xref: /linux/tools/perf/util/machine.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "mem-info.h"
20 #include "path.h"
21 #include "srcline.h"
22 #include "symbol.h"
23 #include "sort.h"
24 #include "strlist.h"
25 #include "target.h"
26 #include "thread.h"
27 #include "util.h"
28 #include "vdso.h"
29 #include <stdbool.h>
30 #include <sys/types.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33 #include "unwind.h"
34 #include "linux/hash.h"
35 #include "asm/bug.h"
36 #include "bpf-event.h"
37 #include <internal/lib.h> // page_size
38 #include "cgroup.h"
39 #include "arm64-frame-pointer-unwind-support.h"
40 
41 #include <linux/ctype.h>
42 #include <symbol/kallsyms.h>
43 #include <linux/mman.h>
44 #include <linux/string.h>
45 #include <linux/zalloc.h>
46 
47 static struct dso *machine__kernel_dso(struct machine *machine)
48 {
49 	return map__dso(machine->vmlinux_map);
50 }
51 
52 static int machine__set_mmap_name(struct machine *machine)
53 {
54 	if (machine__is_host(machine))
55 		machine->mmap_name = strdup("[kernel.kallsyms]");
56 	else if (machine__is_default_guest(machine))
57 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
59 			  machine->pid) < 0)
60 		machine->mmap_name = NULL;
61 
62 	return machine->mmap_name ? 0 : -ENOMEM;
63 }
64 
65 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
66 {
67 	char comm[64];
68 
69 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
70 	thread__set_comm(thread, comm, 0);
71 }
72 
73 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
74 {
75 	int err = -ENOMEM;
76 
77 	memset(machine, 0, sizeof(*machine));
78 	machine->kmaps = maps__new(machine);
79 	if (machine->kmaps == NULL)
80 		return -ENOMEM;
81 
82 	RB_CLEAR_NODE(&machine->rb_node);
83 	dsos__init(&machine->dsos);
84 
85 	threads__init(&machine->threads);
86 
87 	machine->vdso_info = NULL;
88 	machine->env = NULL;
89 
90 	machine->pid = pid;
91 
92 	machine->id_hdr_size = 0;
93 	machine->kptr_restrict_warned = false;
94 	machine->comm_exec = false;
95 	machine->kernel_start = 0;
96 	machine->vmlinux_map = NULL;
97 
98 	machine->root_dir = strdup(root_dir);
99 	if (machine->root_dir == NULL)
100 		goto out;
101 
102 	if (machine__set_mmap_name(machine))
103 		goto out;
104 
105 	if (pid != HOST_KERNEL_ID) {
106 		struct thread *thread = machine__findnew_thread(machine, -1,
107 								pid);
108 
109 		if (thread == NULL)
110 			goto out;
111 
112 		thread__set_guest_comm(thread, pid);
113 		thread__put(thread);
114 	}
115 
116 	machine->current_tid = NULL;
117 	err = 0;
118 
119 out:
120 	if (err) {
121 		zfree(&machine->kmaps);
122 		zfree(&machine->root_dir);
123 		zfree(&machine->mmap_name);
124 	}
125 	return 0;
126 }
127 
128 struct machine *machine__new_host(void)
129 {
130 	struct machine *machine = malloc(sizeof(*machine));
131 
132 	if (machine != NULL) {
133 		machine__init(machine, "", HOST_KERNEL_ID);
134 
135 		if (machine__create_kernel_maps(machine) < 0)
136 			goto out_delete;
137 	}
138 
139 	return machine;
140 out_delete:
141 	free(machine);
142 	return NULL;
143 }
144 
145 struct machine *machine__new_kallsyms(void)
146 {
147 	struct machine *machine = machine__new_host();
148 	/*
149 	 * FIXME:
150 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
151 	 *    ask for not using the kcore parsing code, once this one is fixed
152 	 *    to create a map per module.
153 	 */
154 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
155 		machine__delete(machine);
156 		machine = NULL;
157 	}
158 
159 	return machine;
160 }
161 
162 void machine__delete_threads(struct machine *machine)
163 {
164 	threads__remove_all_threads(&machine->threads);
165 }
166 
167 void machine__exit(struct machine *machine)
168 {
169 	if (machine == NULL)
170 		return;
171 
172 	machine__destroy_kernel_maps(machine);
173 	maps__zput(machine->kmaps);
174 	dsos__exit(&machine->dsos);
175 	machine__exit_vdso(machine);
176 	zfree(&machine->root_dir);
177 	zfree(&machine->mmap_name);
178 	zfree(&machine->current_tid);
179 	zfree(&machine->kallsyms_filename);
180 
181 	threads__exit(&machine->threads);
182 }
183 
184 void machine__delete(struct machine *machine)
185 {
186 	if (machine) {
187 		machine__exit(machine);
188 		free(machine);
189 	}
190 }
191 
192 void machines__init(struct machines *machines)
193 {
194 	machine__init(&machines->host, "", HOST_KERNEL_ID);
195 	machines->guests = RB_ROOT_CACHED;
196 }
197 
198 void machines__exit(struct machines *machines)
199 {
200 	machine__exit(&machines->host);
201 	/* XXX exit guest */
202 }
203 
204 struct machine *machines__add(struct machines *machines, pid_t pid,
205 			      const char *root_dir)
206 {
207 	struct rb_node **p = &machines->guests.rb_root.rb_node;
208 	struct rb_node *parent = NULL;
209 	struct machine *pos, *machine = malloc(sizeof(*machine));
210 	bool leftmost = true;
211 
212 	if (machine == NULL)
213 		return NULL;
214 
215 	if (machine__init(machine, root_dir, pid) != 0) {
216 		free(machine);
217 		return NULL;
218 	}
219 
220 	while (*p != NULL) {
221 		parent = *p;
222 		pos = rb_entry(parent, struct machine, rb_node);
223 		if (pid < pos->pid)
224 			p = &(*p)->rb_left;
225 		else {
226 			p = &(*p)->rb_right;
227 			leftmost = false;
228 		}
229 	}
230 
231 	rb_link_node(&machine->rb_node, parent, p);
232 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
233 
234 	machine->machines = machines;
235 
236 	return machine;
237 }
238 
239 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
240 {
241 	struct rb_node *nd;
242 
243 	machines->host.comm_exec = comm_exec;
244 
245 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
246 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
247 
248 		machine->comm_exec = comm_exec;
249 	}
250 }
251 
252 struct machine *machines__find(struct machines *machines, pid_t pid)
253 {
254 	struct rb_node **p = &machines->guests.rb_root.rb_node;
255 	struct rb_node *parent = NULL;
256 	struct machine *machine;
257 	struct machine *default_machine = NULL;
258 
259 	if (pid == HOST_KERNEL_ID)
260 		return &machines->host;
261 
262 	while (*p != NULL) {
263 		parent = *p;
264 		machine = rb_entry(parent, struct machine, rb_node);
265 		if (pid < machine->pid)
266 			p = &(*p)->rb_left;
267 		else if (pid > machine->pid)
268 			p = &(*p)->rb_right;
269 		else
270 			return machine;
271 		if (!machine->pid)
272 			default_machine = machine;
273 	}
274 
275 	return default_machine;
276 }
277 
278 struct machine *machines__findnew(struct machines *machines, pid_t pid)
279 {
280 	char path[PATH_MAX];
281 	const char *root_dir = "";
282 	struct machine *machine = machines__find(machines, pid);
283 
284 	if (machine && (machine->pid == pid))
285 		goto out;
286 
287 	if ((pid != HOST_KERNEL_ID) &&
288 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
289 	    (symbol_conf.guestmount)) {
290 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
291 		if (access(path, R_OK)) {
292 			static struct strlist *seen;
293 
294 			if (!seen)
295 				seen = strlist__new(NULL, NULL);
296 
297 			if (!strlist__has_entry(seen, path)) {
298 				pr_err("Can't access file %s\n", path);
299 				strlist__add(seen, path);
300 			}
301 			machine = NULL;
302 			goto out;
303 		}
304 		root_dir = path;
305 	}
306 
307 	machine = machines__add(machines, pid, root_dir);
308 out:
309 	return machine;
310 }
311 
312 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
313 {
314 	struct machine *machine = machines__find(machines, pid);
315 
316 	if (!machine)
317 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
318 	return machine;
319 }
320 
321 /*
322  * A common case for KVM test programs is that the test program acts as the
323  * hypervisor, creating, running and destroying the virtual machine, and
324  * providing the guest object code from its own object code. In this case,
325  * the VM is not running an OS, but only the functions loaded into it by the
326  * hypervisor test program, and conveniently, loaded at the same virtual
327  * addresses.
328  *
329  * Normally to resolve addresses, MMAP events are needed to map addresses
330  * back to the object code and debug symbols for that object code.
331  *
332  * Currently, there is no way to get such mapping information from guests
333  * but, in the scenario described above, the guest has the same mappings
334  * as the hypervisor, so support for that scenario can be achieved.
335  *
336  * To support that, copy the host thread's maps to the guest thread's maps.
337  * Note, we do not discover the guest until we encounter a guest event,
338  * which works well because it is not until then that we know that the host
339  * thread's maps have been set up.
340  *
341  * This function returns the guest thread. Apart from keeping the data
342  * structures sane, using a thread belonging to the guest machine, instead
343  * of the host thread, allows it to have its own comm (refer
344  * thread__set_guest_comm()).
345  */
346 static struct thread *findnew_guest_code(struct machine *machine,
347 					 struct machine *host_machine,
348 					 pid_t pid)
349 {
350 	struct thread *host_thread;
351 	struct thread *thread;
352 	int err;
353 
354 	if (!machine)
355 		return NULL;
356 
357 	thread = machine__findnew_thread(machine, -1, pid);
358 	if (!thread)
359 		return NULL;
360 
361 	/* Assume maps are set up if there are any */
362 	if (!maps__empty(thread__maps(thread)))
363 		return thread;
364 
365 	host_thread = machine__find_thread(host_machine, -1, pid);
366 	if (!host_thread)
367 		goto out_err;
368 
369 	thread__set_guest_comm(thread, pid);
370 
371 	/*
372 	 * Guest code can be found in hypervisor process at the same address
373 	 * so copy host maps.
374 	 */
375 	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
376 	thread__put(host_thread);
377 	if (err)
378 		goto out_err;
379 
380 	return thread;
381 
382 out_err:
383 	thread__zput(thread);
384 	return NULL;
385 }
386 
387 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
388 {
389 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
390 	struct machine *machine = machines__findnew(machines, pid);
391 
392 	return findnew_guest_code(machine, host_machine, pid);
393 }
394 
395 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
396 {
397 	struct machines *machines = machine->machines;
398 	struct machine *host_machine;
399 
400 	if (!machines)
401 		return NULL;
402 
403 	host_machine = machines__find(machines, HOST_KERNEL_ID);
404 
405 	return findnew_guest_code(machine, host_machine, pid);
406 }
407 
408 void machines__process_guests(struct machines *machines,
409 			      machine__process_t process, void *data)
410 {
411 	struct rb_node *nd;
412 
413 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
414 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
415 		process(pos, data);
416 	}
417 }
418 
419 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
420 {
421 	struct rb_node *node;
422 	struct machine *machine;
423 
424 	machines->host.id_hdr_size = id_hdr_size;
425 
426 	for (node = rb_first_cached(&machines->guests); node;
427 	     node = rb_next(node)) {
428 		machine = rb_entry(node, struct machine, rb_node);
429 		machine->id_hdr_size = id_hdr_size;
430 	}
431 
432 	return;
433 }
434 
435 static void machine__update_thread_pid(struct machine *machine,
436 				       struct thread *th, pid_t pid)
437 {
438 	struct thread *leader;
439 
440 	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
441 		return;
442 
443 	thread__set_pid(th, pid);
444 
445 	if (thread__pid(th) == thread__tid(th))
446 		return;
447 
448 	leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
449 	if (!leader)
450 		goto out_err;
451 
452 	if (!thread__maps(leader))
453 		thread__set_maps(leader, maps__new(machine));
454 
455 	if (!thread__maps(leader))
456 		goto out_err;
457 
458 	if (thread__maps(th) == thread__maps(leader))
459 		goto out_put;
460 
461 	if (thread__maps(th)) {
462 		/*
463 		 * Maps are created from MMAP events which provide the pid and
464 		 * tid.  Consequently there never should be any maps on a thread
465 		 * with an unknown pid.  Just print an error if there are.
466 		 */
467 		if (!maps__empty(thread__maps(th)))
468 			pr_err("Discarding thread maps for %d:%d\n",
469 				thread__pid(th), thread__tid(th));
470 		maps__put(thread__maps(th));
471 	}
472 
473 	thread__set_maps(th, maps__get(thread__maps(leader)));
474 out_put:
475 	thread__put(leader);
476 	return;
477 out_err:
478 	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
479 	goto out_put;
480 }
481 
482 /*
483  * Caller must eventually drop thread->refcnt returned with a successful
484  * lookup/new thread inserted.
485  */
486 static struct thread *__machine__findnew_thread(struct machine *machine,
487 						pid_t pid,
488 						pid_t tid,
489 						bool create)
490 {
491 	struct thread *th = threads__find(&machine->threads, tid);
492 	bool created;
493 
494 	if (th) {
495 		machine__update_thread_pid(machine, th, pid);
496 		return th;
497 	}
498 	if (!create)
499 		return NULL;
500 
501 	th = threads__findnew(&machine->threads, pid, tid, &created);
502 	if (created) {
503 		/*
504 		 * We have to initialize maps separately after rb tree is
505 		 * updated.
506 		 *
507 		 * The reason is that we call machine__findnew_thread within
508 		 * thread__init_maps to find the thread leader and that would
509 		 * screwed the rb tree.
510 		 */
511 		if (thread__init_maps(th, machine)) {
512 			pr_err("Thread init failed thread %d\n", pid);
513 			threads__remove(&machine->threads, th);
514 			thread__put(th);
515 			return NULL;
516 		}
517 	} else
518 		machine__update_thread_pid(machine, th, pid);
519 
520 	return th;
521 }
522 
523 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
524 {
525 	return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
526 }
527 
528 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
529 				    pid_t tid)
530 {
531 	return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
532 }
533 
534 /*
535  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
536  * So here a single thread is created for that, but actually there is a separate
537  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
538  * is only 1. That causes problems for some tools, requiring workarounds. For
539  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
540  */
541 struct thread *machine__idle_thread(struct machine *machine)
542 {
543 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
544 
545 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
546 	    thread__set_namespaces(thread, 0, NULL))
547 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
548 
549 	return thread;
550 }
551 
552 struct comm *machine__thread_exec_comm(struct machine *machine,
553 				       struct thread *thread)
554 {
555 	if (machine->comm_exec)
556 		return thread__exec_comm(thread);
557 	else
558 		return thread__comm(thread);
559 }
560 
561 int machine__process_comm_event(struct machine *machine, union perf_event *event,
562 				struct perf_sample *sample)
563 {
564 	struct thread *thread = machine__findnew_thread(machine,
565 							event->comm.pid,
566 							event->comm.tid);
567 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
568 	int err = 0;
569 
570 	if (exec)
571 		machine->comm_exec = true;
572 
573 	if (dump_trace)
574 		perf_event__fprintf_comm(event, stdout);
575 
576 	if (thread == NULL ||
577 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
578 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
579 		err = -1;
580 	}
581 
582 	thread__put(thread);
583 
584 	return err;
585 }
586 
587 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
588 				      union perf_event *event,
589 				      struct perf_sample *sample __maybe_unused)
590 {
591 	struct thread *thread = machine__findnew_thread(machine,
592 							event->namespaces.pid,
593 							event->namespaces.tid);
594 	int err = 0;
595 
596 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
597 		  "\nWARNING: kernel seems to support more namespaces than perf"
598 		  " tool.\nTry updating the perf tool..\n\n");
599 
600 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
601 		  "\nWARNING: perf tool seems to support more namespaces than"
602 		  " the kernel.\nTry updating the kernel..\n\n");
603 
604 	if (dump_trace)
605 		perf_event__fprintf_namespaces(event, stdout);
606 
607 	if (thread == NULL ||
608 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
609 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
610 		err = -1;
611 	}
612 
613 	thread__put(thread);
614 
615 	return err;
616 }
617 
618 int machine__process_cgroup_event(struct machine *machine,
619 				  union perf_event *event,
620 				  struct perf_sample *sample __maybe_unused)
621 {
622 	struct cgroup *cgrp;
623 
624 	if (dump_trace)
625 		perf_event__fprintf_cgroup(event, stdout);
626 
627 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
628 	if (cgrp == NULL)
629 		return -ENOMEM;
630 
631 	return 0;
632 }
633 
634 int machine__process_lost_event(struct machine *machine __maybe_unused,
635 				union perf_event *event, struct perf_sample *sample __maybe_unused)
636 {
637 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
638 		    event->lost.id, event->lost.lost);
639 	return 0;
640 }
641 
642 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
643 					union perf_event *event, struct perf_sample *sample)
644 {
645 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n",
646 		    sample->id, event->lost_samples.lost,
647 		    event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : "");
648 	return 0;
649 }
650 
651 int machine__process_aux_event(struct machine *machine __maybe_unused,
652 			       union perf_event *event)
653 {
654 	if (dump_trace)
655 		perf_event__fprintf_aux(event, stdout);
656 	return 0;
657 }
658 
659 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
660 					union perf_event *event)
661 {
662 	if (dump_trace)
663 		perf_event__fprintf_itrace_start(event, stdout);
664 	return 0;
665 }
666 
667 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
668 					    union perf_event *event)
669 {
670 	if (dump_trace)
671 		perf_event__fprintf_aux_output_hw_id(event, stdout);
672 	return 0;
673 }
674 
675 int machine__process_switch_event(struct machine *machine __maybe_unused,
676 				  union perf_event *event)
677 {
678 	if (dump_trace)
679 		perf_event__fprintf_switch(event, stdout);
680 	return 0;
681 }
682 
683 static int machine__process_ksymbol_register(struct machine *machine,
684 					     union perf_event *event,
685 					     struct perf_sample *sample __maybe_unused)
686 {
687 	struct symbol *sym;
688 	struct dso *dso = NULL;
689 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
690 	int err = 0;
691 
692 	if (!map) {
693 		dso = dso__new(event->ksymbol.name);
694 
695 		if (!dso) {
696 			err = -ENOMEM;
697 			goto out;
698 		}
699 		dso__set_kernel(dso, DSO_SPACE__KERNEL);
700 		map = map__new2(0, dso);
701 		if (!map) {
702 			err = -ENOMEM;
703 			goto out;
704 		}
705 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
706 			dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
707 			dso__data(dso)->file_size = event->ksymbol.len;
708 			dso__set_loaded(dso);
709 		}
710 
711 		map__set_start(map, event->ksymbol.addr);
712 		map__set_end(map, map__start(map) + event->ksymbol.len);
713 		err = maps__insert(machine__kernel_maps(machine), map);
714 		if (err) {
715 			err = -ENOMEM;
716 			goto out;
717 		}
718 
719 		dso__set_loaded(dso);
720 
721 		if (is_bpf_image(event->ksymbol.name)) {
722 			dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
723 			dso__set_long_name(dso, "", false);
724 		}
725 	} else {
726 		dso = dso__get(map__dso(map));
727 	}
728 
729 	sym = symbol__new(map__map_ip(map, map__start(map)),
730 			  event->ksymbol.len,
731 			  0, 0, event->ksymbol.name);
732 	if (!sym) {
733 		err = -ENOMEM;
734 		goto out;
735 	}
736 	dso__insert_symbol(dso, sym);
737 out:
738 	map__put(map);
739 	dso__put(dso);
740 	return err;
741 }
742 
743 static int machine__process_ksymbol_unregister(struct machine *machine,
744 					       union perf_event *event,
745 					       struct perf_sample *sample __maybe_unused)
746 {
747 	struct symbol *sym;
748 	struct map *map;
749 
750 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
751 	if (!map)
752 		return 0;
753 
754 	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
755 		maps__remove(machine__kernel_maps(machine), map);
756 	else {
757 		struct dso *dso = map__dso(map);
758 
759 		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
760 		if (sym)
761 			dso__delete_symbol(dso, sym);
762 	}
763 	map__put(map);
764 	return 0;
765 }
766 
767 int machine__process_ksymbol(struct machine *machine __maybe_unused,
768 			     union perf_event *event,
769 			     struct perf_sample *sample)
770 {
771 	if (dump_trace)
772 		perf_event__fprintf_ksymbol(event, stdout);
773 
774 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
775 		return machine__process_ksymbol_unregister(machine, event,
776 							   sample);
777 	return machine__process_ksymbol_register(machine, event, sample);
778 }
779 
780 int machine__process_text_poke(struct machine *machine, union perf_event *event,
781 			       struct perf_sample *sample __maybe_unused)
782 {
783 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
784 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
785 	struct dso *dso = map ? map__dso(map) : NULL;
786 
787 	if (dump_trace)
788 		perf_event__fprintf_text_poke(event, machine, stdout);
789 
790 	if (!event->text_poke.new_len)
791 		goto out;
792 
793 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
794 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
795 		goto out;
796 	}
797 
798 	if (dso) {
799 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
800 		int ret;
801 
802 		/*
803 		 * Kernel maps might be changed when loading symbols so loading
804 		 * must be done prior to using kernel maps.
805 		 */
806 		map__load(map);
807 		ret = dso__data_write_cache_addr(dso, map, machine,
808 						 event->text_poke.addr,
809 						 new_bytes,
810 						 event->text_poke.new_len);
811 		if (ret != event->text_poke.new_len)
812 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
813 				 event->text_poke.addr);
814 	} else {
815 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
816 			 event->text_poke.addr);
817 	}
818 out:
819 	map__put(map);
820 	return 0;
821 }
822 
823 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
824 					      const char *filename)
825 {
826 	struct map *map = NULL;
827 	struct kmod_path m;
828 	struct dso *dso;
829 	int err;
830 
831 	if (kmod_path__parse_name(&m, filename))
832 		return NULL;
833 
834 	dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
835 	if (dso == NULL)
836 		goto out;
837 
838 	map = map__new2(start, dso);
839 	if (map == NULL)
840 		goto out;
841 
842 	err = maps__insert(machine__kernel_maps(machine), map);
843 	/* If maps__insert failed, return NULL. */
844 	if (err) {
845 		map__put(map);
846 		map = NULL;
847 	}
848 out:
849 	/* put the dso here, corresponding to  machine__findnew_module_dso */
850 	dso__put(dso);
851 	zfree(&m.name);
852 	return map;
853 }
854 
855 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
856 {
857 	struct rb_node *nd;
858 	size_t ret = dsos__fprintf(&machines->host.dsos, fp);
859 
860 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
861 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
862 		ret += dsos__fprintf(&pos->dsos, fp);
863 	}
864 
865 	return ret;
866 }
867 
868 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
869 				     bool (skip)(struct dso *dso, int parm), int parm)
870 {
871 	return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
872 }
873 
874 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
875 				     bool (skip)(struct dso *dso, int parm), int parm)
876 {
877 	struct rb_node *nd;
878 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
879 
880 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
881 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
882 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
883 	}
884 	return ret;
885 }
886 
887 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
888 {
889 	int i;
890 	size_t printed = 0;
891 	struct dso *kdso = machine__kernel_dso(machine);
892 
893 	if (dso__has_build_id(kdso)) {
894 		char filename[PATH_MAX];
895 
896 		if (dso__build_id_filename(kdso, filename, sizeof(filename), false))
897 			printed += fprintf(fp, "[0] %s\n", filename);
898 	}
899 
900 	for (i = 0; i < vmlinux_path__nr_entries; ++i) {
901 		printed += fprintf(fp, "[%d] %s\n", i + dso__has_build_id(kdso),
902 				   vmlinux_path[i]);
903 	}
904 	return printed;
905 }
906 
907 struct machine_fprintf_cb_args {
908 	FILE *fp;
909 	size_t printed;
910 };
911 
912 static int machine_fprintf_cb(struct thread *thread, void *data)
913 {
914 	struct machine_fprintf_cb_args *args = data;
915 
916 	/* TODO: handle fprintf errors. */
917 	args->printed += thread__fprintf(thread, args->fp);
918 	return 0;
919 }
920 
921 size_t machine__fprintf(struct machine *machine, FILE *fp)
922 {
923 	struct machine_fprintf_cb_args args = {
924 		.fp = fp,
925 		.printed = 0,
926 	};
927 	size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
928 
929 	machine__for_each_thread(machine, machine_fprintf_cb, &args);
930 	return ret + args.printed;
931 }
932 
933 static struct dso *machine__get_kernel(struct machine *machine)
934 {
935 	const char *vmlinux_name = machine->mmap_name;
936 	struct dso *kernel;
937 
938 	if (machine__is_host(machine)) {
939 		if (symbol_conf.vmlinux_name)
940 			vmlinux_name = symbol_conf.vmlinux_name;
941 
942 		kernel = machine__findnew_kernel(machine, vmlinux_name,
943 						 "[kernel]", DSO_SPACE__KERNEL);
944 	} else {
945 		if (symbol_conf.default_guest_vmlinux_name)
946 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
947 
948 		kernel = machine__findnew_kernel(machine, vmlinux_name,
949 						 "[guest.kernel]",
950 						 DSO_SPACE__KERNEL_GUEST);
951 	}
952 
953 	if (kernel != NULL && (!dso__has_build_id(kernel)))
954 		dso__read_running_kernel_build_id(kernel, machine);
955 
956 	return kernel;
957 }
958 
959 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
960 				    size_t bufsz)
961 {
962 	if (machine__is_default_guest(machine))
963 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
964 	else
965 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
966 }
967 
968 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
969 
970 /* Figure out the start address of kernel map from /proc/kallsyms.
971  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
972  * symbol_name if it's not that important.
973  */
974 static int machine__get_running_kernel_start(struct machine *machine,
975 					     const char **symbol_name,
976 					     u64 *start, u64 *end)
977 {
978 	char filename[PATH_MAX];
979 	int i, err = -1;
980 	const char *name;
981 	u64 addr = 0;
982 
983 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
984 
985 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
986 		return 0;
987 
988 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
989 		err = kallsyms__get_function_start(filename, name, &addr);
990 		if (!err)
991 			break;
992 	}
993 
994 	if (err)
995 		return -1;
996 
997 	if (symbol_name)
998 		*symbol_name = name;
999 
1000 	*start = addr;
1001 
1002 	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1003 	if (err)
1004 		err = kallsyms__get_function_start(filename, "_etext", &addr);
1005 	if (!err)
1006 		*end = addr;
1007 
1008 	return 0;
1009 }
1010 
1011 int machine__create_extra_kernel_map(struct machine *machine,
1012 				     struct dso *kernel,
1013 				     struct extra_kernel_map *xm)
1014 {
1015 	struct kmap *kmap;
1016 	struct map *map;
1017 	int err;
1018 
1019 	map = map__new2(xm->start, kernel);
1020 	if (!map)
1021 		return -ENOMEM;
1022 
1023 	map__set_end(map, xm->end);
1024 	map__set_pgoff(map, xm->pgoff);
1025 
1026 	kmap = map__kmap(map);
1027 
1028 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1029 
1030 	err = maps__insert(machine__kernel_maps(machine), map);
1031 
1032 	if (!err) {
1033 		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1034 			kmap->name, map__start(map), map__end(map));
1035 	}
1036 
1037 	map__put(map);
1038 
1039 	return err;
1040 }
1041 
1042 static u64 find_entry_trampoline(struct dso *dso)
1043 {
1044 	/* Duplicates are removed so lookup all aliases */
1045 	const char *syms[] = {
1046 		"_entry_trampoline",
1047 		"__entry_trampoline_start",
1048 		"entry_SYSCALL_64_trampoline",
1049 	};
1050 	struct symbol *sym = dso__first_symbol(dso);
1051 	unsigned int i;
1052 
1053 	for (; sym; sym = dso__next_symbol(sym)) {
1054 		if (sym->binding != STB_GLOBAL)
1055 			continue;
1056 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1057 			if (!strcmp(sym->name, syms[i]))
1058 				return sym->start;
1059 		}
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 /*
1066  * These values can be used for kernels that do not have symbols for the entry
1067  * trampolines in kallsyms.
1068  */
1069 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1070 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1071 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1072 
1073 struct machine__map_x86_64_entry_trampolines_args {
1074 	struct maps *kmaps;
1075 	bool found;
1076 };
1077 
1078 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1079 {
1080 	struct machine__map_x86_64_entry_trampolines_args *args = data;
1081 	struct map *dest_map;
1082 	struct kmap *kmap = __map__kmap(map);
1083 
1084 	if (!kmap || !is_entry_trampoline(kmap->name))
1085 		return 0;
1086 
1087 	dest_map = maps__find(args->kmaps, map__pgoff(map));
1088 	if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1089 		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1090 
1091 	map__put(dest_map);
1092 	args->found = true;
1093 	return 0;
1094 }
1095 
1096 /* Map x86_64 PTI entry trampolines */
1097 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1098 					  struct dso *kernel)
1099 {
1100 	struct machine__map_x86_64_entry_trampolines_args args = {
1101 		.kmaps = machine__kernel_maps(machine),
1102 		.found = false,
1103 	};
1104 	int nr_cpus_avail, cpu;
1105 	u64 pgoff;
1106 
1107 	/*
1108 	 * In the vmlinux case, pgoff is a virtual address which must now be
1109 	 * mapped to a vmlinux offset.
1110 	 */
1111 	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1112 
1113 	if (args.found || machine->trampolines_mapped)
1114 		return 0;
1115 
1116 	pgoff = find_entry_trampoline(kernel);
1117 	if (!pgoff)
1118 		return 0;
1119 
1120 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1121 
1122 	/* Add a 1 page map for each CPU's entry trampoline */
1123 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1124 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1125 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1126 			 X86_64_ENTRY_TRAMPOLINE;
1127 		struct extra_kernel_map xm = {
1128 			.start = va,
1129 			.end   = va + page_size,
1130 			.pgoff = pgoff,
1131 		};
1132 
1133 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1134 
1135 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1136 			return -1;
1137 	}
1138 
1139 	machine->trampolines_mapped = nr_cpus_avail;
1140 
1141 	return 0;
1142 }
1143 
1144 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1145 					     struct dso *kernel __maybe_unused)
1146 {
1147 	return 0;
1148 }
1149 
1150 static int
1151 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1152 {
1153 	/* In case of renewal the kernel map, destroy previous one */
1154 	machine__destroy_kernel_maps(machine);
1155 
1156 	map__put(machine->vmlinux_map);
1157 	machine->vmlinux_map = map__new2(0, kernel);
1158 	if (machine->vmlinux_map == NULL)
1159 		return -ENOMEM;
1160 
1161 	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1162 	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1163 }
1164 
1165 void machine__destroy_kernel_maps(struct machine *machine)
1166 {
1167 	struct kmap *kmap;
1168 	struct map *map = machine__kernel_map(machine);
1169 
1170 	if (map == NULL)
1171 		return;
1172 
1173 	kmap = map__kmap(map);
1174 	maps__remove(machine__kernel_maps(machine), map);
1175 	if (kmap && kmap->ref_reloc_sym) {
1176 		zfree((char **)&kmap->ref_reloc_sym->name);
1177 		zfree(&kmap->ref_reloc_sym);
1178 	}
1179 
1180 	map__zput(machine->vmlinux_map);
1181 }
1182 
1183 int machines__create_guest_kernel_maps(struct machines *machines)
1184 {
1185 	int ret = 0;
1186 	struct dirent **namelist = NULL;
1187 	int i, items = 0;
1188 	char path[PATH_MAX];
1189 	pid_t pid;
1190 	char *endp;
1191 
1192 	if (symbol_conf.default_guest_vmlinux_name ||
1193 	    symbol_conf.default_guest_modules ||
1194 	    symbol_conf.default_guest_kallsyms) {
1195 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1196 	}
1197 
1198 	if (symbol_conf.guestmount) {
1199 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1200 		if (items <= 0)
1201 			return -ENOENT;
1202 		for (i = 0; i < items; i++) {
1203 			if (!isdigit(namelist[i]->d_name[0])) {
1204 				/* Filter out . and .. */
1205 				continue;
1206 			}
1207 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1208 			if ((*endp != '\0') ||
1209 			    (endp == namelist[i]->d_name) ||
1210 			    (errno == ERANGE)) {
1211 				pr_debug("invalid directory (%s). Skipping.\n",
1212 					 namelist[i]->d_name);
1213 				continue;
1214 			}
1215 			sprintf(path, "%s/%s/proc/kallsyms",
1216 				symbol_conf.guestmount,
1217 				namelist[i]->d_name);
1218 			ret = access(path, R_OK);
1219 			if (ret) {
1220 				pr_debug("Can't access file %s\n", path);
1221 				goto failure;
1222 			}
1223 			machines__create_kernel_maps(machines, pid);
1224 		}
1225 failure:
1226 		free(namelist);
1227 	}
1228 
1229 	return ret;
1230 }
1231 
1232 void machines__destroy_kernel_maps(struct machines *machines)
1233 {
1234 	struct rb_node *next = rb_first_cached(&machines->guests);
1235 
1236 	machine__destroy_kernel_maps(&machines->host);
1237 
1238 	while (next) {
1239 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1240 
1241 		next = rb_next(&pos->rb_node);
1242 		rb_erase_cached(&pos->rb_node, &machines->guests);
1243 		machine__delete(pos);
1244 	}
1245 }
1246 
1247 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1248 {
1249 	struct machine *machine = machines__findnew(machines, pid);
1250 
1251 	if (machine == NULL)
1252 		return -1;
1253 
1254 	return machine__create_kernel_maps(machine);
1255 }
1256 
1257 int machine__load_kallsyms(struct machine *machine, const char *filename)
1258 {
1259 	struct map *map = machine__kernel_map(machine);
1260 	struct dso *dso = map__dso(map);
1261 	int ret = __dso__load_kallsyms(dso, filename, map, true);
1262 
1263 	if (ret > 0) {
1264 		dso__set_loaded(dso);
1265 		/*
1266 		 * Since /proc/kallsyms will have multiple sessions for the
1267 		 * kernel, with modules between them, fixup the end of all
1268 		 * sections.
1269 		 */
1270 		maps__fixup_end(machine__kernel_maps(machine));
1271 	}
1272 
1273 	return ret;
1274 }
1275 
1276 int machine__load_vmlinux_path(struct machine *machine)
1277 {
1278 	struct map *map = machine__kernel_map(machine);
1279 	struct dso *dso = map__dso(map);
1280 	int ret = dso__load_vmlinux_path(dso, map);
1281 
1282 	if (ret > 0)
1283 		dso__set_loaded(dso);
1284 
1285 	return ret;
1286 }
1287 
1288 static char *get_kernel_version(const char *root_dir)
1289 {
1290 	char version[PATH_MAX];
1291 	FILE *file;
1292 	char *name, *tmp;
1293 	const char *prefix = "Linux version ";
1294 
1295 	sprintf(version, "%s/proc/version", root_dir);
1296 	file = fopen(version, "r");
1297 	if (!file)
1298 		return NULL;
1299 
1300 	tmp = fgets(version, sizeof(version), file);
1301 	fclose(file);
1302 	if (!tmp)
1303 		return NULL;
1304 
1305 	name = strstr(version, prefix);
1306 	if (!name)
1307 		return NULL;
1308 	name += strlen(prefix);
1309 	tmp = strchr(name, ' ');
1310 	if (tmp)
1311 		*tmp = '\0';
1312 
1313 	return strdup(name);
1314 }
1315 
1316 static bool is_kmod_dso(struct dso *dso)
1317 {
1318 	return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1319 	       dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1320 }
1321 
1322 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1323 {
1324 	char *long_name;
1325 	struct dso *dso;
1326 	struct map *map = maps__find_by_name(maps, m->name);
1327 
1328 	if (map == NULL)
1329 		return 0;
1330 
1331 	long_name = strdup(path);
1332 	if (long_name == NULL) {
1333 		map__put(map);
1334 		return -ENOMEM;
1335 	}
1336 
1337 	dso = map__dso(map);
1338 	dso__set_long_name(dso, long_name, true);
1339 	dso__kernel_module_get_build_id(dso, "");
1340 
1341 	/*
1342 	 * Full name could reveal us kmod compression, so
1343 	 * we need to update the symtab_type if needed.
1344 	 */
1345 	if (m->comp && is_kmod_dso(dso)) {
1346 		dso__set_symtab_type(dso, dso__symtab_type(dso));
1347 		dso__set_comp(dso, m->comp);
1348 	}
1349 	map__put(map);
1350 	return 0;
1351 }
1352 
1353 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1354 {
1355 	struct dirent *dent;
1356 	DIR *dir = opendir(dir_name);
1357 	int ret = 0;
1358 
1359 	if (!dir) {
1360 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1361 		return -1;
1362 	}
1363 
1364 	while ((dent = readdir(dir)) != NULL) {
1365 		char path[PATH_MAX];
1366 		struct stat st;
1367 
1368 		/*sshfs might return bad dent->d_type, so we have to stat*/
1369 		path__join(path, sizeof(path), dir_name, dent->d_name);
1370 		if (stat(path, &st))
1371 			continue;
1372 
1373 		if (S_ISDIR(st.st_mode)) {
1374 			if (!strcmp(dent->d_name, ".") ||
1375 			    !strcmp(dent->d_name, ".."))
1376 				continue;
1377 
1378 			/* Do not follow top-level source and build symlinks */
1379 			if (depth == 0) {
1380 				if (!strcmp(dent->d_name, "source") ||
1381 				    !strcmp(dent->d_name, "build"))
1382 					continue;
1383 			}
1384 
1385 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1386 			if (ret < 0)
1387 				goto out;
1388 		} else {
1389 			struct kmod_path m;
1390 
1391 			ret = kmod_path__parse_name(&m, dent->d_name);
1392 			if (ret)
1393 				goto out;
1394 
1395 			if (m.kmod)
1396 				ret = maps__set_module_path(maps, path, &m);
1397 
1398 			zfree(&m.name);
1399 
1400 			if (ret)
1401 				goto out;
1402 		}
1403 	}
1404 
1405 out:
1406 	closedir(dir);
1407 	return ret;
1408 }
1409 
1410 static int machine__set_modules_path(struct machine *machine)
1411 {
1412 	char *version;
1413 	char modules_path[PATH_MAX];
1414 
1415 	version = get_kernel_version(machine->root_dir);
1416 	if (!version)
1417 		return -1;
1418 
1419 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1420 		 machine->root_dir, version);
1421 	free(version);
1422 
1423 	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1424 }
1425 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1426 				u64 *size __maybe_unused,
1427 				const char *name __maybe_unused)
1428 {
1429 	return 0;
1430 }
1431 
1432 static int machine__create_module(void *arg, const char *name, u64 start,
1433 				  u64 size)
1434 {
1435 	struct machine *machine = arg;
1436 	struct map *map;
1437 
1438 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1439 		return -1;
1440 
1441 	map = machine__addnew_module_map(machine, start, name);
1442 	if (map == NULL)
1443 		return -1;
1444 	map__set_end(map, start + size);
1445 
1446 	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1447 	map__put(map);
1448 	return 0;
1449 }
1450 
1451 static int machine__create_modules(struct machine *machine)
1452 {
1453 	const char *modules;
1454 	char path[PATH_MAX];
1455 
1456 	if (machine__is_default_guest(machine)) {
1457 		modules = symbol_conf.default_guest_modules;
1458 	} else {
1459 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1460 		modules = path;
1461 	}
1462 
1463 	if (symbol__restricted_filename(modules, "/proc/modules"))
1464 		return -1;
1465 
1466 	if (modules__parse(modules, machine, machine__create_module))
1467 		return -1;
1468 
1469 	if (!machine__set_modules_path(machine))
1470 		return 0;
1471 
1472 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1473 
1474 	return 0;
1475 }
1476 
1477 static void machine__set_kernel_mmap(struct machine *machine,
1478 				     u64 start, u64 end)
1479 {
1480 	map__set_start(machine->vmlinux_map, start);
1481 	map__set_end(machine->vmlinux_map, end);
1482 	/*
1483 	 * Be a bit paranoid here, some perf.data file came with
1484 	 * a zero sized synthesized MMAP event for the kernel.
1485 	 */
1486 	if (start == 0 && end == 0)
1487 		map__set_end(machine->vmlinux_map, ~0ULL);
1488 }
1489 
1490 static int machine__update_kernel_mmap(struct machine *machine,
1491 				     u64 start, u64 end)
1492 {
1493 	struct map *orig, *updated;
1494 	int err;
1495 
1496 	orig = machine->vmlinux_map;
1497 	updated = map__get(orig);
1498 
1499 	machine->vmlinux_map = updated;
1500 	maps__remove(machine__kernel_maps(machine), orig);
1501 	machine__set_kernel_mmap(machine, start, end);
1502 	err = maps__insert(machine__kernel_maps(machine), updated);
1503 	map__put(orig);
1504 
1505 	return err;
1506 }
1507 
1508 int machine__create_kernel_maps(struct machine *machine)
1509 {
1510 	struct dso *kernel = machine__get_kernel(machine);
1511 	const char *name = NULL;
1512 	u64 start = 0, end = ~0ULL;
1513 	int ret;
1514 
1515 	if (kernel == NULL)
1516 		return -1;
1517 
1518 	ret = __machine__create_kernel_maps(machine, kernel);
1519 	if (ret < 0)
1520 		goto out_put;
1521 
1522 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1523 		if (machine__is_host(machine))
1524 			pr_debug("Problems creating module maps, "
1525 				 "continuing anyway...\n");
1526 		else
1527 			pr_debug("Problems creating module maps for guest %d, "
1528 				 "continuing anyway...\n", machine->pid);
1529 	}
1530 
1531 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1532 		if (name &&
1533 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1534 			machine__destroy_kernel_maps(machine);
1535 			ret = -1;
1536 			goto out_put;
1537 		}
1538 
1539 		/*
1540 		 * we have a real start address now, so re-order the kmaps
1541 		 * assume it's the last in the kmaps
1542 		 */
1543 		ret = machine__update_kernel_mmap(machine, start, end);
1544 		if (ret < 0)
1545 			goto out_put;
1546 	}
1547 
1548 	if (machine__create_extra_kernel_maps(machine, kernel))
1549 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1550 
1551 	if (end == ~0ULL) {
1552 		/* update end address of the kernel map using adjacent module address */
1553 		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1554 							 machine__kernel_map(machine));
1555 
1556 		if (next) {
1557 			machine__set_kernel_mmap(machine, start, map__start(next));
1558 			map__put(next);
1559 		}
1560 	}
1561 
1562 out_put:
1563 	dso__put(kernel);
1564 	return ret;
1565 }
1566 
1567 static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1568 {
1569 	return dso__is_kcore(dso) ? 1 : 0;
1570 }
1571 
1572 static bool machine__uses_kcore(struct machine *machine)
1573 {
1574 	return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1575 }
1576 
1577 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1578 					     struct extra_kernel_map *xm)
1579 {
1580 	return machine__is(machine, "x86_64") &&
1581 	       is_entry_trampoline(xm->name);
1582 }
1583 
1584 static int machine__process_extra_kernel_map(struct machine *machine,
1585 					     struct extra_kernel_map *xm)
1586 {
1587 	struct dso *kernel = machine__kernel_dso(machine);
1588 
1589 	if (kernel == NULL)
1590 		return -1;
1591 
1592 	return machine__create_extra_kernel_map(machine, kernel, xm);
1593 }
1594 
1595 static int machine__process_kernel_mmap_event(struct machine *machine,
1596 					      struct extra_kernel_map *xm,
1597 					      struct build_id *bid)
1598 {
1599 	enum dso_space_type dso_space;
1600 	bool is_kernel_mmap;
1601 	const char *mmap_name = machine->mmap_name;
1602 
1603 	/* If we have maps from kcore then we do not need or want any others */
1604 	if (machine__uses_kcore(machine))
1605 		return 0;
1606 
1607 	if (machine__is_host(machine))
1608 		dso_space = DSO_SPACE__KERNEL;
1609 	else
1610 		dso_space = DSO_SPACE__KERNEL_GUEST;
1611 
1612 	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1613 	if (!is_kernel_mmap && !machine__is_host(machine)) {
1614 		/*
1615 		 * If the event was recorded inside the guest and injected into
1616 		 * the host perf.data file, then it will match a host mmap_name,
1617 		 * so try that - see machine__set_mmap_name().
1618 		 */
1619 		mmap_name = "[kernel.kallsyms]";
1620 		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1621 	}
1622 	if (xm->name[0] == '/' ||
1623 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1624 		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1625 
1626 		if (map == NULL)
1627 			goto out_problem;
1628 
1629 		map__set_end(map, map__start(map) + xm->end - xm->start);
1630 
1631 		if (build_id__is_defined(bid))
1632 			dso__set_build_id(map__dso(map), bid);
1633 
1634 		map__put(map);
1635 	} else if (is_kernel_mmap) {
1636 		const char *symbol_name = xm->name + strlen(mmap_name);
1637 		/*
1638 		 * Should be there already, from the build-id table in
1639 		 * the header.
1640 		 */
1641 		struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
1642 
1643 		if (kernel == NULL)
1644 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1645 		if (kernel == NULL)
1646 			goto out_problem;
1647 
1648 		dso__set_kernel(kernel, dso_space);
1649 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1650 			dso__put(kernel);
1651 			goto out_problem;
1652 		}
1653 
1654 		if (strstr(dso__long_name(kernel), "vmlinux"))
1655 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1656 
1657 		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1658 			dso__put(kernel);
1659 			goto out_problem;
1660 		}
1661 
1662 		if (build_id__is_defined(bid))
1663 			dso__set_build_id(kernel, bid);
1664 
1665 		/*
1666 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1667 		 * symbol. Effectively having zero here means that at record
1668 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1669 		 */
1670 		if (xm->pgoff != 0) {
1671 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1672 							symbol_name,
1673 							xm->pgoff);
1674 		}
1675 
1676 		if (machine__is_default_guest(machine)) {
1677 			/*
1678 			 * preload dso of guest kernel and modules
1679 			 */
1680 			dso__load(kernel, machine__kernel_map(machine));
1681 		}
1682 		dso__put(kernel);
1683 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1684 		return machine__process_extra_kernel_map(machine, xm);
1685 	}
1686 	return 0;
1687 out_problem:
1688 	return -1;
1689 }
1690 
1691 int machine__process_mmap2_event(struct machine *machine,
1692 				 union perf_event *event,
1693 				 struct perf_sample *sample)
1694 {
1695 	struct thread *thread;
1696 	struct map *map;
1697 	struct dso_id dso_id = {
1698 		.maj = event->mmap2.maj,
1699 		.min = event->mmap2.min,
1700 		.ino = event->mmap2.ino,
1701 		.ino_generation = event->mmap2.ino_generation,
1702 	};
1703 	struct build_id __bid, *bid = NULL;
1704 	int ret = 0;
1705 
1706 	if (dump_trace)
1707 		perf_event__fprintf_mmap2(event, stdout);
1708 
1709 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1710 		bid = &__bid;
1711 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1712 	}
1713 
1714 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1715 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1716 		struct extra_kernel_map xm = {
1717 			.start = event->mmap2.start,
1718 			.end   = event->mmap2.start + event->mmap2.len,
1719 			.pgoff = event->mmap2.pgoff,
1720 		};
1721 
1722 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1723 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1724 		if (ret < 0)
1725 			goto out_problem;
1726 		return 0;
1727 	}
1728 
1729 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1730 					event->mmap2.tid);
1731 	if (thread == NULL)
1732 		goto out_problem;
1733 
1734 	map = map__new(machine, event->mmap2.start,
1735 			event->mmap2.len, event->mmap2.pgoff,
1736 			&dso_id, event->mmap2.prot,
1737 			event->mmap2.flags, bid,
1738 			event->mmap2.filename, thread);
1739 
1740 	if (map == NULL)
1741 		goto out_problem_map;
1742 
1743 	ret = thread__insert_map(thread, map);
1744 	if (ret)
1745 		goto out_problem_insert;
1746 
1747 	thread__put(thread);
1748 	map__put(map);
1749 	return 0;
1750 
1751 out_problem_insert:
1752 	map__put(map);
1753 out_problem_map:
1754 	thread__put(thread);
1755 out_problem:
1756 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1757 	return 0;
1758 }
1759 
1760 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1761 				struct perf_sample *sample)
1762 {
1763 	struct thread *thread;
1764 	struct map *map;
1765 	u32 prot = 0;
1766 	int ret = 0;
1767 
1768 	if (dump_trace)
1769 		perf_event__fprintf_mmap(event, stdout);
1770 
1771 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1772 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1773 		struct extra_kernel_map xm = {
1774 			.start = event->mmap.start,
1775 			.end   = event->mmap.start + event->mmap.len,
1776 			.pgoff = event->mmap.pgoff,
1777 		};
1778 
1779 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1780 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1781 		if (ret < 0)
1782 			goto out_problem;
1783 		return 0;
1784 	}
1785 
1786 	thread = machine__findnew_thread(machine, event->mmap.pid,
1787 					 event->mmap.tid);
1788 	if (thread == NULL)
1789 		goto out_problem;
1790 
1791 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1792 		prot = PROT_EXEC;
1793 
1794 	map = map__new(machine, event->mmap.start,
1795 			event->mmap.len, event->mmap.pgoff,
1796 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1797 
1798 	if (map == NULL)
1799 		goto out_problem_map;
1800 
1801 	ret = thread__insert_map(thread, map);
1802 	if (ret)
1803 		goto out_problem_insert;
1804 
1805 	thread__put(thread);
1806 	map__put(map);
1807 	return 0;
1808 
1809 out_problem_insert:
1810 	map__put(map);
1811 out_problem_map:
1812 	thread__put(thread);
1813 out_problem:
1814 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1815 	return 0;
1816 }
1817 
1818 void machine__remove_thread(struct machine *machine, struct thread *th)
1819 {
1820 	return threads__remove(&machine->threads, th);
1821 }
1822 
1823 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1824 				struct perf_sample *sample)
1825 {
1826 	struct thread *thread = machine__find_thread(machine,
1827 						     event->fork.pid,
1828 						     event->fork.tid);
1829 	struct thread *parent = machine__findnew_thread(machine,
1830 							event->fork.ppid,
1831 							event->fork.ptid);
1832 	bool do_maps_clone = true;
1833 	int err = 0;
1834 
1835 	if (dump_trace)
1836 		perf_event__fprintf_task(event, stdout);
1837 
1838 	/*
1839 	 * There may be an existing thread that is not actually the parent,
1840 	 * either because we are processing events out of order, or because the
1841 	 * (fork) event that would have removed the thread was lost. Assume the
1842 	 * latter case and continue on as best we can.
1843 	 */
1844 	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1845 		dump_printf("removing erroneous parent thread %d/%d\n",
1846 			    thread__pid(parent), thread__tid(parent));
1847 		machine__remove_thread(machine, parent);
1848 		thread__put(parent);
1849 		parent = machine__findnew_thread(machine, event->fork.ppid,
1850 						 event->fork.ptid);
1851 	}
1852 
1853 	/* if a thread currently exists for the thread id remove it */
1854 	if (thread != NULL) {
1855 		machine__remove_thread(machine, thread);
1856 		thread__put(thread);
1857 	}
1858 
1859 	thread = machine__findnew_thread(machine, event->fork.pid,
1860 					 event->fork.tid);
1861 	/*
1862 	 * When synthesizing FORK events, we are trying to create thread
1863 	 * objects for the already running tasks on the machine.
1864 	 *
1865 	 * Normally, for a kernel FORK event, we want to clone the parent's
1866 	 * maps because that is what the kernel just did.
1867 	 *
1868 	 * But when synthesizing, this should not be done.  If we do, we end up
1869 	 * with overlapping maps as we process the synthesized MMAP2 events that
1870 	 * get delivered shortly thereafter.
1871 	 *
1872 	 * Use the FORK event misc flags in an internal way to signal this
1873 	 * situation, so we can elide the map clone when appropriate.
1874 	 */
1875 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1876 		do_maps_clone = false;
1877 
1878 	if (thread == NULL || parent == NULL ||
1879 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1880 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1881 		err = -1;
1882 	}
1883 	thread__put(thread);
1884 	thread__put(parent);
1885 
1886 	return err;
1887 }
1888 
1889 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1890 				struct perf_sample *sample __maybe_unused)
1891 {
1892 	struct thread *thread = machine__find_thread(machine,
1893 						     event->fork.pid,
1894 						     event->fork.tid);
1895 
1896 	if (dump_trace)
1897 		perf_event__fprintf_task(event, stdout);
1898 
1899 	if (thread != NULL) {
1900 		if (symbol_conf.keep_exited_threads)
1901 			thread__set_exited(thread, /*exited=*/true);
1902 		else
1903 			machine__remove_thread(machine, thread);
1904 	}
1905 	thread__put(thread);
1906 	return 0;
1907 }
1908 
1909 int machine__process_event(struct machine *machine, union perf_event *event,
1910 			   struct perf_sample *sample)
1911 {
1912 	int ret;
1913 
1914 	switch (event->header.type) {
1915 	case PERF_RECORD_COMM:
1916 		ret = machine__process_comm_event(machine, event, sample); break;
1917 	case PERF_RECORD_MMAP:
1918 		ret = machine__process_mmap_event(machine, event, sample); break;
1919 	case PERF_RECORD_NAMESPACES:
1920 		ret = machine__process_namespaces_event(machine, event, sample); break;
1921 	case PERF_RECORD_CGROUP:
1922 		ret = machine__process_cgroup_event(machine, event, sample); break;
1923 	case PERF_RECORD_MMAP2:
1924 		ret = machine__process_mmap2_event(machine, event, sample); break;
1925 	case PERF_RECORD_FORK:
1926 		ret = machine__process_fork_event(machine, event, sample); break;
1927 	case PERF_RECORD_EXIT:
1928 		ret = machine__process_exit_event(machine, event, sample); break;
1929 	case PERF_RECORD_LOST:
1930 		ret = machine__process_lost_event(machine, event, sample); break;
1931 	case PERF_RECORD_AUX:
1932 		ret = machine__process_aux_event(machine, event); break;
1933 	case PERF_RECORD_ITRACE_START:
1934 		ret = machine__process_itrace_start_event(machine, event); break;
1935 	case PERF_RECORD_LOST_SAMPLES:
1936 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1937 	case PERF_RECORD_SWITCH:
1938 	case PERF_RECORD_SWITCH_CPU_WIDE:
1939 		ret = machine__process_switch_event(machine, event); break;
1940 	case PERF_RECORD_KSYMBOL:
1941 		ret = machine__process_ksymbol(machine, event, sample); break;
1942 	case PERF_RECORD_BPF_EVENT:
1943 		ret = machine__process_bpf(machine, event, sample); break;
1944 	case PERF_RECORD_TEXT_POKE:
1945 		ret = machine__process_text_poke(machine, event, sample); break;
1946 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
1947 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
1948 	default:
1949 		ret = -1;
1950 		break;
1951 	}
1952 
1953 	return ret;
1954 }
1955 
1956 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1957 {
1958 	return regexec(regex, sym->name, 0, NULL, 0) == 0;
1959 }
1960 
1961 static void ip__resolve_ams(struct thread *thread,
1962 			    struct addr_map_symbol *ams,
1963 			    u64 ip)
1964 {
1965 	struct addr_location al;
1966 
1967 	addr_location__init(&al);
1968 	/*
1969 	 * We cannot use the header.misc hint to determine whether a
1970 	 * branch stack address is user, kernel, guest, hypervisor.
1971 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1972 	 * Thus, we have to try consecutively until we find a match
1973 	 * or else, the symbol is unknown
1974 	 */
1975 	thread__find_cpumode_addr_location(thread, ip, &al);
1976 
1977 	ams->addr = ip;
1978 	ams->al_addr = al.addr;
1979 	ams->al_level = al.level;
1980 	ams->ms.maps = maps__get(al.maps);
1981 	ams->ms.sym = al.sym;
1982 	ams->ms.map = map__get(al.map);
1983 	ams->phys_addr = 0;
1984 	ams->data_page_size = 0;
1985 	addr_location__exit(&al);
1986 }
1987 
1988 static void ip__resolve_data(struct thread *thread,
1989 			     u8 m, struct addr_map_symbol *ams,
1990 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
1991 {
1992 	struct addr_location al;
1993 
1994 	addr_location__init(&al);
1995 
1996 	thread__find_symbol(thread, m, addr, &al);
1997 
1998 	ams->addr = addr;
1999 	ams->al_addr = al.addr;
2000 	ams->al_level = al.level;
2001 	ams->ms.maps = maps__get(al.maps);
2002 	ams->ms.sym = al.sym;
2003 	ams->ms.map = map__get(al.map);
2004 	ams->phys_addr = phys_addr;
2005 	ams->data_page_size = daddr_page_size;
2006 	addr_location__exit(&al);
2007 }
2008 
2009 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2010 				     struct addr_location *al)
2011 {
2012 	struct mem_info *mi = mem_info__new();
2013 
2014 	if (!mi)
2015 		return NULL;
2016 
2017 	ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2018 	ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2019 			 sample->addr, sample->phys_addr,
2020 			 sample->data_page_size);
2021 	mem_info__data_src(mi)->val = sample->data_src;
2022 
2023 	return mi;
2024 }
2025 
2026 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2027 {
2028 	struct map *map = ms->map;
2029 	char *srcline = NULL;
2030 	struct dso *dso;
2031 
2032 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2033 		return srcline;
2034 
2035 	dso = map__dso(map);
2036 	srcline = srcline__tree_find(dso__srclines(dso), ip);
2037 	if (!srcline) {
2038 		bool show_sym = false;
2039 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2040 
2041 		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2042 				      ms->sym, show_sym, show_addr, ip);
2043 		srcline__tree_insert(dso__srclines(dso), ip, srcline);
2044 	}
2045 
2046 	return srcline;
2047 }
2048 
2049 struct iterations {
2050 	int nr_loop_iter;
2051 	u64 cycles;
2052 };
2053 
2054 static int add_callchain_ip(struct thread *thread,
2055 			    struct callchain_cursor *cursor,
2056 			    struct symbol **parent,
2057 			    struct addr_location *root_al,
2058 			    u8 *cpumode,
2059 			    u64 ip,
2060 			    bool branch,
2061 			    struct branch_flags *flags,
2062 			    struct iterations *iter,
2063 			    u64 branch_from)
2064 {
2065 	struct map_symbol ms = {};
2066 	struct addr_location al;
2067 	int nr_loop_iter = 0, err = 0;
2068 	u64 iter_cycles = 0;
2069 	const char *srcline = NULL;
2070 
2071 	addr_location__init(&al);
2072 	al.filtered = 0;
2073 	al.sym = NULL;
2074 	al.srcline = NULL;
2075 	if (!cpumode) {
2076 		thread__find_cpumode_addr_location(thread, ip, &al);
2077 	} else {
2078 		if (ip >= PERF_CONTEXT_MAX) {
2079 			switch (ip) {
2080 			case PERF_CONTEXT_HV:
2081 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2082 				break;
2083 			case PERF_CONTEXT_KERNEL:
2084 				*cpumode = PERF_RECORD_MISC_KERNEL;
2085 				break;
2086 			case PERF_CONTEXT_USER:
2087 				*cpumode = PERF_RECORD_MISC_USER;
2088 				break;
2089 			default:
2090 				pr_debug("invalid callchain context: "
2091 					 "%"PRId64"\n", (s64) ip);
2092 				/*
2093 				 * It seems the callchain is corrupted.
2094 				 * Discard all.
2095 				 */
2096 				callchain_cursor_reset(cursor);
2097 				err = 1;
2098 				goto out;
2099 			}
2100 			goto out;
2101 		}
2102 		thread__find_symbol(thread, *cpumode, ip, &al);
2103 	}
2104 
2105 	if (al.sym != NULL) {
2106 		if (perf_hpp_list.parent && !*parent &&
2107 		    symbol__match_regex(al.sym, &parent_regex))
2108 			*parent = al.sym;
2109 		else if (have_ignore_callees && root_al &&
2110 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2111 			/* Treat this symbol as the root,
2112 			   forgetting its callees. */
2113 			addr_location__copy(root_al, &al);
2114 			callchain_cursor_reset(cursor);
2115 		}
2116 	}
2117 
2118 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2119 		goto out;
2120 
2121 	if (iter) {
2122 		nr_loop_iter = iter->nr_loop_iter;
2123 		iter_cycles = iter->cycles;
2124 	}
2125 
2126 	ms.maps = maps__get(al.maps);
2127 	ms.map = map__get(al.map);
2128 	ms.sym = al.sym;
2129 	srcline = callchain_srcline(&ms, al.addr);
2130 	err = callchain_cursor_append(cursor, ip, &ms,
2131 				      branch, flags, nr_loop_iter,
2132 				      iter_cycles, branch_from, srcline);
2133 out:
2134 	addr_location__exit(&al);
2135 	map_symbol__exit(&ms);
2136 	return err;
2137 }
2138 
2139 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2140 					   struct addr_location *al)
2141 {
2142 	unsigned int i;
2143 	const struct branch_stack *bs = sample->branch_stack;
2144 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2145 	u64 *branch_stack_cntr = sample->branch_stack_cntr;
2146 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2147 
2148 	if (!bi)
2149 		return NULL;
2150 
2151 	for (i = 0; i < bs->nr; i++) {
2152 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2153 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2154 		bi[i].flags = entries[i].flags;
2155 		if (branch_stack_cntr)
2156 			bi[i].branch_stack_cntr  = branch_stack_cntr[i];
2157 	}
2158 	return bi;
2159 }
2160 
2161 static void save_iterations(struct iterations *iter,
2162 			    struct branch_entry *be, int nr)
2163 {
2164 	int i;
2165 
2166 	iter->nr_loop_iter++;
2167 	iter->cycles = 0;
2168 
2169 	for (i = 0; i < nr; i++)
2170 		iter->cycles += be[i].flags.cycles;
2171 }
2172 
2173 #define CHASHSZ 127
2174 #define CHASHBITS 7
2175 #define NO_ENTRY 0xff
2176 
2177 #define PERF_MAX_BRANCH_DEPTH 127
2178 
2179 /* Remove loops. */
2180 static int remove_loops(struct branch_entry *l, int nr,
2181 			struct iterations *iter)
2182 {
2183 	int i, j, off;
2184 	unsigned char chash[CHASHSZ];
2185 
2186 	memset(chash, NO_ENTRY, sizeof(chash));
2187 
2188 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2189 
2190 	for (i = 0; i < nr; i++) {
2191 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2192 
2193 		/* no collision handling for now */
2194 		if (chash[h] == NO_ENTRY) {
2195 			chash[h] = i;
2196 		} else if (l[chash[h]].from == l[i].from) {
2197 			bool is_loop = true;
2198 			/* check if it is a real loop */
2199 			off = 0;
2200 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2201 				if (l[j].from != l[i + off].from) {
2202 					is_loop = false;
2203 					break;
2204 				}
2205 			if (is_loop) {
2206 				j = nr - (i + off);
2207 				if (j > 0) {
2208 					save_iterations(iter + i + off,
2209 						l + i, off);
2210 
2211 					memmove(iter + i, iter + i + off,
2212 						j * sizeof(*iter));
2213 
2214 					memmove(l + i, l + i + off,
2215 						j * sizeof(*l));
2216 				}
2217 
2218 				nr -= off;
2219 			}
2220 		}
2221 	}
2222 	return nr;
2223 }
2224 
2225 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2226 				       struct callchain_cursor *cursor,
2227 				       struct perf_sample *sample,
2228 				       struct symbol **parent,
2229 				       struct addr_location *root_al,
2230 				       u64 branch_from,
2231 				       bool callee, int end)
2232 {
2233 	struct ip_callchain *chain = sample->callchain;
2234 	u8 cpumode = PERF_RECORD_MISC_USER;
2235 	int err, i;
2236 
2237 	if (callee) {
2238 		for (i = 0; i < end + 1; i++) {
2239 			err = add_callchain_ip(thread, cursor, parent,
2240 					       root_al, &cpumode, chain->ips[i],
2241 					       false, NULL, NULL, branch_from);
2242 			if (err)
2243 				return err;
2244 		}
2245 		return 0;
2246 	}
2247 
2248 	for (i = end; i >= 0; i--) {
2249 		err = add_callchain_ip(thread, cursor, parent,
2250 				       root_al, &cpumode, chain->ips[i],
2251 				       false, NULL, NULL, branch_from);
2252 		if (err)
2253 			return err;
2254 	}
2255 
2256 	return 0;
2257 }
2258 
2259 static void save_lbr_cursor_node(struct thread *thread,
2260 				 struct callchain_cursor *cursor,
2261 				 int idx)
2262 {
2263 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2264 
2265 	if (!lbr_stitch)
2266 		return;
2267 
2268 	if (cursor->pos == cursor->nr) {
2269 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2270 		return;
2271 	}
2272 
2273 	if (!cursor->curr)
2274 		cursor->curr = cursor->first;
2275 	else
2276 		cursor->curr = cursor->curr->next;
2277 
2278 	map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms);
2279 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2280 	       sizeof(struct callchain_cursor_node));
2281 	lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps);
2282 	lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map);
2283 
2284 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2285 	cursor->pos++;
2286 }
2287 
2288 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2289 				    struct callchain_cursor *cursor,
2290 				    struct perf_sample *sample,
2291 				    struct symbol **parent,
2292 				    struct addr_location *root_al,
2293 				    u64 *branch_from,
2294 				    bool callee)
2295 {
2296 	struct branch_stack *lbr_stack = sample->branch_stack;
2297 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2298 	u8 cpumode = PERF_RECORD_MISC_USER;
2299 	int lbr_nr = lbr_stack->nr;
2300 	struct branch_flags *flags;
2301 	int err, i;
2302 	u64 ip;
2303 
2304 	/*
2305 	 * The curr and pos are not used in writing session. They are cleared
2306 	 * in callchain_cursor_commit() when the writing session is closed.
2307 	 * Using curr and pos to track the current cursor node.
2308 	 */
2309 	if (thread__lbr_stitch(thread)) {
2310 		cursor->curr = NULL;
2311 		cursor->pos = cursor->nr;
2312 		if (cursor->nr) {
2313 			cursor->curr = cursor->first;
2314 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2315 				cursor->curr = cursor->curr->next;
2316 		}
2317 	}
2318 
2319 	if (callee) {
2320 		/* Add LBR ip from first entries.to */
2321 		ip = entries[0].to;
2322 		flags = &entries[0].flags;
2323 		*branch_from = entries[0].from;
2324 		err = add_callchain_ip(thread, cursor, parent,
2325 				       root_al, &cpumode, ip,
2326 				       true, flags, NULL,
2327 				       *branch_from);
2328 		if (err)
2329 			return err;
2330 
2331 		/*
2332 		 * The number of cursor node increases.
2333 		 * Move the current cursor node.
2334 		 * But does not need to save current cursor node for entry 0.
2335 		 * It's impossible to stitch the whole LBRs of previous sample.
2336 		 */
2337 		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2338 			if (!cursor->curr)
2339 				cursor->curr = cursor->first;
2340 			else
2341 				cursor->curr = cursor->curr->next;
2342 			cursor->pos++;
2343 		}
2344 
2345 		/* Add LBR ip from entries.from one by one. */
2346 		for (i = 0; i < lbr_nr; i++) {
2347 			ip = entries[i].from;
2348 			flags = &entries[i].flags;
2349 			err = add_callchain_ip(thread, cursor, parent,
2350 					       root_al, &cpumode, ip,
2351 					       true, flags, NULL,
2352 					       *branch_from);
2353 			if (err)
2354 				return err;
2355 			save_lbr_cursor_node(thread, cursor, i);
2356 		}
2357 		return 0;
2358 	}
2359 
2360 	/* Add LBR ip from entries.from one by one. */
2361 	for (i = lbr_nr - 1; i >= 0; i--) {
2362 		ip = entries[i].from;
2363 		flags = &entries[i].flags;
2364 		err = add_callchain_ip(thread, cursor, parent,
2365 				       root_al, &cpumode, ip,
2366 				       true, flags, NULL,
2367 				       *branch_from);
2368 		if (err)
2369 			return err;
2370 		save_lbr_cursor_node(thread, cursor, i);
2371 	}
2372 
2373 	if (lbr_nr > 0) {
2374 		/* Add LBR ip from first entries.to */
2375 		ip = entries[0].to;
2376 		flags = &entries[0].flags;
2377 		*branch_from = entries[0].from;
2378 		err = add_callchain_ip(thread, cursor, parent,
2379 				root_al, &cpumode, ip,
2380 				true, flags, NULL,
2381 				*branch_from);
2382 		if (err)
2383 			return err;
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2390 					     struct callchain_cursor *cursor)
2391 {
2392 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2393 	struct callchain_cursor_node *cnode;
2394 	struct stitch_list *stitch_node;
2395 	int err;
2396 
2397 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2398 		cnode = &stitch_node->cursor;
2399 
2400 		err = callchain_cursor_append(cursor, cnode->ip,
2401 					      &cnode->ms,
2402 					      cnode->branch,
2403 					      &cnode->branch_flags,
2404 					      cnode->nr_loop_iter,
2405 					      cnode->iter_cycles,
2406 					      cnode->branch_from,
2407 					      cnode->srcline);
2408 		if (err)
2409 			return err;
2410 	}
2411 	return 0;
2412 }
2413 
2414 static struct stitch_list *get_stitch_node(struct thread *thread)
2415 {
2416 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2417 	struct stitch_list *stitch_node;
2418 
2419 	if (!list_empty(&lbr_stitch->free_lists)) {
2420 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2421 					       struct stitch_list, node);
2422 		list_del(&stitch_node->node);
2423 
2424 		return stitch_node;
2425 	}
2426 
2427 	return malloc(sizeof(struct stitch_list));
2428 }
2429 
2430 static bool has_stitched_lbr(struct thread *thread,
2431 			     struct perf_sample *cur,
2432 			     struct perf_sample *prev,
2433 			     unsigned int max_lbr,
2434 			     bool callee)
2435 {
2436 	struct branch_stack *cur_stack = cur->branch_stack;
2437 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2438 	struct branch_stack *prev_stack = prev->branch_stack;
2439 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2440 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2441 	int i, j, nr_identical_branches = 0;
2442 	struct stitch_list *stitch_node;
2443 	u64 cur_base, distance;
2444 
2445 	if (!cur_stack || !prev_stack)
2446 		return false;
2447 
2448 	/* Find the physical index of the base-of-stack for current sample. */
2449 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2450 
2451 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2452 						     (max_lbr + prev_stack->hw_idx - cur_base);
2453 	/* Previous sample has shorter stack. Nothing can be stitched. */
2454 	if (distance + 1 > prev_stack->nr)
2455 		return false;
2456 
2457 	/*
2458 	 * Check if there are identical LBRs between two samples.
2459 	 * Identical LBRs must have same from, to and flags values. Also,
2460 	 * they have to be saved in the same LBR registers (same physical
2461 	 * index).
2462 	 *
2463 	 * Starts from the base-of-stack of current sample.
2464 	 */
2465 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2466 		if ((prev_entries[i].from != cur_entries[j].from) ||
2467 		    (prev_entries[i].to != cur_entries[j].to) ||
2468 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2469 			break;
2470 		nr_identical_branches++;
2471 	}
2472 
2473 	if (!nr_identical_branches)
2474 		return false;
2475 
2476 	/*
2477 	 * Save the LBRs between the base-of-stack of previous sample
2478 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2479 	 * These LBRs will be stitched later.
2480 	 */
2481 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2482 
2483 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2484 			continue;
2485 
2486 		stitch_node = get_stitch_node(thread);
2487 		if (!stitch_node)
2488 			return false;
2489 
2490 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2491 		       sizeof(struct callchain_cursor_node));
2492 
2493 		stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps);
2494 		stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map);
2495 
2496 		if (callee)
2497 			list_add(&stitch_node->node, &lbr_stitch->lists);
2498 		else
2499 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2500 	}
2501 
2502 	return true;
2503 }
2504 
2505 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2506 {
2507 	if (thread__lbr_stitch(thread))
2508 		return true;
2509 
2510 	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2511 	if (!thread__lbr_stitch(thread))
2512 		goto err;
2513 
2514 	thread__lbr_stitch(thread)->prev_lbr_cursor =
2515 		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2516 	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2517 		goto free_lbr_stitch;
2518 
2519 	thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1;
2520 
2521 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2522 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2523 
2524 	return true;
2525 
2526 free_lbr_stitch:
2527 	free(thread__lbr_stitch(thread));
2528 	thread__set_lbr_stitch(thread, NULL);
2529 err:
2530 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2531 	thread__set_lbr_stitch_enable(thread, false);
2532 	return false;
2533 }
2534 
2535 /*
2536  * Resolve LBR callstack chain sample
2537  * Return:
2538  * 1 on success get LBR callchain information
2539  * 0 no available LBR callchain information, should try fp
2540  * negative error code on other errors.
2541  */
2542 static int resolve_lbr_callchain_sample(struct thread *thread,
2543 					struct callchain_cursor *cursor,
2544 					struct perf_sample *sample,
2545 					struct symbol **parent,
2546 					struct addr_location *root_al,
2547 					int max_stack,
2548 					unsigned int max_lbr)
2549 {
2550 	bool callee = (callchain_param.order == ORDER_CALLEE);
2551 	struct ip_callchain *chain = sample->callchain;
2552 	int chain_nr = min(max_stack, (int)chain->nr), i;
2553 	struct lbr_stitch *lbr_stitch;
2554 	bool stitched_lbr = false;
2555 	u64 branch_from = 0;
2556 	int err;
2557 
2558 	for (i = 0; i < chain_nr; i++) {
2559 		if (chain->ips[i] == PERF_CONTEXT_USER)
2560 			break;
2561 	}
2562 
2563 	/* LBR only affects the user callchain */
2564 	if (i == chain_nr)
2565 		return 0;
2566 
2567 	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2568 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2569 		lbr_stitch = thread__lbr_stitch(thread);
2570 
2571 		stitched_lbr = has_stitched_lbr(thread, sample,
2572 						&lbr_stitch->prev_sample,
2573 						max_lbr, callee);
2574 
2575 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2576 			struct stitch_list *stitch_node;
2577 
2578 			list_for_each_entry(stitch_node, &lbr_stitch->lists, node)
2579 				map_symbol__exit(&stitch_node->cursor.ms);
2580 
2581 			list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists);
2582 		}
2583 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2584 	}
2585 
2586 	if (callee) {
2587 		/* Add kernel ip */
2588 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2589 						  parent, root_al, branch_from,
2590 						  true, i);
2591 		if (err)
2592 			goto error;
2593 
2594 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2595 					       root_al, &branch_from, true);
2596 		if (err)
2597 			goto error;
2598 
2599 		if (stitched_lbr) {
2600 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2601 			if (err)
2602 				goto error;
2603 		}
2604 
2605 	} else {
2606 		if (stitched_lbr) {
2607 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2608 			if (err)
2609 				goto error;
2610 		}
2611 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2612 					       root_al, &branch_from, false);
2613 		if (err)
2614 			goto error;
2615 
2616 		/* Add kernel ip */
2617 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2618 						  parent, root_al, branch_from,
2619 						  false, i);
2620 		if (err)
2621 			goto error;
2622 	}
2623 	return 1;
2624 
2625 error:
2626 	return (err < 0) ? err : 0;
2627 }
2628 
2629 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2630 			     struct callchain_cursor *cursor,
2631 			     struct symbol **parent,
2632 			     struct addr_location *root_al,
2633 			     u8 *cpumode, int ent)
2634 {
2635 	int err = 0;
2636 
2637 	while (--ent >= 0) {
2638 		u64 ip = chain->ips[ent];
2639 
2640 		if (ip >= PERF_CONTEXT_MAX) {
2641 			err = add_callchain_ip(thread, cursor, parent,
2642 					       root_al, cpumode, ip,
2643 					       false, NULL, NULL, 0);
2644 			break;
2645 		}
2646 	}
2647 	return err;
2648 }
2649 
2650 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2651 		struct thread *thread, int usr_idx)
2652 {
2653 	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2654 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2655 	else
2656 		return 0;
2657 }
2658 
2659 static int thread__resolve_callchain_sample(struct thread *thread,
2660 					    struct callchain_cursor *cursor,
2661 					    struct evsel *evsel,
2662 					    struct perf_sample *sample,
2663 					    struct symbol **parent,
2664 					    struct addr_location *root_al,
2665 					    int max_stack)
2666 {
2667 	struct branch_stack *branch = sample->branch_stack;
2668 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2669 	struct ip_callchain *chain = sample->callchain;
2670 	int chain_nr = 0;
2671 	u8 cpumode = PERF_RECORD_MISC_USER;
2672 	int i, j, err, nr_entries, usr_idx;
2673 	int skip_idx = -1;
2674 	int first_call = 0;
2675 	u64 leaf_frame_caller;
2676 
2677 	if (chain)
2678 		chain_nr = chain->nr;
2679 
2680 	if (evsel__has_branch_callstack(evsel)) {
2681 		struct perf_env *env = evsel__env(evsel);
2682 
2683 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2684 						   root_al, max_stack,
2685 						   !env ? 0 : env->max_branches);
2686 		if (err)
2687 			return (err < 0) ? err : 0;
2688 	}
2689 
2690 	/*
2691 	 * Based on DWARF debug information, some architectures skip
2692 	 * a callchain entry saved by the kernel.
2693 	 */
2694 	skip_idx = arch_skip_callchain_idx(thread, chain);
2695 
2696 	/*
2697 	 * Add branches to call stack for easier browsing. This gives
2698 	 * more context for a sample than just the callers.
2699 	 *
2700 	 * This uses individual histograms of paths compared to the
2701 	 * aggregated histograms the normal LBR mode uses.
2702 	 *
2703 	 * Limitations for now:
2704 	 * - No extra filters
2705 	 * - No annotations (should annotate somehow)
2706 	 */
2707 
2708 	if (branch && callchain_param.branch_callstack) {
2709 		int nr = min(max_stack, (int)branch->nr);
2710 		struct branch_entry be[nr];
2711 		struct iterations iter[nr];
2712 
2713 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2714 			pr_warning("corrupted branch chain. skipping...\n");
2715 			goto check_calls;
2716 		}
2717 
2718 		for (i = 0; i < nr; i++) {
2719 			if (callchain_param.order == ORDER_CALLEE) {
2720 				be[i] = entries[i];
2721 
2722 				if (chain == NULL)
2723 					continue;
2724 
2725 				/*
2726 				 * Check for overlap into the callchain.
2727 				 * The return address is one off compared to
2728 				 * the branch entry. To adjust for this
2729 				 * assume the calling instruction is not longer
2730 				 * than 8 bytes.
2731 				 */
2732 				if (i == skip_idx ||
2733 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2734 					first_call++;
2735 				else if (be[i].from < chain->ips[first_call] &&
2736 				    be[i].from >= chain->ips[first_call] - 8)
2737 					first_call++;
2738 			} else
2739 				be[i] = entries[branch->nr - i - 1];
2740 		}
2741 
2742 		memset(iter, 0, sizeof(struct iterations) * nr);
2743 		nr = remove_loops(be, nr, iter);
2744 
2745 		for (i = 0; i < nr; i++) {
2746 			err = add_callchain_ip(thread, cursor, parent,
2747 					       root_al,
2748 					       NULL, be[i].to,
2749 					       true, &be[i].flags,
2750 					       NULL, be[i].from);
2751 
2752 			if (!err)
2753 				err = add_callchain_ip(thread, cursor, parent, root_al,
2754 						       NULL, be[i].from,
2755 						       true, &be[i].flags,
2756 						       &iter[i], 0);
2757 			if (err == -EINVAL)
2758 				break;
2759 			if (err)
2760 				return err;
2761 		}
2762 
2763 		if (chain_nr == 0)
2764 			return 0;
2765 
2766 		chain_nr -= nr;
2767 	}
2768 
2769 check_calls:
2770 	if (chain && callchain_param.order != ORDER_CALLEE) {
2771 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2772 					&cpumode, chain->nr - first_call);
2773 		if (err)
2774 			return (err < 0) ? err : 0;
2775 	}
2776 	for (i = first_call, nr_entries = 0;
2777 	     i < chain_nr && nr_entries < max_stack; i++) {
2778 		u64 ip;
2779 
2780 		if (callchain_param.order == ORDER_CALLEE)
2781 			j = i;
2782 		else
2783 			j = chain->nr - i - 1;
2784 
2785 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2786 		if (j == skip_idx)
2787 			continue;
2788 #endif
2789 		ip = chain->ips[j];
2790 		if (ip < PERF_CONTEXT_MAX)
2791                        ++nr_entries;
2792 		else if (callchain_param.order != ORDER_CALLEE) {
2793 			err = find_prev_cpumode(chain, thread, cursor, parent,
2794 						root_al, &cpumode, j);
2795 			if (err)
2796 				return (err < 0) ? err : 0;
2797 			continue;
2798 		}
2799 
2800 		/*
2801 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2802 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2803 		 * the index will be different in order to add the missing frame
2804 		 * at the right place.
2805 		 */
2806 
2807 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2808 
2809 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2810 
2811 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2812 
2813 			/*
2814 			 * check if leaf_frame_Caller != ip to not add the same
2815 			 * value twice.
2816 			 */
2817 
2818 			if (leaf_frame_caller && leaf_frame_caller != ip) {
2819 
2820 				err = add_callchain_ip(thread, cursor, parent,
2821 					       root_al, &cpumode, leaf_frame_caller,
2822 					       false, NULL, NULL, 0);
2823 				if (err)
2824 					return (err < 0) ? err : 0;
2825 			}
2826 		}
2827 
2828 		err = add_callchain_ip(thread, cursor, parent,
2829 				       root_al, &cpumode, ip,
2830 				       false, NULL, NULL, 0);
2831 
2832 		if (err)
2833 			return (err < 0) ? err : 0;
2834 	}
2835 
2836 	return 0;
2837 }
2838 
2839 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2840 {
2841 	struct symbol *sym = ms->sym;
2842 	struct map *map = ms->map;
2843 	struct inline_node *inline_node;
2844 	struct inline_list *ilist;
2845 	struct dso *dso;
2846 	u64 addr;
2847 	int ret = 1;
2848 	struct map_symbol ilist_ms;
2849 
2850 	if (!symbol_conf.inline_name || !map || !sym)
2851 		return ret;
2852 
2853 	addr = map__dso_map_ip(map, ip);
2854 	addr = map__rip_2objdump(map, addr);
2855 	dso = map__dso(map);
2856 
2857 	inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2858 	if (!inline_node) {
2859 		inline_node = dso__parse_addr_inlines(dso, addr, sym);
2860 		if (!inline_node)
2861 			return ret;
2862 		inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2863 	}
2864 
2865 	ilist_ms = (struct map_symbol) {
2866 		.maps = maps__get(ms->maps),
2867 		.map = map__get(map),
2868 	};
2869 	list_for_each_entry(ilist, &inline_node->val, list) {
2870 		ilist_ms.sym = ilist->symbol;
2871 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2872 					      NULL, 0, 0, 0, ilist->srcline);
2873 
2874 		if (ret != 0)
2875 			return ret;
2876 	}
2877 	map_symbol__exit(&ilist_ms);
2878 
2879 	return ret;
2880 }
2881 
2882 static int unwind_entry(struct unwind_entry *entry, void *arg)
2883 {
2884 	struct callchain_cursor *cursor = arg;
2885 	const char *srcline = NULL;
2886 	u64 addr = entry->ip;
2887 
2888 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2889 		return 0;
2890 
2891 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2892 		return 0;
2893 
2894 	/*
2895 	 * Convert entry->ip from a virtual address to an offset in
2896 	 * its corresponding binary.
2897 	 */
2898 	if (entry->ms.map)
2899 		addr = map__dso_map_ip(entry->ms.map, entry->ip);
2900 
2901 	srcline = callchain_srcline(&entry->ms, addr);
2902 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2903 				       false, NULL, 0, 0, 0, srcline);
2904 }
2905 
2906 static int thread__resolve_callchain_unwind(struct thread *thread,
2907 					    struct callchain_cursor *cursor,
2908 					    struct evsel *evsel,
2909 					    struct perf_sample *sample,
2910 					    int max_stack)
2911 {
2912 	/* Can we do dwarf post unwind? */
2913 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2914 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2915 		return 0;
2916 
2917 	/* Bail out if nothing was captured. */
2918 	if ((!sample->user_regs.regs) ||
2919 	    (!sample->user_stack.size))
2920 		return 0;
2921 
2922 	return unwind__get_entries(unwind_entry, cursor,
2923 				   thread, sample, max_stack, false);
2924 }
2925 
2926 int thread__resolve_callchain(struct thread *thread,
2927 			      struct callchain_cursor *cursor,
2928 			      struct evsel *evsel,
2929 			      struct perf_sample *sample,
2930 			      struct symbol **parent,
2931 			      struct addr_location *root_al,
2932 			      int max_stack)
2933 {
2934 	int ret = 0;
2935 
2936 	if (cursor == NULL)
2937 		return -ENOMEM;
2938 
2939 	callchain_cursor_reset(cursor);
2940 
2941 	if (callchain_param.order == ORDER_CALLEE) {
2942 		ret = thread__resolve_callchain_sample(thread, cursor,
2943 						       evsel, sample,
2944 						       parent, root_al,
2945 						       max_stack);
2946 		if (ret)
2947 			return ret;
2948 		ret = thread__resolve_callchain_unwind(thread, cursor,
2949 						       evsel, sample,
2950 						       max_stack);
2951 	} else {
2952 		ret = thread__resolve_callchain_unwind(thread, cursor,
2953 						       evsel, sample,
2954 						       max_stack);
2955 		if (ret)
2956 			return ret;
2957 		ret = thread__resolve_callchain_sample(thread, cursor,
2958 						       evsel, sample,
2959 						       parent, root_al,
2960 						       max_stack);
2961 	}
2962 
2963 	return ret;
2964 }
2965 
2966 int machine__for_each_thread(struct machine *machine,
2967 			     int (*fn)(struct thread *thread, void *p),
2968 			     void *priv)
2969 {
2970 	return threads__for_each_thread(&machine->threads, fn, priv);
2971 }
2972 
2973 int machines__for_each_thread(struct machines *machines,
2974 			      int (*fn)(struct thread *thread, void *p),
2975 			      void *priv)
2976 {
2977 	struct rb_node *nd;
2978 	int rc = 0;
2979 
2980 	rc = machine__for_each_thread(&machines->host, fn, priv);
2981 	if (rc != 0)
2982 		return rc;
2983 
2984 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2985 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2986 
2987 		rc = machine__for_each_thread(machine, fn, priv);
2988 		if (rc != 0)
2989 			return rc;
2990 	}
2991 	return rc;
2992 }
2993 
2994 
2995 static int thread_list_cb(struct thread *thread, void *data)
2996 {
2997 	struct list_head *list = data;
2998 	struct thread_list *entry = malloc(sizeof(*entry));
2999 
3000 	if (!entry)
3001 		return -ENOMEM;
3002 
3003 	entry->thread = thread__get(thread);
3004 	list_add_tail(&entry->list, list);
3005 	return 0;
3006 }
3007 
3008 int machine__thread_list(struct machine *machine, struct list_head *list)
3009 {
3010 	return machine__for_each_thread(machine, thread_list_cb, list);
3011 }
3012 
3013 void thread_list__delete(struct list_head *list)
3014 {
3015 	struct thread_list *pos, *next;
3016 
3017 	list_for_each_entry_safe(pos, next, list, list) {
3018 		thread__zput(pos->thread);
3019 		list_del(&pos->list);
3020 		free(pos);
3021 	}
3022 }
3023 
3024 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3025 {
3026 	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3027 		return -1;
3028 
3029 	return machine->current_tid[cpu];
3030 }
3031 
3032 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3033 			     pid_t tid)
3034 {
3035 	struct thread *thread;
3036 	const pid_t init_val = -1;
3037 
3038 	if (cpu < 0)
3039 		return -EINVAL;
3040 
3041 	if (realloc_array_as_needed(machine->current_tid,
3042 				    machine->current_tid_sz,
3043 				    (unsigned int)cpu,
3044 				    &init_val))
3045 		return -ENOMEM;
3046 
3047 	machine->current_tid[cpu] = tid;
3048 
3049 	thread = machine__findnew_thread(machine, pid, tid);
3050 	if (!thread)
3051 		return -ENOMEM;
3052 
3053 	thread__set_cpu(thread, cpu);
3054 	thread__put(thread);
3055 
3056 	return 0;
3057 }
3058 
3059 /*
3060  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3061  * machine__normalized_is() if a normalized arch is needed.
3062  */
3063 bool machine__is(struct machine *machine, const char *arch)
3064 {
3065 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3066 }
3067 
3068 bool machine__normalized_is(struct machine *machine, const char *arch)
3069 {
3070 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3071 }
3072 
3073 int machine__nr_cpus_avail(struct machine *machine)
3074 {
3075 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3076 }
3077 
3078 int machine__get_kernel_start(struct machine *machine)
3079 {
3080 	struct map *map = machine__kernel_map(machine);
3081 	int err = 0;
3082 
3083 	/*
3084 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3085 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3086 	 * all addresses including kernel addresses are less than 2^32.  In
3087 	 * that case (32-bit system), if the kernel mapping is unknown, all
3088 	 * addresses will be assumed to be in user space - see
3089 	 * machine__kernel_ip().
3090 	 */
3091 	machine->kernel_start = 1ULL << 63;
3092 	if (map) {
3093 		err = map__load(map);
3094 		/*
3095 		 * On x86_64, PTI entry trampolines are less than the
3096 		 * start of kernel text, but still above 2^63. So leave
3097 		 * kernel_start = 1ULL << 63 for x86_64.
3098 		 */
3099 		if (!err && !machine__is(machine, "x86_64"))
3100 			machine->kernel_start = map__start(map);
3101 	}
3102 	return err;
3103 }
3104 
3105 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3106 {
3107 	u8 addr_cpumode = cpumode;
3108 	bool kernel_ip;
3109 
3110 	if (!machine->single_address_space)
3111 		goto out;
3112 
3113 	kernel_ip = machine__kernel_ip(machine, addr);
3114 	switch (cpumode) {
3115 	case PERF_RECORD_MISC_KERNEL:
3116 	case PERF_RECORD_MISC_USER:
3117 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3118 					   PERF_RECORD_MISC_USER;
3119 		break;
3120 	case PERF_RECORD_MISC_GUEST_KERNEL:
3121 	case PERF_RECORD_MISC_GUEST_USER:
3122 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3123 					   PERF_RECORD_MISC_GUEST_USER;
3124 		break;
3125 	default:
3126 		break;
3127 	}
3128 out:
3129 	return addr_cpumode;
3130 }
3131 
3132 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename,
3133 				    const struct dso_id *id)
3134 {
3135 	return dsos__findnew_id(&machine->dsos, filename, id);
3136 }
3137 
3138 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3139 {
3140 	return machine__findnew_dso_id(machine, filename, NULL);
3141 }
3142 
3143 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3144 {
3145 	struct machine *machine = vmachine;
3146 	struct map *map;
3147 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3148 
3149 	if (sym == NULL)
3150 		return NULL;
3151 
3152 	*modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3153 	*addrp = map__unmap_ip(map, sym->start);
3154 	return sym->name;
3155 }
3156 
3157 struct machine__for_each_dso_cb_args {
3158 	struct machine *machine;
3159 	machine__dso_t fn;
3160 	void *priv;
3161 };
3162 
3163 static int machine__for_each_dso_cb(struct dso *dso, void *data)
3164 {
3165 	struct machine__for_each_dso_cb_args *args = data;
3166 
3167 	return args->fn(dso, args->machine, args->priv);
3168 }
3169 
3170 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3171 {
3172 	struct machine__for_each_dso_cb_args args = {
3173 		.machine = machine,
3174 		.fn = fn,
3175 		.priv = priv,
3176 	};
3177 
3178 	return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
3179 }
3180 
3181 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3182 {
3183 	struct maps *maps = machine__kernel_maps(machine);
3184 
3185 	return maps__for_each_map(maps, fn, priv);
3186 }
3187 
3188 bool machine__is_lock_function(struct machine *machine, u64 addr)
3189 {
3190 	if (!machine->sched.text_start) {
3191 		struct map *kmap;
3192 		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3193 
3194 		if (!sym) {
3195 			/* to avoid retry */
3196 			machine->sched.text_start = 1;
3197 			return false;
3198 		}
3199 
3200 		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3201 
3202 		/* should not fail from here */
3203 		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3204 		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3205 
3206 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3207 		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3208 
3209 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3210 		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3211 
3212 		sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3213 		if (sym) {
3214 			machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3215 			machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3216 		}
3217 		sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3218 		if (sym) {
3219 			machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3220 			machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3221 		}
3222 	}
3223 
3224 	/* failed to get kernel symbols */
3225 	if (machine->sched.text_start == 1)
3226 		return false;
3227 
3228 	/* mutex and rwsem functions are in sched text section */
3229 	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3230 		return true;
3231 
3232 	/* spinlock functions are in lock text section */
3233 	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3234 		return true;
3235 
3236 	/* traceiter functions currently don't have their own section
3237 	 * but we consider them lock functions
3238 	 */
3239 	if (machine->traceiter.text_start != 0) {
3240 		if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3241 			return true;
3242 	}
3243 
3244 	if (machine->trace.text_start != 0) {
3245 		if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3246 			return true;
3247 	}
3248 
3249 	return false;
3250 }
3251 
3252 int machine__hit_all_dsos(struct machine *machine)
3253 {
3254 	return dsos__hit_all(&machine->dsos);
3255 }
3256