xref: /linux/tools/perf/util/machine.c (revision b31e3e3316a78e4a2cf23be8e0d47e5e5a025bde)
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16 
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18 
19 static void dsos__init(struct dsos *dsos)
20 {
21 	INIT_LIST_HEAD(&dsos->head);
22 	dsos->root = RB_ROOT;
23 	pthread_rwlock_init(&dsos->lock, NULL);
24 }
25 
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 	memset(machine, 0, sizeof(*machine));
29 	map_groups__init(&machine->kmaps, machine);
30 	RB_CLEAR_NODE(&machine->rb_node);
31 	dsos__init(&machine->dsos);
32 
33 	machine->threads = RB_ROOT;
34 	pthread_rwlock_init(&machine->threads_lock, NULL);
35 	machine->nr_threads = 0;
36 	INIT_LIST_HEAD(&machine->dead_threads);
37 	machine->last_match = NULL;
38 
39 	machine->vdso_info = NULL;
40 	machine->env = NULL;
41 
42 	machine->pid = pid;
43 
44 	machine->symbol_filter = NULL;
45 	machine->id_hdr_size = 0;
46 	machine->kptr_restrict_warned = false;
47 	machine->comm_exec = false;
48 	machine->kernel_start = 0;
49 
50 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
51 
52 	machine->root_dir = strdup(root_dir);
53 	if (machine->root_dir == NULL)
54 		return -ENOMEM;
55 
56 	if (pid != HOST_KERNEL_ID) {
57 		struct thread *thread = machine__findnew_thread(machine, -1,
58 								pid);
59 		char comm[64];
60 
61 		if (thread == NULL)
62 			return -ENOMEM;
63 
64 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
65 		thread__set_comm(thread, comm, 0);
66 		thread__put(thread);
67 	}
68 
69 	machine->current_tid = NULL;
70 
71 	return 0;
72 }
73 
74 struct machine *machine__new_host(void)
75 {
76 	struct machine *machine = malloc(sizeof(*machine));
77 
78 	if (machine != NULL) {
79 		machine__init(machine, "", HOST_KERNEL_ID);
80 
81 		if (machine__create_kernel_maps(machine) < 0)
82 			goto out_delete;
83 	}
84 
85 	return machine;
86 out_delete:
87 	free(machine);
88 	return NULL;
89 }
90 
91 static void dsos__purge(struct dsos *dsos)
92 {
93 	struct dso *pos, *n;
94 
95 	pthread_rwlock_wrlock(&dsos->lock);
96 
97 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
98 		RB_CLEAR_NODE(&pos->rb_node);
99 		pos->root = NULL;
100 		list_del_init(&pos->node);
101 		dso__put(pos);
102 	}
103 
104 	pthread_rwlock_unlock(&dsos->lock);
105 }
106 
107 static void dsos__exit(struct dsos *dsos)
108 {
109 	dsos__purge(dsos);
110 	pthread_rwlock_destroy(&dsos->lock);
111 }
112 
113 void machine__delete_threads(struct machine *machine)
114 {
115 	struct rb_node *nd;
116 
117 	pthread_rwlock_wrlock(&machine->threads_lock);
118 	nd = rb_first(&machine->threads);
119 	while (nd) {
120 		struct thread *t = rb_entry(nd, struct thread, rb_node);
121 
122 		nd = rb_next(nd);
123 		__machine__remove_thread(machine, t, false);
124 	}
125 	pthread_rwlock_unlock(&machine->threads_lock);
126 }
127 
128 void machine__exit(struct machine *machine)
129 {
130 	machine__destroy_kernel_maps(machine);
131 	map_groups__exit(&machine->kmaps);
132 	dsos__exit(&machine->dsos);
133 	machine__exit_vdso(machine);
134 	zfree(&machine->root_dir);
135 	zfree(&machine->current_tid);
136 	pthread_rwlock_destroy(&machine->threads_lock);
137 }
138 
139 void machine__delete(struct machine *machine)
140 {
141 	if (machine) {
142 		machine__exit(machine);
143 		free(machine);
144 	}
145 }
146 
147 void machines__init(struct machines *machines)
148 {
149 	machine__init(&machines->host, "", HOST_KERNEL_ID);
150 	machines->guests = RB_ROOT;
151 	machines->symbol_filter = NULL;
152 }
153 
154 void machines__exit(struct machines *machines)
155 {
156 	machine__exit(&machines->host);
157 	/* XXX exit guest */
158 }
159 
160 struct machine *machines__add(struct machines *machines, pid_t pid,
161 			      const char *root_dir)
162 {
163 	struct rb_node **p = &machines->guests.rb_node;
164 	struct rb_node *parent = NULL;
165 	struct machine *pos, *machine = malloc(sizeof(*machine));
166 
167 	if (machine == NULL)
168 		return NULL;
169 
170 	if (machine__init(machine, root_dir, pid) != 0) {
171 		free(machine);
172 		return NULL;
173 	}
174 
175 	machine->symbol_filter = machines->symbol_filter;
176 
177 	while (*p != NULL) {
178 		parent = *p;
179 		pos = rb_entry(parent, struct machine, rb_node);
180 		if (pid < pos->pid)
181 			p = &(*p)->rb_left;
182 		else
183 			p = &(*p)->rb_right;
184 	}
185 
186 	rb_link_node(&machine->rb_node, parent, p);
187 	rb_insert_color(&machine->rb_node, &machines->guests);
188 
189 	return machine;
190 }
191 
192 void machines__set_symbol_filter(struct machines *machines,
193 				 symbol_filter_t symbol_filter)
194 {
195 	struct rb_node *nd;
196 
197 	machines->symbol_filter = symbol_filter;
198 	machines->host.symbol_filter = symbol_filter;
199 
200 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
201 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
202 
203 		machine->symbol_filter = symbol_filter;
204 	}
205 }
206 
207 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
208 {
209 	struct rb_node *nd;
210 
211 	machines->host.comm_exec = comm_exec;
212 
213 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
214 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
215 
216 		machine->comm_exec = comm_exec;
217 	}
218 }
219 
220 struct machine *machines__find(struct machines *machines, pid_t pid)
221 {
222 	struct rb_node **p = &machines->guests.rb_node;
223 	struct rb_node *parent = NULL;
224 	struct machine *machine;
225 	struct machine *default_machine = NULL;
226 
227 	if (pid == HOST_KERNEL_ID)
228 		return &machines->host;
229 
230 	while (*p != NULL) {
231 		parent = *p;
232 		machine = rb_entry(parent, struct machine, rb_node);
233 		if (pid < machine->pid)
234 			p = &(*p)->rb_left;
235 		else if (pid > machine->pid)
236 			p = &(*p)->rb_right;
237 		else
238 			return machine;
239 		if (!machine->pid)
240 			default_machine = machine;
241 	}
242 
243 	return default_machine;
244 }
245 
246 struct machine *machines__findnew(struct machines *machines, pid_t pid)
247 {
248 	char path[PATH_MAX];
249 	const char *root_dir = "";
250 	struct machine *machine = machines__find(machines, pid);
251 
252 	if (machine && (machine->pid == pid))
253 		goto out;
254 
255 	if ((pid != HOST_KERNEL_ID) &&
256 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
257 	    (symbol_conf.guestmount)) {
258 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
259 		if (access(path, R_OK)) {
260 			static struct strlist *seen;
261 
262 			if (!seen)
263 				seen = strlist__new(NULL, NULL);
264 
265 			if (!strlist__has_entry(seen, path)) {
266 				pr_err("Can't access file %s\n", path);
267 				strlist__add(seen, path);
268 			}
269 			machine = NULL;
270 			goto out;
271 		}
272 		root_dir = path;
273 	}
274 
275 	machine = machines__add(machines, pid, root_dir);
276 out:
277 	return machine;
278 }
279 
280 void machines__process_guests(struct machines *machines,
281 			      machine__process_t process, void *data)
282 {
283 	struct rb_node *nd;
284 
285 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
286 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
287 		process(pos, data);
288 	}
289 }
290 
291 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
292 {
293 	if (machine__is_host(machine))
294 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
295 	else if (machine__is_default_guest(machine))
296 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
297 	else {
298 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
299 			 machine->pid);
300 	}
301 
302 	return bf;
303 }
304 
305 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
306 {
307 	struct rb_node *node;
308 	struct machine *machine;
309 
310 	machines->host.id_hdr_size = id_hdr_size;
311 
312 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
313 		machine = rb_entry(node, struct machine, rb_node);
314 		machine->id_hdr_size = id_hdr_size;
315 	}
316 
317 	return;
318 }
319 
320 static void machine__update_thread_pid(struct machine *machine,
321 				       struct thread *th, pid_t pid)
322 {
323 	struct thread *leader;
324 
325 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
326 		return;
327 
328 	th->pid_ = pid;
329 
330 	if (th->pid_ == th->tid)
331 		return;
332 
333 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
334 	if (!leader)
335 		goto out_err;
336 
337 	if (!leader->mg)
338 		leader->mg = map_groups__new(machine);
339 
340 	if (!leader->mg)
341 		goto out_err;
342 
343 	if (th->mg == leader->mg)
344 		return;
345 
346 	if (th->mg) {
347 		/*
348 		 * Maps are created from MMAP events which provide the pid and
349 		 * tid.  Consequently there never should be any maps on a thread
350 		 * with an unknown pid.  Just print an error if there are.
351 		 */
352 		if (!map_groups__empty(th->mg))
353 			pr_err("Discarding thread maps for %d:%d\n",
354 			       th->pid_, th->tid);
355 		map_groups__put(th->mg);
356 	}
357 
358 	th->mg = map_groups__get(leader->mg);
359 out_put:
360 	thread__put(leader);
361 	return;
362 out_err:
363 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
364 	goto out_put;
365 }
366 
367 /*
368  * Caller must eventually drop thread->refcnt returned with a successful
369  * lookup/new thread inserted.
370  */
371 static struct thread *____machine__findnew_thread(struct machine *machine,
372 						  pid_t pid, pid_t tid,
373 						  bool create)
374 {
375 	struct rb_node **p = &machine->threads.rb_node;
376 	struct rb_node *parent = NULL;
377 	struct thread *th;
378 
379 	/*
380 	 * Front-end cache - TID lookups come in blocks,
381 	 * so most of the time we dont have to look up
382 	 * the full rbtree:
383 	 */
384 	th = machine->last_match;
385 	if (th != NULL) {
386 		if (th->tid == tid) {
387 			machine__update_thread_pid(machine, th, pid);
388 			return thread__get(th);
389 		}
390 
391 		machine->last_match = NULL;
392 	}
393 
394 	while (*p != NULL) {
395 		parent = *p;
396 		th = rb_entry(parent, struct thread, rb_node);
397 
398 		if (th->tid == tid) {
399 			machine->last_match = th;
400 			machine__update_thread_pid(machine, th, pid);
401 			return thread__get(th);
402 		}
403 
404 		if (tid < th->tid)
405 			p = &(*p)->rb_left;
406 		else
407 			p = &(*p)->rb_right;
408 	}
409 
410 	if (!create)
411 		return NULL;
412 
413 	th = thread__new(pid, tid);
414 	if (th != NULL) {
415 		rb_link_node(&th->rb_node, parent, p);
416 		rb_insert_color(&th->rb_node, &machine->threads);
417 
418 		/*
419 		 * We have to initialize map_groups separately
420 		 * after rb tree is updated.
421 		 *
422 		 * The reason is that we call machine__findnew_thread
423 		 * within thread__init_map_groups to find the thread
424 		 * leader and that would screwed the rb tree.
425 		 */
426 		if (thread__init_map_groups(th, machine)) {
427 			rb_erase_init(&th->rb_node, &machine->threads);
428 			RB_CLEAR_NODE(&th->rb_node);
429 			thread__put(th);
430 			return NULL;
431 		}
432 		/*
433 		 * It is now in the rbtree, get a ref
434 		 */
435 		thread__get(th);
436 		machine->last_match = th;
437 		++machine->nr_threads;
438 	}
439 
440 	return th;
441 }
442 
443 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
444 {
445 	return ____machine__findnew_thread(machine, pid, tid, true);
446 }
447 
448 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
449 				       pid_t tid)
450 {
451 	struct thread *th;
452 
453 	pthread_rwlock_wrlock(&machine->threads_lock);
454 	th = __machine__findnew_thread(machine, pid, tid);
455 	pthread_rwlock_unlock(&machine->threads_lock);
456 	return th;
457 }
458 
459 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
460 				    pid_t tid)
461 {
462 	struct thread *th;
463 	pthread_rwlock_rdlock(&machine->threads_lock);
464 	th =  ____machine__findnew_thread(machine, pid, tid, false);
465 	pthread_rwlock_unlock(&machine->threads_lock);
466 	return th;
467 }
468 
469 struct comm *machine__thread_exec_comm(struct machine *machine,
470 				       struct thread *thread)
471 {
472 	if (machine->comm_exec)
473 		return thread__exec_comm(thread);
474 	else
475 		return thread__comm(thread);
476 }
477 
478 int machine__process_comm_event(struct machine *machine, union perf_event *event,
479 				struct perf_sample *sample)
480 {
481 	struct thread *thread = machine__findnew_thread(machine,
482 							event->comm.pid,
483 							event->comm.tid);
484 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
485 	int err = 0;
486 
487 	if (exec)
488 		machine->comm_exec = true;
489 
490 	if (dump_trace)
491 		perf_event__fprintf_comm(event, stdout);
492 
493 	if (thread == NULL ||
494 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
495 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
496 		err = -1;
497 	}
498 
499 	thread__put(thread);
500 
501 	return err;
502 }
503 
504 int machine__process_lost_event(struct machine *machine __maybe_unused,
505 				union perf_event *event, struct perf_sample *sample __maybe_unused)
506 {
507 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
508 		    event->lost.id, event->lost.lost);
509 	return 0;
510 }
511 
512 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
513 					union perf_event *event, struct perf_sample *sample)
514 {
515 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
516 		    sample->id, event->lost_samples.lost);
517 	return 0;
518 }
519 
520 static struct dso *machine__findnew_module_dso(struct machine *machine,
521 					       struct kmod_path *m,
522 					       const char *filename)
523 {
524 	struct dso *dso;
525 
526 	pthread_rwlock_wrlock(&machine->dsos.lock);
527 
528 	dso = __dsos__find(&machine->dsos, m->name, true);
529 	if (!dso) {
530 		dso = __dsos__addnew(&machine->dsos, m->name);
531 		if (dso == NULL)
532 			goto out_unlock;
533 
534 		if (machine__is_host(machine))
535 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
536 		else
537 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
538 
539 		/* _KMODULE_COMP should be next to _KMODULE */
540 		if (m->kmod && m->comp)
541 			dso->symtab_type++;
542 
543 		dso__set_short_name(dso, strdup(m->name), true);
544 		dso__set_long_name(dso, strdup(filename), true);
545 	}
546 
547 	dso__get(dso);
548 out_unlock:
549 	pthread_rwlock_unlock(&machine->dsos.lock);
550 	return dso;
551 }
552 
553 int machine__process_aux_event(struct machine *machine __maybe_unused,
554 			       union perf_event *event)
555 {
556 	if (dump_trace)
557 		perf_event__fprintf_aux(event, stdout);
558 	return 0;
559 }
560 
561 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
562 					union perf_event *event)
563 {
564 	if (dump_trace)
565 		perf_event__fprintf_itrace_start(event, stdout);
566 	return 0;
567 }
568 
569 int machine__process_switch_event(struct machine *machine __maybe_unused,
570 				  union perf_event *event)
571 {
572 	if (dump_trace)
573 		perf_event__fprintf_switch(event, stdout);
574 	return 0;
575 }
576 
577 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
578 {
579 	const char *dup_filename;
580 
581 	if (!filename || !dso || !dso->long_name)
582 		return;
583 	if (dso->long_name[0] != '[')
584 		return;
585 	if (!strchr(filename, '/'))
586 		return;
587 
588 	dup_filename = strdup(filename);
589 	if (!dup_filename)
590 		return;
591 
592 	dso__set_long_name(dso, dup_filename, true);
593 }
594 
595 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
596 					const char *filename)
597 {
598 	struct map *map = NULL;
599 	struct dso *dso = NULL;
600 	struct kmod_path m;
601 
602 	if (kmod_path__parse_name(&m, filename))
603 		return NULL;
604 
605 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
606 				       m.name);
607 	if (map) {
608 		/*
609 		 * If the map's dso is an offline module, give dso__load()
610 		 * a chance to find the file path of that module by fixing
611 		 * long_name.
612 		 */
613 		dso__adjust_kmod_long_name(map->dso, filename);
614 		goto out;
615 	}
616 
617 	dso = machine__findnew_module_dso(machine, &m, filename);
618 	if (dso == NULL)
619 		goto out;
620 
621 	map = map__new2(start, dso, MAP__FUNCTION);
622 	if (map == NULL)
623 		goto out;
624 
625 	map_groups__insert(&machine->kmaps, map);
626 
627 	/* Put the map here because map_groups__insert alread got it */
628 	map__put(map);
629 out:
630 	/* put the dso here, corresponding to  machine__findnew_module_dso */
631 	dso__put(dso);
632 	free(m.name);
633 	return map;
634 }
635 
636 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
637 {
638 	struct rb_node *nd;
639 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
640 
641 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
642 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
643 		ret += __dsos__fprintf(&pos->dsos.head, fp);
644 	}
645 
646 	return ret;
647 }
648 
649 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
650 				     bool (skip)(struct dso *dso, int parm), int parm)
651 {
652 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
653 }
654 
655 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
656 				     bool (skip)(struct dso *dso, int parm), int parm)
657 {
658 	struct rb_node *nd;
659 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
660 
661 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
662 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
663 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
664 	}
665 	return ret;
666 }
667 
668 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
669 {
670 	int i;
671 	size_t printed = 0;
672 	struct dso *kdso = machine__kernel_map(machine)->dso;
673 
674 	if (kdso->has_build_id) {
675 		char filename[PATH_MAX];
676 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
677 			printed += fprintf(fp, "[0] %s\n", filename);
678 	}
679 
680 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
681 		printed += fprintf(fp, "[%d] %s\n",
682 				   i + kdso->has_build_id, vmlinux_path[i]);
683 
684 	return printed;
685 }
686 
687 size_t machine__fprintf(struct machine *machine, FILE *fp)
688 {
689 	size_t ret;
690 	struct rb_node *nd;
691 
692 	pthread_rwlock_rdlock(&machine->threads_lock);
693 
694 	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
695 
696 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
697 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
698 
699 		ret += thread__fprintf(pos, fp);
700 	}
701 
702 	pthread_rwlock_unlock(&machine->threads_lock);
703 
704 	return ret;
705 }
706 
707 static struct dso *machine__get_kernel(struct machine *machine)
708 {
709 	const char *vmlinux_name = NULL;
710 	struct dso *kernel;
711 
712 	if (machine__is_host(machine)) {
713 		vmlinux_name = symbol_conf.vmlinux_name;
714 		if (!vmlinux_name)
715 			vmlinux_name = DSO__NAME_KALLSYMS;
716 
717 		kernel = machine__findnew_kernel(machine, vmlinux_name,
718 						 "[kernel]", DSO_TYPE_KERNEL);
719 	} else {
720 		char bf[PATH_MAX];
721 
722 		if (machine__is_default_guest(machine))
723 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
724 		if (!vmlinux_name)
725 			vmlinux_name = machine__mmap_name(machine, bf,
726 							  sizeof(bf));
727 
728 		kernel = machine__findnew_kernel(machine, vmlinux_name,
729 						 "[guest.kernel]",
730 						 DSO_TYPE_GUEST_KERNEL);
731 	}
732 
733 	if (kernel != NULL && (!kernel->has_build_id))
734 		dso__read_running_kernel_build_id(kernel, machine);
735 
736 	return kernel;
737 }
738 
739 struct process_args {
740 	u64 start;
741 };
742 
743 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
744 					   size_t bufsz)
745 {
746 	if (machine__is_default_guest(machine))
747 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
748 	else
749 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
750 }
751 
752 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
753 
754 /* Figure out the start address of kernel map from /proc/kallsyms.
755  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
756  * symbol_name if it's not that important.
757  */
758 static u64 machine__get_running_kernel_start(struct machine *machine,
759 					     const char **symbol_name)
760 {
761 	char filename[PATH_MAX];
762 	int i;
763 	const char *name;
764 	u64 addr = 0;
765 
766 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
767 
768 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
769 		return 0;
770 
771 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
772 		addr = kallsyms__get_function_start(filename, name);
773 		if (addr)
774 			break;
775 	}
776 
777 	if (symbol_name)
778 		*symbol_name = name;
779 
780 	return addr;
781 }
782 
783 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
784 {
785 	enum map_type type;
786 	u64 start = machine__get_running_kernel_start(machine, NULL);
787 
788 	/* In case of renewal the kernel map, destroy previous one */
789 	machine__destroy_kernel_maps(machine);
790 
791 	for (type = 0; type < MAP__NR_TYPES; ++type) {
792 		struct kmap *kmap;
793 		struct map *map;
794 
795 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
796 		if (machine->vmlinux_maps[type] == NULL)
797 			return -1;
798 
799 		machine->vmlinux_maps[type]->map_ip =
800 			machine->vmlinux_maps[type]->unmap_ip =
801 				identity__map_ip;
802 		map = __machine__kernel_map(machine, type);
803 		kmap = map__kmap(map);
804 		if (!kmap)
805 			return -1;
806 
807 		kmap->kmaps = &machine->kmaps;
808 		map_groups__insert(&machine->kmaps, map);
809 	}
810 
811 	return 0;
812 }
813 
814 void machine__destroy_kernel_maps(struct machine *machine)
815 {
816 	enum map_type type;
817 
818 	for (type = 0; type < MAP__NR_TYPES; ++type) {
819 		struct kmap *kmap;
820 		struct map *map = __machine__kernel_map(machine, type);
821 
822 		if (map == NULL)
823 			continue;
824 
825 		kmap = map__kmap(map);
826 		map_groups__remove(&machine->kmaps, map);
827 		if (kmap && kmap->ref_reloc_sym) {
828 			/*
829 			 * ref_reloc_sym is shared among all maps, so free just
830 			 * on one of them.
831 			 */
832 			if (type == MAP__FUNCTION) {
833 				zfree((char **)&kmap->ref_reloc_sym->name);
834 				zfree(&kmap->ref_reloc_sym);
835 			} else
836 				kmap->ref_reloc_sym = NULL;
837 		}
838 
839 		map__put(machine->vmlinux_maps[type]);
840 		machine->vmlinux_maps[type] = NULL;
841 	}
842 }
843 
844 int machines__create_guest_kernel_maps(struct machines *machines)
845 {
846 	int ret = 0;
847 	struct dirent **namelist = NULL;
848 	int i, items = 0;
849 	char path[PATH_MAX];
850 	pid_t pid;
851 	char *endp;
852 
853 	if (symbol_conf.default_guest_vmlinux_name ||
854 	    symbol_conf.default_guest_modules ||
855 	    symbol_conf.default_guest_kallsyms) {
856 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
857 	}
858 
859 	if (symbol_conf.guestmount) {
860 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
861 		if (items <= 0)
862 			return -ENOENT;
863 		for (i = 0; i < items; i++) {
864 			if (!isdigit(namelist[i]->d_name[0])) {
865 				/* Filter out . and .. */
866 				continue;
867 			}
868 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
869 			if ((*endp != '\0') ||
870 			    (endp == namelist[i]->d_name) ||
871 			    (errno == ERANGE)) {
872 				pr_debug("invalid directory (%s). Skipping.\n",
873 					 namelist[i]->d_name);
874 				continue;
875 			}
876 			sprintf(path, "%s/%s/proc/kallsyms",
877 				symbol_conf.guestmount,
878 				namelist[i]->d_name);
879 			ret = access(path, R_OK);
880 			if (ret) {
881 				pr_debug("Can't access file %s\n", path);
882 				goto failure;
883 			}
884 			machines__create_kernel_maps(machines, pid);
885 		}
886 failure:
887 		free(namelist);
888 	}
889 
890 	return ret;
891 }
892 
893 void machines__destroy_kernel_maps(struct machines *machines)
894 {
895 	struct rb_node *next = rb_first(&machines->guests);
896 
897 	machine__destroy_kernel_maps(&machines->host);
898 
899 	while (next) {
900 		struct machine *pos = rb_entry(next, struct machine, rb_node);
901 
902 		next = rb_next(&pos->rb_node);
903 		rb_erase(&pos->rb_node, &machines->guests);
904 		machine__delete(pos);
905 	}
906 }
907 
908 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
909 {
910 	struct machine *machine = machines__findnew(machines, pid);
911 
912 	if (machine == NULL)
913 		return -1;
914 
915 	return machine__create_kernel_maps(machine);
916 }
917 
918 int __machine__load_kallsyms(struct machine *machine, const char *filename,
919 			     enum map_type type, bool no_kcore, symbol_filter_t filter)
920 {
921 	struct map *map = machine__kernel_map(machine);
922 	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore, filter);
923 
924 	if (ret > 0) {
925 		dso__set_loaded(map->dso, type);
926 		/*
927 		 * Since /proc/kallsyms will have multiple sessions for the
928 		 * kernel, with modules between them, fixup the end of all
929 		 * sections.
930 		 */
931 		__map_groups__fixup_end(&machine->kmaps, type);
932 	}
933 
934 	return ret;
935 }
936 
937 int machine__load_kallsyms(struct machine *machine, const char *filename,
938 			   enum map_type type, symbol_filter_t filter)
939 {
940 	return __machine__load_kallsyms(machine, filename, type, false, filter);
941 }
942 
943 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
944 			       symbol_filter_t filter)
945 {
946 	struct map *map = machine__kernel_map(machine);
947 	int ret = dso__load_vmlinux_path(map->dso, map, filter);
948 
949 	if (ret > 0)
950 		dso__set_loaded(map->dso, type);
951 
952 	return ret;
953 }
954 
955 static void map_groups__fixup_end(struct map_groups *mg)
956 {
957 	int i;
958 	for (i = 0; i < MAP__NR_TYPES; ++i)
959 		__map_groups__fixup_end(mg, i);
960 }
961 
962 static char *get_kernel_version(const char *root_dir)
963 {
964 	char version[PATH_MAX];
965 	FILE *file;
966 	char *name, *tmp;
967 	const char *prefix = "Linux version ";
968 
969 	sprintf(version, "%s/proc/version", root_dir);
970 	file = fopen(version, "r");
971 	if (!file)
972 		return NULL;
973 
974 	version[0] = '\0';
975 	tmp = fgets(version, sizeof(version), file);
976 	fclose(file);
977 
978 	name = strstr(version, prefix);
979 	if (!name)
980 		return NULL;
981 	name += strlen(prefix);
982 	tmp = strchr(name, ' ');
983 	if (tmp)
984 		*tmp = '\0';
985 
986 	return strdup(name);
987 }
988 
989 static bool is_kmod_dso(struct dso *dso)
990 {
991 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
992 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
993 }
994 
995 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
996 				       struct kmod_path *m)
997 {
998 	struct map *map;
999 	char *long_name;
1000 
1001 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1002 	if (map == NULL)
1003 		return 0;
1004 
1005 	long_name = strdup(path);
1006 	if (long_name == NULL)
1007 		return -ENOMEM;
1008 
1009 	dso__set_long_name(map->dso, long_name, true);
1010 	dso__kernel_module_get_build_id(map->dso, "");
1011 
1012 	/*
1013 	 * Full name could reveal us kmod compression, so
1014 	 * we need to update the symtab_type if needed.
1015 	 */
1016 	if (m->comp && is_kmod_dso(map->dso))
1017 		map->dso->symtab_type++;
1018 
1019 	return 0;
1020 }
1021 
1022 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1023 				const char *dir_name, int depth)
1024 {
1025 	struct dirent *dent;
1026 	DIR *dir = opendir(dir_name);
1027 	int ret = 0;
1028 
1029 	if (!dir) {
1030 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1031 		return -1;
1032 	}
1033 
1034 	while ((dent = readdir(dir)) != NULL) {
1035 		char path[PATH_MAX];
1036 		struct stat st;
1037 
1038 		/*sshfs might return bad dent->d_type, so we have to stat*/
1039 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1040 		if (stat(path, &st))
1041 			continue;
1042 
1043 		if (S_ISDIR(st.st_mode)) {
1044 			if (!strcmp(dent->d_name, ".") ||
1045 			    !strcmp(dent->d_name, ".."))
1046 				continue;
1047 
1048 			/* Do not follow top-level source and build symlinks */
1049 			if (depth == 0) {
1050 				if (!strcmp(dent->d_name, "source") ||
1051 				    !strcmp(dent->d_name, "build"))
1052 					continue;
1053 			}
1054 
1055 			ret = map_groups__set_modules_path_dir(mg, path,
1056 							       depth + 1);
1057 			if (ret < 0)
1058 				goto out;
1059 		} else {
1060 			struct kmod_path m;
1061 
1062 			ret = kmod_path__parse_name(&m, dent->d_name);
1063 			if (ret)
1064 				goto out;
1065 
1066 			if (m.kmod)
1067 				ret = map_groups__set_module_path(mg, path, &m);
1068 
1069 			free(m.name);
1070 
1071 			if (ret)
1072 				goto out;
1073 		}
1074 	}
1075 
1076 out:
1077 	closedir(dir);
1078 	return ret;
1079 }
1080 
1081 static int machine__set_modules_path(struct machine *machine)
1082 {
1083 	char *version;
1084 	char modules_path[PATH_MAX];
1085 
1086 	version = get_kernel_version(machine->root_dir);
1087 	if (!version)
1088 		return -1;
1089 
1090 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1091 		 machine->root_dir, version);
1092 	free(version);
1093 
1094 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1095 }
1096 
1097 static int machine__create_module(void *arg, const char *name, u64 start)
1098 {
1099 	struct machine *machine = arg;
1100 	struct map *map;
1101 
1102 	map = machine__findnew_module_map(machine, start, name);
1103 	if (map == NULL)
1104 		return -1;
1105 
1106 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1107 
1108 	return 0;
1109 }
1110 
1111 static int machine__create_modules(struct machine *machine)
1112 {
1113 	const char *modules;
1114 	char path[PATH_MAX];
1115 
1116 	if (machine__is_default_guest(machine)) {
1117 		modules = symbol_conf.default_guest_modules;
1118 	} else {
1119 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1120 		modules = path;
1121 	}
1122 
1123 	if (symbol__restricted_filename(modules, "/proc/modules"))
1124 		return -1;
1125 
1126 	if (modules__parse(modules, machine, machine__create_module))
1127 		return -1;
1128 
1129 	if (!machine__set_modules_path(machine))
1130 		return 0;
1131 
1132 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1133 
1134 	return 0;
1135 }
1136 
1137 int machine__create_kernel_maps(struct machine *machine)
1138 {
1139 	struct dso *kernel = machine__get_kernel(machine);
1140 	const char *name;
1141 	u64 addr;
1142 	int ret;
1143 
1144 	if (kernel == NULL)
1145 		return -1;
1146 
1147 	ret = __machine__create_kernel_maps(machine, kernel);
1148 	dso__put(kernel);
1149 	if (ret < 0)
1150 		return -1;
1151 
1152 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1153 		if (machine__is_host(machine))
1154 			pr_debug("Problems creating module maps, "
1155 				 "continuing anyway...\n");
1156 		else
1157 			pr_debug("Problems creating module maps for guest %d, "
1158 				 "continuing anyway...\n", machine->pid);
1159 	}
1160 
1161 	/*
1162 	 * Now that we have all the maps created, just set the ->end of them:
1163 	 */
1164 	map_groups__fixup_end(&machine->kmaps);
1165 
1166 	addr = machine__get_running_kernel_start(machine, &name);
1167 	if (!addr) {
1168 	} else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1169 		machine__destroy_kernel_maps(machine);
1170 		return -1;
1171 	}
1172 
1173 	return 0;
1174 }
1175 
1176 static void machine__set_kernel_mmap_len(struct machine *machine,
1177 					 union perf_event *event)
1178 {
1179 	int i;
1180 
1181 	for (i = 0; i < MAP__NR_TYPES; i++) {
1182 		machine->vmlinux_maps[i]->start = event->mmap.start;
1183 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1184 						   event->mmap.len);
1185 		/*
1186 		 * Be a bit paranoid here, some perf.data file came with
1187 		 * a zero sized synthesized MMAP event for the kernel.
1188 		 */
1189 		if (machine->vmlinux_maps[i]->end == 0)
1190 			machine->vmlinux_maps[i]->end = ~0ULL;
1191 	}
1192 }
1193 
1194 static bool machine__uses_kcore(struct machine *machine)
1195 {
1196 	struct dso *dso;
1197 
1198 	list_for_each_entry(dso, &machine->dsos.head, node) {
1199 		if (dso__is_kcore(dso))
1200 			return true;
1201 	}
1202 
1203 	return false;
1204 }
1205 
1206 static int machine__process_kernel_mmap_event(struct machine *machine,
1207 					      union perf_event *event)
1208 {
1209 	struct map *map;
1210 	char kmmap_prefix[PATH_MAX];
1211 	enum dso_kernel_type kernel_type;
1212 	bool is_kernel_mmap;
1213 
1214 	/* If we have maps from kcore then we do not need or want any others */
1215 	if (machine__uses_kcore(machine))
1216 		return 0;
1217 
1218 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1219 	if (machine__is_host(machine))
1220 		kernel_type = DSO_TYPE_KERNEL;
1221 	else
1222 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1223 
1224 	is_kernel_mmap = memcmp(event->mmap.filename,
1225 				kmmap_prefix,
1226 				strlen(kmmap_prefix) - 1) == 0;
1227 	if (event->mmap.filename[0] == '/' ||
1228 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1229 		map = machine__findnew_module_map(machine, event->mmap.start,
1230 						  event->mmap.filename);
1231 		if (map == NULL)
1232 			goto out_problem;
1233 
1234 		map->end = map->start + event->mmap.len;
1235 	} else if (is_kernel_mmap) {
1236 		const char *symbol_name = (event->mmap.filename +
1237 				strlen(kmmap_prefix));
1238 		/*
1239 		 * Should be there already, from the build-id table in
1240 		 * the header.
1241 		 */
1242 		struct dso *kernel = NULL;
1243 		struct dso *dso;
1244 
1245 		pthread_rwlock_rdlock(&machine->dsos.lock);
1246 
1247 		list_for_each_entry(dso, &machine->dsos.head, node) {
1248 
1249 			/*
1250 			 * The cpumode passed to is_kernel_module is not the
1251 			 * cpumode of *this* event. If we insist on passing
1252 			 * correct cpumode to is_kernel_module, we should
1253 			 * record the cpumode when we adding this dso to the
1254 			 * linked list.
1255 			 *
1256 			 * However we don't really need passing correct
1257 			 * cpumode.  We know the correct cpumode must be kernel
1258 			 * mode (if not, we should not link it onto kernel_dsos
1259 			 * list).
1260 			 *
1261 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1262 			 * is_kernel_module() treats it as a kernel cpumode.
1263 			 */
1264 
1265 			if (!dso->kernel ||
1266 			    is_kernel_module(dso->long_name,
1267 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1268 				continue;
1269 
1270 
1271 			kernel = dso;
1272 			break;
1273 		}
1274 
1275 		pthread_rwlock_unlock(&machine->dsos.lock);
1276 
1277 		if (kernel == NULL)
1278 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1279 		if (kernel == NULL)
1280 			goto out_problem;
1281 
1282 		kernel->kernel = kernel_type;
1283 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1284 			dso__put(kernel);
1285 			goto out_problem;
1286 		}
1287 
1288 		if (strstr(kernel->long_name, "vmlinux"))
1289 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1290 
1291 		machine__set_kernel_mmap_len(machine, event);
1292 
1293 		/*
1294 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1295 		 * symbol. Effectively having zero here means that at record
1296 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1297 		 */
1298 		if (event->mmap.pgoff != 0) {
1299 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1300 							 symbol_name,
1301 							 event->mmap.pgoff);
1302 		}
1303 
1304 		if (machine__is_default_guest(machine)) {
1305 			/*
1306 			 * preload dso of guest kernel and modules
1307 			 */
1308 			dso__load(kernel, machine__kernel_map(machine), NULL);
1309 		}
1310 	}
1311 	return 0;
1312 out_problem:
1313 	return -1;
1314 }
1315 
1316 int machine__process_mmap2_event(struct machine *machine,
1317 				 union perf_event *event,
1318 				 struct perf_sample *sample)
1319 {
1320 	struct thread *thread;
1321 	struct map *map;
1322 	enum map_type type;
1323 	int ret = 0;
1324 
1325 	if (dump_trace)
1326 		perf_event__fprintf_mmap2(event, stdout);
1327 
1328 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1329 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1330 		ret = machine__process_kernel_mmap_event(machine, event);
1331 		if (ret < 0)
1332 			goto out_problem;
1333 		return 0;
1334 	}
1335 
1336 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1337 					event->mmap2.tid);
1338 	if (thread == NULL)
1339 		goto out_problem;
1340 
1341 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1342 		type = MAP__VARIABLE;
1343 	else
1344 		type = MAP__FUNCTION;
1345 
1346 	map = map__new(machine, event->mmap2.start,
1347 			event->mmap2.len, event->mmap2.pgoff,
1348 			event->mmap2.pid, event->mmap2.maj,
1349 			event->mmap2.min, event->mmap2.ino,
1350 			event->mmap2.ino_generation,
1351 			event->mmap2.prot,
1352 			event->mmap2.flags,
1353 			event->mmap2.filename, type, thread);
1354 
1355 	if (map == NULL)
1356 		goto out_problem_map;
1357 
1358 	ret = thread__insert_map(thread, map);
1359 	if (ret)
1360 		goto out_problem_insert;
1361 
1362 	thread__put(thread);
1363 	map__put(map);
1364 	return 0;
1365 
1366 out_problem_insert:
1367 	map__put(map);
1368 out_problem_map:
1369 	thread__put(thread);
1370 out_problem:
1371 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1372 	return 0;
1373 }
1374 
1375 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1376 				struct perf_sample *sample)
1377 {
1378 	struct thread *thread;
1379 	struct map *map;
1380 	enum map_type type;
1381 	int ret = 0;
1382 
1383 	if (dump_trace)
1384 		perf_event__fprintf_mmap(event, stdout);
1385 
1386 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1387 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1388 		ret = machine__process_kernel_mmap_event(machine, event);
1389 		if (ret < 0)
1390 			goto out_problem;
1391 		return 0;
1392 	}
1393 
1394 	thread = machine__findnew_thread(machine, event->mmap.pid,
1395 					 event->mmap.tid);
1396 	if (thread == NULL)
1397 		goto out_problem;
1398 
1399 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1400 		type = MAP__VARIABLE;
1401 	else
1402 		type = MAP__FUNCTION;
1403 
1404 	map = map__new(machine, event->mmap.start,
1405 			event->mmap.len, event->mmap.pgoff,
1406 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1407 			event->mmap.filename,
1408 			type, thread);
1409 
1410 	if (map == NULL)
1411 		goto out_problem_map;
1412 
1413 	ret = thread__insert_map(thread, map);
1414 	if (ret)
1415 		goto out_problem_insert;
1416 
1417 	thread__put(thread);
1418 	map__put(map);
1419 	return 0;
1420 
1421 out_problem_insert:
1422 	map__put(map);
1423 out_problem_map:
1424 	thread__put(thread);
1425 out_problem:
1426 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1427 	return 0;
1428 }
1429 
1430 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1431 {
1432 	if (machine->last_match == th)
1433 		machine->last_match = NULL;
1434 
1435 	BUG_ON(atomic_read(&th->refcnt) == 0);
1436 	if (lock)
1437 		pthread_rwlock_wrlock(&machine->threads_lock);
1438 	rb_erase_init(&th->rb_node, &machine->threads);
1439 	RB_CLEAR_NODE(&th->rb_node);
1440 	--machine->nr_threads;
1441 	/*
1442 	 * Move it first to the dead_threads list, then drop the reference,
1443 	 * if this is the last reference, then the thread__delete destructor
1444 	 * will be called and we will remove it from the dead_threads list.
1445 	 */
1446 	list_add_tail(&th->node, &machine->dead_threads);
1447 	if (lock)
1448 		pthread_rwlock_unlock(&machine->threads_lock);
1449 	thread__put(th);
1450 }
1451 
1452 void machine__remove_thread(struct machine *machine, struct thread *th)
1453 {
1454 	return __machine__remove_thread(machine, th, true);
1455 }
1456 
1457 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1458 				struct perf_sample *sample)
1459 {
1460 	struct thread *thread = machine__find_thread(machine,
1461 						     event->fork.pid,
1462 						     event->fork.tid);
1463 	struct thread *parent = machine__findnew_thread(machine,
1464 							event->fork.ppid,
1465 							event->fork.ptid);
1466 	int err = 0;
1467 
1468 	if (dump_trace)
1469 		perf_event__fprintf_task(event, stdout);
1470 
1471 	/*
1472 	 * There may be an existing thread that is not actually the parent,
1473 	 * either because we are processing events out of order, or because the
1474 	 * (fork) event that would have removed the thread was lost. Assume the
1475 	 * latter case and continue on as best we can.
1476 	 */
1477 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1478 		dump_printf("removing erroneous parent thread %d/%d\n",
1479 			    parent->pid_, parent->tid);
1480 		machine__remove_thread(machine, parent);
1481 		thread__put(parent);
1482 		parent = machine__findnew_thread(machine, event->fork.ppid,
1483 						 event->fork.ptid);
1484 	}
1485 
1486 	/* if a thread currently exists for the thread id remove it */
1487 	if (thread != NULL) {
1488 		machine__remove_thread(machine, thread);
1489 		thread__put(thread);
1490 	}
1491 
1492 	thread = machine__findnew_thread(machine, event->fork.pid,
1493 					 event->fork.tid);
1494 
1495 	if (thread == NULL || parent == NULL ||
1496 	    thread__fork(thread, parent, sample->time) < 0) {
1497 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1498 		err = -1;
1499 	}
1500 	thread__put(thread);
1501 	thread__put(parent);
1502 
1503 	return err;
1504 }
1505 
1506 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1507 				struct perf_sample *sample __maybe_unused)
1508 {
1509 	struct thread *thread = machine__find_thread(machine,
1510 						     event->fork.pid,
1511 						     event->fork.tid);
1512 
1513 	if (dump_trace)
1514 		perf_event__fprintf_task(event, stdout);
1515 
1516 	if (thread != NULL) {
1517 		thread__exited(thread);
1518 		thread__put(thread);
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 int machine__process_event(struct machine *machine, union perf_event *event,
1525 			   struct perf_sample *sample)
1526 {
1527 	int ret;
1528 
1529 	switch (event->header.type) {
1530 	case PERF_RECORD_COMM:
1531 		ret = machine__process_comm_event(machine, event, sample); break;
1532 	case PERF_RECORD_MMAP:
1533 		ret = machine__process_mmap_event(machine, event, sample); break;
1534 	case PERF_RECORD_MMAP2:
1535 		ret = machine__process_mmap2_event(machine, event, sample); break;
1536 	case PERF_RECORD_FORK:
1537 		ret = machine__process_fork_event(machine, event, sample); break;
1538 	case PERF_RECORD_EXIT:
1539 		ret = machine__process_exit_event(machine, event, sample); break;
1540 	case PERF_RECORD_LOST:
1541 		ret = machine__process_lost_event(machine, event, sample); break;
1542 	case PERF_RECORD_AUX:
1543 		ret = machine__process_aux_event(machine, event); break;
1544 	case PERF_RECORD_ITRACE_START:
1545 		ret = machine__process_itrace_start_event(machine, event); break;
1546 	case PERF_RECORD_LOST_SAMPLES:
1547 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1548 	case PERF_RECORD_SWITCH:
1549 	case PERF_RECORD_SWITCH_CPU_WIDE:
1550 		ret = machine__process_switch_event(machine, event); break;
1551 	default:
1552 		ret = -1;
1553 		break;
1554 	}
1555 
1556 	return ret;
1557 }
1558 
1559 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1560 {
1561 	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1562 		return 1;
1563 	return 0;
1564 }
1565 
1566 static void ip__resolve_ams(struct thread *thread,
1567 			    struct addr_map_symbol *ams,
1568 			    u64 ip)
1569 {
1570 	struct addr_location al;
1571 
1572 	memset(&al, 0, sizeof(al));
1573 	/*
1574 	 * We cannot use the header.misc hint to determine whether a
1575 	 * branch stack address is user, kernel, guest, hypervisor.
1576 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1577 	 * Thus, we have to try consecutively until we find a match
1578 	 * or else, the symbol is unknown
1579 	 */
1580 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1581 
1582 	ams->addr = ip;
1583 	ams->al_addr = al.addr;
1584 	ams->sym = al.sym;
1585 	ams->map = al.map;
1586 }
1587 
1588 static void ip__resolve_data(struct thread *thread,
1589 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1590 {
1591 	struct addr_location al;
1592 
1593 	memset(&al, 0, sizeof(al));
1594 
1595 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1596 	if (al.map == NULL) {
1597 		/*
1598 		 * some shared data regions have execute bit set which puts
1599 		 * their mapping in the MAP__FUNCTION type array.
1600 		 * Check there as a fallback option before dropping the sample.
1601 		 */
1602 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1603 	}
1604 
1605 	ams->addr = addr;
1606 	ams->al_addr = al.addr;
1607 	ams->sym = al.sym;
1608 	ams->map = al.map;
1609 }
1610 
1611 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1612 				     struct addr_location *al)
1613 {
1614 	struct mem_info *mi = zalloc(sizeof(*mi));
1615 
1616 	if (!mi)
1617 		return NULL;
1618 
1619 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1620 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1621 	mi->data_src.val = sample->data_src;
1622 
1623 	return mi;
1624 }
1625 
1626 static int add_callchain_ip(struct thread *thread,
1627 			    struct callchain_cursor *cursor,
1628 			    struct symbol **parent,
1629 			    struct addr_location *root_al,
1630 			    u8 *cpumode,
1631 			    u64 ip)
1632 {
1633 	struct addr_location al;
1634 
1635 	al.filtered = 0;
1636 	al.sym = NULL;
1637 	if (!cpumode) {
1638 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1639 						   ip, &al);
1640 	} else {
1641 		if (ip >= PERF_CONTEXT_MAX) {
1642 			switch (ip) {
1643 			case PERF_CONTEXT_HV:
1644 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1645 				break;
1646 			case PERF_CONTEXT_KERNEL:
1647 				*cpumode = PERF_RECORD_MISC_KERNEL;
1648 				break;
1649 			case PERF_CONTEXT_USER:
1650 				*cpumode = PERF_RECORD_MISC_USER;
1651 				break;
1652 			default:
1653 				pr_debug("invalid callchain context: "
1654 					 "%"PRId64"\n", (s64) ip);
1655 				/*
1656 				 * It seems the callchain is corrupted.
1657 				 * Discard all.
1658 				 */
1659 				callchain_cursor_reset(cursor);
1660 				return 1;
1661 			}
1662 			return 0;
1663 		}
1664 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1665 					   ip, &al);
1666 	}
1667 
1668 	if (al.sym != NULL) {
1669 		if (perf_hpp_list.parent && !*parent &&
1670 		    symbol__match_regex(al.sym, &parent_regex))
1671 			*parent = al.sym;
1672 		else if (have_ignore_callees && root_al &&
1673 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1674 			/* Treat this symbol as the root,
1675 			   forgetting its callees. */
1676 			*root_al = al;
1677 			callchain_cursor_reset(cursor);
1678 		}
1679 	}
1680 
1681 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1682 		return 0;
1683 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym);
1684 }
1685 
1686 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1687 					   struct addr_location *al)
1688 {
1689 	unsigned int i;
1690 	const struct branch_stack *bs = sample->branch_stack;
1691 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1692 
1693 	if (!bi)
1694 		return NULL;
1695 
1696 	for (i = 0; i < bs->nr; i++) {
1697 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1698 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1699 		bi[i].flags = bs->entries[i].flags;
1700 	}
1701 	return bi;
1702 }
1703 
1704 #define CHASHSZ 127
1705 #define CHASHBITS 7
1706 #define NO_ENTRY 0xff
1707 
1708 #define PERF_MAX_BRANCH_DEPTH 127
1709 
1710 /* Remove loops. */
1711 static int remove_loops(struct branch_entry *l, int nr)
1712 {
1713 	int i, j, off;
1714 	unsigned char chash[CHASHSZ];
1715 
1716 	memset(chash, NO_ENTRY, sizeof(chash));
1717 
1718 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1719 
1720 	for (i = 0; i < nr; i++) {
1721 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1722 
1723 		/* no collision handling for now */
1724 		if (chash[h] == NO_ENTRY) {
1725 			chash[h] = i;
1726 		} else if (l[chash[h]].from == l[i].from) {
1727 			bool is_loop = true;
1728 			/* check if it is a real loop */
1729 			off = 0;
1730 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1731 				if (l[j].from != l[i + off].from) {
1732 					is_loop = false;
1733 					break;
1734 				}
1735 			if (is_loop) {
1736 				memmove(l + i, l + i + off,
1737 					(nr - (i + off)) * sizeof(*l));
1738 				nr -= off;
1739 			}
1740 		}
1741 	}
1742 	return nr;
1743 }
1744 
1745 /*
1746  * Recolve LBR callstack chain sample
1747  * Return:
1748  * 1 on success get LBR callchain information
1749  * 0 no available LBR callchain information, should try fp
1750  * negative error code on other errors.
1751  */
1752 static int resolve_lbr_callchain_sample(struct thread *thread,
1753 					struct callchain_cursor *cursor,
1754 					struct perf_sample *sample,
1755 					struct symbol **parent,
1756 					struct addr_location *root_al,
1757 					int max_stack)
1758 {
1759 	struct ip_callchain *chain = sample->callchain;
1760 	int chain_nr = min(max_stack, (int)chain->nr);
1761 	u8 cpumode = PERF_RECORD_MISC_USER;
1762 	int i, j, err;
1763 	u64 ip;
1764 
1765 	for (i = 0; i < chain_nr; i++) {
1766 		if (chain->ips[i] == PERF_CONTEXT_USER)
1767 			break;
1768 	}
1769 
1770 	/* LBR only affects the user callchain */
1771 	if (i != chain_nr) {
1772 		struct branch_stack *lbr_stack = sample->branch_stack;
1773 		int lbr_nr = lbr_stack->nr;
1774 		/*
1775 		 * LBR callstack can only get user call chain.
1776 		 * The mix_chain_nr is kernel call chain
1777 		 * number plus LBR user call chain number.
1778 		 * i is kernel call chain number,
1779 		 * 1 is PERF_CONTEXT_USER,
1780 		 * lbr_nr + 1 is the user call chain number.
1781 		 * For details, please refer to the comments
1782 		 * in callchain__printf
1783 		 */
1784 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1785 
1786 		for (j = 0; j < mix_chain_nr; j++) {
1787 			if (callchain_param.order == ORDER_CALLEE) {
1788 				if (j < i + 1)
1789 					ip = chain->ips[j];
1790 				else if (j > i + 1)
1791 					ip = lbr_stack->entries[j - i - 2].from;
1792 				else
1793 					ip = lbr_stack->entries[0].to;
1794 			} else {
1795 				if (j < lbr_nr)
1796 					ip = lbr_stack->entries[lbr_nr - j - 1].from;
1797 				else if (j > lbr_nr)
1798 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1799 				else
1800 					ip = lbr_stack->entries[0].to;
1801 			}
1802 
1803 			err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1804 			if (err)
1805 				return (err < 0) ? err : 0;
1806 		}
1807 		return 1;
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 static int thread__resolve_callchain_sample(struct thread *thread,
1814 					    struct callchain_cursor *cursor,
1815 					    struct perf_evsel *evsel,
1816 					    struct perf_sample *sample,
1817 					    struct symbol **parent,
1818 					    struct addr_location *root_al,
1819 					    int max_stack)
1820 {
1821 	struct branch_stack *branch = sample->branch_stack;
1822 	struct ip_callchain *chain = sample->callchain;
1823 	int chain_nr = chain->nr;
1824 	u8 cpumode = PERF_RECORD_MISC_USER;
1825 	int i, j, err, nr_entries;
1826 	int skip_idx = -1;
1827 	int first_call = 0;
1828 
1829 	if (perf_evsel__has_branch_callstack(evsel)) {
1830 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1831 						   root_al, max_stack);
1832 		if (err)
1833 			return (err < 0) ? err : 0;
1834 	}
1835 
1836 	/*
1837 	 * Based on DWARF debug information, some architectures skip
1838 	 * a callchain entry saved by the kernel.
1839 	 */
1840 	skip_idx = arch_skip_callchain_idx(thread, chain);
1841 
1842 	/*
1843 	 * Add branches to call stack for easier browsing. This gives
1844 	 * more context for a sample than just the callers.
1845 	 *
1846 	 * This uses individual histograms of paths compared to the
1847 	 * aggregated histograms the normal LBR mode uses.
1848 	 *
1849 	 * Limitations for now:
1850 	 * - No extra filters
1851 	 * - No annotations (should annotate somehow)
1852 	 */
1853 
1854 	if (branch && callchain_param.branch_callstack) {
1855 		int nr = min(max_stack, (int)branch->nr);
1856 		struct branch_entry be[nr];
1857 
1858 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1859 			pr_warning("corrupted branch chain. skipping...\n");
1860 			goto check_calls;
1861 		}
1862 
1863 		for (i = 0; i < nr; i++) {
1864 			if (callchain_param.order == ORDER_CALLEE) {
1865 				be[i] = branch->entries[i];
1866 				/*
1867 				 * Check for overlap into the callchain.
1868 				 * The return address is one off compared to
1869 				 * the branch entry. To adjust for this
1870 				 * assume the calling instruction is not longer
1871 				 * than 8 bytes.
1872 				 */
1873 				if (i == skip_idx ||
1874 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1875 					first_call++;
1876 				else if (be[i].from < chain->ips[first_call] &&
1877 				    be[i].from >= chain->ips[first_call] - 8)
1878 					first_call++;
1879 			} else
1880 				be[i] = branch->entries[branch->nr - i - 1];
1881 		}
1882 
1883 		nr = remove_loops(be, nr);
1884 
1885 		for (i = 0; i < nr; i++) {
1886 			err = add_callchain_ip(thread, cursor, parent, root_al,
1887 					       NULL, be[i].to);
1888 			if (!err)
1889 				err = add_callchain_ip(thread, cursor, parent, root_al,
1890 						       NULL, be[i].from);
1891 			if (err == -EINVAL)
1892 				break;
1893 			if (err)
1894 				return err;
1895 		}
1896 		chain_nr -= nr;
1897 	}
1898 
1899 check_calls:
1900 	for (i = first_call, nr_entries = 0;
1901 	     i < chain_nr && nr_entries < max_stack; i++) {
1902 		u64 ip;
1903 
1904 		if (callchain_param.order == ORDER_CALLEE)
1905 			j = i;
1906 		else
1907 			j = chain->nr - i - 1;
1908 
1909 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1910 		if (j == skip_idx)
1911 			continue;
1912 #endif
1913 		ip = chain->ips[j];
1914 
1915 		if (ip < PERF_CONTEXT_MAX)
1916                        ++nr_entries;
1917 
1918 		err = add_callchain_ip(thread, cursor, parent, root_al, &cpumode, ip);
1919 
1920 		if (err)
1921 			return (err < 0) ? err : 0;
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 static int unwind_entry(struct unwind_entry *entry, void *arg)
1928 {
1929 	struct callchain_cursor *cursor = arg;
1930 
1931 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
1932 		return 0;
1933 	return callchain_cursor_append(cursor, entry->ip,
1934 				       entry->map, entry->sym);
1935 }
1936 
1937 static int thread__resolve_callchain_unwind(struct thread *thread,
1938 					    struct callchain_cursor *cursor,
1939 					    struct perf_evsel *evsel,
1940 					    struct perf_sample *sample,
1941 					    int max_stack)
1942 {
1943 	/* Can we do dwarf post unwind? */
1944 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1945 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1946 		return 0;
1947 
1948 	/* Bail out if nothing was captured. */
1949 	if ((!sample->user_regs.regs) ||
1950 	    (!sample->user_stack.size))
1951 		return 0;
1952 
1953 	return unwind__get_entries(unwind_entry, cursor,
1954 				   thread, sample, max_stack);
1955 }
1956 
1957 int thread__resolve_callchain(struct thread *thread,
1958 			      struct callchain_cursor *cursor,
1959 			      struct perf_evsel *evsel,
1960 			      struct perf_sample *sample,
1961 			      struct symbol **parent,
1962 			      struct addr_location *root_al,
1963 			      int max_stack)
1964 {
1965 	int ret = 0;
1966 
1967 	callchain_cursor_reset(&callchain_cursor);
1968 
1969 	if (callchain_param.order == ORDER_CALLEE) {
1970 		ret = thread__resolve_callchain_sample(thread, cursor,
1971 						       evsel, sample,
1972 						       parent, root_al,
1973 						       max_stack);
1974 		if (ret)
1975 			return ret;
1976 		ret = thread__resolve_callchain_unwind(thread, cursor,
1977 						       evsel, sample,
1978 						       max_stack);
1979 	} else {
1980 		ret = thread__resolve_callchain_unwind(thread, cursor,
1981 						       evsel, sample,
1982 						       max_stack);
1983 		if (ret)
1984 			return ret;
1985 		ret = thread__resolve_callchain_sample(thread, cursor,
1986 						       evsel, sample,
1987 						       parent, root_al,
1988 						       max_stack);
1989 	}
1990 
1991 	return ret;
1992 }
1993 
1994 int machine__for_each_thread(struct machine *machine,
1995 			     int (*fn)(struct thread *thread, void *p),
1996 			     void *priv)
1997 {
1998 	struct rb_node *nd;
1999 	struct thread *thread;
2000 	int rc = 0;
2001 
2002 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2003 		thread = rb_entry(nd, struct thread, rb_node);
2004 		rc = fn(thread, priv);
2005 		if (rc != 0)
2006 			return rc;
2007 	}
2008 
2009 	list_for_each_entry(thread, &machine->dead_threads, node) {
2010 		rc = fn(thread, priv);
2011 		if (rc != 0)
2012 			return rc;
2013 	}
2014 	return rc;
2015 }
2016 
2017 int machines__for_each_thread(struct machines *machines,
2018 			      int (*fn)(struct thread *thread, void *p),
2019 			      void *priv)
2020 {
2021 	struct rb_node *nd;
2022 	int rc = 0;
2023 
2024 	rc = machine__for_each_thread(&machines->host, fn, priv);
2025 	if (rc != 0)
2026 		return rc;
2027 
2028 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2029 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2030 
2031 		rc = machine__for_each_thread(machine, fn, priv);
2032 		if (rc != 0)
2033 			return rc;
2034 	}
2035 	return rc;
2036 }
2037 
2038 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2039 				  struct target *target, struct thread_map *threads,
2040 				  perf_event__handler_t process, bool data_mmap,
2041 				  unsigned int proc_map_timeout)
2042 {
2043 	if (target__has_task(target))
2044 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2045 	else if (target__has_cpu(target))
2046 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2047 	/* command specified */
2048 	return 0;
2049 }
2050 
2051 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2052 {
2053 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2054 		return -1;
2055 
2056 	return machine->current_tid[cpu];
2057 }
2058 
2059 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2060 			     pid_t tid)
2061 {
2062 	struct thread *thread;
2063 
2064 	if (cpu < 0)
2065 		return -EINVAL;
2066 
2067 	if (!machine->current_tid) {
2068 		int i;
2069 
2070 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2071 		if (!machine->current_tid)
2072 			return -ENOMEM;
2073 		for (i = 0; i < MAX_NR_CPUS; i++)
2074 			machine->current_tid[i] = -1;
2075 	}
2076 
2077 	if (cpu >= MAX_NR_CPUS) {
2078 		pr_err("Requested CPU %d too large. ", cpu);
2079 		pr_err("Consider raising MAX_NR_CPUS\n");
2080 		return -EINVAL;
2081 	}
2082 
2083 	machine->current_tid[cpu] = tid;
2084 
2085 	thread = machine__findnew_thread(machine, pid, tid);
2086 	if (!thread)
2087 		return -ENOMEM;
2088 
2089 	thread->cpu = cpu;
2090 	thread__put(thread);
2091 
2092 	return 0;
2093 }
2094 
2095 int machine__get_kernel_start(struct machine *machine)
2096 {
2097 	struct map *map = machine__kernel_map(machine);
2098 	int err = 0;
2099 
2100 	/*
2101 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2102 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2103 	 * all addresses including kernel addresses are less than 2^32.  In
2104 	 * that case (32-bit system), if the kernel mapping is unknown, all
2105 	 * addresses will be assumed to be in user space - see
2106 	 * machine__kernel_ip().
2107 	 */
2108 	machine->kernel_start = 1ULL << 63;
2109 	if (map) {
2110 		err = map__load(map, machine->symbol_filter);
2111 		if (map->start)
2112 			machine->kernel_start = map->start;
2113 	}
2114 	return err;
2115 }
2116 
2117 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2118 {
2119 	return dsos__findnew(&machine->dsos, filename);
2120 }
2121 
2122 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2123 {
2124 	struct machine *machine = vmachine;
2125 	struct map *map;
2126 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2127 
2128 	if (sym == NULL)
2129 		return NULL;
2130 
2131 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2132 	*addrp = map->unmap_ip(map, sym->start);
2133 	return sym->name;
2134 }
2135