910 
911 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
912 				    size_t bufsz)
913 {
914 	if (machine__is_default_guest(machine))
915 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
916 	else
917 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
918 }
919 
920 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
921 
922 /* Figure out the start address of kernel map from /proc/kallsyms.
923  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
924  * symbol_name if it's not that important.
925  */
926 static int machine__get_running_kernel_start(struct machine *machine,
927 					     const char **symbol_name,
928 					     u64 *start, u64 *end)
929 {
930 	char filename[PATH_MAX];
931 	int i, err = -1;
932 	const char *name;
933 	u64 addr = 0;
934 
935 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
936 
937 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
938 		return 0;
939 
940 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
941 		err = kallsyms__get_function_start(filename, name, &addr);
942 		if (!err)
943 			break;
944 	}
945 
946 	if (err)
947 		return -1;
948 
949 	if (symbol_name)
950 		*symbol_name = name;
951 
952 	*start = addr;
953 
954 	err = kallsyms__get_function_start(filename, "_etext", &addr);
955 	if (!err)
956 		*end = addr;
957 
958 	return 0;
959 }
960 
961 int machine__create_extra_kernel_map(struct machine *machine,
962 				     struct dso *kernel,
963 				     struct extra_kernel_map *xm)
964 {
965 	struct kmap *kmap;
966 	struct map *map;
967 
968 	map = map__new2(xm->start, kernel);
969 	if (!map)
970 		return -1;
971 
972 	map->end   = xm->end;
973 	map->pgoff = xm->pgoff;
974 
975 	kmap = map__kmap(map);
976 
977 	kmap->kmaps = &machine->kmaps;
978 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
979 
980 	map_groups__insert(&machine->kmaps, map);
981 
982 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
983 		  kmap->name, map->start, map->end);
984 
985 	map__put(map);
986 
987 	return 0;
988 }
989 
990 static u64 find_entry_trampoline(struct dso *dso)
991 {
992 	/* Duplicates are removed so lookup all aliases */
993 	const char *syms[] = {
994 		"_entry_trampoline",
995 		"__entry_trampoline_start",
996 		"entry_SYSCALL_64_trampoline",
997 	};
998 	struct symbol *sym = dso__first_symbol(dso);
999 	unsigned int i;
1000 
1001 	for (; sym; sym = dso__next_symbol(sym)) {
1002 		if (sym->binding != STB_GLOBAL)
1003 			continue;
1004 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1005 			if (!strcmp(sym->name, syms[i]))
1006 				return sym->start;
1007 		}
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 /*
1014  * These values can be used for kernels that do not have symbols for the entry
1015  * trampolines in kallsyms.
1016  */
1017 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1018 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1019 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1020 
1021 /* Map x86_64 PTI entry trampolines */
1022 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1023 					  struct dso *kernel)
1024 {
1025 	struct map_groups *kmaps = &machine->kmaps;
1026 	struct maps *maps = &kmaps->maps;
1027 	int nr_cpus_avail, cpu;
1028 	bool found = false;
1029 	struct map *map;
1030 	u64 pgoff;
1031 
1032 	/*
1033 	 * In the vmlinux case, pgoff is a virtual address which must now be
1034 	 * mapped to a vmlinux offset.
1035 	 */
1036 	for (map = maps__first(maps); map; map = map__next(map)) {
1037 		struct kmap *kmap = __map__kmap(map);
1038 		struct map *dest_map;
1039 
1040 		if (!kmap || !is_entry_trampoline(kmap->name))
1041 			continue;
1042 
1043 		dest_map = map_groups__find(kmaps, map->pgoff);
1044 		if (dest_map != map)
1045 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1046 		found = true;
1047 	}
1048 	if (found || machine->trampolines_mapped)
1049 		return 0;
1050 
1051 	pgoff = find_entry_trampoline(kernel);
1052 	if (!pgoff)
1053 		return 0;
1054 
1055 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1056 
1057 	/* Add a 1 page map for each CPU's entry trampoline */
1058 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1059 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1060 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1061 			 X86_64_ENTRY_TRAMPOLINE;
1062 		struct extra_kernel_map xm = {
1063 			.start = va,
1064 			.end   = va + page_size,
1065 			.pgoff = pgoff,
1066 		};
1067 
1068 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1069 
1070 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1071 			return -1;
1072 	}
1073 
1074 	machine->trampolines_mapped = nr_cpus_avail;
1075 
1076 	return 0;
1077 }
1078 
1079 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1080 					     struct dso *kernel __maybe_unused)
1081 {
1082 	return 0;
1083 }
1084 
1085 static int
1086 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1087 {
1088 	struct kmap *kmap;
1089 	struct map *map;
1090 
1091 	/* In case of renewal the kernel map, destroy previous one */
1092 	machine__destroy_kernel_maps(machine);
1093 
1094 	machine->vmlinux_map = map__new2(0, kernel);
1095 	if (machine->vmlinux_map == NULL)
1096 		return -1;
1097 
1098 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1099 	map = machine__kernel_map(machine);
1100 	kmap = map__kmap(map);
1101 	if (!kmap)
1102 		return -1;
1103 
1104 	kmap->kmaps = &machine->kmaps;
1105 	map_groups__insert(&machine->kmaps, map);
1106 
1107 	return 0;
1108 }
1109 
1110 void machine__destroy_kernel_maps(struct machine *machine)
1111 {
1112 	struct kmap *kmap;
1113 	struct map *map = machine__kernel_map(machine);
1114 
1115 	if (map == NULL)
1116 		return;
1117 
1118 	kmap = map__kmap(map);
1119 	map_groups__remove(&machine->kmaps, map);
1120 	if (kmap && kmap->ref_reloc_sym) {
1121 		zfree((char **)&kmap->ref_reloc_sym->name);
1122 		zfree(&kmap->ref_reloc_sym);
1123 	}
1124 
1125 	map__zput(machine->vmlinux_map);
1126 }
1127 
1128 int machines__create_guest_kernel_maps(struct machines *machines)
1129 {
1130 	int ret = 0;
1131 	struct dirent **namelist = NULL;
1132 	int i, items = 0;
1133 	char path[PATH_MAX];
1134 	pid_t pid;
1135 	char *endp;
1136 
1137 	if (symbol_conf.default_guest_vmlinux_name ||
1138 	    symbol_conf.default_guest_modules ||
1139 	    symbol_conf.default_guest_kallsyms) {
1140 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1141 	}
1142 
1143 	if (symbol_conf.guestmount) {
1144 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1145 		if (items <= 0)
1146 			return -ENOENT;
1147 		for (i = 0; i < items; i++) {
1148 			if (!isdigit(namelist[i]->d_name[0])) {
1149 				/* Filter out . and .. */
1150 				continue;
1151 			}
1152 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1153 			if ((*endp != '\0') ||
1154 			    (endp == namelist[i]->d_name) ||
1155 			    (errno == ERANGE)) {
1156 				pr_debug("invalid directory (%s). Skipping.\n",
1157 					 namelist[i]->d_name);
1158 				continue;
1159 			}
1160 			sprintf(path, "%s/%s/proc/kallsyms",
1161 				symbol_conf.guestmount,
1162 				namelist[i]->d_name);
1163 			ret = access(path, R_OK);
1164 			if (ret) {
1165 				pr_debug("Can't access file %s\n", path);
1166 				goto failure;
1167 			}
1168 			machines__create_kernel_maps(machines, pid);
1169 		}
1170 failure:
1171 		free(namelist);
1172 	}
1173 
1174 	return ret;
1175 }
1176 
1177 void machines__destroy_kernel_maps(struct machines *machines)
1178 {
1179 	struct rb_node *next = rb_first_cached(&machines->guests);
1180 
1181 	machine__destroy_kernel_maps(&machines->host);
1182 
1183 	while (next) {
1184 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1185 
1186 		next = rb_next(&pos->rb_node);
1187 		rb_erase_cached(&pos->rb_node, &machines->guests);
1188 		machine__delete(pos);
1189 	}
1190 }
1191 
1192 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1193 {
1194 	struct machine *machine = machines__findnew(machines, pid);
1195 
1196 	if (machine == NULL)
1197 		return -1;
1198 
1199 	return machine__create_kernel_maps(machine);
1200 }
1201 
1202 int machine__load_kallsyms(struct machine *machine, const char *filename)
1203 {
1204 	struct map *map = machine__kernel_map(machine);
1205 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1206 
1207 	if (ret > 0) {
1208 		dso__set_loaded(map->dso);
1209 		/*
1210 		 * Since /proc/kallsyms will have multiple sessions for the
1211 		 * kernel, with modules between them, fixup the end of all
1212 		 * sections.
1213 		 */
1214 		map_groups__fixup_end(&machine->kmaps);
1215 	}
1216 
1217 	return ret;
1218 }
1219 
1220 int machine__load_vmlinux_path(struct machine *machine)
1221 {
1222 	struct map *map = machine__kernel_map(machine);
1223 	int ret = dso__load_vmlinux_path(map->dso, map);
1224 
1225 	if (ret > 0)
1226 		dso__set_loaded(map->dso);
1227 
1228 	return ret;
1229 }
1230 
1231 static char *get_kernel_version(const char *root_dir)
1232 {
1233 	char version[PATH_MAX];
1234 	FILE *file;
1235 	char *name, *tmp;
1236 	const char *prefix = "Linux version ";
1237 
1238 	sprintf(version, "%s/proc/version", root_dir);
1239 	file = fopen(version, "r");
1240 	if (!file)
1241 		return NULL;
1242 
1243 	tmp = fgets(version, sizeof(version), file);
1244 	if (!tmp)
1245 		*version = '\0';
1246 	fclose(file);
1247 
1248 	name = strstr(version, prefix);
1249 	if (!name)
1250 		return NULL;
1251 	name += strlen(prefix);
1252 	tmp = strchr(name, ' ');
1253 	if (tmp)
1254 		*tmp = '\0';
1255 
1256 	return strdup(name);
1257 }
1258 
1259 static bool is_kmod_dso(struct dso *dso)
1260 {
1261 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1262 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1263 }
1264 
1265 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1266 				       struct kmod_path *m)
1267 {
1268 	char *long_name;
1269 	struct map *map = map_groups__find_by_name(mg, m->name);
1270 
1271 	if (map == NULL)
1272 		return 0;
1273 
1274 	long_name = strdup(path);
1275 	if (long_name == NULL)
1276 		return -ENOMEM;
1277 
1278 	dso__set_long_name(map->dso, long_name, true);
1279 	dso__kernel_module_get_build_id(map->dso, "");
1280 
1281 	/*
1282 	 * Full name could reveal us kmod compression, so
1283 	 * we need to update the symtab_type if needed.
1284 	 */
1285 	if (m->comp && is_kmod_dso(map->dso)) {
1286 		map->dso->symtab_type++;
1287 		map->dso->comp = m->comp;
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1294 				const char *dir_name, int depth)
1295 {
1296 	struct dirent *dent;
1297 	DIR *dir = opendir(dir_name);
1298 	int ret = 0;
1299 
1300 	if (!dir) {
1301 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1302 		return -1;
1303 	}
1304 
1305 	while ((dent = readdir(dir)) != NULL) {
1306 		char path[PATH_MAX];
1307 		struct stat st;
1308 
1309 		/*sshfs might return bad dent->d_type, so we have to stat*/
1310 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1311 		if (stat(path, &st))
1312 			continue;
1313 
1314 		if (S_ISDIR(st.st_mode)) {
1315 			if (!strcmp(dent->d_name, ".") ||
1316 			    !strcmp(dent->d_name, ".."))
1317 				continue;
1318 
1319 			/* Do not follow top-level source and build symlinks */
1320 			if (depth == 0) {
1321 				if (!strcmp(dent->d_name, "source") ||
1322 				    !strcmp(dent->d_name, "build"))
1323 					continue;
1324 			}
1325 
1326 			ret = map_groups__set_modules_path_dir(mg, path,
1327 							       depth + 1);
1328 			if (ret < 0)
1329 				goto out;
1330 		} else {
1331 			struct kmod_path m;
1332 
1333 			ret = kmod_path__parse_name(&m, dent->d_name);
1334 			if (ret)
1335 				goto out;
1336 
1337 			if (m.kmod)
1338 				ret = map_groups__set_module_path(mg, path, &m);
1339 
1340 			free(m.name);
1341 
1342 			if (ret)
1343 				goto out;
1344 		}
1345 	}
1346 
1347 out:
1348 	closedir(dir);
1349 	return ret;
1350 }
1351 
1352 static int machine__set_modules_path(struct machine *machine)
1353 {
1354 	char *version;
1355 	char modules_path[PATH_MAX];
1356 
1357 	version = get_kernel_version(machine->root_dir);
1358 	if (!version)
1359 		return -1;
1360 
1361 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1362 		 machine->root_dir, version);
1363 	free(version);
1364 
1365 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1366 }
1367 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1368 				const char *name __maybe_unused)
1369 {
1370 	return 0;
1371 }
1372 
1373 static int machine__create_module(void *arg, const char *name, u64 start,
1374 				  u64 size)
1375 {
1376 	struct machine *machine = arg;
1377 	struct map *map;
1378 
1379 	if (arch__fix_module_text_start(&start, name) < 0)
1380 		return -1;
1381 
1382 	map = machine__findnew_module_map(machine, start, name);
1383 	if (map == NULL)
1384 		return -1;
1385 	map->end = start + size;
1386 
1387 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1388 
1389 	return 0;
1390 }
1391 
1392 static int machine__create_modules(struct machine *machine)
1393 {
1394 	const char *modules;
1395 	char path[PATH_MAX];
1396 
1397 	if (machine__is_default_guest(machine)) {
1398 		modules = symbol_conf.default_guest_modules;
1399 	} else {
1400 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1401 		modules = path;
1402 	}
1403 
1404 	if (symbol__restricted_filename(modules, "/proc/modules"))
1405 		return -1;
1406 
1407 	if (modules__parse(modules, machine, machine__create_module))
1408 		return -1;
1409 
1410 	if (!machine__set_modules_path(machine))
1411 		return 0;
1412 
1413 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1414 
1415 	return 0;
1416 }
1417 
1418 static void machine__set_kernel_mmap(struct machine *machine,
1419 				     u64 start, u64 end)
1420 {
1421 	machine->vmlinux_map->start = start;
1422 	machine->vmlinux_map->end   = end;
1423 	/*
1424 	 * Be a bit paranoid here, some perf.data file came with
1425 	 * a zero sized synthesized MMAP event for the kernel.
1426 	 */
1427 	if (start == 0 && end == 0)
1428 		machine->vmlinux_map->end = ~0ULL;
1429 }
1430 
1431 static void machine__update_kernel_mmap(struct machine *machine,
1432 				     u64 start, u64 end)
1433 {
1434 	struct map *map = machine__kernel_map(machine);
1435 
1436 	map__get(map);
1437 	map_groups__remove(&machine->kmaps, map);
1438 
1439 	machine__set_kernel_mmap(machine, start, end);
1440 
1441 	map_groups__insert(&machine->kmaps, map);
1442 	map__put(map);
1443 }
1444 
1445 int machine__create_kernel_maps(struct machine *machine)
1446 {
1447 	struct dso *kernel = machine__get_kernel(machine);
1448 	const char *name = NULL;
1449 	struct map *map;
1450 	u64 start = 0, end = ~0ULL;
1451 	int ret;
1452 
1453 	if (kernel == NULL)
1454 		return -1;
1455 
1456 	ret = __machine__create_kernel_maps(machine, kernel);
1457 	if (ret < 0)
1458 		goto out_put;
1459 
1460 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1461 		if (machine__is_host(machine))
1462 			pr_debug("Problems creating module maps, "
1463 				 "continuing anyway...\n");
1464 		else
1465 			pr_debug("Problems creating module maps for guest %d, "
1466 				 "continuing anyway...\n", machine->pid);
1467 	}
1468 
1469 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1470 		if (name &&
1471 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1472 			machine__destroy_kernel_maps(machine);
1473 			ret = -1;
1474 			goto out_put;
1475 		}
1476 
1477 		/*
1478 		 * we have a real start address now, so re-order the kmaps
1479 		 * assume it's the last in the kmaps
1480 		 */
1481 		machine__update_kernel_mmap(machine, start, end);
1482 	}
1483 
1484 	if (machine__create_extra_kernel_maps(machine, kernel))
1485 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1486 
1487 	if (end == ~0ULL) {
1488 		/* update end address of the kernel map using adjacent module address */
1489 		map = map__next(machine__kernel_map(machine));
1490 		if (map)
1491 			machine__set_kernel_mmap(machine, start, map->start);
1492 	}
1493 
1494 out_put:
1495 	dso__put(kernel);
1496 	return ret;
1497 }
1498 
1499 static bool machine__uses_kcore(struct machine *machine)
1500 {
1501 	struct dso *dso;
1502 
1503 	list_for_each_entry(dso, &machine->dsos.head, node) {
1504 		if (dso__is_kcore(dso))
1505 			return true;
1506 	}
1507 
1508 	return false;
1509 }
1510 
1511 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1512 					     union perf_event *event)
1513 {
1514 	return machine__is(machine, "x86_64") &&
1515 	       is_entry_trampoline(event->mmap.filename);
1516 }
1517 
1518 static int machine__process_extra_kernel_map(struct machine *machine,
1519 					     union perf_event *event)
1520 {
1521 	struct map *kernel_map = machine__kernel_map(machine);
1522 	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1523 	struct extra_kernel_map xm = {
1524 		.start = event->mmap.start,
1525 		.end   = event->mmap.start + event->mmap.len,
1526 		.pgoff = event->mmap.pgoff,
1527 	};
1528 
1529 	if (kernel == NULL)
1530 		return -1;
1531 
1532 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1533 
1534 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1535 }
1536 
1537 static int machine__process_kernel_mmap_event(struct machine *machine,
1538 					      union perf_event *event)
1539 {
1540 	struct map *map;
1541 	enum dso_kernel_type kernel_type;
1542 	bool is_kernel_mmap;
1543 
1544 	/* If we have maps from kcore then we do not need or want any others */
1545 	if (machine__uses_kcore(machine))
1546 		return 0;
1547 
1548 	if (machine__is_host(machine))
1549 		kernel_type = DSO_TYPE_KERNEL;
1550 	else
1551 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1552 
1553 	is_kernel_mmap = memcmp(event->mmap.filename,
1554 				machine->mmap_name,
1555 				strlen(machine->mmap_name) - 1) == 0;
1556 	if (event->mmap.filename[0] == '/' ||
1557 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1558 		map = machine__findnew_module_map(machine, event->mmap.start,
1559 						  event->mmap.filename);
1560 		if (map == NULL)
1561 			goto out_problem;
1562 
1563 		map->end = map->start + event->mmap.len;
1564 	} else if (is_kernel_mmap) {
1565 		const char *symbol_name = (event->mmap.filename +
1566 				strlen(machine->mmap_name));
1567 		/*
1568 		 * Should be there already, from the build-id table in
1569 		 * the header.
1570 		 */
1571 		struct dso *kernel = NULL;
1572 		struct dso *dso;
1573 
1574 		down_read(&machine->dsos.lock);
1575 
1576 		list_for_each_entry(dso, &machine->dsos.head, node) {
1577 
1578 			/*
1579 			 * The cpumode passed to is_kernel_module is not the
1580 			 * cpumode of *this* event. If we insist on passing
1581 			 * correct cpumode to is_kernel_module, we should
1582 			 * record the cpumode when we adding this dso to the
1583 			 * linked list.
1584 			 *
1585 			 * However we don't really need passing correct
1586 			 * cpumode.  We know the correct cpumode must be kernel
1587 			 * mode (if not, we should not link it onto kernel_dsos
1588 			 * list).
1589 			 *
1590 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1591 			 * is_kernel_module() treats it as a kernel cpumode.
1592 			 */
1593 
1594 			if (!dso->kernel ||
1595 			    is_kernel_module(dso->long_name,
1596 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1597 				continue;
1598 
1599 
1600 			kernel = dso;
1601 			break;
1602 		}
1603 
1604 		up_read(&machine->dsos.lock);
1605 
1606 		if (kernel == NULL)
1607 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1608 		if (kernel == NULL)
1609 			goto out_problem;
1610 
1611 		kernel->kernel = kernel_type;
1612 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1613 			dso__put(kernel);
1614 			goto out_problem;
1615 		}
1616 
1617 		if (strstr(kernel->long_name, "vmlinux"))
1618 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1619 
1620 		machine__update_kernel_mmap(machine, event->mmap.start,
1621 					 event->mmap.start + event->mmap.len);
1622 
1623 		/*
1624 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1625 		 * symbol. Effectively having zero here means that at record
1626 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1627 		 */
1628 		if (event->mmap.pgoff != 0) {
1629 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1630 							symbol_name,
1631 							event->mmap.pgoff);
1632 		}
1633 
1634 		if (machine__is_default_guest(machine)) {
1635 			/*
1636 			 * preload dso of guest kernel and modules
1637 			 */
1638 			dso__load(kernel, machine__kernel_map(machine));
1639 		}
1640 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1641 		return machine__process_extra_kernel_map(machine, event);
1642 	}
1643 	return 0;
1644 out_problem:
1645 	return -1;
1646 }
1647 
1648 int machine__process_mmap2_event(struct machine *machine,
1649 				 union perf_event *event,
1650 				 struct perf_sample *sample)
1651 {
1652 	struct thread *thread;
1653 	struct map *map;
1654 	int ret = 0;
1655 
1656 	if (dump_trace)
1657 		perf_event__fprintf_mmap2(event, stdout);
1658 
1659 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1660 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1661 		ret = machine__process_kernel_mmap_event(machine, event);
1662 		if (ret < 0)
1663 			goto out_problem;
1664 		return 0;
1665 	}
1666 
1667 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1668 					event->mmap2.tid);
1669 	if (thread == NULL)
1670 		goto out_problem;
1671 
1672 	map = map__new(machine, event->mmap2.start,
1673 			event->mmap2.len, event->mmap2.pgoff,
1674 			event->mmap2.maj,
1675 			event->mmap2.min, event->mmap2.ino,
1676 			event->mmap2.ino_generation,
1677 			event->mmap2.prot,
1678 			event->mmap2.flags,
1679 			event->mmap2.filename, thread);
1680 
1681 	if (map == NULL)
1682 		goto out_problem_map;
1683 
1684 	ret = thread__insert_map(thread, map);
1685 	if (ret)
1686 		goto out_problem_insert;
1687 
1688 	thread__put(thread);
1689 	map__put(map);
1690 	return 0;
1691 
1692 out_problem_insert:
1693 	map__put(map);
1694 out_problem_map:
1695 	thread__put(thread);
1696 out_problem:
1697 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1698 	return 0;
1699 }
1700 
1701 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1702 				struct perf_sample *sample)
1703 {
1704 	struct thread *thread;
1705 	struct map *map;
1706 	u32 prot = 0;
1707 	int ret = 0;
1708 
1709 	if (dump_trace)
1710 		perf_event__fprintf_mmap(event, stdout);
1711 
1712 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1713 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1714 		ret = machine__process_kernel_mmap_event(machine, event);
1715 		if (ret < 0)
1716 			goto out_problem;
1717 		return 0;
1718 	}
1719 
1720 	thread = machine__findnew_thread(machine, event->mmap.pid,
1721 					 event->mmap.tid);
1722 	if (thread == NULL)
1723 		goto out_problem;
1724 
1725 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1726 		prot = PROT_EXEC;
1727 
1728 	map = map__new(machine, event->mmap.start,
1729 			event->mmap.len, event->mmap.pgoff,
1730 			0, 0, 0, 0, prot, 0,
1731 			event->mmap.filename,
1732 			thread);
1733 
1734 	if (map == NULL)
1735 		goto out_problem_map;
1736 
1737 	ret = thread__insert_map(thread, map);
1738 	if (ret)
1739 		goto out_problem_insert;
1740 
1741 	thread__put(thread);
1742 	map__put(map);
1743 	return 0;
1744 
1745 out_problem_insert:
1746 	map__put(map);
1747 out_problem_map:
1748 	thread__put(thread);
1749 out_problem:
1750 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1751 	return 0;
1752 }
1753 
1754 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1755 {
1756 	struct threads *threads = machine__threads(machine, th->tid);
1757 
1758 	if (threads->last_match == th)
1759 		threads__set_last_match(threads, NULL);
1760 
1761 	BUG_ON(refcount_read(&th->refcnt) == 0);
1762 	if (lock)
1763 		down_write(&threads->lock);
1764 	rb_erase_cached(&th->rb_node, &threads->entries);
1765 	RB_CLEAR_NODE(&th->rb_node);
1766 	--threads->nr;
1767 	/*
1768 	 * Move it first to the dead_threads list, then drop the reference,
1769 	 * if this is the last reference, then the thread__delete destructor
1770 	 * will be called and we will remove it from the dead_threads list.
1771 	 */
1772 	list_add_tail(&th->node, &threads->dead);
1773 	if (lock)
1774 		up_write(&threads->lock);
1775 	thread__put(th);
1776 }
1777 
1778 void machine__remove_thread(struct machine *machine, struct thread *th)
1779 {
1780 	return __machine__remove_thread(machine, th, true);
1781 }
1782 
1783 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1784 				struct perf_sample *sample)
1785 {
1786 	struct thread *thread = machine__find_thread(machine,
1787 						     event->fork.pid,
1788 						     event->fork.tid);
1789 	struct thread *parent = machine__findnew_thread(machine,
1790 							event->fork.ppid,
1791 							event->fork.ptid);
1792 	bool do_maps_clone = true;
1793 	int err = 0;
1794 
1795 	if (dump_trace)
1796 		perf_event__fprintf_task(event, stdout);
1797 
1798 	/*
1799 	 * There may be an existing thread that is not actually the parent,
1800 	 * either because we are processing events out of order, or because the
1801 	 * (fork) event that would have removed the thread was lost. Assume the
1802 	 * latter case and continue on as best we can.
1803 	 */
1804 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1805 		dump_printf("removing erroneous parent thread %d/%d\n",
1806 			    parent->pid_, parent->tid);
1807 		machine__remove_thread(machine, parent);
1808 		thread__put(parent);
1809 		parent = machine__findnew_thread(machine, event->fork.ppid,
1810 						 event->fork.ptid);
1811 	}
1812 
1813 	/* if a thread currently exists for the thread id remove it */
1814 	if (thread != NULL) {
1815 		machine__remove_thread(machine, thread);
1816 		thread__put(thread);
1817 	}
1818 
1819 	thread = machine__findnew_thread(machine, event->fork.pid,
1820 					 event->fork.tid);
1821 	/*
1822 	 * When synthesizing FORK events, we are trying to create thread
1823 	 * objects for the already running tasks on the machine.
1824 	 *
1825 	 * Normally, for a kernel FORK event, we want to clone the parent's
1826 	 * maps because that is what the kernel just did.
1827 	 *
1828 	 * But when synthesizing, this should not be done.  If we do, we end up
1829 	 * with overlapping maps as we process the sythesized MMAP2 events that
1830 	 * get delivered shortly thereafter.
1831 	 *
1832 	 * Use the FORK event misc flags in an internal way to signal this
1833 	 * situation, so we can elide the map clone when appropriate.
1834 	 */
1835 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1836 		do_maps_clone = false;
1837 
1838 	if (thread == NULL || parent == NULL ||
1839 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1840 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1841 		err = -1;
1842 	}
1843 	thread__put(thread);
1844 	thread__put(parent);
1845 
1846 	return err;
1847 }
1848 
1849 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1850 				struct perf_sample *sample __maybe_unused)
1851 {
1852 	struct thread *thread = machine__find_thread(machine,
1853 						     event->fork.pid,
1854 						     event->fork.tid);
1855 
1856 	if (dump_trace)
1857 		perf_event__fprintf_task(event, stdout);
1858 
1859 	if (thread != NULL) {
1860 		thread__exited(thread);
1861 		thread__put(thread);
1862 	}
1863 
1864 	return 0;
1865 }
1866 
1867 int machine__process_event(struct machine *machine, union perf_event *event,
1868 			   struct perf_sample *sample)
1869 {
1870 	int ret;
1871 
1872 	switch (event->header.type) {
1873 	case PERF_RECORD_COMM:
1874 		ret = machine__process_comm_event(machine, event, sample); break;
1875 	case PERF_RECORD_MMAP:
1876 		ret = machine__process_mmap_event(machine, event, sample); break;
1877 	case PERF_RECORD_NAMESPACES:
1878 		ret = machine__process_namespaces_event(machine, event, sample); break;
1879 	case PERF_RECORD_MMAP2:
1880 		ret = machine__process_mmap2_event(machine, event, sample); break;
1881 	case PERF_RECORD_FORK:
1882 		ret = machine__process_fork_event(machine, event, sample); break;
1883 	case PERF_RECORD_EXIT:
1884 		ret = machine__process_exit_event(machine, event, sample); break;
1885 	case PERF_RECORD_LOST:
1886 		ret = machine__process_lost_event(machine, event, sample); break;
1887 	case PERF_RECORD_AUX:
1888 		ret = machine__process_aux_event(machine, event); break;
1889 	case PERF_RECORD_ITRACE_START:
1890 		ret = machine__process_itrace_start_event(machine, event); break;
1891 	case PERF_RECORD_LOST_SAMPLES:
1892 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1893 	case PERF_RECORD_SWITCH:
1894 	case PERF_RECORD_SWITCH_CPU_WIDE:
1895 		ret = machine__process_switch_event(machine, event); break;
1896 	case PERF_RECORD_KSYMBOL:
1897 		ret = machine__process_ksymbol(machine, event, sample); break;
1898 	case PERF_RECORD_BPF_EVENT:
1899 		ret = machine__process_bpf_event(machine, event, sample); break;
1900 	default:
1901 		ret = -1;
1902 		break;
1903 	}
1904 
1905 	return ret;
1906 }
1907 
1908 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1909 {
1910 	if (!regexec(regex, sym->name, 0, NULL, 0))
1911 		return 1;
1912 	return 0;
1913 }
1914 
1915 static void ip__resolve_ams(struct thread *thread,
1916 			    struct addr_map_symbol *ams,
1917 			    u64 ip)
1918 {
1919 	struct addr_location al;
1920 
1921 	memset(&al, 0, sizeof(al));
1922 	/*
1923 	 * We cannot use the header.misc hint to determine whether a
1924 	 * branch stack address is user, kernel, guest, hypervisor.
1925 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1926 	 * Thus, we have to try consecutively until we find a match
1927 	 * or else, the symbol is unknown
1928 	 */
1929 	thread__find_cpumode_addr_location(thread, ip, &al);
1930 
1931 	ams->addr = ip;
1932 	ams->al_addr = al.addr;
1933 	ams->sym = al.sym;
1934 	ams->map = al.map;
1935 	ams->phys_addr = 0;
1936 }
1937 
1938 static void ip__resolve_data(struct thread *thread,
1939 			     u8 m, struct addr_map_symbol *ams,
1940 			     u64 addr, u64 phys_addr)
1941 {
1942 	struct addr_location al;
1943 
1944 	memset(&al, 0, sizeof(al));
1945 
1946 	thread__find_symbol(thread, m, addr, &al);
1947 
1948 	ams->addr = addr;
1949 	ams->al_addr = al.addr;
1950 	ams->sym = al.sym;
1951 	ams->map = al.map;
1952 	ams->phys_addr = phys_addr;
1953 }
1954 
1955 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1956 				     struct addr_location *al)
1957 {
1958 	struct mem_info *mi = mem_info__new();
1959 
1960 	if (!mi)
1961 		return NULL;
1962 
1963 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1964 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1965 			 sample->addr, sample->phys_addr);
1966 	mi->data_src.val = sample->data_src;
1967 
1968 	return mi;
1969 }
1970 
1971 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1972 {
1973 	char *srcline = NULL;
1974 
1975 	if (!map || callchain_param.key == CCKEY_FUNCTION)
1976 		return srcline;
1977 
1978 	srcline = srcline__tree_find(&map->dso->srclines, ip);
1979 	if (!srcline) {
1980 		bool show_sym = false;
1981 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1982 
1983 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1984 				      sym, show_sym, show_addr, ip);
1985 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
1986 	}
1987 
1988 	return srcline;
1989 }
1990 
1991 struct iterations {
1992 	int nr_loop_iter;
1993 	u64 cycles;
1994 };
1995 
1996 static int add_callchain_ip(struct thread *thread,
1997 			    struct callchain_cursor *cursor,
1998 			    struct symbol **parent,
1999 			    struct addr_location *root_al,
2000 			    u8 *cpumode,
2001 			    u64 ip,
2002 			    bool branch,
2003 			    struct branch_flags *flags,
2004 			    struct iterations *iter,
2005 			    u64 branch_from)
2006 {
2007 	struct addr_location al;
2008 	int nr_loop_iter = 0;
2009 	u64 iter_cycles = 0;
2010 	const char *srcline = NULL;
2011 
2012 	al.filtered = 0;
2013 	al.sym = NULL;
2014 	if (!cpumode) {
2015 		thread__find_cpumode_addr_location(thread, ip, &al);
2016 	} else {
2017 		if (ip >= PERF_CONTEXT_MAX) {
2018 			switch (ip) {
2019 			case PERF_CONTEXT_HV:
2020 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2021 				break;
2022 			case PERF_CONTEXT_KERNEL:
2023 				*cpumode = PERF_RECORD_MISC_KERNEL;
2024 				break;
2025 			case PERF_CONTEXT_USER:
2026 				*cpumode = PERF_RECORD_MISC_USER;
2027 				break;
2028 			default:
2029 				pr_debug("invalid callchain context: "
2030 					 "%"PRId64"\n", (s64) ip);
2031 				/*
2032 				 * It seems the callchain is corrupted.
2033 				 * Discard all.
2034 				 */
2035 				callchain_cursor_reset(cursor);
2036 				return 1;
2037 			}
2038 			return 0;
2039 		}
2040 		thread__find_symbol(thread, *cpumode, ip, &al);
2041 	}
2042 
2043 	if (al.sym != NULL) {
2044 		if (perf_hpp_list.parent && !*parent &&
2045 		    symbol__match_regex(al.sym, &parent_regex))
2046 			*parent = al.sym;
2047 		else if (have_ignore_callees && root_al &&
2048 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2049 			/* Treat this symbol as the root,
2050 			   forgetting its callees. */
2051 			*root_al = al;
2052 			callchain_cursor_reset(cursor);
2053 		}
2054 	}
2055 
2056 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2057 		return 0;
2058 
2059 	if (iter) {
2060 		nr_loop_iter = iter->nr_loop_iter;
2061 		iter_cycles = iter->cycles;
2062 	}
2063 
2064 	srcline = callchain_srcline(al.map, al.sym, al.addr);
2065 	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2066 				       branch, flags, nr_loop_iter,
2067 				       iter_cycles, branch_from, srcline);
2068 }
2069 
2070 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2071 					   struct addr_location *al)
2072 {
2073 	unsigned int i;
2074 	const struct branch_stack *bs = sample->branch_stack;
2075 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2076 
2077 	if (!bi)
2078 		return NULL;
2079 
2080 	for (i = 0; i < bs->nr; i++) {
2081 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2082 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2083 		bi[i].flags = bs->entries[i].flags;
2084 	}
2085 	return bi;
2086 }
2087 
2088 static void save_iterations(struct iterations *iter,
2089 			    struct branch_entry *be, int nr)
2090 {
2091 	int i;
2092 
2093 	iter->nr_loop_iter++;
2094 	iter->cycles = 0;
2095 
2096 	for (i = 0; i < nr; i++)
2097 		iter->cycles += be[i].flags.cycles;
2098 }
2099 
2100 #define CHASHSZ 127
2101 #define CHASHBITS 7
2102 #define NO_ENTRY 0xff
2103 
2104 #define PERF_MAX_BRANCH_DEPTH 127
2105 
2106 /* Remove loops. */
2107 static int remove_loops(struct branch_entry *l, int nr,
2108 			struct iterations *iter)
2109 {
2110 	int i, j, off;
2111 	unsigned char chash[CHASHSZ];
2112 
2113 	memset(chash, NO_ENTRY, sizeof(chash));
2114 
2115 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2116 
2117 	for (i = 0; i < nr; i++) {
2118 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2119 
2120 		/* no collision handling for now */
2121 		if (chash[h] == NO_ENTRY) {
2122 			chash[h] = i;
2123 		} else if (l[chash[h]].from == l[i].from) {
2124 			bool is_loop = true;
2125 			/* check if it is a real loop */
2126 			off = 0;
2127 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2128 				if (l[j].from != l[i + off].from) {
2129 					is_loop = false;
2130 					break;
2131 				}
2132 			if (is_loop) {
2133 				j = nr - (i + off);
2134 				if (j > 0) {
2135 					save_iterations(iter + i + off,
2136 						l + i, off);
2137 
2138 					memmove(iter + i, iter + i + off,
2139 						j * sizeof(*iter));
2140 
2141 					memmove(l + i, l + i + off,
2142 						j * sizeof(*l));
2143 				}
2144 
2145 				nr -= off;
2146 			}
2147 		}
2148 	}
2149 	return nr;
2150 }
2151 
2152 /*
2153  * Recolve LBR callstack chain sample
2154  * Return:
2155  * 1 on success get LBR callchain information
2156  * 0 no available LBR callchain information, should try fp
2157  * negative error code on other errors.
2158  */
2159 static int resolve_lbr_callchain_sample(struct thread *thread,
2160 					struct callchain_cursor *cursor,
2161 					struct perf_sample *sample,
2162 					struct symbol **parent,
2163 					struct addr_location *root_al,
2164 					int max_stack)
2165 {
2166 	struct ip_callchain *chain = sample->callchain;
2167 	int chain_nr = min(max_stack, (int)chain->nr), i;
2168 	u8 cpumode = PERF_RECORD_MISC_USER;
2169 	u64 ip, branch_from = 0;
2170 
2171 	for (i = 0; i < chain_nr; i++) {
2172 		if (chain->ips[i] == PERF_CONTEXT_USER)
2173 			break;
2174 	}
2175 
2176 	/* LBR only affects the user callchain */
2177 	if (i != chain_nr) {
2178 		struct branch_stack *lbr_stack = sample->branch_stack;
2179 		int lbr_nr = lbr_stack->nr, j, k;
2180 		bool branch;
2181 		struct branch_flags *flags;
2182 		/*
2183 		 * LBR callstack can only get user call chain.
2184 		 * The mix_chain_nr is kernel call chain
2185 		 * number plus LBR user call chain number.
2186 		 * i is kernel call chain number,
2187 		 * 1 is PERF_CONTEXT_USER,
2188 		 * lbr_nr + 1 is the user call chain number.
2189 		 * For details, please refer to the comments
2190 		 * in callchain__printf
2191 		 */
2192 		int mix_chain_nr = i + 1 + lbr_nr + 1;
2193 
2194 		for (j = 0; j < mix_chain_nr; j++) {
2195 			int err;
2196 			branch = false;
2197 			flags = NULL;
2198 
2199 			if (callchain_param.order == ORDER_CALLEE) {
2200 				if (j < i + 1)
2201 					ip = chain->ips[j];
2202 				else if (j > i + 1) {
2203 					k = j - i - 2;
2204 					ip = lbr_stack->entries[k].from;
2205 					branch = true;
2206 					flags = &lbr_stack->entries[k].flags;
2207 				} else {
2208 					ip = lbr_stack->entries[0].to;
2209 					branch = true;
2210 					flags = &lbr_stack->entries[0].flags;
2211 					branch_from =
2212 						lbr_stack->entries[0].from;
2213 				}
2214 			} else {
2215 				if (j < lbr_nr) {
2216 					k = lbr_nr - j - 1;
2217 					ip = lbr_stack->entries[k].from;
2218 					branch = true;
2219 					flags = &lbr_stack->entries[k].flags;
2220 				}
2221 				else if (j > lbr_nr)
2222 					ip = chain->ips[i + 1 - (j - lbr_nr)];
2223 				else {
2224 					ip = lbr_stack->entries[0].to;
2225 					branch = true;
2226 					flags = &lbr_stack->entries[0].flags;
2227 					branch_from =
2228 						lbr_stack->entries[0].from;
2229 				}
2230 			}
2231 
2232 			err = add_callchain_ip(thread, cursor, parent,
2233 					       root_al, &cpumode, ip,
2234 					       branch, flags, NULL,
2235 					       branch_from);
2236 			if (err)
2237 				return (err < 0) ? err : 0;
2238 		}
2239 		return 1;
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2246 			     struct callchain_cursor *cursor,
2247 			     struct symbol **parent,
2248 			     struct addr_location *root_al,
2249 			     u8 *cpumode, int ent)
2250 {
2251 	int err = 0;
2252 
2253 	while (--ent >= 0) {
2254 		u64 ip = chain->ips[ent];
2255 
2256 		if (ip >= PERF_CONTEXT_MAX) {
2257 			err = add_callchain_ip(thread, cursor, parent,
2258 					       root_al, cpumode, ip,
2259 					       false, NULL, NULL, 0);
2260 			break;
2261 		}
2262 	}
2263 	return err;
2264 }
2265 
2266 static int thread__resolve_callchain_sample(struct thread *thread,
2267 					    struct callchain_cursor *cursor,
2268 					    struct perf_evsel *evsel,
2269 					    struct perf_sample *sample,
2270 					    struct symbol **parent,
2271 					    struct addr_location *root_al,
2272 					    int max_stack)
2273 {
2274 	struct branch_stack *branch = sample->branch_stack;
2275 	struct ip_callchain *chain = sample->callchain;
2276 	int chain_nr = 0;
2277 	u8 cpumode = PERF_RECORD_MISC_USER;
2278 	int i, j, err, nr_entries;
2279 	int skip_idx = -1;
2280 	int first_call = 0;
2281 
2282 	if (chain)
2283 		chain_nr = chain->nr;
2284 
2285 	if (perf_evsel__has_branch_callstack(evsel)) {
2286 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2287 						   root_al, max_stack);
2288 		if (err)
2289 			return (err < 0) ? err : 0;
2290 	}
2291 
2292 	/*
2293 	 * Based on DWARF debug information, some architectures skip
2294 	 * a callchain entry saved by the kernel.
2295 	 */
2296 	skip_idx = arch_skip_callchain_idx(thread, chain);
2297 
2298 	/*
2299 	 * Add branches to call stack for easier browsing. This gives
2300 	 * more context for a sample than just the callers.
2301 	 *
2302 	 * This uses individual histograms of paths compared to the
2303 	 * aggregated histograms the normal LBR mode uses.
2304 	 *
2305 	 * Limitations for now:
2306 	 * - No extra filters
2307 	 * - No annotations (should annotate somehow)
2308 	 */
2309 
2310 	if (branch && callchain_param.branch_callstack) {
2311 		int nr = min(max_stack, (int)branch->nr);
2312 		struct branch_entry be[nr];
2313 		struct iterations iter[nr];
2314 
2315 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2316 			pr_warning("corrupted branch chain. skipping...\n");
2317 			goto check_calls;
2318 		}
2319 
2320 		for (i = 0; i < nr; i++) {
2321 			if (callchain_param.order == ORDER_CALLEE) {
2322 				be[i] = branch->entries[i];
2323 
2324 				if (chain == NULL)
2325 					continue;
2326 
2327 				/*
2328 				 * Check for overlap into the callchain.
2329 				 * The return address is one off compared to
2330 				 * the branch entry. To adjust for this
2331 				 * assume the calling instruction is not longer
2332 				 * than 8 bytes.
2333 				 */
2334 				if (i == skip_idx ||
2335 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2336 					first_call++;
2337 				else if (be[i].from < chain->ips[first_call] &&
2338 				    be[i].from >= chain->ips[first_call] - 8)
2339 					first_call++;
2340 			} else
2341 				be[i] = branch->entries[branch->nr - i - 1];
2342 		}
2343 
2344 		memset(iter, 0, sizeof(struct iterations) * nr);
2345 		nr = remove_loops(be, nr, iter);
2346 
2347 		for (i = 0; i < nr; i++) {
2348 			err = add_callchain_ip(thread, cursor, parent,
2349 					       root_al,
2350 					       NULL, be[i].to,
2351 					       true, &be[i].flags,
2352 					       NULL, be[i].from);
2353 
2354 			if (!err)
2355 				err = add_callchain_ip(thread, cursor, parent, root_al,
2356 						       NULL, be[i].from,
2357 						       true, &be[i].flags,
2358 						       &iter[i], 0);
2359 			if (err == -EINVAL)
2360 				break;
2361 			if (err)
2362 				return err;
2363 		}
2364 
2365 		if (chain_nr == 0)
2366 			return 0;
2367 
2368 		chain_nr -= nr;
2369 	}
2370 
2371 check_calls:
2372 	if (callchain_param.order != ORDER_CALLEE) {
2373 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2374 					&cpumode, chain->nr - first_call);
2375 		if (err)
2376 			return (err < 0) ? err : 0;
2377 	}
2378 	for (i = first_call, nr_entries = 0;
2379 	     i < chain_nr && nr_entries < max_stack; i++) {
2380 		u64 ip;
2381 
2382 		if (callchain_param.order == ORDER_CALLEE)
2383 			j = i;
2384 		else
2385 			j = chain->nr - i - 1;
2386 
2387 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2388 		if (j == skip_idx)
2389 			continue;
2390 #endif
2391 		ip = chain->ips[j];
2392 		if (ip < PERF_CONTEXT_MAX)
2393                        ++nr_entries;
2394 		else if (callchain_param.order != ORDER_CALLEE) {
2395 			err = find_prev_cpumode(chain, thread, cursor, parent,
2396 						root_al, &cpumode, j);
2397 			if (err)
2398 				return (err < 0) ? err : 0;
2399 			continue;
2400 		}
2401 
2402 		err = add_callchain_ip(thread, cursor, parent,
2403 				       root_al, &cpumode, ip,
2404 				       false, NULL, NULL, 0);
2405 
2406 		if (err)
2407 			return (err < 0) ? err : 0;
2408 	}
2409 
2410 	return 0;
2411 }
2412 
2413 static int append_inlines(struct callchain_cursor *cursor,
2414 			  struct map *map, struct symbol *sym, u64 ip)
2415 {
2416 	struct inline_node *inline_node;
2417 	struct inline_list *ilist;
2418 	u64 addr;
2419 	int ret = 1;
2420 
2421 	if (!symbol_conf.inline_name || !map || !sym)
2422 		return ret;
2423 
2424 	addr = map__map_ip(map, ip);
2425 	addr = map__rip_2objdump(map, addr);
2426 
2427 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2428 	if (!inline_node) {
2429 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2430 		if (!inline_node)
2431 			return ret;
2432 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2433 	}
2434 
2435 	list_for_each_entry(ilist, &inline_node->val, list) {
2436 		ret = callchain_cursor_append(cursor, ip, map,
2437 					      ilist->symbol, false,
2438 					      NULL, 0, 0, 0, ilist->srcline);
2439 
2440 		if (ret != 0)
2441 			return ret;
2442 	}
2443 
2444 	return ret;
2445 }
2446 
2447 static int unwind_entry(struct unwind_entry *entry, void *arg)
2448 {
2449 	struct callchain_cursor *cursor = arg;
2450 	const char *srcline = NULL;
2451 	u64 addr = entry->ip;
2452 
2453 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2454 		return 0;
2455 
2456 	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2457 		return 0;
2458 
2459 	/*
2460 	 * Convert entry->ip from a virtual address to an offset in
2461 	 * its corresponding binary.
2462 	 */
2463 	if (entry->map)
2464 		addr = map__map_ip(entry->map, entry->ip);
2465 
2466 	srcline = callchain_srcline(entry->map, entry->sym, addr);
2467 	return callchain_cursor_append(cursor, entry->ip,
2468 				       entry->map, entry->sym,
2469 				       false, NULL, 0, 0, 0, srcline);
2470 }
2471 
2472 static int thread__resolve_callchain_unwind(struct thread *thread,
2473 					    struct callchain_cursor *cursor,
2474 					    struct perf_evsel *evsel,
2475 					    struct perf_sample *sample,
2476 					    int max_stack)
2477 {
2478 	/* Can we do dwarf post unwind? */
2479 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2480 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2481 		return 0;
2482 
2483 	/* Bail out if nothing was captured. */
2484 	if ((!sample->user_regs.regs) ||
2485 	    (!sample->user_stack.size))
2486 		return 0;
2487 
2488 	return unwind__get_entries(unwind_entry, cursor,
2489 				   thread, sample, max_stack);
2490 }
2491 
2492 int thread__resolve_callchain(struct thread *thread,
2493 			      struct callchain_cursor *cursor,
2494 			      struct perf_evsel *evsel,
2495 			      struct perf_sample *sample,
2496 			      struct symbol **parent,
2497 			      struct addr_location *root_al,
2498 			      int max_stack)
2499 {
2500 	int ret = 0;
2501 
2502 	callchain_cursor_reset(cursor);
2503 
2504 	if (callchain_param.order == ORDER_CALLEE) {
2505 		ret = thread__resolve_callchain_sample(thread, cursor,
2506 						       evsel, sample,
2507 						       parent, root_al,
2508 						       max_stack);
2509 		if (ret)
2510 			return ret;
2511 		ret = thread__resolve_callchain_unwind(thread, cursor,
2512 						       evsel, sample,
2513 						       max_stack);
2514 	} else {
2515 		ret = thread__resolve_callchain_unwind(thread, cursor,
2516 						       evsel, sample,
2517 						       max_stack);
2518 		if (ret)
2519 			return ret;
2520 		ret = thread__resolve_callchain_sample(thread, cursor,
2521 						       evsel, sample,
2522 						       parent, root_al,
2523 						       max_stack);
2524 	}
2525 
2526 	return ret;
2527 }
2528 
2529 int machine__for_each_thread(struct machine *machine,
2530 			     int (*fn)(struct thread *thread, void *p),
2531 			     void *priv)
2532 {
2533 	struct threads *threads;
2534 	struct rb_node *nd;
2535 	struct thread *thread;
2536 	int rc = 0;
2537 	int i;
2538 
2539 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2540 		threads = &machine->threads[i];
2541 		for (nd = rb_first_cached(&threads->entries); nd;
2542 		     nd = rb_next(nd)) {
2543 			thread = rb_entry(nd, struct thread, rb_node);
2544 			rc = fn(thread, priv);
2545 			if (rc != 0)
2546 				return rc;
2547 		}
2548 
2549 		list_for_each_entry(thread, &threads->dead, node) {
2550 			rc = fn(thread, priv);
2551 			if (rc != 0)
2552 				return rc;
2553 		}
2554 	}
2555 	return rc;
2556 }
2557 
2558 int machines__for_each_thread(struct machines *machines,
2559 			      int (*fn)(struct thread *thread, void *p),
2560 			      void *priv)
2561 {
2562 	struct rb_node *nd;
2563 	int rc = 0;
2564 
2565 	rc = machine__for_each_thread(&machines->host, fn, priv);
2566 	if (rc != 0)
2567 		return rc;
2568 
2569 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2570 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2571 
2572 		rc = machine__for_each_thread(machine, fn, priv);
2573 		if (rc != 0)
2574 			return rc;
2575 	}
2576 	return rc;
2577 }
2578 
2579 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2580 				  struct target *target, struct thread_map *threads,
2581 				  perf_event__handler_t process, bool data_mmap,
2582 				  unsigned int nr_threads_synthesize)
2583 {
2584 	if (target__has_task(target))
2585 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2586 	else if (target__has_cpu(target))
2587 		return perf_event__synthesize_threads(tool, process,
2588 						      machine, data_mmap,
2589 						      nr_threads_synthesize);
2590 	/* command specified */
2591 	return 0;
2592 }
2593 
2594 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2595 {
2596 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2597 		return -1;
2598 
2599 	return machine->current_tid[cpu];
2600 }
2601 
2602 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2603 			     pid_t tid)
2604 {
2605 	struct thread *thread;
2606 
2607 	if (cpu < 0)
2608 		return -EINVAL;
2609 
2610 	if (!machine->current_tid) {
2611 		int i;
2612 
2613 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2614 		if (!machine->current_tid)
2615 			return -ENOMEM;
2616 		for (i = 0; i < MAX_NR_CPUS; i++)
2617 			machine->current_tid[i] = -1;
2618 	}
2619 
2620 	if (cpu >= MAX_NR_CPUS) {
2621 		pr_err("Requested CPU %d too large. ", cpu);
2622 		pr_err("Consider raising MAX_NR_CPUS\n");
2623 		return -EINVAL;
2624 	}
2625 
2626 	machine->current_tid[cpu] = tid;
2627 
2628 	thread = machine__findnew_thread(machine, pid, tid);
2629 	if (!thread)
2630 		return -ENOMEM;
2631 
2632 	thread->cpu = cpu;
2633 	thread__put(thread);
2634 
2635 	return 0;
2636 }
2637 
2638 /*
2639  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2640  * normalized arch is needed.
2641  */
2642 bool machine__is(struct machine *machine, const char *arch)
2643 {
2644 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2645 }
2646 
2647 int machine__nr_cpus_avail(struct machine *machine)
2648 {
2649 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2650 }
2651 
2652 int machine__get_kernel_start(struct machine *machine)
2653 {
2654 	struct map *map = machine__kernel_map(machine);
2655 	int err = 0;
2656 
2657 	/*
2658 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2659 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2660 	 * all addresses including kernel addresses are less than 2^32.  In
2661 	 * that case (32-bit system), if the kernel mapping is unknown, all
2662 	 * addresses will be assumed to be in user space - see
2663 	 * machine__kernel_ip().
2664 	 */
2665 	machine->kernel_start = 1ULL << 63;
2666 	if (map) {
2667 		err = map__load(map);
2668 		/*
2669 		 * On x86_64, PTI entry trampolines are less than the
2670 		 * start of kernel text, but still above 2^63. So leave
2671 		 * kernel_start = 1ULL << 63 for x86_64.
2672 		 */
2673 		if (!err && !machine__is(machine, "x86_64"))
2674 			machine->kernel_start = map->start;
2675 	}
2676 	return err;
2677 }
2678 
2679 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2680 {
2681 	u8 addr_cpumode = cpumode;
2682 	bool kernel_ip;
2683 
2684 	if (!machine->single_address_space)
2685 		goto out;
2686 
2687 	kernel_ip = machine__kernel_ip(machine, addr);
2688 	switch (cpumode) {
2689 	case PERF_RECORD_MISC_KERNEL:
2690 	case PERF_RECORD_MISC_USER:
2691 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2692 					   PERF_RECORD_MISC_USER;
2693 		break;
2694 	case PERF_RECORD_MISC_GUEST_KERNEL:
2695 	case PERF_RECORD_MISC_GUEST_USER:
2696 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2697 					   PERF_RECORD_MISC_GUEST_USER;
2698 		break;
2699 	default:
2700 		break;
2701 	}
2702 out:
2703 	return addr_cpumode;
2704 }
2705 
2706 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2707 {
2708 	return dsos__findnew(&machine->dsos, filename);
2709 }
2710 
2711 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2712 {
2713 	struct machine *machine = vmachine;
2714 	struct map *map;
2715 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2716 
2717 	if (sym == NULL)
2718 		return NULL;
2719 
2720 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2721 	*addrp = map->unmap_ip(map, sym->start);
2722 	return sym->name;
2723 }
2724