xref: /linux/tools/perf/util/machine.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16 
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18 
19 static void dsos__init(struct dsos *dsos)
20 {
21 	INIT_LIST_HEAD(&dsos->head);
22 	dsos->root = RB_ROOT;
23 	pthread_rwlock_init(&dsos->lock, NULL);
24 }
25 
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 	map_groups__init(&machine->kmaps, machine);
29 	RB_CLEAR_NODE(&machine->rb_node);
30 	dsos__init(&machine->dsos);
31 
32 	machine->threads = RB_ROOT;
33 	pthread_rwlock_init(&machine->threads_lock, NULL);
34 	INIT_LIST_HEAD(&machine->dead_threads);
35 	machine->last_match = NULL;
36 
37 	machine->vdso_info = NULL;
38 	machine->env = NULL;
39 
40 	machine->pid = pid;
41 
42 	machine->symbol_filter = NULL;
43 	machine->id_hdr_size = 0;
44 	machine->comm_exec = false;
45 	machine->kernel_start = 0;
46 
47 	machine->root_dir = strdup(root_dir);
48 	if (machine->root_dir == NULL)
49 		return -ENOMEM;
50 
51 	if (pid != HOST_KERNEL_ID) {
52 		struct thread *thread = machine__findnew_thread(machine, -1,
53 								pid);
54 		char comm[64];
55 
56 		if (thread == NULL)
57 			return -ENOMEM;
58 
59 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
60 		thread__set_comm(thread, comm, 0);
61 		thread__put(thread);
62 	}
63 
64 	machine->current_tid = NULL;
65 
66 	return 0;
67 }
68 
69 struct machine *machine__new_host(void)
70 {
71 	struct machine *machine = malloc(sizeof(*machine));
72 
73 	if (machine != NULL) {
74 		machine__init(machine, "", HOST_KERNEL_ID);
75 
76 		if (machine__create_kernel_maps(machine) < 0)
77 			goto out_delete;
78 	}
79 
80 	return machine;
81 out_delete:
82 	free(machine);
83 	return NULL;
84 }
85 
86 static void dsos__purge(struct dsos *dsos)
87 {
88 	struct dso *pos, *n;
89 
90 	pthread_rwlock_wrlock(&dsos->lock);
91 
92 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
93 		RB_CLEAR_NODE(&pos->rb_node);
94 		list_del_init(&pos->node);
95 		dso__put(pos);
96 	}
97 
98 	pthread_rwlock_unlock(&dsos->lock);
99 }
100 
101 static void dsos__exit(struct dsos *dsos)
102 {
103 	dsos__purge(dsos);
104 	pthread_rwlock_destroy(&dsos->lock);
105 }
106 
107 void machine__delete_threads(struct machine *machine)
108 {
109 	struct rb_node *nd;
110 
111 	pthread_rwlock_wrlock(&machine->threads_lock);
112 	nd = rb_first(&machine->threads);
113 	while (nd) {
114 		struct thread *t = rb_entry(nd, struct thread, rb_node);
115 
116 		nd = rb_next(nd);
117 		__machine__remove_thread(machine, t, false);
118 	}
119 	pthread_rwlock_unlock(&machine->threads_lock);
120 }
121 
122 void machine__exit(struct machine *machine)
123 {
124 	map_groups__exit(&machine->kmaps);
125 	dsos__exit(&machine->dsos);
126 	machine__exit_vdso(machine);
127 	zfree(&machine->root_dir);
128 	zfree(&machine->current_tid);
129 	pthread_rwlock_destroy(&machine->threads_lock);
130 }
131 
132 void machine__delete(struct machine *machine)
133 {
134 	machine__exit(machine);
135 	free(machine);
136 }
137 
138 void machines__init(struct machines *machines)
139 {
140 	machine__init(&machines->host, "", HOST_KERNEL_ID);
141 	machines->guests = RB_ROOT;
142 	machines->symbol_filter = NULL;
143 }
144 
145 void machines__exit(struct machines *machines)
146 {
147 	machine__exit(&machines->host);
148 	/* XXX exit guest */
149 }
150 
151 struct machine *machines__add(struct machines *machines, pid_t pid,
152 			      const char *root_dir)
153 {
154 	struct rb_node **p = &machines->guests.rb_node;
155 	struct rb_node *parent = NULL;
156 	struct machine *pos, *machine = malloc(sizeof(*machine));
157 
158 	if (machine == NULL)
159 		return NULL;
160 
161 	if (machine__init(machine, root_dir, pid) != 0) {
162 		free(machine);
163 		return NULL;
164 	}
165 
166 	machine->symbol_filter = machines->symbol_filter;
167 
168 	while (*p != NULL) {
169 		parent = *p;
170 		pos = rb_entry(parent, struct machine, rb_node);
171 		if (pid < pos->pid)
172 			p = &(*p)->rb_left;
173 		else
174 			p = &(*p)->rb_right;
175 	}
176 
177 	rb_link_node(&machine->rb_node, parent, p);
178 	rb_insert_color(&machine->rb_node, &machines->guests);
179 
180 	return machine;
181 }
182 
183 void machines__set_symbol_filter(struct machines *machines,
184 				 symbol_filter_t symbol_filter)
185 {
186 	struct rb_node *nd;
187 
188 	machines->symbol_filter = symbol_filter;
189 	machines->host.symbol_filter = symbol_filter;
190 
191 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
192 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
193 
194 		machine->symbol_filter = symbol_filter;
195 	}
196 }
197 
198 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
199 {
200 	struct rb_node *nd;
201 
202 	machines->host.comm_exec = comm_exec;
203 
204 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
205 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
206 
207 		machine->comm_exec = comm_exec;
208 	}
209 }
210 
211 struct machine *machines__find(struct machines *machines, pid_t pid)
212 {
213 	struct rb_node **p = &machines->guests.rb_node;
214 	struct rb_node *parent = NULL;
215 	struct machine *machine;
216 	struct machine *default_machine = NULL;
217 
218 	if (pid == HOST_KERNEL_ID)
219 		return &machines->host;
220 
221 	while (*p != NULL) {
222 		parent = *p;
223 		machine = rb_entry(parent, struct machine, rb_node);
224 		if (pid < machine->pid)
225 			p = &(*p)->rb_left;
226 		else if (pid > machine->pid)
227 			p = &(*p)->rb_right;
228 		else
229 			return machine;
230 		if (!machine->pid)
231 			default_machine = machine;
232 	}
233 
234 	return default_machine;
235 }
236 
237 struct machine *machines__findnew(struct machines *machines, pid_t pid)
238 {
239 	char path[PATH_MAX];
240 	const char *root_dir = "";
241 	struct machine *machine = machines__find(machines, pid);
242 
243 	if (machine && (machine->pid == pid))
244 		goto out;
245 
246 	if ((pid != HOST_KERNEL_ID) &&
247 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
248 	    (symbol_conf.guestmount)) {
249 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
250 		if (access(path, R_OK)) {
251 			static struct strlist *seen;
252 
253 			if (!seen)
254 				seen = strlist__new(NULL, NULL);
255 
256 			if (!strlist__has_entry(seen, path)) {
257 				pr_err("Can't access file %s\n", path);
258 				strlist__add(seen, path);
259 			}
260 			machine = NULL;
261 			goto out;
262 		}
263 		root_dir = path;
264 	}
265 
266 	machine = machines__add(machines, pid, root_dir);
267 out:
268 	return machine;
269 }
270 
271 void machines__process_guests(struct machines *machines,
272 			      machine__process_t process, void *data)
273 {
274 	struct rb_node *nd;
275 
276 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
277 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
278 		process(pos, data);
279 	}
280 }
281 
282 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
283 {
284 	if (machine__is_host(machine))
285 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
286 	else if (machine__is_default_guest(machine))
287 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
288 	else {
289 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
290 			 machine->pid);
291 	}
292 
293 	return bf;
294 }
295 
296 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
297 {
298 	struct rb_node *node;
299 	struct machine *machine;
300 
301 	machines->host.id_hdr_size = id_hdr_size;
302 
303 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
304 		machine = rb_entry(node, struct machine, rb_node);
305 		machine->id_hdr_size = id_hdr_size;
306 	}
307 
308 	return;
309 }
310 
311 static void machine__update_thread_pid(struct machine *machine,
312 				       struct thread *th, pid_t pid)
313 {
314 	struct thread *leader;
315 
316 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
317 		return;
318 
319 	th->pid_ = pid;
320 
321 	if (th->pid_ == th->tid)
322 		return;
323 
324 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
325 	if (!leader)
326 		goto out_err;
327 
328 	if (!leader->mg)
329 		leader->mg = map_groups__new(machine);
330 
331 	if (!leader->mg)
332 		goto out_err;
333 
334 	if (th->mg == leader->mg)
335 		return;
336 
337 	if (th->mg) {
338 		/*
339 		 * Maps are created from MMAP events which provide the pid and
340 		 * tid.  Consequently there never should be any maps on a thread
341 		 * with an unknown pid.  Just print an error if there are.
342 		 */
343 		if (!map_groups__empty(th->mg))
344 			pr_err("Discarding thread maps for %d:%d\n",
345 			       th->pid_, th->tid);
346 		map_groups__put(th->mg);
347 	}
348 
349 	th->mg = map_groups__get(leader->mg);
350 
351 	return;
352 
353 out_err:
354 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
355 }
356 
357 static struct thread *____machine__findnew_thread(struct machine *machine,
358 						  pid_t pid, pid_t tid,
359 						  bool create)
360 {
361 	struct rb_node **p = &machine->threads.rb_node;
362 	struct rb_node *parent = NULL;
363 	struct thread *th;
364 
365 	/*
366 	 * Front-end cache - TID lookups come in blocks,
367 	 * so most of the time we dont have to look up
368 	 * the full rbtree:
369 	 */
370 	th = machine->last_match;
371 	if (th != NULL) {
372 		if (th->tid == tid) {
373 			machine__update_thread_pid(machine, th, pid);
374 			return th;
375 		}
376 
377 		machine->last_match = NULL;
378 	}
379 
380 	while (*p != NULL) {
381 		parent = *p;
382 		th = rb_entry(parent, struct thread, rb_node);
383 
384 		if (th->tid == tid) {
385 			machine->last_match = th;
386 			machine__update_thread_pid(machine, th, pid);
387 			return th;
388 		}
389 
390 		if (tid < th->tid)
391 			p = &(*p)->rb_left;
392 		else
393 			p = &(*p)->rb_right;
394 	}
395 
396 	if (!create)
397 		return NULL;
398 
399 	th = thread__new(pid, tid);
400 	if (th != NULL) {
401 		rb_link_node(&th->rb_node, parent, p);
402 		rb_insert_color(&th->rb_node, &machine->threads);
403 
404 		/*
405 		 * We have to initialize map_groups separately
406 		 * after rb tree is updated.
407 		 *
408 		 * The reason is that we call machine__findnew_thread
409 		 * within thread__init_map_groups to find the thread
410 		 * leader and that would screwed the rb tree.
411 		 */
412 		if (thread__init_map_groups(th, machine)) {
413 			rb_erase_init(&th->rb_node, &machine->threads);
414 			RB_CLEAR_NODE(&th->rb_node);
415 			thread__delete(th);
416 			return NULL;
417 		}
418 		/*
419 		 * It is now in the rbtree, get a ref
420 		 */
421 		thread__get(th);
422 		machine->last_match = th;
423 	}
424 
425 	return th;
426 }
427 
428 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
429 {
430 	return ____machine__findnew_thread(machine, pid, tid, true);
431 }
432 
433 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
434 				       pid_t tid)
435 {
436 	struct thread *th;
437 
438 	pthread_rwlock_wrlock(&machine->threads_lock);
439 	th = thread__get(__machine__findnew_thread(machine, pid, tid));
440 	pthread_rwlock_unlock(&machine->threads_lock);
441 	return th;
442 }
443 
444 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
445 				    pid_t tid)
446 {
447 	struct thread *th;
448 	pthread_rwlock_rdlock(&machine->threads_lock);
449 	th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
450 	pthread_rwlock_unlock(&machine->threads_lock);
451 	return th;
452 }
453 
454 struct comm *machine__thread_exec_comm(struct machine *machine,
455 				       struct thread *thread)
456 {
457 	if (machine->comm_exec)
458 		return thread__exec_comm(thread);
459 	else
460 		return thread__comm(thread);
461 }
462 
463 int machine__process_comm_event(struct machine *machine, union perf_event *event,
464 				struct perf_sample *sample)
465 {
466 	struct thread *thread = machine__findnew_thread(machine,
467 							event->comm.pid,
468 							event->comm.tid);
469 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
470 	int err = 0;
471 
472 	if (exec)
473 		machine->comm_exec = true;
474 
475 	if (dump_trace)
476 		perf_event__fprintf_comm(event, stdout);
477 
478 	if (thread == NULL ||
479 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
480 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
481 		err = -1;
482 	}
483 
484 	thread__put(thread);
485 
486 	return err;
487 }
488 
489 int machine__process_lost_event(struct machine *machine __maybe_unused,
490 				union perf_event *event, struct perf_sample *sample __maybe_unused)
491 {
492 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
493 		    event->lost.id, event->lost.lost);
494 	return 0;
495 }
496 
497 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
498 					union perf_event *event, struct perf_sample *sample)
499 {
500 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
501 		    sample->id, event->lost_samples.lost);
502 	return 0;
503 }
504 
505 static struct dso *machine__findnew_module_dso(struct machine *machine,
506 					       struct kmod_path *m,
507 					       const char *filename)
508 {
509 	struct dso *dso;
510 
511 	pthread_rwlock_wrlock(&machine->dsos.lock);
512 
513 	dso = __dsos__find(&machine->dsos, m->name, true);
514 	if (!dso) {
515 		dso = __dsos__addnew(&machine->dsos, m->name);
516 		if (dso == NULL)
517 			goto out_unlock;
518 
519 		if (machine__is_host(machine))
520 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
521 		else
522 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
523 
524 		/* _KMODULE_COMP should be next to _KMODULE */
525 		if (m->kmod && m->comp)
526 			dso->symtab_type++;
527 
528 		dso__set_short_name(dso, strdup(m->name), true);
529 		dso__set_long_name(dso, strdup(filename), true);
530 	}
531 
532 	dso__get(dso);
533 out_unlock:
534 	pthread_rwlock_unlock(&machine->dsos.lock);
535 	return dso;
536 }
537 
538 int machine__process_aux_event(struct machine *machine __maybe_unused,
539 			       union perf_event *event)
540 {
541 	if (dump_trace)
542 		perf_event__fprintf_aux(event, stdout);
543 	return 0;
544 }
545 
546 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
547 					union perf_event *event)
548 {
549 	if (dump_trace)
550 		perf_event__fprintf_itrace_start(event, stdout);
551 	return 0;
552 }
553 
554 int machine__process_switch_event(struct machine *machine __maybe_unused,
555 				  union perf_event *event)
556 {
557 	if (dump_trace)
558 		perf_event__fprintf_switch(event, stdout);
559 	return 0;
560 }
561 
562 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
563 					const char *filename)
564 {
565 	struct map *map = NULL;
566 	struct dso *dso;
567 	struct kmod_path m;
568 
569 	if (kmod_path__parse_name(&m, filename))
570 		return NULL;
571 
572 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
573 				       m.name);
574 	if (map)
575 		goto out;
576 
577 	dso = machine__findnew_module_dso(machine, &m, filename);
578 	if (dso == NULL)
579 		goto out;
580 
581 	map = map__new2(start, dso, MAP__FUNCTION);
582 	if (map == NULL)
583 		goto out;
584 
585 	map_groups__insert(&machine->kmaps, map);
586 
587 out:
588 	free(m.name);
589 	return map;
590 }
591 
592 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
593 {
594 	struct rb_node *nd;
595 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
596 
597 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
598 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
599 		ret += __dsos__fprintf(&pos->dsos.head, fp);
600 	}
601 
602 	return ret;
603 }
604 
605 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
606 				     bool (skip)(struct dso *dso, int parm), int parm)
607 {
608 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
609 }
610 
611 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
612 				     bool (skip)(struct dso *dso, int parm), int parm)
613 {
614 	struct rb_node *nd;
615 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
616 
617 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
618 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
619 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
620 	}
621 	return ret;
622 }
623 
624 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
625 {
626 	int i;
627 	size_t printed = 0;
628 	struct dso *kdso = machine__kernel_map(machine)->dso;
629 
630 	if (kdso->has_build_id) {
631 		char filename[PATH_MAX];
632 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
633 			printed += fprintf(fp, "[0] %s\n", filename);
634 	}
635 
636 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
637 		printed += fprintf(fp, "[%d] %s\n",
638 				   i + kdso->has_build_id, vmlinux_path[i]);
639 
640 	return printed;
641 }
642 
643 size_t machine__fprintf(struct machine *machine, FILE *fp)
644 {
645 	size_t ret = 0;
646 	struct rb_node *nd;
647 
648 	pthread_rwlock_rdlock(&machine->threads_lock);
649 
650 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
651 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
652 
653 		ret += thread__fprintf(pos, fp);
654 	}
655 
656 	pthread_rwlock_unlock(&machine->threads_lock);
657 
658 	return ret;
659 }
660 
661 static struct dso *machine__get_kernel(struct machine *machine)
662 {
663 	const char *vmlinux_name = NULL;
664 	struct dso *kernel;
665 
666 	if (machine__is_host(machine)) {
667 		vmlinux_name = symbol_conf.vmlinux_name;
668 		if (!vmlinux_name)
669 			vmlinux_name = "[kernel.kallsyms]";
670 
671 		kernel = machine__findnew_kernel(machine, vmlinux_name,
672 						 "[kernel]", DSO_TYPE_KERNEL);
673 	} else {
674 		char bf[PATH_MAX];
675 
676 		if (machine__is_default_guest(machine))
677 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
678 		if (!vmlinux_name)
679 			vmlinux_name = machine__mmap_name(machine, bf,
680 							  sizeof(bf));
681 
682 		kernel = machine__findnew_kernel(machine, vmlinux_name,
683 						 "[guest.kernel]",
684 						 DSO_TYPE_GUEST_KERNEL);
685 	}
686 
687 	if (kernel != NULL && (!kernel->has_build_id))
688 		dso__read_running_kernel_build_id(kernel, machine);
689 
690 	return kernel;
691 }
692 
693 struct process_args {
694 	u64 start;
695 };
696 
697 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
698 					   size_t bufsz)
699 {
700 	if (machine__is_default_guest(machine))
701 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
702 	else
703 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
704 }
705 
706 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
707 
708 /* Figure out the start address of kernel map from /proc/kallsyms.
709  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
710  * symbol_name if it's not that important.
711  */
712 static u64 machine__get_running_kernel_start(struct machine *machine,
713 					     const char **symbol_name)
714 {
715 	char filename[PATH_MAX];
716 	int i;
717 	const char *name;
718 	u64 addr = 0;
719 
720 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
721 
722 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
723 		return 0;
724 
725 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
726 		addr = kallsyms__get_function_start(filename, name);
727 		if (addr)
728 			break;
729 	}
730 
731 	if (symbol_name)
732 		*symbol_name = name;
733 
734 	return addr;
735 }
736 
737 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
738 {
739 	enum map_type type;
740 	u64 start = machine__get_running_kernel_start(machine, NULL);
741 
742 	for (type = 0; type < MAP__NR_TYPES; ++type) {
743 		struct kmap *kmap;
744 		struct map *map;
745 
746 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
747 		if (machine->vmlinux_maps[type] == NULL)
748 			return -1;
749 
750 		machine->vmlinux_maps[type]->map_ip =
751 			machine->vmlinux_maps[type]->unmap_ip =
752 				identity__map_ip;
753 		map = __machine__kernel_map(machine, type);
754 		kmap = map__kmap(map);
755 		if (!kmap)
756 			return -1;
757 
758 		kmap->kmaps = &machine->kmaps;
759 		map_groups__insert(&machine->kmaps, map);
760 	}
761 
762 	return 0;
763 }
764 
765 void machine__destroy_kernel_maps(struct machine *machine)
766 {
767 	enum map_type type;
768 
769 	for (type = 0; type < MAP__NR_TYPES; ++type) {
770 		struct kmap *kmap;
771 		struct map *map = __machine__kernel_map(machine, type);
772 
773 		if (map == NULL)
774 			continue;
775 
776 		kmap = map__kmap(map);
777 		map_groups__remove(&machine->kmaps, map);
778 		if (kmap && kmap->ref_reloc_sym) {
779 			/*
780 			 * ref_reloc_sym is shared among all maps, so free just
781 			 * on one of them.
782 			 */
783 			if (type == MAP__FUNCTION) {
784 				zfree((char **)&kmap->ref_reloc_sym->name);
785 				zfree(&kmap->ref_reloc_sym);
786 			} else
787 				kmap->ref_reloc_sym = NULL;
788 		}
789 
790 		machine->vmlinux_maps[type] = NULL;
791 	}
792 }
793 
794 int machines__create_guest_kernel_maps(struct machines *machines)
795 {
796 	int ret = 0;
797 	struct dirent **namelist = NULL;
798 	int i, items = 0;
799 	char path[PATH_MAX];
800 	pid_t pid;
801 	char *endp;
802 
803 	if (symbol_conf.default_guest_vmlinux_name ||
804 	    symbol_conf.default_guest_modules ||
805 	    symbol_conf.default_guest_kallsyms) {
806 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
807 	}
808 
809 	if (symbol_conf.guestmount) {
810 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
811 		if (items <= 0)
812 			return -ENOENT;
813 		for (i = 0; i < items; i++) {
814 			if (!isdigit(namelist[i]->d_name[0])) {
815 				/* Filter out . and .. */
816 				continue;
817 			}
818 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
819 			if ((*endp != '\0') ||
820 			    (endp == namelist[i]->d_name) ||
821 			    (errno == ERANGE)) {
822 				pr_debug("invalid directory (%s). Skipping.\n",
823 					 namelist[i]->d_name);
824 				continue;
825 			}
826 			sprintf(path, "%s/%s/proc/kallsyms",
827 				symbol_conf.guestmount,
828 				namelist[i]->d_name);
829 			ret = access(path, R_OK);
830 			if (ret) {
831 				pr_debug("Can't access file %s\n", path);
832 				goto failure;
833 			}
834 			machines__create_kernel_maps(machines, pid);
835 		}
836 failure:
837 		free(namelist);
838 	}
839 
840 	return ret;
841 }
842 
843 void machines__destroy_kernel_maps(struct machines *machines)
844 {
845 	struct rb_node *next = rb_first(&machines->guests);
846 
847 	machine__destroy_kernel_maps(&machines->host);
848 
849 	while (next) {
850 		struct machine *pos = rb_entry(next, struct machine, rb_node);
851 
852 		next = rb_next(&pos->rb_node);
853 		rb_erase(&pos->rb_node, &machines->guests);
854 		machine__delete(pos);
855 	}
856 }
857 
858 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
859 {
860 	struct machine *machine = machines__findnew(machines, pid);
861 
862 	if (machine == NULL)
863 		return -1;
864 
865 	return machine__create_kernel_maps(machine);
866 }
867 
868 int machine__load_kallsyms(struct machine *machine, const char *filename,
869 			   enum map_type type, symbol_filter_t filter)
870 {
871 	struct map *map = machine__kernel_map(machine);
872 	int ret = dso__load_kallsyms(map->dso, filename, map, filter);
873 
874 	if (ret > 0) {
875 		dso__set_loaded(map->dso, type);
876 		/*
877 		 * Since /proc/kallsyms will have multiple sessions for the
878 		 * kernel, with modules between them, fixup the end of all
879 		 * sections.
880 		 */
881 		__map_groups__fixup_end(&machine->kmaps, type);
882 	}
883 
884 	return ret;
885 }
886 
887 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
888 			       symbol_filter_t filter)
889 {
890 	struct map *map = machine__kernel_map(machine);
891 	int ret = dso__load_vmlinux_path(map->dso, map, filter);
892 
893 	if (ret > 0)
894 		dso__set_loaded(map->dso, type);
895 
896 	return ret;
897 }
898 
899 static void map_groups__fixup_end(struct map_groups *mg)
900 {
901 	int i;
902 	for (i = 0; i < MAP__NR_TYPES; ++i)
903 		__map_groups__fixup_end(mg, i);
904 }
905 
906 static char *get_kernel_version(const char *root_dir)
907 {
908 	char version[PATH_MAX];
909 	FILE *file;
910 	char *name, *tmp;
911 	const char *prefix = "Linux version ";
912 
913 	sprintf(version, "%s/proc/version", root_dir);
914 	file = fopen(version, "r");
915 	if (!file)
916 		return NULL;
917 
918 	version[0] = '\0';
919 	tmp = fgets(version, sizeof(version), file);
920 	fclose(file);
921 
922 	name = strstr(version, prefix);
923 	if (!name)
924 		return NULL;
925 	name += strlen(prefix);
926 	tmp = strchr(name, ' ');
927 	if (tmp)
928 		*tmp = '\0';
929 
930 	return strdup(name);
931 }
932 
933 static bool is_kmod_dso(struct dso *dso)
934 {
935 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
936 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
937 }
938 
939 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
940 				       struct kmod_path *m)
941 {
942 	struct map *map;
943 	char *long_name;
944 
945 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
946 	if (map == NULL)
947 		return 0;
948 
949 	long_name = strdup(path);
950 	if (long_name == NULL)
951 		return -ENOMEM;
952 
953 	dso__set_long_name(map->dso, long_name, true);
954 	dso__kernel_module_get_build_id(map->dso, "");
955 
956 	/*
957 	 * Full name could reveal us kmod compression, so
958 	 * we need to update the symtab_type if needed.
959 	 */
960 	if (m->comp && is_kmod_dso(map->dso))
961 		map->dso->symtab_type++;
962 
963 	return 0;
964 }
965 
966 static int map_groups__set_modules_path_dir(struct map_groups *mg,
967 				const char *dir_name, int depth)
968 {
969 	struct dirent *dent;
970 	DIR *dir = opendir(dir_name);
971 	int ret = 0;
972 
973 	if (!dir) {
974 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
975 		return -1;
976 	}
977 
978 	while ((dent = readdir(dir)) != NULL) {
979 		char path[PATH_MAX];
980 		struct stat st;
981 
982 		/*sshfs might return bad dent->d_type, so we have to stat*/
983 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
984 		if (stat(path, &st))
985 			continue;
986 
987 		if (S_ISDIR(st.st_mode)) {
988 			if (!strcmp(dent->d_name, ".") ||
989 			    !strcmp(dent->d_name, ".."))
990 				continue;
991 
992 			/* Do not follow top-level source and build symlinks */
993 			if (depth == 0) {
994 				if (!strcmp(dent->d_name, "source") ||
995 				    !strcmp(dent->d_name, "build"))
996 					continue;
997 			}
998 
999 			ret = map_groups__set_modules_path_dir(mg, path,
1000 							       depth + 1);
1001 			if (ret < 0)
1002 				goto out;
1003 		} else {
1004 			struct kmod_path m;
1005 
1006 			ret = kmod_path__parse_name(&m, dent->d_name);
1007 			if (ret)
1008 				goto out;
1009 
1010 			if (m.kmod)
1011 				ret = map_groups__set_module_path(mg, path, &m);
1012 
1013 			free(m.name);
1014 
1015 			if (ret)
1016 				goto out;
1017 		}
1018 	}
1019 
1020 out:
1021 	closedir(dir);
1022 	return ret;
1023 }
1024 
1025 static int machine__set_modules_path(struct machine *machine)
1026 {
1027 	char *version;
1028 	char modules_path[PATH_MAX];
1029 
1030 	version = get_kernel_version(machine->root_dir);
1031 	if (!version)
1032 		return -1;
1033 
1034 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1035 		 machine->root_dir, version);
1036 	free(version);
1037 
1038 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1039 }
1040 
1041 static int machine__create_module(void *arg, const char *name, u64 start)
1042 {
1043 	struct machine *machine = arg;
1044 	struct map *map;
1045 
1046 	map = machine__findnew_module_map(machine, start, name);
1047 	if (map == NULL)
1048 		return -1;
1049 
1050 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1051 
1052 	return 0;
1053 }
1054 
1055 static int machine__create_modules(struct machine *machine)
1056 {
1057 	const char *modules;
1058 	char path[PATH_MAX];
1059 
1060 	if (machine__is_default_guest(machine)) {
1061 		modules = symbol_conf.default_guest_modules;
1062 	} else {
1063 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1064 		modules = path;
1065 	}
1066 
1067 	if (symbol__restricted_filename(modules, "/proc/modules"))
1068 		return -1;
1069 
1070 	if (modules__parse(modules, machine, machine__create_module))
1071 		return -1;
1072 
1073 	if (!machine__set_modules_path(machine))
1074 		return 0;
1075 
1076 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1077 
1078 	return 0;
1079 }
1080 
1081 int machine__create_kernel_maps(struct machine *machine)
1082 {
1083 	struct dso *kernel = machine__get_kernel(machine);
1084 	const char *name;
1085 	u64 addr = machine__get_running_kernel_start(machine, &name);
1086 	if (!addr)
1087 		return -1;
1088 
1089 	if (kernel == NULL ||
1090 	    __machine__create_kernel_maps(machine, kernel) < 0)
1091 		return -1;
1092 
1093 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1094 		if (machine__is_host(machine))
1095 			pr_debug("Problems creating module maps, "
1096 				 "continuing anyway...\n");
1097 		else
1098 			pr_debug("Problems creating module maps for guest %d, "
1099 				 "continuing anyway...\n", machine->pid);
1100 	}
1101 
1102 	/*
1103 	 * Now that we have all the maps created, just set the ->end of them:
1104 	 */
1105 	map_groups__fixup_end(&machine->kmaps);
1106 
1107 	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1108 					     addr)) {
1109 		machine__destroy_kernel_maps(machine);
1110 		return -1;
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 static void machine__set_kernel_mmap_len(struct machine *machine,
1117 					 union perf_event *event)
1118 {
1119 	int i;
1120 
1121 	for (i = 0; i < MAP__NR_TYPES; i++) {
1122 		machine->vmlinux_maps[i]->start = event->mmap.start;
1123 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1124 						   event->mmap.len);
1125 		/*
1126 		 * Be a bit paranoid here, some perf.data file came with
1127 		 * a zero sized synthesized MMAP event for the kernel.
1128 		 */
1129 		if (machine->vmlinux_maps[i]->end == 0)
1130 			machine->vmlinux_maps[i]->end = ~0ULL;
1131 	}
1132 }
1133 
1134 static bool machine__uses_kcore(struct machine *machine)
1135 {
1136 	struct dso *dso;
1137 
1138 	list_for_each_entry(dso, &machine->dsos.head, node) {
1139 		if (dso__is_kcore(dso))
1140 			return true;
1141 	}
1142 
1143 	return false;
1144 }
1145 
1146 static int machine__process_kernel_mmap_event(struct machine *machine,
1147 					      union perf_event *event)
1148 {
1149 	struct map *map;
1150 	char kmmap_prefix[PATH_MAX];
1151 	enum dso_kernel_type kernel_type;
1152 	bool is_kernel_mmap;
1153 
1154 	/* If we have maps from kcore then we do not need or want any others */
1155 	if (machine__uses_kcore(machine))
1156 		return 0;
1157 
1158 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1159 	if (machine__is_host(machine))
1160 		kernel_type = DSO_TYPE_KERNEL;
1161 	else
1162 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1163 
1164 	is_kernel_mmap = memcmp(event->mmap.filename,
1165 				kmmap_prefix,
1166 				strlen(kmmap_prefix) - 1) == 0;
1167 	if (event->mmap.filename[0] == '/' ||
1168 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1169 		map = machine__findnew_module_map(machine, event->mmap.start,
1170 						  event->mmap.filename);
1171 		if (map == NULL)
1172 			goto out_problem;
1173 
1174 		map->end = map->start + event->mmap.len;
1175 	} else if (is_kernel_mmap) {
1176 		const char *symbol_name = (event->mmap.filename +
1177 				strlen(kmmap_prefix));
1178 		/*
1179 		 * Should be there already, from the build-id table in
1180 		 * the header.
1181 		 */
1182 		struct dso *kernel = NULL;
1183 		struct dso *dso;
1184 
1185 		pthread_rwlock_rdlock(&machine->dsos.lock);
1186 
1187 		list_for_each_entry(dso, &machine->dsos.head, node) {
1188 
1189 			/*
1190 			 * The cpumode passed to is_kernel_module is not the
1191 			 * cpumode of *this* event. If we insist on passing
1192 			 * correct cpumode to is_kernel_module, we should
1193 			 * record the cpumode when we adding this dso to the
1194 			 * linked list.
1195 			 *
1196 			 * However we don't really need passing correct
1197 			 * cpumode.  We know the correct cpumode must be kernel
1198 			 * mode (if not, we should not link it onto kernel_dsos
1199 			 * list).
1200 			 *
1201 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1202 			 * is_kernel_module() treats it as a kernel cpumode.
1203 			 */
1204 
1205 			if (!dso->kernel ||
1206 			    is_kernel_module(dso->long_name,
1207 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1208 				continue;
1209 
1210 
1211 			kernel = dso;
1212 			break;
1213 		}
1214 
1215 		pthread_rwlock_unlock(&machine->dsos.lock);
1216 
1217 		if (kernel == NULL)
1218 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1219 		if (kernel == NULL)
1220 			goto out_problem;
1221 
1222 		kernel->kernel = kernel_type;
1223 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1224 			dso__put(kernel);
1225 			goto out_problem;
1226 		}
1227 
1228 		if (strstr(kernel->long_name, "vmlinux"))
1229 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1230 
1231 		machine__set_kernel_mmap_len(machine, event);
1232 
1233 		/*
1234 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1235 		 * symbol. Effectively having zero here means that at record
1236 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1237 		 */
1238 		if (event->mmap.pgoff != 0) {
1239 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1240 							 symbol_name,
1241 							 event->mmap.pgoff);
1242 		}
1243 
1244 		if (machine__is_default_guest(machine)) {
1245 			/*
1246 			 * preload dso of guest kernel and modules
1247 			 */
1248 			dso__load(kernel, machine__kernel_map(machine), NULL);
1249 		}
1250 	}
1251 	return 0;
1252 out_problem:
1253 	return -1;
1254 }
1255 
1256 int machine__process_mmap2_event(struct machine *machine,
1257 				 union perf_event *event,
1258 				 struct perf_sample *sample __maybe_unused)
1259 {
1260 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1261 	struct thread *thread;
1262 	struct map *map;
1263 	enum map_type type;
1264 	int ret = 0;
1265 
1266 	if (dump_trace)
1267 		perf_event__fprintf_mmap2(event, stdout);
1268 
1269 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1270 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1271 		ret = machine__process_kernel_mmap_event(machine, event);
1272 		if (ret < 0)
1273 			goto out_problem;
1274 		return 0;
1275 	}
1276 
1277 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1278 					event->mmap2.tid);
1279 	if (thread == NULL)
1280 		goto out_problem;
1281 
1282 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1283 		type = MAP__VARIABLE;
1284 	else
1285 		type = MAP__FUNCTION;
1286 
1287 	map = map__new(machine, event->mmap2.start,
1288 			event->mmap2.len, event->mmap2.pgoff,
1289 			event->mmap2.pid, event->mmap2.maj,
1290 			event->mmap2.min, event->mmap2.ino,
1291 			event->mmap2.ino_generation,
1292 			event->mmap2.prot,
1293 			event->mmap2.flags,
1294 			event->mmap2.filename, type, thread);
1295 
1296 	if (map == NULL)
1297 		goto out_problem_map;
1298 
1299 	thread__insert_map(thread, map);
1300 	thread__put(thread);
1301 	map__put(map);
1302 	return 0;
1303 
1304 out_problem_map:
1305 	thread__put(thread);
1306 out_problem:
1307 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1308 	return 0;
1309 }
1310 
1311 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1312 				struct perf_sample *sample __maybe_unused)
1313 {
1314 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1315 	struct thread *thread;
1316 	struct map *map;
1317 	enum map_type type;
1318 	int ret = 0;
1319 
1320 	if (dump_trace)
1321 		perf_event__fprintf_mmap(event, stdout);
1322 
1323 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1324 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1325 		ret = machine__process_kernel_mmap_event(machine, event);
1326 		if (ret < 0)
1327 			goto out_problem;
1328 		return 0;
1329 	}
1330 
1331 	thread = machine__findnew_thread(machine, event->mmap.pid,
1332 					 event->mmap.tid);
1333 	if (thread == NULL)
1334 		goto out_problem;
1335 
1336 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1337 		type = MAP__VARIABLE;
1338 	else
1339 		type = MAP__FUNCTION;
1340 
1341 	map = map__new(machine, event->mmap.start,
1342 			event->mmap.len, event->mmap.pgoff,
1343 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1344 			event->mmap.filename,
1345 			type, thread);
1346 
1347 	if (map == NULL)
1348 		goto out_problem_map;
1349 
1350 	thread__insert_map(thread, map);
1351 	thread__put(thread);
1352 	map__put(map);
1353 	return 0;
1354 
1355 out_problem_map:
1356 	thread__put(thread);
1357 out_problem:
1358 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1359 	return 0;
1360 }
1361 
1362 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1363 {
1364 	if (machine->last_match == th)
1365 		machine->last_match = NULL;
1366 
1367 	BUG_ON(atomic_read(&th->refcnt) == 0);
1368 	if (lock)
1369 		pthread_rwlock_wrlock(&machine->threads_lock);
1370 	rb_erase_init(&th->rb_node, &machine->threads);
1371 	RB_CLEAR_NODE(&th->rb_node);
1372 	/*
1373 	 * Move it first to the dead_threads list, then drop the reference,
1374 	 * if this is the last reference, then the thread__delete destructor
1375 	 * will be called and we will remove it from the dead_threads list.
1376 	 */
1377 	list_add_tail(&th->node, &machine->dead_threads);
1378 	if (lock)
1379 		pthread_rwlock_unlock(&machine->threads_lock);
1380 	thread__put(th);
1381 }
1382 
1383 void machine__remove_thread(struct machine *machine, struct thread *th)
1384 {
1385 	return __machine__remove_thread(machine, th, true);
1386 }
1387 
1388 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1389 				struct perf_sample *sample)
1390 {
1391 	struct thread *thread = machine__find_thread(machine,
1392 						     event->fork.pid,
1393 						     event->fork.tid);
1394 	struct thread *parent = machine__findnew_thread(machine,
1395 							event->fork.ppid,
1396 							event->fork.ptid);
1397 	int err = 0;
1398 
1399 	if (dump_trace)
1400 		perf_event__fprintf_task(event, stdout);
1401 
1402 	/*
1403 	 * There may be an existing thread that is not actually the parent,
1404 	 * either because we are processing events out of order, or because the
1405 	 * (fork) event that would have removed the thread was lost. Assume the
1406 	 * latter case and continue on as best we can.
1407 	 */
1408 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1409 		dump_printf("removing erroneous parent thread %d/%d\n",
1410 			    parent->pid_, parent->tid);
1411 		machine__remove_thread(machine, parent);
1412 		thread__put(parent);
1413 		parent = machine__findnew_thread(machine, event->fork.ppid,
1414 						 event->fork.ptid);
1415 	}
1416 
1417 	/* if a thread currently exists for the thread id remove it */
1418 	if (thread != NULL) {
1419 		machine__remove_thread(machine, thread);
1420 		thread__put(thread);
1421 	}
1422 
1423 	thread = machine__findnew_thread(machine, event->fork.pid,
1424 					 event->fork.tid);
1425 
1426 	if (thread == NULL || parent == NULL ||
1427 	    thread__fork(thread, parent, sample->time) < 0) {
1428 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1429 		err = -1;
1430 	}
1431 	thread__put(thread);
1432 	thread__put(parent);
1433 
1434 	return err;
1435 }
1436 
1437 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1438 				struct perf_sample *sample __maybe_unused)
1439 {
1440 	struct thread *thread = machine__find_thread(machine,
1441 						     event->fork.pid,
1442 						     event->fork.tid);
1443 
1444 	if (dump_trace)
1445 		perf_event__fprintf_task(event, stdout);
1446 
1447 	if (thread != NULL) {
1448 		thread__exited(thread);
1449 		thread__put(thread);
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 int machine__process_event(struct machine *machine, union perf_event *event,
1456 			   struct perf_sample *sample)
1457 {
1458 	int ret;
1459 
1460 	switch (event->header.type) {
1461 	case PERF_RECORD_COMM:
1462 		ret = machine__process_comm_event(machine, event, sample); break;
1463 	case PERF_RECORD_MMAP:
1464 		ret = machine__process_mmap_event(machine, event, sample); break;
1465 	case PERF_RECORD_MMAP2:
1466 		ret = machine__process_mmap2_event(machine, event, sample); break;
1467 	case PERF_RECORD_FORK:
1468 		ret = machine__process_fork_event(machine, event, sample); break;
1469 	case PERF_RECORD_EXIT:
1470 		ret = machine__process_exit_event(machine, event, sample); break;
1471 	case PERF_RECORD_LOST:
1472 		ret = machine__process_lost_event(machine, event, sample); break;
1473 	case PERF_RECORD_AUX:
1474 		ret = machine__process_aux_event(machine, event); break;
1475 	case PERF_RECORD_ITRACE_START:
1476 		ret = machine__process_itrace_start_event(machine, event); break;
1477 	case PERF_RECORD_LOST_SAMPLES:
1478 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1479 	case PERF_RECORD_SWITCH:
1480 	case PERF_RECORD_SWITCH_CPU_WIDE:
1481 		ret = machine__process_switch_event(machine, event); break;
1482 	default:
1483 		ret = -1;
1484 		break;
1485 	}
1486 
1487 	return ret;
1488 }
1489 
1490 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1491 {
1492 	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1493 		return 1;
1494 	return 0;
1495 }
1496 
1497 static void ip__resolve_ams(struct thread *thread,
1498 			    struct addr_map_symbol *ams,
1499 			    u64 ip)
1500 {
1501 	struct addr_location al;
1502 
1503 	memset(&al, 0, sizeof(al));
1504 	/*
1505 	 * We cannot use the header.misc hint to determine whether a
1506 	 * branch stack address is user, kernel, guest, hypervisor.
1507 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1508 	 * Thus, we have to try consecutively until we find a match
1509 	 * or else, the symbol is unknown
1510 	 */
1511 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1512 
1513 	ams->addr = ip;
1514 	ams->al_addr = al.addr;
1515 	ams->sym = al.sym;
1516 	ams->map = al.map;
1517 }
1518 
1519 static void ip__resolve_data(struct thread *thread,
1520 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1521 {
1522 	struct addr_location al;
1523 
1524 	memset(&al, 0, sizeof(al));
1525 
1526 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1527 	if (al.map == NULL) {
1528 		/*
1529 		 * some shared data regions have execute bit set which puts
1530 		 * their mapping in the MAP__FUNCTION type array.
1531 		 * Check there as a fallback option before dropping the sample.
1532 		 */
1533 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1534 	}
1535 
1536 	ams->addr = addr;
1537 	ams->al_addr = al.addr;
1538 	ams->sym = al.sym;
1539 	ams->map = al.map;
1540 }
1541 
1542 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1543 				     struct addr_location *al)
1544 {
1545 	struct mem_info *mi = zalloc(sizeof(*mi));
1546 
1547 	if (!mi)
1548 		return NULL;
1549 
1550 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1551 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1552 	mi->data_src.val = sample->data_src;
1553 
1554 	return mi;
1555 }
1556 
1557 static int add_callchain_ip(struct thread *thread,
1558 			    struct symbol **parent,
1559 			    struct addr_location *root_al,
1560 			    u8 *cpumode,
1561 			    u64 ip)
1562 {
1563 	struct addr_location al;
1564 
1565 	al.filtered = 0;
1566 	al.sym = NULL;
1567 	if (!cpumode) {
1568 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1569 						   ip, &al);
1570 	} else {
1571 		if (ip >= PERF_CONTEXT_MAX) {
1572 			switch (ip) {
1573 			case PERF_CONTEXT_HV:
1574 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1575 				break;
1576 			case PERF_CONTEXT_KERNEL:
1577 				*cpumode = PERF_RECORD_MISC_KERNEL;
1578 				break;
1579 			case PERF_CONTEXT_USER:
1580 				*cpumode = PERF_RECORD_MISC_USER;
1581 				break;
1582 			default:
1583 				pr_debug("invalid callchain context: "
1584 					 "%"PRId64"\n", (s64) ip);
1585 				/*
1586 				 * It seems the callchain is corrupted.
1587 				 * Discard all.
1588 				 */
1589 				callchain_cursor_reset(&callchain_cursor);
1590 				return 1;
1591 			}
1592 			return 0;
1593 		}
1594 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1595 					   ip, &al);
1596 	}
1597 
1598 	if (al.sym != NULL) {
1599 		if (sort__has_parent && !*parent &&
1600 		    symbol__match_regex(al.sym, &parent_regex))
1601 			*parent = al.sym;
1602 		else if (have_ignore_callees && root_al &&
1603 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1604 			/* Treat this symbol as the root,
1605 			   forgetting its callees. */
1606 			*root_al = al;
1607 			callchain_cursor_reset(&callchain_cursor);
1608 		}
1609 	}
1610 
1611 	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1612 }
1613 
1614 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1615 					   struct addr_location *al)
1616 {
1617 	unsigned int i;
1618 	const struct branch_stack *bs = sample->branch_stack;
1619 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1620 
1621 	if (!bi)
1622 		return NULL;
1623 
1624 	for (i = 0; i < bs->nr; i++) {
1625 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1626 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1627 		bi[i].flags = bs->entries[i].flags;
1628 	}
1629 	return bi;
1630 }
1631 
1632 #define CHASHSZ 127
1633 #define CHASHBITS 7
1634 #define NO_ENTRY 0xff
1635 
1636 #define PERF_MAX_BRANCH_DEPTH 127
1637 
1638 /* Remove loops. */
1639 static int remove_loops(struct branch_entry *l, int nr)
1640 {
1641 	int i, j, off;
1642 	unsigned char chash[CHASHSZ];
1643 
1644 	memset(chash, NO_ENTRY, sizeof(chash));
1645 
1646 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1647 
1648 	for (i = 0; i < nr; i++) {
1649 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1650 
1651 		/* no collision handling for now */
1652 		if (chash[h] == NO_ENTRY) {
1653 			chash[h] = i;
1654 		} else if (l[chash[h]].from == l[i].from) {
1655 			bool is_loop = true;
1656 			/* check if it is a real loop */
1657 			off = 0;
1658 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1659 				if (l[j].from != l[i + off].from) {
1660 					is_loop = false;
1661 					break;
1662 				}
1663 			if (is_loop) {
1664 				memmove(l + i, l + i + off,
1665 					(nr - (i + off)) * sizeof(*l));
1666 				nr -= off;
1667 			}
1668 		}
1669 	}
1670 	return nr;
1671 }
1672 
1673 /*
1674  * Recolve LBR callstack chain sample
1675  * Return:
1676  * 1 on success get LBR callchain information
1677  * 0 no available LBR callchain information, should try fp
1678  * negative error code on other errors.
1679  */
1680 static int resolve_lbr_callchain_sample(struct thread *thread,
1681 					struct perf_sample *sample,
1682 					struct symbol **parent,
1683 					struct addr_location *root_al,
1684 					int max_stack)
1685 {
1686 	struct ip_callchain *chain = sample->callchain;
1687 	int chain_nr = min(max_stack, (int)chain->nr);
1688 	u8 cpumode = PERF_RECORD_MISC_USER;
1689 	int i, j, err;
1690 	u64 ip;
1691 
1692 	for (i = 0; i < chain_nr; i++) {
1693 		if (chain->ips[i] == PERF_CONTEXT_USER)
1694 			break;
1695 	}
1696 
1697 	/* LBR only affects the user callchain */
1698 	if (i != chain_nr) {
1699 		struct branch_stack *lbr_stack = sample->branch_stack;
1700 		int lbr_nr = lbr_stack->nr;
1701 		/*
1702 		 * LBR callstack can only get user call chain.
1703 		 * The mix_chain_nr is kernel call chain
1704 		 * number plus LBR user call chain number.
1705 		 * i is kernel call chain number,
1706 		 * 1 is PERF_CONTEXT_USER,
1707 		 * lbr_nr + 1 is the user call chain number.
1708 		 * For details, please refer to the comments
1709 		 * in callchain__printf
1710 		 */
1711 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1712 
1713 		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1714 			pr_warning("corrupted callchain. skipping...\n");
1715 			return 0;
1716 		}
1717 
1718 		for (j = 0; j < mix_chain_nr; j++) {
1719 			if (callchain_param.order == ORDER_CALLEE) {
1720 				if (j < i + 1)
1721 					ip = chain->ips[j];
1722 				else if (j > i + 1)
1723 					ip = lbr_stack->entries[j - i - 2].from;
1724 				else
1725 					ip = lbr_stack->entries[0].to;
1726 			} else {
1727 				if (j < lbr_nr)
1728 					ip = lbr_stack->entries[lbr_nr - j - 1].from;
1729 				else if (j > lbr_nr)
1730 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1731 				else
1732 					ip = lbr_stack->entries[0].to;
1733 			}
1734 
1735 			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1736 			if (err)
1737 				return (err < 0) ? err : 0;
1738 		}
1739 		return 1;
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 static int thread__resolve_callchain_sample(struct thread *thread,
1746 					    struct perf_evsel *evsel,
1747 					    struct perf_sample *sample,
1748 					    struct symbol **parent,
1749 					    struct addr_location *root_al,
1750 					    int max_stack)
1751 {
1752 	struct branch_stack *branch = sample->branch_stack;
1753 	struct ip_callchain *chain = sample->callchain;
1754 	int chain_nr = min(max_stack, (int)chain->nr);
1755 	u8 cpumode = PERF_RECORD_MISC_USER;
1756 	int i, j, err;
1757 	int skip_idx = -1;
1758 	int first_call = 0;
1759 
1760 	callchain_cursor_reset(&callchain_cursor);
1761 
1762 	if (has_branch_callstack(evsel)) {
1763 		err = resolve_lbr_callchain_sample(thread, sample, parent,
1764 						   root_al, max_stack);
1765 		if (err)
1766 			return (err < 0) ? err : 0;
1767 	}
1768 
1769 	/*
1770 	 * Based on DWARF debug information, some architectures skip
1771 	 * a callchain entry saved by the kernel.
1772 	 */
1773 	if (chain->nr < PERF_MAX_STACK_DEPTH)
1774 		skip_idx = arch_skip_callchain_idx(thread, chain);
1775 
1776 	/*
1777 	 * Add branches to call stack for easier browsing. This gives
1778 	 * more context for a sample than just the callers.
1779 	 *
1780 	 * This uses individual histograms of paths compared to the
1781 	 * aggregated histograms the normal LBR mode uses.
1782 	 *
1783 	 * Limitations for now:
1784 	 * - No extra filters
1785 	 * - No annotations (should annotate somehow)
1786 	 */
1787 
1788 	if (branch && callchain_param.branch_callstack) {
1789 		int nr = min(max_stack, (int)branch->nr);
1790 		struct branch_entry be[nr];
1791 
1792 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1793 			pr_warning("corrupted branch chain. skipping...\n");
1794 			goto check_calls;
1795 		}
1796 
1797 		for (i = 0; i < nr; i++) {
1798 			if (callchain_param.order == ORDER_CALLEE) {
1799 				be[i] = branch->entries[i];
1800 				/*
1801 				 * Check for overlap into the callchain.
1802 				 * The return address is one off compared to
1803 				 * the branch entry. To adjust for this
1804 				 * assume the calling instruction is not longer
1805 				 * than 8 bytes.
1806 				 */
1807 				if (i == skip_idx ||
1808 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1809 					first_call++;
1810 				else if (be[i].from < chain->ips[first_call] &&
1811 				    be[i].from >= chain->ips[first_call] - 8)
1812 					first_call++;
1813 			} else
1814 				be[i] = branch->entries[branch->nr - i - 1];
1815 		}
1816 
1817 		nr = remove_loops(be, nr);
1818 
1819 		for (i = 0; i < nr; i++) {
1820 			err = add_callchain_ip(thread, parent, root_al,
1821 					       NULL, be[i].to);
1822 			if (!err)
1823 				err = add_callchain_ip(thread, parent, root_al,
1824 						       NULL, be[i].from);
1825 			if (err == -EINVAL)
1826 				break;
1827 			if (err)
1828 				return err;
1829 		}
1830 		chain_nr -= nr;
1831 	}
1832 
1833 check_calls:
1834 	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1835 		pr_warning("corrupted callchain. skipping...\n");
1836 		return 0;
1837 	}
1838 
1839 	for (i = first_call; i < chain_nr; i++) {
1840 		u64 ip;
1841 
1842 		if (callchain_param.order == ORDER_CALLEE)
1843 			j = i;
1844 		else
1845 			j = chain->nr - i - 1;
1846 
1847 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1848 		if (j == skip_idx)
1849 			continue;
1850 #endif
1851 		ip = chain->ips[j];
1852 
1853 		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1854 
1855 		if (err)
1856 			return (err < 0) ? err : 0;
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 static int unwind_entry(struct unwind_entry *entry, void *arg)
1863 {
1864 	struct callchain_cursor *cursor = arg;
1865 	return callchain_cursor_append(cursor, entry->ip,
1866 				       entry->map, entry->sym);
1867 }
1868 
1869 int thread__resolve_callchain(struct thread *thread,
1870 			      struct perf_evsel *evsel,
1871 			      struct perf_sample *sample,
1872 			      struct symbol **parent,
1873 			      struct addr_location *root_al,
1874 			      int max_stack)
1875 {
1876 	int ret = thread__resolve_callchain_sample(thread, evsel,
1877 						   sample, parent,
1878 						   root_al, max_stack);
1879 	if (ret)
1880 		return ret;
1881 
1882 	/* Can we do dwarf post unwind? */
1883 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1884 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1885 		return 0;
1886 
1887 	/* Bail out if nothing was captured. */
1888 	if ((!sample->user_regs.regs) ||
1889 	    (!sample->user_stack.size))
1890 		return 0;
1891 
1892 	return unwind__get_entries(unwind_entry, &callchain_cursor,
1893 				   thread, sample, max_stack);
1894 
1895 }
1896 
1897 int machine__for_each_thread(struct machine *machine,
1898 			     int (*fn)(struct thread *thread, void *p),
1899 			     void *priv)
1900 {
1901 	struct rb_node *nd;
1902 	struct thread *thread;
1903 	int rc = 0;
1904 
1905 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1906 		thread = rb_entry(nd, struct thread, rb_node);
1907 		rc = fn(thread, priv);
1908 		if (rc != 0)
1909 			return rc;
1910 	}
1911 
1912 	list_for_each_entry(thread, &machine->dead_threads, node) {
1913 		rc = fn(thread, priv);
1914 		if (rc != 0)
1915 			return rc;
1916 	}
1917 	return rc;
1918 }
1919 
1920 int machines__for_each_thread(struct machines *machines,
1921 			      int (*fn)(struct thread *thread, void *p),
1922 			      void *priv)
1923 {
1924 	struct rb_node *nd;
1925 	int rc = 0;
1926 
1927 	rc = machine__for_each_thread(&machines->host, fn, priv);
1928 	if (rc != 0)
1929 		return rc;
1930 
1931 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
1932 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
1933 
1934 		rc = machine__for_each_thread(machine, fn, priv);
1935 		if (rc != 0)
1936 			return rc;
1937 	}
1938 	return rc;
1939 }
1940 
1941 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1942 				  struct target *target, struct thread_map *threads,
1943 				  perf_event__handler_t process, bool data_mmap,
1944 				  unsigned int proc_map_timeout)
1945 {
1946 	if (target__has_task(target))
1947 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1948 	else if (target__has_cpu(target))
1949 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1950 	/* command specified */
1951 	return 0;
1952 }
1953 
1954 pid_t machine__get_current_tid(struct machine *machine, int cpu)
1955 {
1956 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
1957 		return -1;
1958 
1959 	return machine->current_tid[cpu];
1960 }
1961 
1962 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
1963 			     pid_t tid)
1964 {
1965 	struct thread *thread;
1966 
1967 	if (cpu < 0)
1968 		return -EINVAL;
1969 
1970 	if (!machine->current_tid) {
1971 		int i;
1972 
1973 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
1974 		if (!machine->current_tid)
1975 			return -ENOMEM;
1976 		for (i = 0; i < MAX_NR_CPUS; i++)
1977 			machine->current_tid[i] = -1;
1978 	}
1979 
1980 	if (cpu >= MAX_NR_CPUS) {
1981 		pr_err("Requested CPU %d too large. ", cpu);
1982 		pr_err("Consider raising MAX_NR_CPUS\n");
1983 		return -EINVAL;
1984 	}
1985 
1986 	machine->current_tid[cpu] = tid;
1987 
1988 	thread = machine__findnew_thread(machine, pid, tid);
1989 	if (!thread)
1990 		return -ENOMEM;
1991 
1992 	thread->cpu = cpu;
1993 	thread__put(thread);
1994 
1995 	return 0;
1996 }
1997 
1998 int machine__get_kernel_start(struct machine *machine)
1999 {
2000 	struct map *map = machine__kernel_map(machine);
2001 	int err = 0;
2002 
2003 	/*
2004 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2005 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2006 	 * all addresses including kernel addresses are less than 2^32.  In
2007 	 * that case (32-bit system), if the kernel mapping is unknown, all
2008 	 * addresses will be assumed to be in user space - see
2009 	 * machine__kernel_ip().
2010 	 */
2011 	machine->kernel_start = 1ULL << 63;
2012 	if (map) {
2013 		err = map__load(map, machine->symbol_filter);
2014 		if (map->start)
2015 			machine->kernel_start = map->start;
2016 	}
2017 	return err;
2018 }
2019 
2020 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2021 {
2022 	return dsos__findnew(&machine->dsos, filename);
2023 }
2024 
2025 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2026 {
2027 	struct machine *machine = vmachine;
2028 	struct map *map;
2029 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);
2030 
2031 	if (sym == NULL)
2032 		return NULL;
2033 
2034 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2035 	*addrp = map->unmap_ip(map, sym->start);
2036 	return sym->name;
2037 }
2038