1 #include "callchain.h" 2 #include "debug.h" 3 #include "event.h" 4 #include "evsel.h" 5 #include "hist.h" 6 #include "machine.h" 7 #include "map.h" 8 #include "sort.h" 9 #include "strlist.h" 10 #include "thread.h" 11 #include "vdso.h" 12 #include <stdbool.h> 13 #include <symbol/kallsyms.h> 14 #include "unwind.h" 15 #include "linux/hash.h" 16 17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 18 19 static void dsos__init(struct dsos *dsos) 20 { 21 INIT_LIST_HEAD(&dsos->head); 22 dsos->root = RB_ROOT; 23 pthread_rwlock_init(&dsos->lock, NULL); 24 } 25 26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 27 { 28 memset(machine, 0, sizeof(*machine)); 29 map_groups__init(&machine->kmaps, machine); 30 RB_CLEAR_NODE(&machine->rb_node); 31 dsos__init(&machine->dsos); 32 33 machine->threads = RB_ROOT; 34 pthread_rwlock_init(&machine->threads_lock, NULL); 35 machine->nr_threads = 0; 36 INIT_LIST_HEAD(&machine->dead_threads); 37 machine->last_match = NULL; 38 39 machine->vdso_info = NULL; 40 machine->env = NULL; 41 42 machine->pid = pid; 43 44 machine->symbol_filter = NULL; 45 machine->id_hdr_size = 0; 46 machine->kptr_restrict_warned = false; 47 machine->comm_exec = false; 48 machine->kernel_start = 0; 49 50 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps)); 51 52 machine->root_dir = strdup(root_dir); 53 if (machine->root_dir == NULL) 54 return -ENOMEM; 55 56 if (pid != HOST_KERNEL_ID) { 57 struct thread *thread = machine__findnew_thread(machine, -1, 58 pid); 59 char comm[64]; 60 61 if (thread == NULL) 62 return -ENOMEM; 63 64 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 65 thread__set_comm(thread, comm, 0); 66 thread__put(thread); 67 } 68 69 machine->current_tid = NULL; 70 71 return 0; 72 } 73 74 struct machine *machine__new_host(void) 75 { 76 struct machine *machine = malloc(sizeof(*machine)); 77 78 if (machine != NULL) { 79 machine__init(machine, "", HOST_KERNEL_ID); 80 81 if (machine__create_kernel_maps(machine) < 0) 82 goto out_delete; 83 } 84 85 return machine; 86 out_delete: 87 free(machine); 88 return NULL; 89 } 90 91 static void dsos__purge(struct dsos *dsos) 92 { 93 struct dso *pos, *n; 94 95 pthread_rwlock_wrlock(&dsos->lock); 96 97 list_for_each_entry_safe(pos, n, &dsos->head, node) { 98 RB_CLEAR_NODE(&pos->rb_node); 99 pos->root = NULL; 100 list_del_init(&pos->node); 101 dso__put(pos); 102 } 103 104 pthread_rwlock_unlock(&dsos->lock); 105 } 106 107 static void dsos__exit(struct dsos *dsos) 108 { 109 dsos__purge(dsos); 110 pthread_rwlock_destroy(&dsos->lock); 111 } 112 113 void machine__delete_threads(struct machine *machine) 114 { 115 struct rb_node *nd; 116 117 pthread_rwlock_wrlock(&machine->threads_lock); 118 nd = rb_first(&machine->threads); 119 while (nd) { 120 struct thread *t = rb_entry(nd, struct thread, rb_node); 121 122 nd = rb_next(nd); 123 __machine__remove_thread(machine, t, false); 124 } 125 pthread_rwlock_unlock(&machine->threads_lock); 126 } 127 128 void machine__exit(struct machine *machine) 129 { 130 machine__destroy_kernel_maps(machine); 131 map_groups__exit(&machine->kmaps); 132 dsos__exit(&machine->dsos); 133 machine__exit_vdso(machine); 134 zfree(&machine->root_dir); 135 zfree(&machine->current_tid); 136 pthread_rwlock_destroy(&machine->threads_lock); 137 } 138 139 void machine__delete(struct machine *machine) 140 { 141 if (machine) { 142 machine__exit(machine); 143 free(machine); 144 } 145 } 146 147 void machines__init(struct machines *machines) 148 { 149 machine__init(&machines->host, "", HOST_KERNEL_ID); 150 machines->guests = RB_ROOT; 151 machines->symbol_filter = NULL; 152 } 153 154 void machines__exit(struct machines *machines) 155 { 156 machine__exit(&machines->host); 157 /* XXX exit guest */ 158 } 159 160 struct machine *machines__add(struct machines *machines, pid_t pid, 161 const char *root_dir) 162 { 163 struct rb_node **p = &machines->guests.rb_node; 164 struct rb_node *parent = NULL; 165 struct machine *pos, *machine = malloc(sizeof(*machine)); 166 167 if (machine == NULL) 168 return NULL; 169 170 if (machine__init(machine, root_dir, pid) != 0) { 171 free(machine); 172 return NULL; 173 } 174 175 machine->symbol_filter = machines->symbol_filter; 176 177 while (*p != NULL) { 178 parent = *p; 179 pos = rb_entry(parent, struct machine, rb_node); 180 if (pid < pos->pid) 181 p = &(*p)->rb_left; 182 else 183 p = &(*p)->rb_right; 184 } 185 186 rb_link_node(&machine->rb_node, parent, p); 187 rb_insert_color(&machine->rb_node, &machines->guests); 188 189 return machine; 190 } 191 192 void machines__set_symbol_filter(struct machines *machines, 193 symbol_filter_t symbol_filter) 194 { 195 struct rb_node *nd; 196 197 machines->symbol_filter = symbol_filter; 198 machines->host.symbol_filter = symbol_filter; 199 200 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 201 struct machine *machine = rb_entry(nd, struct machine, rb_node); 202 203 machine->symbol_filter = symbol_filter; 204 } 205 } 206 207 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 208 { 209 struct rb_node *nd; 210 211 machines->host.comm_exec = comm_exec; 212 213 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 214 struct machine *machine = rb_entry(nd, struct machine, rb_node); 215 216 machine->comm_exec = comm_exec; 217 } 218 } 219 220 struct machine *machines__find(struct machines *machines, pid_t pid) 221 { 222 struct rb_node **p = &machines->guests.rb_node; 223 struct rb_node *parent = NULL; 224 struct machine *machine; 225 struct machine *default_machine = NULL; 226 227 if (pid == HOST_KERNEL_ID) 228 return &machines->host; 229 230 while (*p != NULL) { 231 parent = *p; 232 machine = rb_entry(parent, struct machine, rb_node); 233 if (pid < machine->pid) 234 p = &(*p)->rb_left; 235 else if (pid > machine->pid) 236 p = &(*p)->rb_right; 237 else 238 return machine; 239 if (!machine->pid) 240 default_machine = machine; 241 } 242 243 return default_machine; 244 } 245 246 struct machine *machines__findnew(struct machines *machines, pid_t pid) 247 { 248 char path[PATH_MAX]; 249 const char *root_dir = ""; 250 struct machine *machine = machines__find(machines, pid); 251 252 if (machine && (machine->pid == pid)) 253 goto out; 254 255 if ((pid != HOST_KERNEL_ID) && 256 (pid != DEFAULT_GUEST_KERNEL_ID) && 257 (symbol_conf.guestmount)) { 258 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 259 if (access(path, R_OK)) { 260 static struct strlist *seen; 261 262 if (!seen) 263 seen = strlist__new(NULL, NULL); 264 265 if (!strlist__has_entry(seen, path)) { 266 pr_err("Can't access file %s\n", path); 267 strlist__add(seen, path); 268 } 269 machine = NULL; 270 goto out; 271 } 272 root_dir = path; 273 } 274 275 machine = machines__add(machines, pid, root_dir); 276 out: 277 return machine; 278 } 279 280 void machines__process_guests(struct machines *machines, 281 machine__process_t process, void *data) 282 { 283 struct rb_node *nd; 284 285 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 286 struct machine *pos = rb_entry(nd, struct machine, rb_node); 287 process(pos, data); 288 } 289 } 290 291 char *machine__mmap_name(struct machine *machine, char *bf, size_t size) 292 { 293 if (machine__is_host(machine)) 294 snprintf(bf, size, "[%s]", "kernel.kallsyms"); 295 else if (machine__is_default_guest(machine)) 296 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms"); 297 else { 298 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms", 299 machine->pid); 300 } 301 302 return bf; 303 } 304 305 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 306 { 307 struct rb_node *node; 308 struct machine *machine; 309 310 machines->host.id_hdr_size = id_hdr_size; 311 312 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 313 machine = rb_entry(node, struct machine, rb_node); 314 machine->id_hdr_size = id_hdr_size; 315 } 316 317 return; 318 } 319 320 static void machine__update_thread_pid(struct machine *machine, 321 struct thread *th, pid_t pid) 322 { 323 struct thread *leader; 324 325 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 326 return; 327 328 th->pid_ = pid; 329 330 if (th->pid_ == th->tid) 331 return; 332 333 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 334 if (!leader) 335 goto out_err; 336 337 if (!leader->mg) 338 leader->mg = map_groups__new(machine); 339 340 if (!leader->mg) 341 goto out_err; 342 343 if (th->mg == leader->mg) 344 return; 345 346 if (th->mg) { 347 /* 348 * Maps are created from MMAP events which provide the pid and 349 * tid. Consequently there never should be any maps on a thread 350 * with an unknown pid. Just print an error if there are. 351 */ 352 if (!map_groups__empty(th->mg)) 353 pr_err("Discarding thread maps for %d:%d\n", 354 th->pid_, th->tid); 355 map_groups__put(th->mg); 356 } 357 358 th->mg = map_groups__get(leader->mg); 359 out_put: 360 thread__put(leader); 361 return; 362 out_err: 363 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 364 goto out_put; 365 } 366 367 /* 368 * Caller must eventually drop thread->refcnt returned with a successful 369 * lookup/new thread inserted. 370 */ 371 static struct thread *____machine__findnew_thread(struct machine *machine, 372 pid_t pid, pid_t tid, 373 bool create) 374 { 375 struct rb_node **p = &machine->threads.rb_node; 376 struct rb_node *parent = NULL; 377 struct thread *th; 378 379 /* 380 * Front-end cache - TID lookups come in blocks, 381 * so most of the time we dont have to look up 382 * the full rbtree: 383 */ 384 th = machine->last_match; 385 if (th != NULL) { 386 if (th->tid == tid) { 387 machine__update_thread_pid(machine, th, pid); 388 return thread__get(th); 389 } 390 391 machine->last_match = NULL; 392 } 393 394 while (*p != NULL) { 395 parent = *p; 396 th = rb_entry(parent, struct thread, rb_node); 397 398 if (th->tid == tid) { 399 machine->last_match = th; 400 machine__update_thread_pid(machine, th, pid); 401 return thread__get(th); 402 } 403 404 if (tid < th->tid) 405 p = &(*p)->rb_left; 406 else 407 p = &(*p)->rb_right; 408 } 409 410 if (!create) 411 return NULL; 412 413 th = thread__new(pid, tid); 414 if (th != NULL) { 415 rb_link_node(&th->rb_node, parent, p); 416 rb_insert_color(&th->rb_node, &machine->threads); 417 418 /* 419 * We have to initialize map_groups separately 420 * after rb tree is updated. 421 * 422 * The reason is that we call machine__findnew_thread 423 * within thread__init_map_groups to find the thread 424 * leader and that would screwed the rb tree. 425 */ 426 if (thread__init_map_groups(th, machine)) { 427 rb_erase_init(&th->rb_node, &machine->threads); 428 RB_CLEAR_NODE(&th->rb_node); 429 thread__put(th); 430 return NULL; 431 } 432 /* 433 * It is now in the rbtree, get a ref 434 */ 435 thread__get(th); 436 machine->last_match = th; 437 ++machine->nr_threads; 438 } 439 440 return th; 441 } 442 443 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 444 { 445 return ____machine__findnew_thread(machine, pid, tid, true); 446 } 447 448 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 449 pid_t tid) 450 { 451 struct thread *th; 452 453 pthread_rwlock_wrlock(&machine->threads_lock); 454 th = __machine__findnew_thread(machine, pid, tid); 455 pthread_rwlock_unlock(&machine->threads_lock); 456 return th; 457 } 458 459 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 460 pid_t tid) 461 { 462 struct thread *th; 463 pthread_rwlock_rdlock(&machine->threads_lock); 464 th = ____machine__findnew_thread(machine, pid, tid, false); 465 pthread_rwlock_unlock(&machine->threads_lock); 466 return th; 467 } 468 469 struct comm *machine__thread_exec_comm(struct machine *machine, 470 struct thread *thread) 471 { 472 if (machine->comm_exec) 473 return thread__exec_comm(thread); 474 else 475 return thread__comm(thread); 476 } 477 478 int machine__process_comm_event(struct machine *machine, union perf_event *event, 479 struct perf_sample *sample) 480 { 481 struct thread *thread = machine__findnew_thread(machine, 482 event->comm.pid, 483 event->comm.tid); 484 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 485 int err = 0; 486 487 if (exec) 488 machine->comm_exec = true; 489 490 if (dump_trace) 491 perf_event__fprintf_comm(event, stdout); 492 493 if (thread == NULL || 494 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 495 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 496 err = -1; 497 } 498 499 thread__put(thread); 500 501 return err; 502 } 503 504 int machine__process_lost_event(struct machine *machine __maybe_unused, 505 union perf_event *event, struct perf_sample *sample __maybe_unused) 506 { 507 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 508 event->lost.id, event->lost.lost); 509 return 0; 510 } 511 512 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 513 union perf_event *event, struct perf_sample *sample) 514 { 515 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 516 sample->id, event->lost_samples.lost); 517 return 0; 518 } 519 520 static struct dso *machine__findnew_module_dso(struct machine *machine, 521 struct kmod_path *m, 522 const char *filename) 523 { 524 struct dso *dso; 525 526 pthread_rwlock_wrlock(&machine->dsos.lock); 527 528 dso = __dsos__find(&machine->dsos, m->name, true); 529 if (!dso) { 530 dso = __dsos__addnew(&machine->dsos, m->name); 531 if (dso == NULL) 532 goto out_unlock; 533 534 if (machine__is_host(machine)) 535 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE; 536 else 537 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE; 538 539 /* _KMODULE_COMP should be next to _KMODULE */ 540 if (m->kmod && m->comp) 541 dso->symtab_type++; 542 543 dso__set_short_name(dso, strdup(m->name), true); 544 dso__set_long_name(dso, strdup(filename), true); 545 } 546 547 dso__get(dso); 548 out_unlock: 549 pthread_rwlock_unlock(&machine->dsos.lock); 550 return dso; 551 } 552 553 int machine__process_aux_event(struct machine *machine __maybe_unused, 554 union perf_event *event) 555 { 556 if (dump_trace) 557 perf_event__fprintf_aux(event, stdout); 558 return 0; 559 } 560 561 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 562 union perf_event *event) 563 { 564 if (dump_trace) 565 perf_event__fprintf_itrace_start(event, stdout); 566 return 0; 567 } 568 569 int machine__process_switch_event(struct machine *machine __maybe_unused, 570 union perf_event *event) 571 { 572 if (dump_trace) 573 perf_event__fprintf_switch(event, stdout); 574 return 0; 575 } 576 577 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 578 { 579 const char *dup_filename; 580 581 if (!filename || !dso || !dso->long_name) 582 return; 583 if (dso->long_name[0] != '[') 584 return; 585 if (!strchr(filename, '/')) 586 return; 587 588 dup_filename = strdup(filename); 589 if (!dup_filename) 590 return; 591 592 dso__set_long_name(dso, dup_filename, true); 593 } 594 595 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 596 const char *filename) 597 { 598 struct map *map = NULL; 599 struct dso *dso = NULL; 600 struct kmod_path m; 601 602 if (kmod_path__parse_name(&m, filename)) 603 return NULL; 604 605 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION, 606 m.name); 607 if (map) { 608 /* 609 * If the map's dso is an offline module, give dso__load() 610 * a chance to find the file path of that module by fixing 611 * long_name. 612 */ 613 dso__adjust_kmod_long_name(map->dso, filename); 614 goto out; 615 } 616 617 dso = machine__findnew_module_dso(machine, &m, filename); 618 if (dso == NULL) 619 goto out; 620 621 map = map__new2(start, dso, MAP__FUNCTION); 622 if (map == NULL) 623 goto out; 624 625 map_groups__insert(&machine->kmaps, map); 626 627 /* Put the map here because map_groups__insert alread got it */ 628 map__put(map); 629 out: 630 /* put the dso here, corresponding to machine__findnew_module_dso */ 631 dso__put(dso); 632 free(m.name); 633 return map; 634 } 635 636 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 637 { 638 struct rb_node *nd; 639 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 640 641 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 642 struct machine *pos = rb_entry(nd, struct machine, rb_node); 643 ret += __dsos__fprintf(&pos->dsos.head, fp); 644 } 645 646 return ret; 647 } 648 649 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 650 bool (skip)(struct dso *dso, int parm), int parm) 651 { 652 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 653 } 654 655 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 656 bool (skip)(struct dso *dso, int parm), int parm) 657 { 658 struct rb_node *nd; 659 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 660 661 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 662 struct machine *pos = rb_entry(nd, struct machine, rb_node); 663 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 664 } 665 return ret; 666 } 667 668 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 669 { 670 int i; 671 size_t printed = 0; 672 struct dso *kdso = machine__kernel_map(machine)->dso; 673 674 if (kdso->has_build_id) { 675 char filename[PATH_MAX]; 676 if (dso__build_id_filename(kdso, filename, sizeof(filename))) 677 printed += fprintf(fp, "[0] %s\n", filename); 678 } 679 680 for (i = 0; i < vmlinux_path__nr_entries; ++i) 681 printed += fprintf(fp, "[%d] %s\n", 682 i + kdso->has_build_id, vmlinux_path[i]); 683 684 return printed; 685 } 686 687 size_t machine__fprintf(struct machine *machine, FILE *fp) 688 { 689 size_t ret; 690 struct rb_node *nd; 691 692 pthread_rwlock_rdlock(&machine->threads_lock); 693 694 ret = fprintf(fp, "Threads: %u\n", machine->nr_threads); 695 696 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 697 struct thread *pos = rb_entry(nd, struct thread, rb_node); 698 699 ret += thread__fprintf(pos, fp); 700 } 701 702 pthread_rwlock_unlock(&machine->threads_lock); 703 704 return ret; 705 } 706 707 static struct dso *machine__get_kernel(struct machine *machine) 708 { 709 const char *vmlinux_name = NULL; 710 struct dso *kernel; 711 712 if (machine__is_host(machine)) { 713 vmlinux_name = symbol_conf.vmlinux_name; 714 if (!vmlinux_name) 715 vmlinux_name = DSO__NAME_KALLSYMS; 716 717 kernel = machine__findnew_kernel(machine, vmlinux_name, 718 "[kernel]", DSO_TYPE_KERNEL); 719 } else { 720 char bf[PATH_MAX]; 721 722 if (machine__is_default_guest(machine)) 723 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 724 if (!vmlinux_name) 725 vmlinux_name = machine__mmap_name(machine, bf, 726 sizeof(bf)); 727 728 kernel = machine__findnew_kernel(machine, vmlinux_name, 729 "[guest.kernel]", 730 DSO_TYPE_GUEST_KERNEL); 731 } 732 733 if (kernel != NULL && (!kernel->has_build_id)) 734 dso__read_running_kernel_build_id(kernel, machine); 735 736 return kernel; 737 } 738 739 struct process_args { 740 u64 start; 741 }; 742 743 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 744 size_t bufsz) 745 { 746 if (machine__is_default_guest(machine)) 747 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 748 else 749 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 750 } 751 752 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 753 754 /* Figure out the start address of kernel map from /proc/kallsyms. 755 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 756 * symbol_name if it's not that important. 757 */ 758 static u64 machine__get_running_kernel_start(struct machine *machine, 759 const char **symbol_name) 760 { 761 char filename[PATH_MAX]; 762 int i; 763 const char *name; 764 u64 addr = 0; 765 766 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 767 768 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 769 return 0; 770 771 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 772 addr = kallsyms__get_function_start(filename, name); 773 if (addr) 774 break; 775 } 776 777 if (symbol_name) 778 *symbol_name = name; 779 780 return addr; 781 } 782 783 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 784 { 785 enum map_type type; 786 u64 start = machine__get_running_kernel_start(machine, NULL); 787 788 /* In case of renewal the kernel map, destroy previous one */ 789 machine__destroy_kernel_maps(machine); 790 791 for (type = 0; type < MAP__NR_TYPES; ++type) { 792 struct kmap *kmap; 793 struct map *map; 794 795 machine->vmlinux_maps[type] = map__new2(start, kernel, type); 796 if (machine->vmlinux_maps[type] == NULL) 797 return -1; 798 799 machine->vmlinux_maps[type]->map_ip = 800 machine->vmlinux_maps[type]->unmap_ip = 801 identity__map_ip; 802 map = __machine__kernel_map(machine, type); 803 kmap = map__kmap(map); 804 if (!kmap) 805 return -1; 806 807 kmap->kmaps = &machine->kmaps; 808 map_groups__insert(&machine->kmaps, map); 809 } 810 811 return 0; 812 } 813 814 void machine__destroy_kernel_maps(struct machine *machine) 815 { 816 enum map_type type; 817 818 for (type = 0; type < MAP__NR_TYPES; ++type) { 819 struct kmap *kmap; 820 struct map *map = __machine__kernel_map(machine, type); 821 822 if (map == NULL) 823 continue; 824 825 kmap = map__kmap(map); 826 map_groups__remove(&machine->kmaps, map); 827 if (kmap && kmap->ref_reloc_sym) { 828 /* 829 * ref_reloc_sym is shared among all maps, so free just 830 * on one of them. 831 */ 832 if (type == MAP__FUNCTION) { 833 zfree((char **)&kmap->ref_reloc_sym->name); 834 zfree(&kmap->ref_reloc_sym); 835 } else 836 kmap->ref_reloc_sym = NULL; 837 } 838 839 map__put(machine->vmlinux_maps[type]); 840 machine->vmlinux_maps[type] = NULL; 841 } 842 } 843 844 int machines__create_guest_kernel_maps(struct machines *machines) 845 { 846 int ret = 0; 847 struct dirent **namelist = NULL; 848 int i, items = 0; 849 char path[PATH_MAX]; 850 pid_t pid; 851 char *endp; 852 853 if (symbol_conf.default_guest_vmlinux_name || 854 symbol_conf.default_guest_modules || 855 symbol_conf.default_guest_kallsyms) { 856 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 857 } 858 859 if (symbol_conf.guestmount) { 860 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 861 if (items <= 0) 862 return -ENOENT; 863 for (i = 0; i < items; i++) { 864 if (!isdigit(namelist[i]->d_name[0])) { 865 /* Filter out . and .. */ 866 continue; 867 } 868 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 869 if ((*endp != '\0') || 870 (endp == namelist[i]->d_name) || 871 (errno == ERANGE)) { 872 pr_debug("invalid directory (%s). Skipping.\n", 873 namelist[i]->d_name); 874 continue; 875 } 876 sprintf(path, "%s/%s/proc/kallsyms", 877 symbol_conf.guestmount, 878 namelist[i]->d_name); 879 ret = access(path, R_OK); 880 if (ret) { 881 pr_debug("Can't access file %s\n", path); 882 goto failure; 883 } 884 machines__create_kernel_maps(machines, pid); 885 } 886 failure: 887 free(namelist); 888 } 889 890 return ret; 891 } 892 893 void machines__destroy_kernel_maps(struct machines *machines) 894 { 895 struct rb_node *next = rb_first(&machines->guests); 896 897 machine__destroy_kernel_maps(&machines->host); 898 899 while (next) { 900 struct machine *pos = rb_entry(next, struct machine, rb_node); 901 902 next = rb_next(&pos->rb_node); 903 rb_erase(&pos->rb_node, &machines->guests); 904 machine__delete(pos); 905 } 906 } 907 908 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 909 { 910 struct machine *machine = machines__findnew(machines, pid); 911 912 if (machine == NULL) 913 return -1; 914 915 return machine__create_kernel_maps(machine); 916 } 917 918 int __machine__load_kallsyms(struct machine *machine, const char *filename, 919 enum map_type type, bool no_kcore, symbol_filter_t filter) 920 { 921 struct map *map = machine__kernel_map(machine); 922 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore, filter); 923 924 if (ret > 0) { 925 dso__set_loaded(map->dso, type); 926 /* 927 * Since /proc/kallsyms will have multiple sessions for the 928 * kernel, with modules between them, fixup the end of all 929 * sections. 930 */ 931 __map_groups__fixup_end(&machine->kmaps, type); 932 } 933 934 return ret; 935 } 936 937 int machine__load_kallsyms(struct machine *machine, const char *filename, 938 enum map_type type, symbol_filter_t filter) 939 { 940 return __machine__load_kallsyms(machine, filename, type, false, filter); 941 } 942 943 int machine__load_vmlinux_path(struct machine *machine, enum map_type type, 944 symbol_filter_t filter) 945 { 946 struct map *map = machine__kernel_map(machine); 947 int ret = dso__load_vmlinux_path(map->dso, map, filter); 948 949 if (ret > 0) 950 dso__set_loaded(map->dso, type); 951 952 return ret; 953 } 954 955 static void map_groups__fixup_end(struct map_groups *mg) 956 { 957 int i; 958 for (i = 0; i < MAP__NR_TYPES; ++i) 959 __map_groups__fixup_end(mg, i); 960 } 961 962 static char *get_kernel_version(const char *root_dir) 963 { 964 char version[PATH_MAX]; 965 FILE *file; 966 char *name, *tmp; 967 const char *prefix = "Linux version "; 968 969 sprintf(version, "%s/proc/version", root_dir); 970 file = fopen(version, "r"); 971 if (!file) 972 return NULL; 973 974 version[0] = '\0'; 975 tmp = fgets(version, sizeof(version), file); 976 fclose(file); 977 978 name = strstr(version, prefix); 979 if (!name) 980 return NULL; 981 name += strlen(prefix); 982 tmp = strchr(name, ' '); 983 if (tmp) 984 *tmp = '\0'; 985 986 return strdup(name); 987 } 988 989 static bool is_kmod_dso(struct dso *dso) 990 { 991 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 992 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 993 } 994 995 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 996 struct kmod_path *m) 997 { 998 struct map *map; 999 char *long_name; 1000 1001 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name); 1002 if (map == NULL) 1003 return 0; 1004 1005 long_name = strdup(path); 1006 if (long_name == NULL) 1007 return -ENOMEM; 1008 1009 dso__set_long_name(map->dso, long_name, true); 1010 dso__kernel_module_get_build_id(map->dso, ""); 1011 1012 /* 1013 * Full name could reveal us kmod compression, so 1014 * we need to update the symtab_type if needed. 1015 */ 1016 if (m->comp && is_kmod_dso(map->dso)) 1017 map->dso->symtab_type++; 1018 1019 return 0; 1020 } 1021 1022 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1023 const char *dir_name, int depth) 1024 { 1025 struct dirent *dent; 1026 DIR *dir = opendir(dir_name); 1027 int ret = 0; 1028 1029 if (!dir) { 1030 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1031 return -1; 1032 } 1033 1034 while ((dent = readdir(dir)) != NULL) { 1035 char path[PATH_MAX]; 1036 struct stat st; 1037 1038 /*sshfs might return bad dent->d_type, so we have to stat*/ 1039 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1040 if (stat(path, &st)) 1041 continue; 1042 1043 if (S_ISDIR(st.st_mode)) { 1044 if (!strcmp(dent->d_name, ".") || 1045 !strcmp(dent->d_name, "..")) 1046 continue; 1047 1048 /* Do not follow top-level source and build symlinks */ 1049 if (depth == 0) { 1050 if (!strcmp(dent->d_name, "source") || 1051 !strcmp(dent->d_name, "build")) 1052 continue; 1053 } 1054 1055 ret = map_groups__set_modules_path_dir(mg, path, 1056 depth + 1); 1057 if (ret < 0) 1058 goto out; 1059 } else { 1060 struct kmod_path m; 1061 1062 ret = kmod_path__parse_name(&m, dent->d_name); 1063 if (ret) 1064 goto out; 1065 1066 if (m.kmod) 1067 ret = map_groups__set_module_path(mg, path, &m); 1068 1069 free(m.name); 1070 1071 if (ret) 1072 goto out; 1073 } 1074 } 1075 1076 out: 1077 closedir(dir); 1078 return ret; 1079 } 1080 1081 static int machine__set_modules_path(struct machine *machine) 1082 { 1083 char *version; 1084 char modules_path[PATH_MAX]; 1085 1086 version = get_kernel_version(machine->root_dir); 1087 if (!version) 1088 return -1; 1089 1090 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1091 machine->root_dir, version); 1092 free(version); 1093 1094 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1095 } 1096 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1097 const char *name __maybe_unused) 1098 { 1099 return 0; 1100 } 1101 1102 static int machine__create_module(void *arg, const char *name, u64 start) 1103 { 1104 struct machine *machine = arg; 1105 struct map *map; 1106 1107 if (arch__fix_module_text_start(&start, name) < 0) 1108 return -1; 1109 1110 map = machine__findnew_module_map(machine, start, name); 1111 if (map == NULL) 1112 return -1; 1113 1114 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1115 1116 return 0; 1117 } 1118 1119 static int machine__create_modules(struct machine *machine) 1120 { 1121 const char *modules; 1122 char path[PATH_MAX]; 1123 1124 if (machine__is_default_guest(machine)) { 1125 modules = symbol_conf.default_guest_modules; 1126 } else { 1127 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1128 modules = path; 1129 } 1130 1131 if (symbol__restricted_filename(modules, "/proc/modules")) 1132 return -1; 1133 1134 if (modules__parse(modules, machine, machine__create_module)) 1135 return -1; 1136 1137 if (!machine__set_modules_path(machine)) 1138 return 0; 1139 1140 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1141 1142 return 0; 1143 } 1144 1145 int machine__create_kernel_maps(struct machine *machine) 1146 { 1147 struct dso *kernel = machine__get_kernel(machine); 1148 const char *name; 1149 u64 addr; 1150 int ret; 1151 1152 if (kernel == NULL) 1153 return -1; 1154 1155 ret = __machine__create_kernel_maps(machine, kernel); 1156 dso__put(kernel); 1157 if (ret < 0) 1158 return -1; 1159 1160 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1161 if (machine__is_host(machine)) 1162 pr_debug("Problems creating module maps, " 1163 "continuing anyway...\n"); 1164 else 1165 pr_debug("Problems creating module maps for guest %d, " 1166 "continuing anyway...\n", machine->pid); 1167 } 1168 1169 /* 1170 * Now that we have all the maps created, just set the ->end of them: 1171 */ 1172 map_groups__fixup_end(&machine->kmaps); 1173 1174 addr = machine__get_running_kernel_start(machine, &name); 1175 if (!addr) { 1176 } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) { 1177 machine__destroy_kernel_maps(machine); 1178 return -1; 1179 } 1180 1181 return 0; 1182 } 1183 1184 static void machine__set_kernel_mmap_len(struct machine *machine, 1185 union perf_event *event) 1186 { 1187 int i; 1188 1189 for (i = 0; i < MAP__NR_TYPES; i++) { 1190 machine->vmlinux_maps[i]->start = event->mmap.start; 1191 machine->vmlinux_maps[i]->end = (event->mmap.start + 1192 event->mmap.len); 1193 /* 1194 * Be a bit paranoid here, some perf.data file came with 1195 * a zero sized synthesized MMAP event for the kernel. 1196 */ 1197 if (machine->vmlinux_maps[i]->end == 0) 1198 machine->vmlinux_maps[i]->end = ~0ULL; 1199 } 1200 } 1201 1202 static bool machine__uses_kcore(struct machine *machine) 1203 { 1204 struct dso *dso; 1205 1206 list_for_each_entry(dso, &machine->dsos.head, node) { 1207 if (dso__is_kcore(dso)) 1208 return true; 1209 } 1210 1211 return false; 1212 } 1213 1214 static int machine__process_kernel_mmap_event(struct machine *machine, 1215 union perf_event *event) 1216 { 1217 struct map *map; 1218 char kmmap_prefix[PATH_MAX]; 1219 enum dso_kernel_type kernel_type; 1220 bool is_kernel_mmap; 1221 1222 /* If we have maps from kcore then we do not need or want any others */ 1223 if (machine__uses_kcore(machine)) 1224 return 0; 1225 1226 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix)); 1227 if (machine__is_host(machine)) 1228 kernel_type = DSO_TYPE_KERNEL; 1229 else 1230 kernel_type = DSO_TYPE_GUEST_KERNEL; 1231 1232 is_kernel_mmap = memcmp(event->mmap.filename, 1233 kmmap_prefix, 1234 strlen(kmmap_prefix) - 1) == 0; 1235 if (event->mmap.filename[0] == '/' || 1236 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1237 map = machine__findnew_module_map(machine, event->mmap.start, 1238 event->mmap.filename); 1239 if (map == NULL) 1240 goto out_problem; 1241 1242 map->end = map->start + event->mmap.len; 1243 } else if (is_kernel_mmap) { 1244 const char *symbol_name = (event->mmap.filename + 1245 strlen(kmmap_prefix)); 1246 /* 1247 * Should be there already, from the build-id table in 1248 * the header. 1249 */ 1250 struct dso *kernel = NULL; 1251 struct dso *dso; 1252 1253 pthread_rwlock_rdlock(&machine->dsos.lock); 1254 1255 list_for_each_entry(dso, &machine->dsos.head, node) { 1256 1257 /* 1258 * The cpumode passed to is_kernel_module is not the 1259 * cpumode of *this* event. If we insist on passing 1260 * correct cpumode to is_kernel_module, we should 1261 * record the cpumode when we adding this dso to the 1262 * linked list. 1263 * 1264 * However we don't really need passing correct 1265 * cpumode. We know the correct cpumode must be kernel 1266 * mode (if not, we should not link it onto kernel_dsos 1267 * list). 1268 * 1269 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1270 * is_kernel_module() treats it as a kernel cpumode. 1271 */ 1272 1273 if (!dso->kernel || 1274 is_kernel_module(dso->long_name, 1275 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1276 continue; 1277 1278 1279 kernel = dso; 1280 break; 1281 } 1282 1283 pthread_rwlock_unlock(&machine->dsos.lock); 1284 1285 if (kernel == NULL) 1286 kernel = machine__findnew_dso(machine, kmmap_prefix); 1287 if (kernel == NULL) 1288 goto out_problem; 1289 1290 kernel->kernel = kernel_type; 1291 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1292 dso__put(kernel); 1293 goto out_problem; 1294 } 1295 1296 if (strstr(kernel->long_name, "vmlinux")) 1297 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1298 1299 machine__set_kernel_mmap_len(machine, event); 1300 1301 /* 1302 * Avoid using a zero address (kptr_restrict) for the ref reloc 1303 * symbol. Effectively having zero here means that at record 1304 * time /proc/sys/kernel/kptr_restrict was non zero. 1305 */ 1306 if (event->mmap.pgoff != 0) { 1307 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1308 symbol_name, 1309 event->mmap.pgoff); 1310 } 1311 1312 if (machine__is_default_guest(machine)) { 1313 /* 1314 * preload dso of guest kernel and modules 1315 */ 1316 dso__load(kernel, machine__kernel_map(machine), NULL); 1317 } 1318 } 1319 return 0; 1320 out_problem: 1321 return -1; 1322 } 1323 1324 int machine__process_mmap2_event(struct machine *machine, 1325 union perf_event *event, 1326 struct perf_sample *sample) 1327 { 1328 struct thread *thread; 1329 struct map *map; 1330 enum map_type type; 1331 int ret = 0; 1332 1333 if (dump_trace) 1334 perf_event__fprintf_mmap2(event, stdout); 1335 1336 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1337 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1338 ret = machine__process_kernel_mmap_event(machine, event); 1339 if (ret < 0) 1340 goto out_problem; 1341 return 0; 1342 } 1343 1344 thread = machine__findnew_thread(machine, event->mmap2.pid, 1345 event->mmap2.tid); 1346 if (thread == NULL) 1347 goto out_problem; 1348 1349 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1350 type = MAP__VARIABLE; 1351 else 1352 type = MAP__FUNCTION; 1353 1354 map = map__new(machine, event->mmap2.start, 1355 event->mmap2.len, event->mmap2.pgoff, 1356 event->mmap2.pid, event->mmap2.maj, 1357 event->mmap2.min, event->mmap2.ino, 1358 event->mmap2.ino_generation, 1359 event->mmap2.prot, 1360 event->mmap2.flags, 1361 event->mmap2.filename, type, thread); 1362 1363 if (map == NULL) 1364 goto out_problem_map; 1365 1366 ret = thread__insert_map(thread, map); 1367 if (ret) 1368 goto out_problem_insert; 1369 1370 thread__put(thread); 1371 map__put(map); 1372 return 0; 1373 1374 out_problem_insert: 1375 map__put(map); 1376 out_problem_map: 1377 thread__put(thread); 1378 out_problem: 1379 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1380 return 0; 1381 } 1382 1383 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1384 struct perf_sample *sample) 1385 { 1386 struct thread *thread; 1387 struct map *map; 1388 enum map_type type; 1389 int ret = 0; 1390 1391 if (dump_trace) 1392 perf_event__fprintf_mmap(event, stdout); 1393 1394 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1395 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1396 ret = machine__process_kernel_mmap_event(machine, event); 1397 if (ret < 0) 1398 goto out_problem; 1399 return 0; 1400 } 1401 1402 thread = machine__findnew_thread(machine, event->mmap.pid, 1403 event->mmap.tid); 1404 if (thread == NULL) 1405 goto out_problem; 1406 1407 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1408 type = MAP__VARIABLE; 1409 else 1410 type = MAP__FUNCTION; 1411 1412 map = map__new(machine, event->mmap.start, 1413 event->mmap.len, event->mmap.pgoff, 1414 event->mmap.pid, 0, 0, 0, 0, 0, 0, 1415 event->mmap.filename, 1416 type, thread); 1417 1418 if (map == NULL) 1419 goto out_problem_map; 1420 1421 ret = thread__insert_map(thread, map); 1422 if (ret) 1423 goto out_problem_insert; 1424 1425 thread__put(thread); 1426 map__put(map); 1427 return 0; 1428 1429 out_problem_insert: 1430 map__put(map); 1431 out_problem_map: 1432 thread__put(thread); 1433 out_problem: 1434 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1435 return 0; 1436 } 1437 1438 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1439 { 1440 if (machine->last_match == th) 1441 machine->last_match = NULL; 1442 1443 BUG_ON(atomic_read(&th->refcnt) == 0); 1444 if (lock) 1445 pthread_rwlock_wrlock(&machine->threads_lock); 1446 rb_erase_init(&th->rb_node, &machine->threads); 1447 RB_CLEAR_NODE(&th->rb_node); 1448 --machine->nr_threads; 1449 /* 1450 * Move it first to the dead_threads list, then drop the reference, 1451 * if this is the last reference, then the thread__delete destructor 1452 * will be called and we will remove it from the dead_threads list. 1453 */ 1454 list_add_tail(&th->node, &machine->dead_threads); 1455 if (lock) 1456 pthread_rwlock_unlock(&machine->threads_lock); 1457 thread__put(th); 1458 } 1459 1460 void machine__remove_thread(struct machine *machine, struct thread *th) 1461 { 1462 return __machine__remove_thread(machine, th, true); 1463 } 1464 1465 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1466 struct perf_sample *sample) 1467 { 1468 struct thread *thread = machine__find_thread(machine, 1469 event->fork.pid, 1470 event->fork.tid); 1471 struct thread *parent = machine__findnew_thread(machine, 1472 event->fork.ppid, 1473 event->fork.ptid); 1474 int err = 0; 1475 1476 if (dump_trace) 1477 perf_event__fprintf_task(event, stdout); 1478 1479 /* 1480 * There may be an existing thread that is not actually the parent, 1481 * either because we are processing events out of order, or because the 1482 * (fork) event that would have removed the thread was lost. Assume the 1483 * latter case and continue on as best we can. 1484 */ 1485 if (parent->pid_ != (pid_t)event->fork.ppid) { 1486 dump_printf("removing erroneous parent thread %d/%d\n", 1487 parent->pid_, parent->tid); 1488 machine__remove_thread(machine, parent); 1489 thread__put(parent); 1490 parent = machine__findnew_thread(machine, event->fork.ppid, 1491 event->fork.ptid); 1492 } 1493 1494 /* if a thread currently exists for the thread id remove it */ 1495 if (thread != NULL) { 1496 machine__remove_thread(machine, thread); 1497 thread__put(thread); 1498 } 1499 1500 thread = machine__findnew_thread(machine, event->fork.pid, 1501 event->fork.tid); 1502 1503 if (thread == NULL || parent == NULL || 1504 thread__fork(thread, parent, sample->time) < 0) { 1505 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1506 err = -1; 1507 } 1508 thread__put(thread); 1509 thread__put(parent); 1510 1511 return err; 1512 } 1513 1514 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1515 struct perf_sample *sample __maybe_unused) 1516 { 1517 struct thread *thread = machine__find_thread(machine, 1518 event->fork.pid, 1519 event->fork.tid); 1520 1521 if (dump_trace) 1522 perf_event__fprintf_task(event, stdout); 1523 1524 if (thread != NULL) { 1525 thread__exited(thread); 1526 thread__put(thread); 1527 } 1528 1529 return 0; 1530 } 1531 1532 int machine__process_event(struct machine *machine, union perf_event *event, 1533 struct perf_sample *sample) 1534 { 1535 int ret; 1536 1537 switch (event->header.type) { 1538 case PERF_RECORD_COMM: 1539 ret = machine__process_comm_event(machine, event, sample); break; 1540 case PERF_RECORD_MMAP: 1541 ret = machine__process_mmap_event(machine, event, sample); break; 1542 case PERF_RECORD_MMAP2: 1543 ret = machine__process_mmap2_event(machine, event, sample); break; 1544 case PERF_RECORD_FORK: 1545 ret = machine__process_fork_event(machine, event, sample); break; 1546 case PERF_RECORD_EXIT: 1547 ret = machine__process_exit_event(machine, event, sample); break; 1548 case PERF_RECORD_LOST: 1549 ret = machine__process_lost_event(machine, event, sample); break; 1550 case PERF_RECORD_AUX: 1551 ret = machine__process_aux_event(machine, event); break; 1552 case PERF_RECORD_ITRACE_START: 1553 ret = machine__process_itrace_start_event(machine, event); break; 1554 case PERF_RECORD_LOST_SAMPLES: 1555 ret = machine__process_lost_samples_event(machine, event, sample); break; 1556 case PERF_RECORD_SWITCH: 1557 case PERF_RECORD_SWITCH_CPU_WIDE: 1558 ret = machine__process_switch_event(machine, event); break; 1559 default: 1560 ret = -1; 1561 break; 1562 } 1563 1564 return ret; 1565 } 1566 1567 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1568 { 1569 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0)) 1570 return 1; 1571 return 0; 1572 } 1573 1574 static void ip__resolve_ams(struct thread *thread, 1575 struct addr_map_symbol *ams, 1576 u64 ip) 1577 { 1578 struct addr_location al; 1579 1580 memset(&al, 0, sizeof(al)); 1581 /* 1582 * We cannot use the header.misc hint to determine whether a 1583 * branch stack address is user, kernel, guest, hypervisor. 1584 * Branches may straddle the kernel/user/hypervisor boundaries. 1585 * Thus, we have to try consecutively until we find a match 1586 * or else, the symbol is unknown 1587 */ 1588 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1589 1590 ams->addr = ip; 1591 ams->al_addr = al.addr; 1592 ams->sym = al.sym; 1593 ams->map = al.map; 1594 } 1595 1596 static void ip__resolve_data(struct thread *thread, 1597 u8 m, struct addr_map_symbol *ams, u64 addr) 1598 { 1599 struct addr_location al; 1600 1601 memset(&al, 0, sizeof(al)); 1602 1603 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1604 if (al.map == NULL) { 1605 /* 1606 * some shared data regions have execute bit set which puts 1607 * their mapping in the MAP__FUNCTION type array. 1608 * Check there as a fallback option before dropping the sample. 1609 */ 1610 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1611 } 1612 1613 ams->addr = addr; 1614 ams->al_addr = al.addr; 1615 ams->sym = al.sym; 1616 ams->map = al.map; 1617 } 1618 1619 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1620 struct addr_location *al) 1621 { 1622 struct mem_info *mi = zalloc(sizeof(*mi)); 1623 1624 if (!mi) 1625 return NULL; 1626 1627 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1628 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr); 1629 mi->data_src.val = sample->data_src; 1630 1631 return mi; 1632 } 1633 1634 static int add_callchain_ip(struct thread *thread, 1635 struct callchain_cursor *cursor, 1636 struct symbol **parent, 1637 struct addr_location *root_al, 1638 u8 *cpumode, 1639 u64 ip) 1640 { 1641 struct addr_location al; 1642 1643 al.filtered = 0; 1644 al.sym = NULL; 1645 if (!cpumode) { 1646 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1647 ip, &al); 1648 } else { 1649 if (ip >= PERF_CONTEXT_MAX) { 1650 switch (ip) { 1651 case PERF_CONTEXT_HV: 1652 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1653 break; 1654 case PERF_CONTEXT_KERNEL: 1655 *cpumode = PERF_RECORD_MISC_KERNEL; 1656 break; 1657 case PERF_CONTEXT_USER: 1658 *cpumode = PERF_RECORD_MISC_USER; 1659 break; 1660 default: 1661 pr_debug("invalid callchain context: " 1662 "%"PRId64"\n", (s64) ip); 1663 /* 1664 * It seems the callchain is corrupted. 1665 * Discard all. 1666 */ 1667 callchain_cursor_reset(cursor); 1668 return 1; 1669 } 1670 return 0; 1671 } 1672 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION, 1673 ip, &al); 1674 } 1675 1676 if (al.sym != NULL) { 1677 if (perf_hpp_list.parent && !*parent && 1678 symbol__match_regex(al.sym, &parent_regex)) 1679 *parent = al.sym; 1680 else if (have_ignore_callees && root_al && 1681 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1682 /* Treat this symbol as the root, 1683 forgetting its callees. */ 1684 *root_al = al; 1685 callchain_cursor_reset(cursor); 1686 } 1687 } 1688 1689 if (symbol_conf.hide_unresolved && al.sym == NULL) 1690 return 0; 1691 return callchain_cursor_append(cursor, al.addr, al.map, al.sym); 1692 } 1693 1694 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1695 struct addr_location *al) 1696 { 1697 unsigned int i; 1698 const struct branch_stack *bs = sample->branch_stack; 1699 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1700 1701 if (!bi) 1702 return NULL; 1703 1704 for (i = 0; i < bs->nr; i++) { 1705 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1706 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1707 bi[i].flags = bs->entries[i].flags; 1708 } 1709 return bi; 1710 } 1711 1712 #define CHASHSZ 127 1713 #define CHASHBITS 7 1714 #define NO_ENTRY 0xff 1715 1716 #define PERF_MAX_BRANCH_DEPTH 127 1717 1718 /* Remove loops. */ 1719 static int remove_loops(struct branch_entry *l, int nr) 1720 { 1721 int i, j, off; 1722 unsigned char chash[CHASHSZ]; 1723 1724 memset(chash, NO_ENTRY, sizeof(chash)); 1725 1726 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1727 1728 for (i = 0; i < nr; i++) { 1729 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1730 1731 /* no collision handling for now */ 1732 if (chash[h] == NO_ENTRY) { 1733 chash[h] = i; 1734 } else if (l[chash[h]].from == l[i].from) { 1735 bool is_loop = true; 1736 /* check if it is a real loop */ 1737 off = 0; 1738 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1739 if (l[j].from != l[i + off].from) { 1740 is_loop = false; 1741 break; 1742 } 1743 if (is_loop) { 1744 memmove(l + i, l + i + off, 1745 (nr - (i + off)) * sizeof(*l)); 1746 nr -= off; 1747 } 1748 } 1749 } 1750 return nr; 1751 } 1752 1753 /* 1754 * Recolve LBR callstack chain sample 1755 * Return: 1756 * 1 on success get LBR callchain information 1757 * 0 no available LBR callchain information, should try fp 1758 * negative error code on other errors. 1759 */ 1760 static int resolve_lbr_callchain_sample(struct thread *thread, 1761 struct callchain_cursor *cursor, 1762 struct perf_sample *sample, 1763 struct symbol **parent, 1764 struct addr_location *root_al, 1765 int max_stack) 1766 { 1767 struct ip_callchain *chain = sample->callchain; 1768 int chain_nr = min(max_stack, (int)chain->nr); 1769 u8 cpumode = PERF_RECORD_MISC_USER; 1770 int i, j, err; 1771 u64 ip; 1772 1773 for (i = 0; i < chain_nr; i++) { 1774 if (chain->ips[i] == PERF_CONTEXT_USER) 1775 break; 1776 } 1777 1778 /* LBR only affects the user callchain */ 1779 if (i != chain_nr) { 1780 struct branch_stack *lbr_stack = sample->branch_stack; 1781 int lbr_nr = lbr_stack->nr; 1782 /* 1783 * LBR callstack can only get user call chain. 1784 * The mix_chain_nr is kernel call chain 1785 * number plus LBR user call chain number. 1786 * i is kernel call chain number, 1787 * 1 is PERF_CONTEXT_USER, 1788 * lbr_nr + 1 is the user call chain number. 1789 * For details, please refer to the comments 1790 * in callchain__printf 1791 */ 1792 int mix_chain_nr = i + 1 + lbr_nr + 1; 1793 1794 for (j = 0; j < mix_chain_nr; j++) { 1795 if (callchain_param.order == ORDER_CALLEE) { 1796 if (j < i + 1) 1797 ip = chain->ips[j]; 1798 else if (j > i + 1) 1799 ip = lbr_stack->entries[j - i - 2].from; 1800 else 1801 ip = lbr_stack->entries[0].to; 1802 } else { 1803 if (j < lbr_nr) 1804 ip = lbr_stack->entries[lbr_nr - j - 1].from; 1805 else if (j > lbr_nr) 1806 ip = chain->ips[i + 1 - (j - lbr_nr)]; 1807 else 1808 ip = lbr_stack->entries[0].to; 1809 } 1810 1811 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip); 1812 if (err) 1813 return (err < 0) ? err : 0; 1814 } 1815 return 1; 1816 } 1817 1818 return 0; 1819 } 1820 1821 static int thread__resolve_callchain_sample(struct thread *thread, 1822 struct callchain_cursor *cursor, 1823 struct perf_evsel *evsel, 1824 struct perf_sample *sample, 1825 struct symbol **parent, 1826 struct addr_location *root_al, 1827 int max_stack) 1828 { 1829 struct branch_stack *branch = sample->branch_stack; 1830 struct ip_callchain *chain = sample->callchain; 1831 int chain_nr = chain->nr; 1832 u8 cpumode = PERF_RECORD_MISC_USER; 1833 int i, j, err, nr_entries; 1834 int skip_idx = -1; 1835 int first_call = 0; 1836 1837 if (perf_evsel__has_branch_callstack(evsel)) { 1838 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 1839 root_al, max_stack); 1840 if (err) 1841 return (err < 0) ? err : 0; 1842 } 1843 1844 /* 1845 * Based on DWARF debug information, some architectures skip 1846 * a callchain entry saved by the kernel. 1847 */ 1848 skip_idx = arch_skip_callchain_idx(thread, chain); 1849 1850 /* 1851 * Add branches to call stack for easier browsing. This gives 1852 * more context for a sample than just the callers. 1853 * 1854 * This uses individual histograms of paths compared to the 1855 * aggregated histograms the normal LBR mode uses. 1856 * 1857 * Limitations for now: 1858 * - No extra filters 1859 * - No annotations (should annotate somehow) 1860 */ 1861 1862 if (branch && callchain_param.branch_callstack) { 1863 int nr = min(max_stack, (int)branch->nr); 1864 struct branch_entry be[nr]; 1865 1866 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 1867 pr_warning("corrupted branch chain. skipping...\n"); 1868 goto check_calls; 1869 } 1870 1871 for (i = 0; i < nr; i++) { 1872 if (callchain_param.order == ORDER_CALLEE) { 1873 be[i] = branch->entries[i]; 1874 /* 1875 * Check for overlap into the callchain. 1876 * The return address is one off compared to 1877 * the branch entry. To adjust for this 1878 * assume the calling instruction is not longer 1879 * than 8 bytes. 1880 */ 1881 if (i == skip_idx || 1882 chain->ips[first_call] >= PERF_CONTEXT_MAX) 1883 first_call++; 1884 else if (be[i].from < chain->ips[first_call] && 1885 be[i].from >= chain->ips[first_call] - 8) 1886 first_call++; 1887 } else 1888 be[i] = branch->entries[branch->nr - i - 1]; 1889 } 1890 1891 nr = remove_loops(be, nr); 1892 1893 for (i = 0; i < nr; i++) { 1894 err = add_callchain_ip(thread, cursor, parent, root_al, 1895 NULL, be[i].to); 1896 if (!err) 1897 err = add_callchain_ip(thread, cursor, parent, root_al, 1898 NULL, be[i].from); 1899 if (err == -EINVAL) 1900 break; 1901 if (err) 1902 return err; 1903 } 1904 chain_nr -= nr; 1905 } 1906 1907 check_calls: 1908 for (i = first_call, nr_entries = 0; 1909 i < chain_nr && nr_entries < max_stack; i++) { 1910 u64 ip; 1911 1912 if (callchain_param.order == ORDER_CALLEE) 1913 j = i; 1914 else 1915 j = chain->nr - i - 1; 1916 1917 #ifdef HAVE_SKIP_CALLCHAIN_IDX 1918 if (j == skip_idx) 1919 continue; 1920 #endif 1921 ip = chain->ips[j]; 1922 1923 if (ip < PERF_CONTEXT_MAX) 1924 ++nr_entries; 1925 1926 err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip); 1927 1928 if (err) 1929 return (err < 0) ? err : 0; 1930 } 1931 1932 return 0; 1933 } 1934 1935 static int unwind_entry(struct unwind_entry *entry, void *arg) 1936 { 1937 struct callchain_cursor *cursor = arg; 1938 1939 if (symbol_conf.hide_unresolved && entry->sym == NULL) 1940 return 0; 1941 return callchain_cursor_append(cursor, entry->ip, 1942 entry->map, entry->sym); 1943 } 1944 1945 static int thread__resolve_callchain_unwind(struct thread *thread, 1946 struct callchain_cursor *cursor, 1947 struct perf_evsel *evsel, 1948 struct perf_sample *sample, 1949 int max_stack) 1950 { 1951 /* Can we do dwarf post unwind? */ 1952 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 1953 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 1954 return 0; 1955 1956 /* Bail out if nothing was captured. */ 1957 if ((!sample->user_regs.regs) || 1958 (!sample->user_stack.size)) 1959 return 0; 1960 1961 return unwind__get_entries(unwind_entry, cursor, 1962 thread, sample, max_stack); 1963 } 1964 1965 int thread__resolve_callchain(struct thread *thread, 1966 struct callchain_cursor *cursor, 1967 struct perf_evsel *evsel, 1968 struct perf_sample *sample, 1969 struct symbol **parent, 1970 struct addr_location *root_al, 1971 int max_stack) 1972 { 1973 int ret = 0; 1974 1975 callchain_cursor_reset(&callchain_cursor); 1976 1977 if (callchain_param.order == ORDER_CALLEE) { 1978 ret = thread__resolve_callchain_sample(thread, cursor, 1979 evsel, sample, 1980 parent, root_al, 1981 max_stack); 1982 if (ret) 1983 return ret; 1984 ret = thread__resolve_callchain_unwind(thread, cursor, 1985 evsel, sample, 1986 max_stack); 1987 } else { 1988 ret = thread__resolve_callchain_unwind(thread, cursor, 1989 evsel, sample, 1990 max_stack); 1991 if (ret) 1992 return ret; 1993 ret = thread__resolve_callchain_sample(thread, cursor, 1994 evsel, sample, 1995 parent, root_al, 1996 max_stack); 1997 } 1998 1999 return ret; 2000 } 2001 2002 int machine__for_each_thread(struct machine *machine, 2003 int (*fn)(struct thread *thread, void *p), 2004 void *priv) 2005 { 2006 struct rb_node *nd; 2007 struct thread *thread; 2008 int rc = 0; 2009 2010 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 2011 thread = rb_entry(nd, struct thread, rb_node); 2012 rc = fn(thread, priv); 2013 if (rc != 0) 2014 return rc; 2015 } 2016 2017 list_for_each_entry(thread, &machine->dead_threads, node) { 2018 rc = fn(thread, priv); 2019 if (rc != 0) 2020 return rc; 2021 } 2022 return rc; 2023 } 2024 2025 int machines__for_each_thread(struct machines *machines, 2026 int (*fn)(struct thread *thread, void *p), 2027 void *priv) 2028 { 2029 struct rb_node *nd; 2030 int rc = 0; 2031 2032 rc = machine__for_each_thread(&machines->host, fn, priv); 2033 if (rc != 0) 2034 return rc; 2035 2036 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 2037 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2038 2039 rc = machine__for_each_thread(machine, fn, priv); 2040 if (rc != 0) 2041 return rc; 2042 } 2043 return rc; 2044 } 2045 2046 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2047 struct target *target, struct thread_map *threads, 2048 perf_event__handler_t process, bool data_mmap, 2049 unsigned int proc_map_timeout) 2050 { 2051 if (target__has_task(target)) 2052 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 2053 else if (target__has_cpu(target)) 2054 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout); 2055 /* command specified */ 2056 return 0; 2057 } 2058 2059 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2060 { 2061 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2062 return -1; 2063 2064 return machine->current_tid[cpu]; 2065 } 2066 2067 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2068 pid_t tid) 2069 { 2070 struct thread *thread; 2071 2072 if (cpu < 0) 2073 return -EINVAL; 2074 2075 if (!machine->current_tid) { 2076 int i; 2077 2078 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2079 if (!machine->current_tid) 2080 return -ENOMEM; 2081 for (i = 0; i < MAX_NR_CPUS; i++) 2082 machine->current_tid[i] = -1; 2083 } 2084 2085 if (cpu >= MAX_NR_CPUS) { 2086 pr_err("Requested CPU %d too large. ", cpu); 2087 pr_err("Consider raising MAX_NR_CPUS\n"); 2088 return -EINVAL; 2089 } 2090 2091 machine->current_tid[cpu] = tid; 2092 2093 thread = machine__findnew_thread(machine, pid, tid); 2094 if (!thread) 2095 return -ENOMEM; 2096 2097 thread->cpu = cpu; 2098 thread__put(thread); 2099 2100 return 0; 2101 } 2102 2103 int machine__get_kernel_start(struct machine *machine) 2104 { 2105 struct map *map = machine__kernel_map(machine); 2106 int err = 0; 2107 2108 /* 2109 * The only addresses above 2^63 are kernel addresses of a 64-bit 2110 * kernel. Note that addresses are unsigned so that on a 32-bit system 2111 * all addresses including kernel addresses are less than 2^32. In 2112 * that case (32-bit system), if the kernel mapping is unknown, all 2113 * addresses will be assumed to be in user space - see 2114 * machine__kernel_ip(). 2115 */ 2116 machine->kernel_start = 1ULL << 63; 2117 if (map) { 2118 err = map__load(map, machine->symbol_filter); 2119 if (map->start) 2120 machine->kernel_start = map->start; 2121 } 2122 return err; 2123 } 2124 2125 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2126 { 2127 return dsos__findnew(&machine->dsos, filename); 2128 } 2129 2130 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2131 { 2132 struct machine *machine = vmachine; 2133 struct map *map; 2134 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map, NULL); 2135 2136 if (sym == NULL) 2137 return NULL; 2138 2139 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2140 *addrp = map->unmap_ip(map, sym->start); 2141 return sym->name; 2142 } 2143