xref: /linux/tools/perf/util/machine.c (revision 984abd349d0f76d4b267abc0d8e1a86af3ec2d84)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39 
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45 
46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
47 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip);
48 
49 static struct dso *machine__kernel_dso(struct machine *machine)
50 {
51 	return map__dso(machine->vmlinux_map);
52 }
53 
54 static void dsos__init(struct dsos *dsos)
55 {
56 	INIT_LIST_HEAD(&dsos->head);
57 	dsos->root = RB_ROOT;
58 	init_rwsem(&dsos->lock);
59 }
60 
61 static void machine__threads_init(struct machine *machine)
62 {
63 	int i;
64 
65 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
66 		struct threads *threads = &machine->threads[i];
67 		threads->entries = RB_ROOT_CACHED;
68 		init_rwsem(&threads->lock);
69 		threads->nr = 0;
70 		INIT_LIST_HEAD(&threads->dead);
71 		threads->last_match = NULL;
72 	}
73 }
74 
75 static int machine__set_mmap_name(struct machine *machine)
76 {
77 	if (machine__is_host(machine))
78 		machine->mmap_name = strdup("[kernel.kallsyms]");
79 	else if (machine__is_default_guest(machine))
80 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
81 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
82 			  machine->pid) < 0)
83 		machine->mmap_name = NULL;
84 
85 	return machine->mmap_name ? 0 : -ENOMEM;
86 }
87 
88 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
89 {
90 	char comm[64];
91 
92 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
93 	thread__set_comm(thread, comm, 0);
94 }
95 
96 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
97 {
98 	int err = -ENOMEM;
99 
100 	memset(machine, 0, sizeof(*machine));
101 	machine->kmaps = maps__new(machine);
102 	if (machine->kmaps == NULL)
103 		return -ENOMEM;
104 
105 	RB_CLEAR_NODE(&machine->rb_node);
106 	dsos__init(&machine->dsos);
107 
108 	machine__threads_init(machine);
109 
110 	machine->vdso_info = NULL;
111 	machine->env = NULL;
112 
113 	machine->pid = pid;
114 
115 	machine->id_hdr_size = 0;
116 	machine->kptr_restrict_warned = false;
117 	machine->comm_exec = false;
118 	machine->kernel_start = 0;
119 	machine->vmlinux_map = NULL;
120 
121 	machine->root_dir = strdup(root_dir);
122 	if (machine->root_dir == NULL)
123 		goto out;
124 
125 	if (machine__set_mmap_name(machine))
126 		goto out;
127 
128 	if (pid != HOST_KERNEL_ID) {
129 		struct thread *thread = machine__findnew_thread(machine, -1,
130 								pid);
131 
132 		if (thread == NULL)
133 			goto out;
134 
135 		thread__set_guest_comm(thread, pid);
136 		thread__put(thread);
137 	}
138 
139 	machine->current_tid = NULL;
140 	err = 0;
141 
142 out:
143 	if (err) {
144 		zfree(&machine->kmaps);
145 		zfree(&machine->root_dir);
146 		zfree(&machine->mmap_name);
147 	}
148 	return 0;
149 }
150 
151 struct machine *machine__new_host(void)
152 {
153 	struct machine *machine = malloc(sizeof(*machine));
154 
155 	if (machine != NULL) {
156 		machine__init(machine, "", HOST_KERNEL_ID);
157 
158 		if (machine__create_kernel_maps(machine) < 0)
159 			goto out_delete;
160 	}
161 
162 	return machine;
163 out_delete:
164 	free(machine);
165 	return NULL;
166 }
167 
168 struct machine *machine__new_kallsyms(void)
169 {
170 	struct machine *machine = machine__new_host();
171 	/*
172 	 * FIXME:
173 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
174 	 *    ask for not using the kcore parsing code, once this one is fixed
175 	 *    to create a map per module.
176 	 */
177 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
178 		machine__delete(machine);
179 		machine = NULL;
180 	}
181 
182 	return machine;
183 }
184 
185 static void dsos__purge(struct dsos *dsos)
186 {
187 	struct dso *pos, *n;
188 
189 	down_write(&dsos->lock);
190 
191 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
192 		RB_CLEAR_NODE(&pos->rb_node);
193 		pos->root = NULL;
194 		list_del_init(&pos->node);
195 		dso__put(pos);
196 	}
197 
198 	up_write(&dsos->lock);
199 }
200 
201 static void dsos__exit(struct dsos *dsos)
202 {
203 	dsos__purge(dsos);
204 	exit_rwsem(&dsos->lock);
205 }
206 
207 void machine__delete_threads(struct machine *machine)
208 {
209 	struct rb_node *nd;
210 	int i;
211 
212 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
213 		struct threads *threads = &machine->threads[i];
214 		down_write(&threads->lock);
215 		nd = rb_first_cached(&threads->entries);
216 		while (nd) {
217 			struct thread *t = rb_entry(nd, struct thread, rb_node);
218 
219 			nd = rb_next(nd);
220 			__machine__remove_thread(machine, t, false);
221 		}
222 		up_write(&threads->lock);
223 	}
224 }
225 
226 void machine__exit(struct machine *machine)
227 {
228 	int i;
229 
230 	if (machine == NULL)
231 		return;
232 
233 	machine__destroy_kernel_maps(machine);
234 	maps__delete(machine->kmaps);
235 	dsos__exit(&machine->dsos);
236 	machine__exit_vdso(machine);
237 	zfree(&machine->root_dir);
238 	zfree(&machine->mmap_name);
239 	zfree(&machine->current_tid);
240 	zfree(&machine->kallsyms_filename);
241 
242 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
243 		struct threads *threads = &machine->threads[i];
244 		struct thread *thread, *n;
245 		/*
246 		 * Forget about the dead, at this point whatever threads were
247 		 * left in the dead lists better have a reference count taken
248 		 * by who is using them, and then, when they drop those references
249 		 * and it finally hits zero, thread__put() will check and see that
250 		 * its not in the dead threads list and will not try to remove it
251 		 * from there, just calling thread__delete() straight away.
252 		 */
253 		list_for_each_entry_safe(thread, n, &threads->dead, node)
254 			list_del_init(&thread->node);
255 
256 		exit_rwsem(&threads->lock);
257 	}
258 }
259 
260 void machine__delete(struct machine *machine)
261 {
262 	if (machine) {
263 		machine__exit(machine);
264 		free(machine);
265 	}
266 }
267 
268 void machines__init(struct machines *machines)
269 {
270 	machine__init(&machines->host, "", HOST_KERNEL_ID);
271 	machines->guests = RB_ROOT_CACHED;
272 }
273 
274 void machines__exit(struct machines *machines)
275 {
276 	machine__exit(&machines->host);
277 	/* XXX exit guest */
278 }
279 
280 struct machine *machines__add(struct machines *machines, pid_t pid,
281 			      const char *root_dir)
282 {
283 	struct rb_node **p = &machines->guests.rb_root.rb_node;
284 	struct rb_node *parent = NULL;
285 	struct machine *pos, *machine = malloc(sizeof(*machine));
286 	bool leftmost = true;
287 
288 	if (machine == NULL)
289 		return NULL;
290 
291 	if (machine__init(machine, root_dir, pid) != 0) {
292 		free(machine);
293 		return NULL;
294 	}
295 
296 	while (*p != NULL) {
297 		parent = *p;
298 		pos = rb_entry(parent, struct machine, rb_node);
299 		if (pid < pos->pid)
300 			p = &(*p)->rb_left;
301 		else {
302 			p = &(*p)->rb_right;
303 			leftmost = false;
304 		}
305 	}
306 
307 	rb_link_node(&machine->rb_node, parent, p);
308 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
309 
310 	machine->machines = machines;
311 
312 	return machine;
313 }
314 
315 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
316 {
317 	struct rb_node *nd;
318 
319 	machines->host.comm_exec = comm_exec;
320 
321 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
322 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
323 
324 		machine->comm_exec = comm_exec;
325 	}
326 }
327 
328 struct machine *machines__find(struct machines *machines, pid_t pid)
329 {
330 	struct rb_node **p = &machines->guests.rb_root.rb_node;
331 	struct rb_node *parent = NULL;
332 	struct machine *machine;
333 	struct machine *default_machine = NULL;
334 
335 	if (pid == HOST_KERNEL_ID)
336 		return &machines->host;
337 
338 	while (*p != NULL) {
339 		parent = *p;
340 		machine = rb_entry(parent, struct machine, rb_node);
341 		if (pid < machine->pid)
342 			p = &(*p)->rb_left;
343 		else if (pid > machine->pid)
344 			p = &(*p)->rb_right;
345 		else
346 			return machine;
347 		if (!machine->pid)
348 			default_machine = machine;
349 	}
350 
351 	return default_machine;
352 }
353 
354 struct machine *machines__findnew(struct machines *machines, pid_t pid)
355 {
356 	char path[PATH_MAX];
357 	const char *root_dir = "";
358 	struct machine *machine = machines__find(machines, pid);
359 
360 	if (machine && (machine->pid == pid))
361 		goto out;
362 
363 	if ((pid != HOST_KERNEL_ID) &&
364 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
365 	    (symbol_conf.guestmount)) {
366 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
367 		if (access(path, R_OK)) {
368 			static struct strlist *seen;
369 
370 			if (!seen)
371 				seen = strlist__new(NULL, NULL);
372 
373 			if (!strlist__has_entry(seen, path)) {
374 				pr_err("Can't access file %s\n", path);
375 				strlist__add(seen, path);
376 			}
377 			machine = NULL;
378 			goto out;
379 		}
380 		root_dir = path;
381 	}
382 
383 	machine = machines__add(machines, pid, root_dir);
384 out:
385 	return machine;
386 }
387 
388 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
389 {
390 	struct machine *machine = machines__find(machines, pid);
391 
392 	if (!machine)
393 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
394 	return machine;
395 }
396 
397 /*
398  * A common case for KVM test programs is that the test program acts as the
399  * hypervisor, creating, running and destroying the virtual machine, and
400  * providing the guest object code from its own object code. In this case,
401  * the VM is not running an OS, but only the functions loaded into it by the
402  * hypervisor test program, and conveniently, loaded at the same virtual
403  * addresses.
404  *
405  * Normally to resolve addresses, MMAP events are needed to map addresses
406  * back to the object code and debug symbols for that object code.
407  *
408  * Currently, there is no way to get such mapping information from guests
409  * but, in the scenario described above, the guest has the same mappings
410  * as the hypervisor, so support for that scenario can be achieved.
411  *
412  * To support that, copy the host thread's maps to the guest thread's maps.
413  * Note, we do not discover the guest until we encounter a guest event,
414  * which works well because it is not until then that we know that the host
415  * thread's maps have been set up.
416  *
417  * This function returns the guest thread. Apart from keeping the data
418  * structures sane, using a thread belonging to the guest machine, instead
419  * of the host thread, allows it to have its own comm (refer
420  * thread__set_guest_comm()).
421  */
422 static struct thread *findnew_guest_code(struct machine *machine,
423 					 struct machine *host_machine,
424 					 pid_t pid)
425 {
426 	struct thread *host_thread;
427 	struct thread *thread;
428 	int err;
429 
430 	if (!machine)
431 		return NULL;
432 
433 	thread = machine__findnew_thread(machine, -1, pid);
434 	if (!thread)
435 		return NULL;
436 
437 	/* Assume maps are set up if there are any */
438 	if (thread->maps->nr_maps)
439 		return thread;
440 
441 	host_thread = machine__find_thread(host_machine, -1, pid);
442 	if (!host_thread)
443 		goto out_err;
444 
445 	thread__set_guest_comm(thread, pid);
446 
447 	/*
448 	 * Guest code can be found in hypervisor process at the same address
449 	 * so copy host maps.
450 	 */
451 	err = maps__clone(thread, host_thread->maps);
452 	thread__put(host_thread);
453 	if (err)
454 		goto out_err;
455 
456 	return thread;
457 
458 out_err:
459 	thread__zput(thread);
460 	return NULL;
461 }
462 
463 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
464 {
465 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
466 	struct machine *machine = machines__findnew(machines, pid);
467 
468 	return findnew_guest_code(machine, host_machine, pid);
469 }
470 
471 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
472 {
473 	struct machines *machines = machine->machines;
474 	struct machine *host_machine;
475 
476 	if (!machines)
477 		return NULL;
478 
479 	host_machine = machines__find(machines, HOST_KERNEL_ID);
480 
481 	return findnew_guest_code(machine, host_machine, pid);
482 }
483 
484 void machines__process_guests(struct machines *machines,
485 			      machine__process_t process, void *data)
486 {
487 	struct rb_node *nd;
488 
489 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
490 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
491 		process(pos, data);
492 	}
493 }
494 
495 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
496 {
497 	struct rb_node *node;
498 	struct machine *machine;
499 
500 	machines->host.id_hdr_size = id_hdr_size;
501 
502 	for (node = rb_first_cached(&machines->guests); node;
503 	     node = rb_next(node)) {
504 		machine = rb_entry(node, struct machine, rb_node);
505 		machine->id_hdr_size = id_hdr_size;
506 	}
507 
508 	return;
509 }
510 
511 static void machine__update_thread_pid(struct machine *machine,
512 				       struct thread *th, pid_t pid)
513 {
514 	struct thread *leader;
515 
516 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
517 		return;
518 
519 	th->pid_ = pid;
520 
521 	if (th->pid_ == th->tid)
522 		return;
523 
524 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
525 	if (!leader)
526 		goto out_err;
527 
528 	if (!leader->maps)
529 		leader->maps = maps__new(machine);
530 
531 	if (!leader->maps)
532 		goto out_err;
533 
534 	if (th->maps == leader->maps)
535 		return;
536 
537 	if (th->maps) {
538 		/*
539 		 * Maps are created from MMAP events which provide the pid and
540 		 * tid.  Consequently there never should be any maps on a thread
541 		 * with an unknown pid.  Just print an error if there are.
542 		 */
543 		if (!maps__empty(th->maps))
544 			pr_err("Discarding thread maps for %d:%d\n",
545 			       th->pid_, th->tid);
546 		maps__put(th->maps);
547 	}
548 
549 	th->maps = maps__get(leader->maps);
550 out_put:
551 	thread__put(leader);
552 	return;
553 out_err:
554 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
555 	goto out_put;
556 }
557 
558 /*
559  * Front-end cache - TID lookups come in blocks,
560  * so most of the time we dont have to look up
561  * the full rbtree:
562  */
563 static struct thread*
564 __threads__get_last_match(struct threads *threads, struct machine *machine,
565 			  int pid, int tid)
566 {
567 	struct thread *th;
568 
569 	th = threads->last_match;
570 	if (th != NULL) {
571 		if (th->tid == tid) {
572 			machine__update_thread_pid(machine, th, pid);
573 			return thread__get(th);
574 		}
575 
576 		threads->last_match = NULL;
577 	}
578 
579 	return NULL;
580 }
581 
582 static struct thread*
583 threads__get_last_match(struct threads *threads, struct machine *machine,
584 			int pid, int tid)
585 {
586 	struct thread *th = NULL;
587 
588 	if (perf_singlethreaded)
589 		th = __threads__get_last_match(threads, machine, pid, tid);
590 
591 	return th;
592 }
593 
594 static void
595 __threads__set_last_match(struct threads *threads, struct thread *th)
596 {
597 	threads->last_match = th;
598 }
599 
600 static void
601 threads__set_last_match(struct threads *threads, struct thread *th)
602 {
603 	if (perf_singlethreaded)
604 		__threads__set_last_match(threads, th);
605 }
606 
607 /*
608  * Caller must eventually drop thread->refcnt returned with a successful
609  * lookup/new thread inserted.
610  */
611 static struct thread *____machine__findnew_thread(struct machine *machine,
612 						  struct threads *threads,
613 						  pid_t pid, pid_t tid,
614 						  bool create)
615 {
616 	struct rb_node **p = &threads->entries.rb_root.rb_node;
617 	struct rb_node *parent = NULL;
618 	struct thread *th;
619 	bool leftmost = true;
620 
621 	th = threads__get_last_match(threads, machine, pid, tid);
622 	if (th)
623 		return th;
624 
625 	while (*p != NULL) {
626 		parent = *p;
627 		th = rb_entry(parent, struct thread, rb_node);
628 
629 		if (th->tid == tid) {
630 			threads__set_last_match(threads, th);
631 			machine__update_thread_pid(machine, th, pid);
632 			return thread__get(th);
633 		}
634 
635 		if (tid < th->tid)
636 			p = &(*p)->rb_left;
637 		else {
638 			p = &(*p)->rb_right;
639 			leftmost = false;
640 		}
641 	}
642 
643 	if (!create)
644 		return NULL;
645 
646 	th = thread__new(pid, tid);
647 	if (th != NULL) {
648 		rb_link_node(&th->rb_node, parent, p);
649 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
650 
651 		/*
652 		 * We have to initialize maps separately after rb tree is updated.
653 		 *
654 		 * The reason is that we call machine__findnew_thread
655 		 * within thread__init_maps to find the thread
656 		 * leader and that would screwed the rb tree.
657 		 */
658 		if (thread__init_maps(th, machine)) {
659 			rb_erase_cached(&th->rb_node, &threads->entries);
660 			RB_CLEAR_NODE(&th->rb_node);
661 			thread__put(th);
662 			return NULL;
663 		}
664 		/*
665 		 * It is now in the rbtree, get a ref
666 		 */
667 		thread__get(th);
668 		threads__set_last_match(threads, th);
669 		++threads->nr;
670 	}
671 
672 	return th;
673 }
674 
675 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
676 {
677 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
678 }
679 
680 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
681 				       pid_t tid)
682 {
683 	struct threads *threads = machine__threads(machine, tid);
684 	struct thread *th;
685 
686 	down_write(&threads->lock);
687 	th = __machine__findnew_thread(machine, pid, tid);
688 	up_write(&threads->lock);
689 	return th;
690 }
691 
692 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
693 				    pid_t tid)
694 {
695 	struct threads *threads = machine__threads(machine, tid);
696 	struct thread *th;
697 
698 	down_read(&threads->lock);
699 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
700 	up_read(&threads->lock);
701 	return th;
702 }
703 
704 /*
705  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
706  * So here a single thread is created for that, but actually there is a separate
707  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
708  * is only 1. That causes problems for some tools, requiring workarounds. For
709  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
710  */
711 struct thread *machine__idle_thread(struct machine *machine)
712 {
713 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
714 
715 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
716 	    thread__set_namespaces(thread, 0, NULL))
717 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
718 
719 	return thread;
720 }
721 
722 struct comm *machine__thread_exec_comm(struct machine *machine,
723 				       struct thread *thread)
724 {
725 	if (machine->comm_exec)
726 		return thread__exec_comm(thread);
727 	else
728 		return thread__comm(thread);
729 }
730 
731 int machine__process_comm_event(struct machine *machine, union perf_event *event,
732 				struct perf_sample *sample)
733 {
734 	struct thread *thread = machine__findnew_thread(machine,
735 							event->comm.pid,
736 							event->comm.tid);
737 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
738 	int err = 0;
739 
740 	if (exec)
741 		machine->comm_exec = true;
742 
743 	if (dump_trace)
744 		perf_event__fprintf_comm(event, stdout);
745 
746 	if (thread == NULL ||
747 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
748 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
749 		err = -1;
750 	}
751 
752 	thread__put(thread);
753 
754 	return err;
755 }
756 
757 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
758 				      union perf_event *event,
759 				      struct perf_sample *sample __maybe_unused)
760 {
761 	struct thread *thread = machine__findnew_thread(machine,
762 							event->namespaces.pid,
763 							event->namespaces.tid);
764 	int err = 0;
765 
766 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
767 		  "\nWARNING: kernel seems to support more namespaces than perf"
768 		  " tool.\nTry updating the perf tool..\n\n");
769 
770 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
771 		  "\nWARNING: perf tool seems to support more namespaces than"
772 		  " the kernel.\nTry updating the kernel..\n\n");
773 
774 	if (dump_trace)
775 		perf_event__fprintf_namespaces(event, stdout);
776 
777 	if (thread == NULL ||
778 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
779 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
780 		err = -1;
781 	}
782 
783 	thread__put(thread);
784 
785 	return err;
786 }
787 
788 int machine__process_cgroup_event(struct machine *machine,
789 				  union perf_event *event,
790 				  struct perf_sample *sample __maybe_unused)
791 {
792 	struct cgroup *cgrp;
793 
794 	if (dump_trace)
795 		perf_event__fprintf_cgroup(event, stdout);
796 
797 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
798 	if (cgrp == NULL)
799 		return -ENOMEM;
800 
801 	return 0;
802 }
803 
804 int machine__process_lost_event(struct machine *machine __maybe_unused,
805 				union perf_event *event, struct perf_sample *sample __maybe_unused)
806 {
807 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
808 		    event->lost.id, event->lost.lost);
809 	return 0;
810 }
811 
812 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
813 					union perf_event *event, struct perf_sample *sample)
814 {
815 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
816 		    sample->id, event->lost_samples.lost);
817 	return 0;
818 }
819 
820 static struct dso *machine__findnew_module_dso(struct machine *machine,
821 					       struct kmod_path *m,
822 					       const char *filename)
823 {
824 	struct dso *dso;
825 
826 	down_write(&machine->dsos.lock);
827 
828 	dso = __dsos__find(&machine->dsos, m->name, true);
829 	if (!dso) {
830 		dso = __dsos__addnew(&machine->dsos, m->name);
831 		if (dso == NULL)
832 			goto out_unlock;
833 
834 		dso__set_module_info(dso, m, machine);
835 		dso__set_long_name(dso, strdup(filename), true);
836 		dso->kernel = DSO_SPACE__KERNEL;
837 	}
838 
839 	dso__get(dso);
840 out_unlock:
841 	up_write(&machine->dsos.lock);
842 	return dso;
843 }
844 
845 int machine__process_aux_event(struct machine *machine __maybe_unused,
846 			       union perf_event *event)
847 {
848 	if (dump_trace)
849 		perf_event__fprintf_aux(event, stdout);
850 	return 0;
851 }
852 
853 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
854 					union perf_event *event)
855 {
856 	if (dump_trace)
857 		perf_event__fprintf_itrace_start(event, stdout);
858 	return 0;
859 }
860 
861 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
862 					    union perf_event *event)
863 {
864 	if (dump_trace)
865 		perf_event__fprintf_aux_output_hw_id(event, stdout);
866 	return 0;
867 }
868 
869 int machine__process_switch_event(struct machine *machine __maybe_unused,
870 				  union perf_event *event)
871 {
872 	if (dump_trace)
873 		perf_event__fprintf_switch(event, stdout);
874 	return 0;
875 }
876 
877 static int machine__process_ksymbol_register(struct machine *machine,
878 					     union perf_event *event,
879 					     struct perf_sample *sample __maybe_unused)
880 {
881 	struct symbol *sym;
882 	struct dso *dso;
883 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
884 	bool put_map = false;
885 	int err = 0;
886 
887 	if (!map) {
888 		dso = dso__new(event->ksymbol.name);
889 
890 		if (!dso) {
891 			err = -ENOMEM;
892 			goto out;
893 		}
894 		dso->kernel = DSO_SPACE__KERNEL;
895 		map = map__new2(0, dso);
896 		dso__put(dso);
897 		if (!map) {
898 			err = -ENOMEM;
899 			goto out;
900 		}
901 		/*
902 		 * The inserted map has a get on it, we need to put to release
903 		 * the reference count here, but do it after all accesses are
904 		 * done.
905 		 */
906 		put_map = true;
907 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
908 			dso->binary_type = DSO_BINARY_TYPE__OOL;
909 			dso->data.file_size = event->ksymbol.len;
910 			dso__set_loaded(dso);
911 		}
912 
913 		map->start = event->ksymbol.addr;
914 		map->end = map__start(map) + event->ksymbol.len;
915 		err = maps__insert(machine__kernel_maps(machine), map);
916 		if (err) {
917 			err = -ENOMEM;
918 			goto out;
919 		}
920 
921 		dso__set_loaded(dso);
922 
923 		if (is_bpf_image(event->ksymbol.name)) {
924 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
925 			dso__set_long_name(dso, "", false);
926 		}
927 	} else {
928 		dso = map__dso(map);
929 	}
930 
931 	sym = symbol__new(map__map_ip(map, map__start(map)),
932 			  event->ksymbol.len,
933 			  0, 0, event->ksymbol.name);
934 	if (!sym) {
935 		err = -ENOMEM;
936 		goto out;
937 	}
938 	dso__insert_symbol(dso, sym);
939 out:
940 	if (put_map)
941 		map__put(map);
942 	return err;
943 }
944 
945 static int machine__process_ksymbol_unregister(struct machine *machine,
946 					       union perf_event *event,
947 					       struct perf_sample *sample __maybe_unused)
948 {
949 	struct symbol *sym;
950 	struct map *map;
951 
952 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
953 	if (!map)
954 		return 0;
955 
956 	if (map != machine->vmlinux_map)
957 		maps__remove(machine__kernel_maps(machine), map);
958 	else {
959 		struct dso *dso = map__dso(map);
960 
961 		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
962 		if (sym)
963 			dso__delete_symbol(dso, sym);
964 	}
965 
966 	return 0;
967 }
968 
969 int machine__process_ksymbol(struct machine *machine __maybe_unused,
970 			     union perf_event *event,
971 			     struct perf_sample *sample)
972 {
973 	if (dump_trace)
974 		perf_event__fprintf_ksymbol(event, stdout);
975 
976 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
977 		return machine__process_ksymbol_unregister(machine, event,
978 							   sample);
979 	return machine__process_ksymbol_register(machine, event, sample);
980 }
981 
982 int machine__process_text_poke(struct machine *machine, union perf_event *event,
983 			       struct perf_sample *sample __maybe_unused)
984 {
985 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
986 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
987 	struct dso *dso = map ? map__dso(map) : NULL;
988 
989 	if (dump_trace)
990 		perf_event__fprintf_text_poke(event, machine, stdout);
991 
992 	if (!event->text_poke.new_len)
993 		return 0;
994 
995 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
996 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
997 		return 0;
998 	}
999 
1000 	if (dso) {
1001 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1002 		int ret;
1003 
1004 		/*
1005 		 * Kernel maps might be changed when loading symbols so loading
1006 		 * must be done prior to using kernel maps.
1007 		 */
1008 		map__load(map);
1009 		ret = dso__data_write_cache_addr(dso, map, machine,
1010 						 event->text_poke.addr,
1011 						 new_bytes,
1012 						 event->text_poke.new_len);
1013 		if (ret != event->text_poke.new_len)
1014 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1015 				 event->text_poke.addr);
1016 	} else {
1017 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1018 			 event->text_poke.addr);
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1025 					      const char *filename)
1026 {
1027 	struct map *map = NULL;
1028 	struct kmod_path m;
1029 	struct dso *dso;
1030 	int err;
1031 
1032 	if (kmod_path__parse_name(&m, filename))
1033 		return NULL;
1034 
1035 	dso = machine__findnew_module_dso(machine, &m, filename);
1036 	if (dso == NULL)
1037 		goto out;
1038 
1039 	map = map__new2(start, dso);
1040 	if (map == NULL)
1041 		goto out;
1042 
1043 	err = maps__insert(machine__kernel_maps(machine), map);
1044 	/* If maps__insert failed, return NULL. */
1045 	if (err) {
1046 		map__put(map);
1047 		map = NULL;
1048 	}
1049 out:
1050 	/* put the dso here, corresponding to  machine__findnew_module_dso */
1051 	dso__put(dso);
1052 	zfree(&m.name);
1053 	return map;
1054 }
1055 
1056 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1057 {
1058 	struct rb_node *nd;
1059 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1060 
1061 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1062 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1063 		ret += __dsos__fprintf(&pos->dsos.head, fp);
1064 	}
1065 
1066 	return ret;
1067 }
1068 
1069 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1070 				     bool (skip)(struct dso *dso, int parm), int parm)
1071 {
1072 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1073 }
1074 
1075 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1076 				     bool (skip)(struct dso *dso, int parm), int parm)
1077 {
1078 	struct rb_node *nd;
1079 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1080 
1081 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1082 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1083 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1084 	}
1085 	return ret;
1086 }
1087 
1088 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1089 {
1090 	int i;
1091 	size_t printed = 0;
1092 	struct dso *kdso = machine__kernel_dso(machine);
1093 
1094 	if (kdso->has_build_id) {
1095 		char filename[PATH_MAX];
1096 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1097 					   false))
1098 			printed += fprintf(fp, "[0] %s\n", filename);
1099 	}
1100 
1101 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1102 		printed += fprintf(fp, "[%d] %s\n",
1103 				   i + kdso->has_build_id, vmlinux_path[i]);
1104 
1105 	return printed;
1106 }
1107 
1108 size_t machine__fprintf(struct machine *machine, FILE *fp)
1109 {
1110 	struct rb_node *nd;
1111 	size_t ret;
1112 	int i;
1113 
1114 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1115 		struct threads *threads = &machine->threads[i];
1116 
1117 		down_read(&threads->lock);
1118 
1119 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
1120 
1121 		for (nd = rb_first_cached(&threads->entries); nd;
1122 		     nd = rb_next(nd)) {
1123 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
1124 
1125 			ret += thread__fprintf(pos, fp);
1126 		}
1127 
1128 		up_read(&threads->lock);
1129 	}
1130 	return ret;
1131 }
1132 
1133 static struct dso *machine__get_kernel(struct machine *machine)
1134 {
1135 	const char *vmlinux_name = machine->mmap_name;
1136 	struct dso *kernel;
1137 
1138 	if (machine__is_host(machine)) {
1139 		if (symbol_conf.vmlinux_name)
1140 			vmlinux_name = symbol_conf.vmlinux_name;
1141 
1142 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1143 						 "[kernel]", DSO_SPACE__KERNEL);
1144 	} else {
1145 		if (symbol_conf.default_guest_vmlinux_name)
1146 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1147 
1148 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1149 						 "[guest.kernel]",
1150 						 DSO_SPACE__KERNEL_GUEST);
1151 	}
1152 
1153 	if (kernel != NULL && (!kernel->has_build_id))
1154 		dso__read_running_kernel_build_id(kernel, machine);
1155 
1156 	return kernel;
1157 }
1158 
1159 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1160 				    size_t bufsz)
1161 {
1162 	if (machine__is_default_guest(machine))
1163 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1164 	else
1165 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1166 }
1167 
1168 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1169 
1170 /* Figure out the start address of kernel map from /proc/kallsyms.
1171  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1172  * symbol_name if it's not that important.
1173  */
1174 static int machine__get_running_kernel_start(struct machine *machine,
1175 					     const char **symbol_name,
1176 					     u64 *start, u64 *end)
1177 {
1178 	char filename[PATH_MAX];
1179 	int i, err = -1;
1180 	const char *name;
1181 	u64 addr = 0;
1182 
1183 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1184 
1185 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1186 		return 0;
1187 
1188 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1189 		err = kallsyms__get_function_start(filename, name, &addr);
1190 		if (!err)
1191 			break;
1192 	}
1193 
1194 	if (err)
1195 		return -1;
1196 
1197 	if (symbol_name)
1198 		*symbol_name = name;
1199 
1200 	*start = addr;
1201 
1202 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1203 	if (!err)
1204 		*end = addr;
1205 
1206 	return 0;
1207 }
1208 
1209 int machine__create_extra_kernel_map(struct machine *machine,
1210 				     struct dso *kernel,
1211 				     struct extra_kernel_map *xm)
1212 {
1213 	struct kmap *kmap;
1214 	struct map *map;
1215 	int err;
1216 
1217 	map = map__new2(xm->start, kernel);
1218 	if (!map)
1219 		return -ENOMEM;
1220 
1221 	map->end   = xm->end;
1222 	map->pgoff = xm->pgoff;
1223 
1224 	kmap = map__kmap(map);
1225 
1226 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1227 
1228 	err = maps__insert(machine__kernel_maps(machine), map);
1229 
1230 	if (!err) {
1231 		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1232 			kmap->name, map__start(map), map__end(map));
1233 	}
1234 
1235 	map__put(map);
1236 
1237 	return err;
1238 }
1239 
1240 static u64 find_entry_trampoline(struct dso *dso)
1241 {
1242 	/* Duplicates are removed so lookup all aliases */
1243 	const char *syms[] = {
1244 		"_entry_trampoline",
1245 		"__entry_trampoline_start",
1246 		"entry_SYSCALL_64_trampoline",
1247 	};
1248 	struct symbol *sym = dso__first_symbol(dso);
1249 	unsigned int i;
1250 
1251 	for (; sym; sym = dso__next_symbol(sym)) {
1252 		if (sym->binding != STB_GLOBAL)
1253 			continue;
1254 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1255 			if (!strcmp(sym->name, syms[i]))
1256 				return sym->start;
1257 		}
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 /*
1264  * These values can be used for kernels that do not have symbols for the entry
1265  * trampolines in kallsyms.
1266  */
1267 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1268 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1269 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1270 
1271 /* Map x86_64 PTI entry trampolines */
1272 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1273 					  struct dso *kernel)
1274 {
1275 	struct maps *kmaps = machine__kernel_maps(machine);
1276 	int nr_cpus_avail, cpu;
1277 	bool found = false;
1278 	struct map_rb_node *rb_node;
1279 	u64 pgoff;
1280 
1281 	/*
1282 	 * In the vmlinux case, pgoff is a virtual address which must now be
1283 	 * mapped to a vmlinux offset.
1284 	 */
1285 	maps__for_each_entry(kmaps, rb_node) {
1286 		struct map *dest_map, *map = rb_node->map;
1287 		struct kmap *kmap = __map__kmap(map);
1288 
1289 		if (!kmap || !is_entry_trampoline(kmap->name))
1290 			continue;
1291 
1292 		dest_map = maps__find(kmaps, map__pgoff(map));
1293 		if (dest_map != map)
1294 			map->pgoff = map__map_ip(dest_map, map__pgoff(map));
1295 		found = true;
1296 	}
1297 	if (found || machine->trampolines_mapped)
1298 		return 0;
1299 
1300 	pgoff = find_entry_trampoline(kernel);
1301 	if (!pgoff)
1302 		return 0;
1303 
1304 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1305 
1306 	/* Add a 1 page map for each CPU's entry trampoline */
1307 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1308 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1309 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1310 			 X86_64_ENTRY_TRAMPOLINE;
1311 		struct extra_kernel_map xm = {
1312 			.start = va,
1313 			.end   = va + page_size,
1314 			.pgoff = pgoff,
1315 		};
1316 
1317 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1318 
1319 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1320 			return -1;
1321 	}
1322 
1323 	machine->trampolines_mapped = nr_cpus_avail;
1324 
1325 	return 0;
1326 }
1327 
1328 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1329 					     struct dso *kernel __maybe_unused)
1330 {
1331 	return 0;
1332 }
1333 
1334 static int
1335 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1336 {
1337 	/* In case of renewal the kernel map, destroy previous one */
1338 	machine__destroy_kernel_maps(machine);
1339 
1340 	map__put(machine->vmlinux_map);
1341 	machine->vmlinux_map = map__new2(0, kernel);
1342 	if (machine->vmlinux_map == NULL)
1343 		return -ENOMEM;
1344 
1345 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1346 	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1347 }
1348 
1349 void machine__destroy_kernel_maps(struct machine *machine)
1350 {
1351 	struct kmap *kmap;
1352 	struct map *map = machine__kernel_map(machine);
1353 
1354 	if (map == NULL)
1355 		return;
1356 
1357 	kmap = map__kmap(map);
1358 	maps__remove(machine__kernel_maps(machine), map);
1359 	if (kmap && kmap->ref_reloc_sym) {
1360 		zfree((char **)&kmap->ref_reloc_sym->name);
1361 		zfree(&kmap->ref_reloc_sym);
1362 	}
1363 
1364 	map__zput(machine->vmlinux_map);
1365 }
1366 
1367 int machines__create_guest_kernel_maps(struct machines *machines)
1368 {
1369 	int ret = 0;
1370 	struct dirent **namelist = NULL;
1371 	int i, items = 0;
1372 	char path[PATH_MAX];
1373 	pid_t pid;
1374 	char *endp;
1375 
1376 	if (symbol_conf.default_guest_vmlinux_name ||
1377 	    symbol_conf.default_guest_modules ||
1378 	    symbol_conf.default_guest_kallsyms) {
1379 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1380 	}
1381 
1382 	if (symbol_conf.guestmount) {
1383 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1384 		if (items <= 0)
1385 			return -ENOENT;
1386 		for (i = 0; i < items; i++) {
1387 			if (!isdigit(namelist[i]->d_name[0])) {
1388 				/* Filter out . and .. */
1389 				continue;
1390 			}
1391 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1392 			if ((*endp != '\0') ||
1393 			    (endp == namelist[i]->d_name) ||
1394 			    (errno == ERANGE)) {
1395 				pr_debug("invalid directory (%s). Skipping.\n",
1396 					 namelist[i]->d_name);
1397 				continue;
1398 			}
1399 			sprintf(path, "%s/%s/proc/kallsyms",
1400 				symbol_conf.guestmount,
1401 				namelist[i]->d_name);
1402 			ret = access(path, R_OK);
1403 			if (ret) {
1404 				pr_debug("Can't access file %s\n", path);
1405 				goto failure;
1406 			}
1407 			machines__create_kernel_maps(machines, pid);
1408 		}
1409 failure:
1410 		free(namelist);
1411 	}
1412 
1413 	return ret;
1414 }
1415 
1416 void machines__destroy_kernel_maps(struct machines *machines)
1417 {
1418 	struct rb_node *next = rb_first_cached(&machines->guests);
1419 
1420 	machine__destroy_kernel_maps(&machines->host);
1421 
1422 	while (next) {
1423 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1424 
1425 		next = rb_next(&pos->rb_node);
1426 		rb_erase_cached(&pos->rb_node, &machines->guests);
1427 		machine__delete(pos);
1428 	}
1429 }
1430 
1431 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1432 {
1433 	struct machine *machine = machines__findnew(machines, pid);
1434 
1435 	if (machine == NULL)
1436 		return -1;
1437 
1438 	return machine__create_kernel_maps(machine);
1439 }
1440 
1441 int machine__load_kallsyms(struct machine *machine, const char *filename)
1442 {
1443 	struct map *map = machine__kernel_map(machine);
1444 	struct dso *dso = map__dso(map);
1445 	int ret = __dso__load_kallsyms(dso, filename, map, true);
1446 
1447 	if (ret > 0) {
1448 		dso__set_loaded(dso);
1449 		/*
1450 		 * Since /proc/kallsyms will have multiple sessions for the
1451 		 * kernel, with modules between them, fixup the end of all
1452 		 * sections.
1453 		 */
1454 		maps__fixup_end(machine__kernel_maps(machine));
1455 	}
1456 
1457 	return ret;
1458 }
1459 
1460 int machine__load_vmlinux_path(struct machine *machine)
1461 {
1462 	struct map *map = machine__kernel_map(machine);
1463 	struct dso *dso = map__dso(map);
1464 	int ret = dso__load_vmlinux_path(dso, map);
1465 
1466 	if (ret > 0)
1467 		dso__set_loaded(dso);
1468 
1469 	return ret;
1470 }
1471 
1472 static char *get_kernel_version(const char *root_dir)
1473 {
1474 	char version[PATH_MAX];
1475 	FILE *file;
1476 	char *name, *tmp;
1477 	const char *prefix = "Linux version ";
1478 
1479 	sprintf(version, "%s/proc/version", root_dir);
1480 	file = fopen(version, "r");
1481 	if (!file)
1482 		return NULL;
1483 
1484 	tmp = fgets(version, sizeof(version), file);
1485 	fclose(file);
1486 	if (!tmp)
1487 		return NULL;
1488 
1489 	name = strstr(version, prefix);
1490 	if (!name)
1491 		return NULL;
1492 	name += strlen(prefix);
1493 	tmp = strchr(name, ' ');
1494 	if (tmp)
1495 		*tmp = '\0';
1496 
1497 	return strdup(name);
1498 }
1499 
1500 static bool is_kmod_dso(struct dso *dso)
1501 {
1502 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1503 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1504 }
1505 
1506 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1507 {
1508 	char *long_name;
1509 	struct dso *dso;
1510 	struct map *map = maps__find_by_name(maps, m->name);
1511 
1512 	if (map == NULL)
1513 		return 0;
1514 
1515 	long_name = strdup(path);
1516 	if (long_name == NULL)
1517 		return -ENOMEM;
1518 
1519 	dso = map__dso(map);
1520 	dso__set_long_name(dso, long_name, true);
1521 	dso__kernel_module_get_build_id(dso, "");
1522 
1523 	/*
1524 	 * Full name could reveal us kmod compression, so
1525 	 * we need to update the symtab_type if needed.
1526 	 */
1527 	if (m->comp && is_kmod_dso(dso)) {
1528 		dso->symtab_type++;
1529 		dso->comp = m->comp;
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1536 {
1537 	struct dirent *dent;
1538 	DIR *dir = opendir(dir_name);
1539 	int ret = 0;
1540 
1541 	if (!dir) {
1542 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1543 		return -1;
1544 	}
1545 
1546 	while ((dent = readdir(dir)) != NULL) {
1547 		char path[PATH_MAX];
1548 		struct stat st;
1549 
1550 		/*sshfs might return bad dent->d_type, so we have to stat*/
1551 		path__join(path, sizeof(path), dir_name, dent->d_name);
1552 		if (stat(path, &st))
1553 			continue;
1554 
1555 		if (S_ISDIR(st.st_mode)) {
1556 			if (!strcmp(dent->d_name, ".") ||
1557 			    !strcmp(dent->d_name, ".."))
1558 				continue;
1559 
1560 			/* Do not follow top-level source and build symlinks */
1561 			if (depth == 0) {
1562 				if (!strcmp(dent->d_name, "source") ||
1563 				    !strcmp(dent->d_name, "build"))
1564 					continue;
1565 			}
1566 
1567 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1568 			if (ret < 0)
1569 				goto out;
1570 		} else {
1571 			struct kmod_path m;
1572 
1573 			ret = kmod_path__parse_name(&m, dent->d_name);
1574 			if (ret)
1575 				goto out;
1576 
1577 			if (m.kmod)
1578 				ret = maps__set_module_path(maps, path, &m);
1579 
1580 			zfree(&m.name);
1581 
1582 			if (ret)
1583 				goto out;
1584 		}
1585 	}
1586 
1587 out:
1588 	closedir(dir);
1589 	return ret;
1590 }
1591 
1592 static int machine__set_modules_path(struct machine *machine)
1593 {
1594 	char *version;
1595 	char modules_path[PATH_MAX];
1596 
1597 	version = get_kernel_version(machine->root_dir);
1598 	if (!version)
1599 		return -1;
1600 
1601 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1602 		 machine->root_dir, version);
1603 	free(version);
1604 
1605 	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1606 }
1607 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1608 				u64 *size __maybe_unused,
1609 				const char *name __maybe_unused)
1610 {
1611 	return 0;
1612 }
1613 
1614 static int machine__create_module(void *arg, const char *name, u64 start,
1615 				  u64 size)
1616 {
1617 	struct machine *machine = arg;
1618 	struct map *map;
1619 
1620 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1621 		return -1;
1622 
1623 	map = machine__addnew_module_map(machine, start, name);
1624 	if (map == NULL)
1625 		return -1;
1626 	map->end = start + size;
1627 
1628 	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1629 	map__put(map);
1630 	return 0;
1631 }
1632 
1633 static int machine__create_modules(struct machine *machine)
1634 {
1635 	const char *modules;
1636 	char path[PATH_MAX];
1637 
1638 	if (machine__is_default_guest(machine)) {
1639 		modules = symbol_conf.default_guest_modules;
1640 	} else {
1641 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1642 		modules = path;
1643 	}
1644 
1645 	if (symbol__restricted_filename(modules, "/proc/modules"))
1646 		return -1;
1647 
1648 	if (modules__parse(modules, machine, machine__create_module))
1649 		return -1;
1650 
1651 	if (!machine__set_modules_path(machine))
1652 		return 0;
1653 
1654 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1655 
1656 	return 0;
1657 }
1658 
1659 static void machine__set_kernel_mmap(struct machine *machine,
1660 				     u64 start, u64 end)
1661 {
1662 	machine->vmlinux_map->start = start;
1663 	machine->vmlinux_map->end   = end;
1664 	/*
1665 	 * Be a bit paranoid here, some perf.data file came with
1666 	 * a zero sized synthesized MMAP event for the kernel.
1667 	 */
1668 	if (start == 0 && end == 0)
1669 		machine->vmlinux_map->end = ~0ULL;
1670 }
1671 
1672 static int machine__update_kernel_mmap(struct machine *machine,
1673 				     u64 start, u64 end)
1674 {
1675 	struct map *orig, *updated;
1676 	int err;
1677 
1678 	orig = machine->vmlinux_map;
1679 	updated = map__get(orig);
1680 
1681 	machine->vmlinux_map = updated;
1682 	machine__set_kernel_mmap(machine, start, end);
1683 	maps__remove(machine__kernel_maps(machine), orig);
1684 	err = maps__insert(machine__kernel_maps(machine), updated);
1685 	map__put(orig);
1686 
1687 	return err;
1688 }
1689 
1690 int machine__create_kernel_maps(struct machine *machine)
1691 {
1692 	struct dso *kernel = machine__get_kernel(machine);
1693 	const char *name = NULL;
1694 	u64 start = 0, end = ~0ULL;
1695 	int ret;
1696 
1697 	if (kernel == NULL)
1698 		return -1;
1699 
1700 	ret = __machine__create_kernel_maps(machine, kernel);
1701 	if (ret < 0)
1702 		goto out_put;
1703 
1704 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1705 		if (machine__is_host(machine))
1706 			pr_debug("Problems creating module maps, "
1707 				 "continuing anyway...\n");
1708 		else
1709 			pr_debug("Problems creating module maps for guest %d, "
1710 				 "continuing anyway...\n", machine->pid);
1711 	}
1712 
1713 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1714 		if (name &&
1715 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1716 			machine__destroy_kernel_maps(machine);
1717 			ret = -1;
1718 			goto out_put;
1719 		}
1720 
1721 		/*
1722 		 * we have a real start address now, so re-order the kmaps
1723 		 * assume it's the last in the kmaps
1724 		 */
1725 		ret = machine__update_kernel_mmap(machine, start, end);
1726 		if (ret < 0)
1727 			goto out_put;
1728 	}
1729 
1730 	if (machine__create_extra_kernel_maps(machine, kernel))
1731 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1732 
1733 	if (end == ~0ULL) {
1734 		/* update end address of the kernel map using adjacent module address */
1735 		struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine),
1736 							machine__kernel_map(machine));
1737 		struct map_rb_node *next = map_rb_node__next(rb_node);
1738 
1739 		if (next)
1740 			machine__set_kernel_mmap(machine, start, map__start(next->map));
1741 	}
1742 
1743 out_put:
1744 	dso__put(kernel);
1745 	return ret;
1746 }
1747 
1748 static bool machine__uses_kcore(struct machine *machine)
1749 {
1750 	struct dso *dso;
1751 
1752 	list_for_each_entry(dso, &machine->dsos.head, node) {
1753 		if (dso__is_kcore(dso))
1754 			return true;
1755 	}
1756 
1757 	return false;
1758 }
1759 
1760 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1761 					     struct extra_kernel_map *xm)
1762 {
1763 	return machine__is(machine, "x86_64") &&
1764 	       is_entry_trampoline(xm->name);
1765 }
1766 
1767 static int machine__process_extra_kernel_map(struct machine *machine,
1768 					     struct extra_kernel_map *xm)
1769 {
1770 	struct dso *kernel = machine__kernel_dso(machine);
1771 
1772 	if (kernel == NULL)
1773 		return -1;
1774 
1775 	return machine__create_extra_kernel_map(machine, kernel, xm);
1776 }
1777 
1778 static int machine__process_kernel_mmap_event(struct machine *machine,
1779 					      struct extra_kernel_map *xm,
1780 					      struct build_id *bid)
1781 {
1782 	struct map *map;
1783 	enum dso_space_type dso_space;
1784 	bool is_kernel_mmap;
1785 	const char *mmap_name = machine->mmap_name;
1786 
1787 	/* If we have maps from kcore then we do not need or want any others */
1788 	if (machine__uses_kcore(machine))
1789 		return 0;
1790 
1791 	if (machine__is_host(machine))
1792 		dso_space = DSO_SPACE__KERNEL;
1793 	else
1794 		dso_space = DSO_SPACE__KERNEL_GUEST;
1795 
1796 	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1797 	if (!is_kernel_mmap && !machine__is_host(machine)) {
1798 		/*
1799 		 * If the event was recorded inside the guest and injected into
1800 		 * the host perf.data file, then it will match a host mmap_name,
1801 		 * so try that - see machine__set_mmap_name().
1802 		 */
1803 		mmap_name = "[kernel.kallsyms]";
1804 		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1805 	}
1806 	if (xm->name[0] == '/' ||
1807 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1808 		map = machine__addnew_module_map(machine, xm->start,
1809 						 xm->name);
1810 		if (map == NULL)
1811 			goto out_problem;
1812 
1813 		map->end = map__start(map) + xm->end - xm->start;
1814 
1815 		if (build_id__is_defined(bid))
1816 			dso__set_build_id(map__dso(map), bid);
1817 
1818 	} else if (is_kernel_mmap) {
1819 		const char *symbol_name = xm->name + strlen(mmap_name);
1820 		/*
1821 		 * Should be there already, from the build-id table in
1822 		 * the header.
1823 		 */
1824 		struct dso *kernel = NULL;
1825 		struct dso *dso;
1826 
1827 		down_read(&machine->dsos.lock);
1828 
1829 		list_for_each_entry(dso, &machine->dsos.head, node) {
1830 
1831 			/*
1832 			 * The cpumode passed to is_kernel_module is not the
1833 			 * cpumode of *this* event. If we insist on passing
1834 			 * correct cpumode to is_kernel_module, we should
1835 			 * record the cpumode when we adding this dso to the
1836 			 * linked list.
1837 			 *
1838 			 * However we don't really need passing correct
1839 			 * cpumode.  We know the correct cpumode must be kernel
1840 			 * mode (if not, we should not link it onto kernel_dsos
1841 			 * list).
1842 			 *
1843 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1844 			 * is_kernel_module() treats it as a kernel cpumode.
1845 			 */
1846 
1847 			if (!dso->kernel ||
1848 			    is_kernel_module(dso->long_name,
1849 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1850 				continue;
1851 
1852 
1853 			kernel = dso;
1854 			break;
1855 		}
1856 
1857 		up_read(&machine->dsos.lock);
1858 
1859 		if (kernel == NULL)
1860 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1861 		if (kernel == NULL)
1862 			goto out_problem;
1863 
1864 		kernel->kernel = dso_space;
1865 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1866 			dso__put(kernel);
1867 			goto out_problem;
1868 		}
1869 
1870 		if (strstr(kernel->long_name, "vmlinux"))
1871 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1872 
1873 		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1874 			dso__put(kernel);
1875 			goto out_problem;
1876 		}
1877 
1878 		if (build_id__is_defined(bid))
1879 			dso__set_build_id(kernel, bid);
1880 
1881 		/*
1882 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1883 		 * symbol. Effectively having zero here means that at record
1884 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1885 		 */
1886 		if (xm->pgoff != 0) {
1887 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1888 							symbol_name,
1889 							xm->pgoff);
1890 		}
1891 
1892 		if (machine__is_default_guest(machine)) {
1893 			/*
1894 			 * preload dso of guest kernel and modules
1895 			 */
1896 			dso__load(kernel, machine__kernel_map(machine));
1897 		}
1898 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1899 		return machine__process_extra_kernel_map(machine, xm);
1900 	}
1901 	return 0;
1902 out_problem:
1903 	return -1;
1904 }
1905 
1906 int machine__process_mmap2_event(struct machine *machine,
1907 				 union perf_event *event,
1908 				 struct perf_sample *sample)
1909 {
1910 	struct thread *thread;
1911 	struct map *map;
1912 	struct dso_id dso_id = {
1913 		.maj = event->mmap2.maj,
1914 		.min = event->mmap2.min,
1915 		.ino = event->mmap2.ino,
1916 		.ino_generation = event->mmap2.ino_generation,
1917 	};
1918 	struct build_id __bid, *bid = NULL;
1919 	int ret = 0;
1920 
1921 	if (dump_trace)
1922 		perf_event__fprintf_mmap2(event, stdout);
1923 
1924 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1925 		bid = &__bid;
1926 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1927 	}
1928 
1929 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1930 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1931 		struct extra_kernel_map xm = {
1932 			.start = event->mmap2.start,
1933 			.end   = event->mmap2.start + event->mmap2.len,
1934 			.pgoff = event->mmap2.pgoff,
1935 		};
1936 
1937 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1938 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1939 		if (ret < 0)
1940 			goto out_problem;
1941 		return 0;
1942 	}
1943 
1944 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1945 					event->mmap2.tid);
1946 	if (thread == NULL)
1947 		goto out_problem;
1948 
1949 	map = map__new(machine, event->mmap2.start,
1950 			event->mmap2.len, event->mmap2.pgoff,
1951 			&dso_id, event->mmap2.prot,
1952 			event->mmap2.flags, bid,
1953 			event->mmap2.filename, thread);
1954 
1955 	if (map == NULL)
1956 		goto out_problem_map;
1957 
1958 	ret = thread__insert_map(thread, map);
1959 	if (ret)
1960 		goto out_problem_insert;
1961 
1962 	thread__put(thread);
1963 	map__put(map);
1964 	return 0;
1965 
1966 out_problem_insert:
1967 	map__put(map);
1968 out_problem_map:
1969 	thread__put(thread);
1970 out_problem:
1971 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1972 	return 0;
1973 }
1974 
1975 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1976 				struct perf_sample *sample)
1977 {
1978 	struct thread *thread;
1979 	struct map *map;
1980 	u32 prot = 0;
1981 	int ret = 0;
1982 
1983 	if (dump_trace)
1984 		perf_event__fprintf_mmap(event, stdout);
1985 
1986 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1987 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1988 		struct extra_kernel_map xm = {
1989 			.start = event->mmap.start,
1990 			.end   = event->mmap.start + event->mmap.len,
1991 			.pgoff = event->mmap.pgoff,
1992 		};
1993 
1994 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1995 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1996 		if (ret < 0)
1997 			goto out_problem;
1998 		return 0;
1999 	}
2000 
2001 	thread = machine__findnew_thread(machine, event->mmap.pid,
2002 					 event->mmap.tid);
2003 	if (thread == NULL)
2004 		goto out_problem;
2005 
2006 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2007 		prot = PROT_EXEC;
2008 
2009 	map = map__new(machine, event->mmap.start,
2010 			event->mmap.len, event->mmap.pgoff,
2011 			NULL, prot, 0, NULL, event->mmap.filename, thread);
2012 
2013 	if (map == NULL)
2014 		goto out_problem_map;
2015 
2016 	ret = thread__insert_map(thread, map);
2017 	if (ret)
2018 		goto out_problem_insert;
2019 
2020 	thread__put(thread);
2021 	map__put(map);
2022 	return 0;
2023 
2024 out_problem_insert:
2025 	map__put(map);
2026 out_problem_map:
2027 	thread__put(thread);
2028 out_problem:
2029 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2030 	return 0;
2031 }
2032 
2033 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
2034 {
2035 	struct threads *threads = machine__threads(machine, th->tid);
2036 
2037 	if (threads->last_match == th)
2038 		threads__set_last_match(threads, NULL);
2039 
2040 	if (lock)
2041 		down_write(&threads->lock);
2042 
2043 	BUG_ON(refcount_read(&th->refcnt) == 0);
2044 
2045 	rb_erase_cached(&th->rb_node, &threads->entries);
2046 	RB_CLEAR_NODE(&th->rb_node);
2047 	--threads->nr;
2048 	/*
2049 	 * Move it first to the dead_threads list, then drop the reference,
2050 	 * if this is the last reference, then the thread__delete destructor
2051 	 * will be called and we will remove it from the dead_threads list.
2052 	 */
2053 	list_add_tail(&th->node, &threads->dead);
2054 
2055 	/*
2056 	 * We need to do the put here because if this is the last refcount,
2057 	 * then we will be touching the threads->dead head when removing the
2058 	 * thread.
2059 	 */
2060 	thread__put(th);
2061 
2062 	if (lock)
2063 		up_write(&threads->lock);
2064 }
2065 
2066 void machine__remove_thread(struct machine *machine, struct thread *th)
2067 {
2068 	return __machine__remove_thread(machine, th, true);
2069 }
2070 
2071 int machine__process_fork_event(struct machine *machine, union perf_event *event,
2072 				struct perf_sample *sample)
2073 {
2074 	struct thread *thread = machine__find_thread(machine,
2075 						     event->fork.pid,
2076 						     event->fork.tid);
2077 	struct thread *parent = machine__findnew_thread(machine,
2078 							event->fork.ppid,
2079 							event->fork.ptid);
2080 	bool do_maps_clone = true;
2081 	int err = 0;
2082 
2083 	if (dump_trace)
2084 		perf_event__fprintf_task(event, stdout);
2085 
2086 	/*
2087 	 * There may be an existing thread that is not actually the parent,
2088 	 * either because we are processing events out of order, or because the
2089 	 * (fork) event that would have removed the thread was lost. Assume the
2090 	 * latter case and continue on as best we can.
2091 	 */
2092 	if (parent->pid_ != (pid_t)event->fork.ppid) {
2093 		dump_printf("removing erroneous parent thread %d/%d\n",
2094 			    parent->pid_, parent->tid);
2095 		machine__remove_thread(machine, parent);
2096 		thread__put(parent);
2097 		parent = machine__findnew_thread(machine, event->fork.ppid,
2098 						 event->fork.ptid);
2099 	}
2100 
2101 	/* if a thread currently exists for the thread id remove it */
2102 	if (thread != NULL) {
2103 		machine__remove_thread(machine, thread);
2104 		thread__put(thread);
2105 	}
2106 
2107 	thread = machine__findnew_thread(machine, event->fork.pid,
2108 					 event->fork.tid);
2109 	/*
2110 	 * When synthesizing FORK events, we are trying to create thread
2111 	 * objects for the already running tasks on the machine.
2112 	 *
2113 	 * Normally, for a kernel FORK event, we want to clone the parent's
2114 	 * maps because that is what the kernel just did.
2115 	 *
2116 	 * But when synthesizing, this should not be done.  If we do, we end up
2117 	 * with overlapping maps as we process the synthesized MMAP2 events that
2118 	 * get delivered shortly thereafter.
2119 	 *
2120 	 * Use the FORK event misc flags in an internal way to signal this
2121 	 * situation, so we can elide the map clone when appropriate.
2122 	 */
2123 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2124 		do_maps_clone = false;
2125 
2126 	if (thread == NULL || parent == NULL ||
2127 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2128 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2129 		err = -1;
2130 	}
2131 	thread__put(thread);
2132 	thread__put(parent);
2133 
2134 	return err;
2135 }
2136 
2137 int machine__process_exit_event(struct machine *machine, union perf_event *event,
2138 				struct perf_sample *sample __maybe_unused)
2139 {
2140 	struct thread *thread = machine__find_thread(machine,
2141 						     event->fork.pid,
2142 						     event->fork.tid);
2143 
2144 	if (dump_trace)
2145 		perf_event__fprintf_task(event, stdout);
2146 
2147 	if (thread != NULL) {
2148 		thread__exited(thread);
2149 		thread__put(thread);
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 int machine__process_event(struct machine *machine, union perf_event *event,
2156 			   struct perf_sample *sample)
2157 {
2158 	int ret;
2159 
2160 	switch (event->header.type) {
2161 	case PERF_RECORD_COMM:
2162 		ret = machine__process_comm_event(machine, event, sample); break;
2163 	case PERF_RECORD_MMAP:
2164 		ret = machine__process_mmap_event(machine, event, sample); break;
2165 	case PERF_RECORD_NAMESPACES:
2166 		ret = machine__process_namespaces_event(machine, event, sample); break;
2167 	case PERF_RECORD_CGROUP:
2168 		ret = machine__process_cgroup_event(machine, event, sample); break;
2169 	case PERF_RECORD_MMAP2:
2170 		ret = machine__process_mmap2_event(machine, event, sample); break;
2171 	case PERF_RECORD_FORK:
2172 		ret = machine__process_fork_event(machine, event, sample); break;
2173 	case PERF_RECORD_EXIT:
2174 		ret = machine__process_exit_event(machine, event, sample); break;
2175 	case PERF_RECORD_LOST:
2176 		ret = machine__process_lost_event(machine, event, sample); break;
2177 	case PERF_RECORD_AUX:
2178 		ret = machine__process_aux_event(machine, event); break;
2179 	case PERF_RECORD_ITRACE_START:
2180 		ret = machine__process_itrace_start_event(machine, event); break;
2181 	case PERF_RECORD_LOST_SAMPLES:
2182 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2183 	case PERF_RECORD_SWITCH:
2184 	case PERF_RECORD_SWITCH_CPU_WIDE:
2185 		ret = machine__process_switch_event(machine, event); break;
2186 	case PERF_RECORD_KSYMBOL:
2187 		ret = machine__process_ksymbol(machine, event, sample); break;
2188 	case PERF_RECORD_BPF_EVENT:
2189 		ret = machine__process_bpf(machine, event, sample); break;
2190 	case PERF_RECORD_TEXT_POKE:
2191 		ret = machine__process_text_poke(machine, event, sample); break;
2192 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2193 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2194 	default:
2195 		ret = -1;
2196 		break;
2197 	}
2198 
2199 	return ret;
2200 }
2201 
2202 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2203 {
2204 	if (!regexec(regex, sym->name, 0, NULL, 0))
2205 		return true;
2206 	return false;
2207 }
2208 
2209 static void ip__resolve_ams(struct thread *thread,
2210 			    struct addr_map_symbol *ams,
2211 			    u64 ip)
2212 {
2213 	struct addr_location al;
2214 
2215 	memset(&al, 0, sizeof(al));
2216 	/*
2217 	 * We cannot use the header.misc hint to determine whether a
2218 	 * branch stack address is user, kernel, guest, hypervisor.
2219 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2220 	 * Thus, we have to try consecutively until we find a match
2221 	 * or else, the symbol is unknown
2222 	 */
2223 	thread__find_cpumode_addr_location(thread, ip, &al);
2224 
2225 	ams->addr = ip;
2226 	ams->al_addr = al.addr;
2227 	ams->al_level = al.level;
2228 	ams->ms.maps = al.maps;
2229 	ams->ms.sym = al.sym;
2230 	ams->ms.map = al.map;
2231 	ams->phys_addr = 0;
2232 	ams->data_page_size = 0;
2233 }
2234 
2235 static void ip__resolve_data(struct thread *thread,
2236 			     u8 m, struct addr_map_symbol *ams,
2237 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2238 {
2239 	struct addr_location al;
2240 
2241 	memset(&al, 0, sizeof(al));
2242 
2243 	thread__find_symbol(thread, m, addr, &al);
2244 
2245 	ams->addr = addr;
2246 	ams->al_addr = al.addr;
2247 	ams->al_level = al.level;
2248 	ams->ms.maps = al.maps;
2249 	ams->ms.sym = al.sym;
2250 	ams->ms.map = al.map;
2251 	ams->phys_addr = phys_addr;
2252 	ams->data_page_size = daddr_page_size;
2253 }
2254 
2255 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2256 				     struct addr_location *al)
2257 {
2258 	struct mem_info *mi = mem_info__new();
2259 
2260 	if (!mi)
2261 		return NULL;
2262 
2263 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2264 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2265 			 sample->addr, sample->phys_addr,
2266 			 sample->data_page_size);
2267 	mi->data_src.val = sample->data_src;
2268 
2269 	return mi;
2270 }
2271 
2272 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2273 {
2274 	struct map *map = ms->map;
2275 	char *srcline = NULL;
2276 	struct dso *dso;
2277 
2278 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2279 		return srcline;
2280 
2281 	dso = map__dso(map);
2282 	srcline = srcline__tree_find(&dso->srclines, ip);
2283 	if (!srcline) {
2284 		bool show_sym = false;
2285 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2286 
2287 		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2288 				      ms->sym, show_sym, show_addr, ip);
2289 		srcline__tree_insert(&dso->srclines, ip, srcline);
2290 	}
2291 
2292 	return srcline;
2293 }
2294 
2295 struct iterations {
2296 	int nr_loop_iter;
2297 	u64 cycles;
2298 };
2299 
2300 static int add_callchain_ip(struct thread *thread,
2301 			    struct callchain_cursor *cursor,
2302 			    struct symbol **parent,
2303 			    struct addr_location *root_al,
2304 			    u8 *cpumode,
2305 			    u64 ip,
2306 			    bool branch,
2307 			    struct branch_flags *flags,
2308 			    struct iterations *iter,
2309 			    u64 branch_from)
2310 {
2311 	struct map_symbol ms;
2312 	struct addr_location al;
2313 	int nr_loop_iter = 0, err;
2314 	u64 iter_cycles = 0;
2315 	const char *srcline = NULL;
2316 
2317 	al.filtered = 0;
2318 	al.sym = NULL;
2319 	al.srcline = NULL;
2320 	if (!cpumode) {
2321 		thread__find_cpumode_addr_location(thread, ip, &al);
2322 	} else {
2323 		if (ip >= PERF_CONTEXT_MAX) {
2324 			switch (ip) {
2325 			case PERF_CONTEXT_HV:
2326 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2327 				break;
2328 			case PERF_CONTEXT_KERNEL:
2329 				*cpumode = PERF_RECORD_MISC_KERNEL;
2330 				break;
2331 			case PERF_CONTEXT_USER:
2332 				*cpumode = PERF_RECORD_MISC_USER;
2333 				break;
2334 			default:
2335 				pr_debug("invalid callchain context: "
2336 					 "%"PRId64"\n", (s64) ip);
2337 				/*
2338 				 * It seems the callchain is corrupted.
2339 				 * Discard all.
2340 				 */
2341 				callchain_cursor_reset(cursor);
2342 				return 1;
2343 			}
2344 			return 0;
2345 		}
2346 		thread__find_symbol(thread, *cpumode, ip, &al);
2347 	}
2348 
2349 	if (al.sym != NULL) {
2350 		if (perf_hpp_list.parent && !*parent &&
2351 		    symbol__match_regex(al.sym, &parent_regex))
2352 			*parent = al.sym;
2353 		else if (have_ignore_callees && root_al &&
2354 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2355 			/* Treat this symbol as the root,
2356 			   forgetting its callees. */
2357 			*root_al = al;
2358 			callchain_cursor_reset(cursor);
2359 		}
2360 	}
2361 
2362 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2363 		return 0;
2364 
2365 	if (iter) {
2366 		nr_loop_iter = iter->nr_loop_iter;
2367 		iter_cycles = iter->cycles;
2368 	}
2369 
2370 	ms.maps = al.maps;
2371 	ms.map = al.map;
2372 	ms.sym = al.sym;
2373 
2374 	if (!branch && append_inlines(cursor, &ms, ip) == 0)
2375 		return 0;
2376 
2377 	srcline = callchain_srcline(&ms, al.addr);
2378 	err = callchain_cursor_append(cursor, ip, &ms,
2379 				      branch, flags, nr_loop_iter,
2380 				      iter_cycles, branch_from, srcline);
2381 	map__put(al.map);
2382 	return err;
2383 }
2384 
2385 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2386 					   struct addr_location *al)
2387 {
2388 	unsigned int i;
2389 	const struct branch_stack *bs = sample->branch_stack;
2390 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2391 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2392 
2393 	if (!bi)
2394 		return NULL;
2395 
2396 	for (i = 0; i < bs->nr; i++) {
2397 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2398 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2399 		bi[i].flags = entries[i].flags;
2400 	}
2401 	return bi;
2402 }
2403 
2404 static void save_iterations(struct iterations *iter,
2405 			    struct branch_entry *be, int nr)
2406 {
2407 	int i;
2408 
2409 	iter->nr_loop_iter++;
2410 	iter->cycles = 0;
2411 
2412 	for (i = 0; i < nr; i++)
2413 		iter->cycles += be[i].flags.cycles;
2414 }
2415 
2416 #define CHASHSZ 127
2417 #define CHASHBITS 7
2418 #define NO_ENTRY 0xff
2419 
2420 #define PERF_MAX_BRANCH_DEPTH 127
2421 
2422 /* Remove loops. */
2423 static int remove_loops(struct branch_entry *l, int nr,
2424 			struct iterations *iter)
2425 {
2426 	int i, j, off;
2427 	unsigned char chash[CHASHSZ];
2428 
2429 	memset(chash, NO_ENTRY, sizeof(chash));
2430 
2431 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2432 
2433 	for (i = 0; i < nr; i++) {
2434 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2435 
2436 		/* no collision handling for now */
2437 		if (chash[h] == NO_ENTRY) {
2438 			chash[h] = i;
2439 		} else if (l[chash[h]].from == l[i].from) {
2440 			bool is_loop = true;
2441 			/* check if it is a real loop */
2442 			off = 0;
2443 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2444 				if (l[j].from != l[i + off].from) {
2445 					is_loop = false;
2446 					break;
2447 				}
2448 			if (is_loop) {
2449 				j = nr - (i + off);
2450 				if (j > 0) {
2451 					save_iterations(iter + i + off,
2452 						l + i, off);
2453 
2454 					memmove(iter + i, iter + i + off,
2455 						j * sizeof(*iter));
2456 
2457 					memmove(l + i, l + i + off,
2458 						j * sizeof(*l));
2459 				}
2460 
2461 				nr -= off;
2462 			}
2463 		}
2464 	}
2465 	return nr;
2466 }
2467 
2468 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2469 				       struct callchain_cursor *cursor,
2470 				       struct perf_sample *sample,
2471 				       struct symbol **parent,
2472 				       struct addr_location *root_al,
2473 				       u64 branch_from,
2474 				       bool callee, int end)
2475 {
2476 	struct ip_callchain *chain = sample->callchain;
2477 	u8 cpumode = PERF_RECORD_MISC_USER;
2478 	int err, i;
2479 
2480 	if (callee) {
2481 		for (i = 0; i < end + 1; i++) {
2482 			err = add_callchain_ip(thread, cursor, parent,
2483 					       root_al, &cpumode, chain->ips[i],
2484 					       false, NULL, NULL, branch_from);
2485 			if (err)
2486 				return err;
2487 		}
2488 		return 0;
2489 	}
2490 
2491 	for (i = end; i >= 0; i--) {
2492 		err = add_callchain_ip(thread, cursor, parent,
2493 				       root_al, &cpumode, chain->ips[i],
2494 				       false, NULL, NULL, branch_from);
2495 		if (err)
2496 			return err;
2497 	}
2498 
2499 	return 0;
2500 }
2501 
2502 static void save_lbr_cursor_node(struct thread *thread,
2503 				 struct callchain_cursor *cursor,
2504 				 int idx)
2505 {
2506 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2507 
2508 	if (!lbr_stitch)
2509 		return;
2510 
2511 	if (cursor->pos == cursor->nr) {
2512 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2513 		return;
2514 	}
2515 
2516 	if (!cursor->curr)
2517 		cursor->curr = cursor->first;
2518 	else
2519 		cursor->curr = cursor->curr->next;
2520 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2521 	       sizeof(struct callchain_cursor_node));
2522 
2523 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2524 	cursor->pos++;
2525 }
2526 
2527 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2528 				    struct callchain_cursor *cursor,
2529 				    struct perf_sample *sample,
2530 				    struct symbol **parent,
2531 				    struct addr_location *root_al,
2532 				    u64 *branch_from,
2533 				    bool callee)
2534 {
2535 	struct branch_stack *lbr_stack = sample->branch_stack;
2536 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2537 	u8 cpumode = PERF_RECORD_MISC_USER;
2538 	int lbr_nr = lbr_stack->nr;
2539 	struct branch_flags *flags;
2540 	int err, i;
2541 	u64 ip;
2542 
2543 	/*
2544 	 * The curr and pos are not used in writing session. They are cleared
2545 	 * in callchain_cursor_commit() when the writing session is closed.
2546 	 * Using curr and pos to track the current cursor node.
2547 	 */
2548 	if (thread->lbr_stitch) {
2549 		cursor->curr = NULL;
2550 		cursor->pos = cursor->nr;
2551 		if (cursor->nr) {
2552 			cursor->curr = cursor->first;
2553 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2554 				cursor->curr = cursor->curr->next;
2555 		}
2556 	}
2557 
2558 	if (callee) {
2559 		/* Add LBR ip from first entries.to */
2560 		ip = entries[0].to;
2561 		flags = &entries[0].flags;
2562 		*branch_from = entries[0].from;
2563 		err = add_callchain_ip(thread, cursor, parent,
2564 				       root_al, &cpumode, ip,
2565 				       true, flags, NULL,
2566 				       *branch_from);
2567 		if (err)
2568 			return err;
2569 
2570 		/*
2571 		 * The number of cursor node increases.
2572 		 * Move the current cursor node.
2573 		 * But does not need to save current cursor node for entry 0.
2574 		 * It's impossible to stitch the whole LBRs of previous sample.
2575 		 */
2576 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2577 			if (!cursor->curr)
2578 				cursor->curr = cursor->first;
2579 			else
2580 				cursor->curr = cursor->curr->next;
2581 			cursor->pos++;
2582 		}
2583 
2584 		/* Add LBR ip from entries.from one by one. */
2585 		for (i = 0; i < lbr_nr; i++) {
2586 			ip = entries[i].from;
2587 			flags = &entries[i].flags;
2588 			err = add_callchain_ip(thread, cursor, parent,
2589 					       root_al, &cpumode, ip,
2590 					       true, flags, NULL,
2591 					       *branch_from);
2592 			if (err)
2593 				return err;
2594 			save_lbr_cursor_node(thread, cursor, i);
2595 		}
2596 		return 0;
2597 	}
2598 
2599 	/* Add LBR ip from entries.from one by one. */
2600 	for (i = lbr_nr - 1; i >= 0; i--) {
2601 		ip = entries[i].from;
2602 		flags = &entries[i].flags;
2603 		err = add_callchain_ip(thread, cursor, parent,
2604 				       root_al, &cpumode, ip,
2605 				       true, flags, NULL,
2606 				       *branch_from);
2607 		if (err)
2608 			return err;
2609 		save_lbr_cursor_node(thread, cursor, i);
2610 	}
2611 
2612 	/* Add LBR ip from first entries.to */
2613 	ip = entries[0].to;
2614 	flags = &entries[0].flags;
2615 	*branch_from = entries[0].from;
2616 	err = add_callchain_ip(thread, cursor, parent,
2617 			       root_al, &cpumode, ip,
2618 			       true, flags, NULL,
2619 			       *branch_from);
2620 	if (err)
2621 		return err;
2622 
2623 	return 0;
2624 }
2625 
2626 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2627 					     struct callchain_cursor *cursor)
2628 {
2629 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2630 	struct callchain_cursor_node *cnode;
2631 	struct stitch_list *stitch_node;
2632 	int err;
2633 
2634 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2635 		cnode = &stitch_node->cursor;
2636 
2637 		err = callchain_cursor_append(cursor, cnode->ip,
2638 					      &cnode->ms,
2639 					      cnode->branch,
2640 					      &cnode->branch_flags,
2641 					      cnode->nr_loop_iter,
2642 					      cnode->iter_cycles,
2643 					      cnode->branch_from,
2644 					      cnode->srcline);
2645 		if (err)
2646 			return err;
2647 	}
2648 	return 0;
2649 }
2650 
2651 static struct stitch_list *get_stitch_node(struct thread *thread)
2652 {
2653 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2654 	struct stitch_list *stitch_node;
2655 
2656 	if (!list_empty(&lbr_stitch->free_lists)) {
2657 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2658 					       struct stitch_list, node);
2659 		list_del(&stitch_node->node);
2660 
2661 		return stitch_node;
2662 	}
2663 
2664 	return malloc(sizeof(struct stitch_list));
2665 }
2666 
2667 static bool has_stitched_lbr(struct thread *thread,
2668 			     struct perf_sample *cur,
2669 			     struct perf_sample *prev,
2670 			     unsigned int max_lbr,
2671 			     bool callee)
2672 {
2673 	struct branch_stack *cur_stack = cur->branch_stack;
2674 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2675 	struct branch_stack *prev_stack = prev->branch_stack;
2676 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2677 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2678 	int i, j, nr_identical_branches = 0;
2679 	struct stitch_list *stitch_node;
2680 	u64 cur_base, distance;
2681 
2682 	if (!cur_stack || !prev_stack)
2683 		return false;
2684 
2685 	/* Find the physical index of the base-of-stack for current sample. */
2686 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2687 
2688 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2689 						     (max_lbr + prev_stack->hw_idx - cur_base);
2690 	/* Previous sample has shorter stack. Nothing can be stitched. */
2691 	if (distance + 1 > prev_stack->nr)
2692 		return false;
2693 
2694 	/*
2695 	 * Check if there are identical LBRs between two samples.
2696 	 * Identical LBRs must have same from, to and flags values. Also,
2697 	 * they have to be saved in the same LBR registers (same physical
2698 	 * index).
2699 	 *
2700 	 * Starts from the base-of-stack of current sample.
2701 	 */
2702 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2703 		if ((prev_entries[i].from != cur_entries[j].from) ||
2704 		    (prev_entries[i].to != cur_entries[j].to) ||
2705 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2706 			break;
2707 		nr_identical_branches++;
2708 	}
2709 
2710 	if (!nr_identical_branches)
2711 		return false;
2712 
2713 	/*
2714 	 * Save the LBRs between the base-of-stack of previous sample
2715 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2716 	 * These LBRs will be stitched later.
2717 	 */
2718 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2719 
2720 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2721 			continue;
2722 
2723 		stitch_node = get_stitch_node(thread);
2724 		if (!stitch_node)
2725 			return false;
2726 
2727 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2728 		       sizeof(struct callchain_cursor_node));
2729 
2730 		if (callee)
2731 			list_add(&stitch_node->node, &lbr_stitch->lists);
2732 		else
2733 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2734 	}
2735 
2736 	return true;
2737 }
2738 
2739 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2740 {
2741 	if (thread->lbr_stitch)
2742 		return true;
2743 
2744 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2745 	if (!thread->lbr_stitch)
2746 		goto err;
2747 
2748 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2749 	if (!thread->lbr_stitch->prev_lbr_cursor)
2750 		goto free_lbr_stitch;
2751 
2752 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2753 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2754 
2755 	return true;
2756 
2757 free_lbr_stitch:
2758 	zfree(&thread->lbr_stitch);
2759 err:
2760 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2761 	thread->lbr_stitch_enable = false;
2762 	return false;
2763 }
2764 
2765 /*
2766  * Resolve LBR callstack chain sample
2767  * Return:
2768  * 1 on success get LBR callchain information
2769  * 0 no available LBR callchain information, should try fp
2770  * negative error code on other errors.
2771  */
2772 static int resolve_lbr_callchain_sample(struct thread *thread,
2773 					struct callchain_cursor *cursor,
2774 					struct perf_sample *sample,
2775 					struct symbol **parent,
2776 					struct addr_location *root_al,
2777 					int max_stack,
2778 					unsigned int max_lbr)
2779 {
2780 	bool callee = (callchain_param.order == ORDER_CALLEE);
2781 	struct ip_callchain *chain = sample->callchain;
2782 	int chain_nr = min(max_stack, (int)chain->nr), i;
2783 	struct lbr_stitch *lbr_stitch;
2784 	bool stitched_lbr = false;
2785 	u64 branch_from = 0;
2786 	int err;
2787 
2788 	for (i = 0; i < chain_nr; i++) {
2789 		if (chain->ips[i] == PERF_CONTEXT_USER)
2790 			break;
2791 	}
2792 
2793 	/* LBR only affects the user callchain */
2794 	if (i == chain_nr)
2795 		return 0;
2796 
2797 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2798 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2799 		lbr_stitch = thread->lbr_stitch;
2800 
2801 		stitched_lbr = has_stitched_lbr(thread, sample,
2802 						&lbr_stitch->prev_sample,
2803 						max_lbr, callee);
2804 
2805 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2806 			list_replace_init(&lbr_stitch->lists,
2807 					  &lbr_stitch->free_lists);
2808 		}
2809 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2810 	}
2811 
2812 	if (callee) {
2813 		/* Add kernel ip */
2814 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2815 						  parent, root_al, branch_from,
2816 						  true, i);
2817 		if (err)
2818 			goto error;
2819 
2820 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2821 					       root_al, &branch_from, true);
2822 		if (err)
2823 			goto error;
2824 
2825 		if (stitched_lbr) {
2826 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2827 			if (err)
2828 				goto error;
2829 		}
2830 
2831 	} else {
2832 		if (stitched_lbr) {
2833 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2834 			if (err)
2835 				goto error;
2836 		}
2837 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2838 					       root_al, &branch_from, false);
2839 		if (err)
2840 			goto error;
2841 
2842 		/* Add kernel ip */
2843 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2844 						  parent, root_al, branch_from,
2845 						  false, i);
2846 		if (err)
2847 			goto error;
2848 	}
2849 	return 1;
2850 
2851 error:
2852 	return (err < 0) ? err : 0;
2853 }
2854 
2855 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2856 			     struct callchain_cursor *cursor,
2857 			     struct symbol **parent,
2858 			     struct addr_location *root_al,
2859 			     u8 *cpumode, int ent)
2860 {
2861 	int err = 0;
2862 
2863 	while (--ent >= 0) {
2864 		u64 ip = chain->ips[ent];
2865 
2866 		if (ip >= PERF_CONTEXT_MAX) {
2867 			err = add_callchain_ip(thread, cursor, parent,
2868 					       root_al, cpumode, ip,
2869 					       false, NULL, NULL, 0);
2870 			break;
2871 		}
2872 	}
2873 	return err;
2874 }
2875 
2876 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2877 		struct thread *thread, int usr_idx)
2878 {
2879 	if (machine__normalized_is(maps__machine(thread->maps), "arm64"))
2880 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2881 	else
2882 		return 0;
2883 }
2884 
2885 static int thread__resolve_callchain_sample(struct thread *thread,
2886 					    struct callchain_cursor *cursor,
2887 					    struct evsel *evsel,
2888 					    struct perf_sample *sample,
2889 					    struct symbol **parent,
2890 					    struct addr_location *root_al,
2891 					    int max_stack)
2892 {
2893 	struct branch_stack *branch = sample->branch_stack;
2894 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2895 	struct ip_callchain *chain = sample->callchain;
2896 	int chain_nr = 0;
2897 	u8 cpumode = PERF_RECORD_MISC_USER;
2898 	int i, j, err, nr_entries, usr_idx;
2899 	int skip_idx = -1;
2900 	int first_call = 0;
2901 	u64 leaf_frame_caller;
2902 
2903 	if (chain)
2904 		chain_nr = chain->nr;
2905 
2906 	if (evsel__has_branch_callstack(evsel)) {
2907 		struct perf_env *env = evsel__env(evsel);
2908 
2909 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2910 						   root_al, max_stack,
2911 						   !env ? 0 : env->max_branches);
2912 		if (err)
2913 			return (err < 0) ? err : 0;
2914 	}
2915 
2916 	/*
2917 	 * Based on DWARF debug information, some architectures skip
2918 	 * a callchain entry saved by the kernel.
2919 	 */
2920 	skip_idx = arch_skip_callchain_idx(thread, chain);
2921 
2922 	/*
2923 	 * Add branches to call stack for easier browsing. This gives
2924 	 * more context for a sample than just the callers.
2925 	 *
2926 	 * This uses individual histograms of paths compared to the
2927 	 * aggregated histograms the normal LBR mode uses.
2928 	 *
2929 	 * Limitations for now:
2930 	 * - No extra filters
2931 	 * - No annotations (should annotate somehow)
2932 	 */
2933 
2934 	if (branch && callchain_param.branch_callstack) {
2935 		int nr = min(max_stack, (int)branch->nr);
2936 		struct branch_entry be[nr];
2937 		struct iterations iter[nr];
2938 
2939 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2940 			pr_warning("corrupted branch chain. skipping...\n");
2941 			goto check_calls;
2942 		}
2943 
2944 		for (i = 0; i < nr; i++) {
2945 			if (callchain_param.order == ORDER_CALLEE) {
2946 				be[i] = entries[i];
2947 
2948 				if (chain == NULL)
2949 					continue;
2950 
2951 				/*
2952 				 * Check for overlap into the callchain.
2953 				 * The return address is one off compared to
2954 				 * the branch entry. To adjust for this
2955 				 * assume the calling instruction is not longer
2956 				 * than 8 bytes.
2957 				 */
2958 				if (i == skip_idx ||
2959 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2960 					first_call++;
2961 				else if (be[i].from < chain->ips[first_call] &&
2962 				    be[i].from >= chain->ips[first_call] - 8)
2963 					first_call++;
2964 			} else
2965 				be[i] = entries[branch->nr - i - 1];
2966 		}
2967 
2968 		memset(iter, 0, sizeof(struct iterations) * nr);
2969 		nr = remove_loops(be, nr, iter);
2970 
2971 		for (i = 0; i < nr; i++) {
2972 			err = add_callchain_ip(thread, cursor, parent,
2973 					       root_al,
2974 					       NULL, be[i].to,
2975 					       true, &be[i].flags,
2976 					       NULL, be[i].from);
2977 
2978 			if (!err)
2979 				err = add_callchain_ip(thread, cursor, parent, root_al,
2980 						       NULL, be[i].from,
2981 						       true, &be[i].flags,
2982 						       &iter[i], 0);
2983 			if (err == -EINVAL)
2984 				break;
2985 			if (err)
2986 				return err;
2987 		}
2988 
2989 		if (chain_nr == 0)
2990 			return 0;
2991 
2992 		chain_nr -= nr;
2993 	}
2994 
2995 check_calls:
2996 	if (chain && callchain_param.order != ORDER_CALLEE) {
2997 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2998 					&cpumode, chain->nr - first_call);
2999 		if (err)
3000 			return (err < 0) ? err : 0;
3001 	}
3002 	for (i = first_call, nr_entries = 0;
3003 	     i < chain_nr && nr_entries < max_stack; i++) {
3004 		u64 ip;
3005 
3006 		if (callchain_param.order == ORDER_CALLEE)
3007 			j = i;
3008 		else
3009 			j = chain->nr - i - 1;
3010 
3011 #ifdef HAVE_SKIP_CALLCHAIN_IDX
3012 		if (j == skip_idx)
3013 			continue;
3014 #endif
3015 		ip = chain->ips[j];
3016 		if (ip < PERF_CONTEXT_MAX)
3017                        ++nr_entries;
3018 		else if (callchain_param.order != ORDER_CALLEE) {
3019 			err = find_prev_cpumode(chain, thread, cursor, parent,
3020 						root_al, &cpumode, j);
3021 			if (err)
3022 				return (err < 0) ? err : 0;
3023 			continue;
3024 		}
3025 
3026 		/*
3027 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3028 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3029 		 * the index will be different in order to add the missing frame
3030 		 * at the right place.
3031 		 */
3032 
3033 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3034 
3035 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3036 
3037 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3038 
3039 			/*
3040 			 * check if leaf_frame_Caller != ip to not add the same
3041 			 * value twice.
3042 			 */
3043 
3044 			if (leaf_frame_caller && leaf_frame_caller != ip) {
3045 
3046 				err = add_callchain_ip(thread, cursor, parent,
3047 					       root_al, &cpumode, leaf_frame_caller,
3048 					       false, NULL, NULL, 0);
3049 				if (err)
3050 					return (err < 0) ? err : 0;
3051 			}
3052 		}
3053 
3054 		err = add_callchain_ip(thread, cursor, parent,
3055 				       root_al, &cpumode, ip,
3056 				       false, NULL, NULL, 0);
3057 
3058 		if (err)
3059 			return (err < 0) ? err : 0;
3060 	}
3061 
3062 	return 0;
3063 }
3064 
3065 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3066 {
3067 	struct symbol *sym = ms->sym;
3068 	struct map *map = ms->map;
3069 	struct inline_node *inline_node;
3070 	struct inline_list *ilist;
3071 	struct dso *dso;
3072 	u64 addr;
3073 	int ret = 1;
3074 
3075 	if (!symbol_conf.inline_name || !map || !sym)
3076 		return ret;
3077 
3078 	addr = map__dso_map_ip(map, ip);
3079 	addr = map__rip_2objdump(map, addr);
3080 	dso = map__dso(map);
3081 
3082 	inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3083 	if (!inline_node) {
3084 		inline_node = dso__parse_addr_inlines(dso, addr, sym);
3085 		if (!inline_node)
3086 			return ret;
3087 		inlines__tree_insert(&dso->inlined_nodes, inline_node);
3088 	}
3089 
3090 	list_for_each_entry(ilist, &inline_node->val, list) {
3091 		struct map_symbol ilist_ms = {
3092 			.maps = ms->maps,
3093 			.map = map,
3094 			.sym = ilist->symbol,
3095 		};
3096 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3097 					      NULL, 0, 0, 0, ilist->srcline);
3098 
3099 		if (ret != 0)
3100 			return ret;
3101 	}
3102 
3103 	return ret;
3104 }
3105 
3106 static int unwind_entry(struct unwind_entry *entry, void *arg)
3107 {
3108 	struct callchain_cursor *cursor = arg;
3109 	const char *srcline = NULL;
3110 	u64 addr = entry->ip;
3111 
3112 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3113 		return 0;
3114 
3115 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3116 		return 0;
3117 
3118 	/*
3119 	 * Convert entry->ip from a virtual address to an offset in
3120 	 * its corresponding binary.
3121 	 */
3122 	if (entry->ms.map)
3123 		addr = map__dso_map_ip(entry->ms.map, entry->ip);
3124 
3125 	srcline = callchain_srcline(&entry->ms, addr);
3126 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3127 				       false, NULL, 0, 0, 0, srcline);
3128 }
3129 
3130 static int thread__resolve_callchain_unwind(struct thread *thread,
3131 					    struct callchain_cursor *cursor,
3132 					    struct evsel *evsel,
3133 					    struct perf_sample *sample,
3134 					    int max_stack)
3135 {
3136 	/* Can we do dwarf post unwind? */
3137 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3138 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3139 		return 0;
3140 
3141 	/* Bail out if nothing was captured. */
3142 	if ((!sample->user_regs.regs) ||
3143 	    (!sample->user_stack.size))
3144 		return 0;
3145 
3146 	return unwind__get_entries(unwind_entry, cursor,
3147 				   thread, sample, max_stack, false);
3148 }
3149 
3150 int thread__resolve_callchain(struct thread *thread,
3151 			      struct callchain_cursor *cursor,
3152 			      struct evsel *evsel,
3153 			      struct perf_sample *sample,
3154 			      struct symbol **parent,
3155 			      struct addr_location *root_al,
3156 			      int max_stack)
3157 {
3158 	int ret = 0;
3159 
3160 	callchain_cursor_reset(cursor);
3161 
3162 	if (callchain_param.order == ORDER_CALLEE) {
3163 		ret = thread__resolve_callchain_sample(thread, cursor,
3164 						       evsel, sample,
3165 						       parent, root_al,
3166 						       max_stack);
3167 		if (ret)
3168 			return ret;
3169 		ret = thread__resolve_callchain_unwind(thread, cursor,
3170 						       evsel, sample,
3171 						       max_stack);
3172 	} else {
3173 		ret = thread__resolve_callchain_unwind(thread, cursor,
3174 						       evsel, sample,
3175 						       max_stack);
3176 		if (ret)
3177 			return ret;
3178 		ret = thread__resolve_callchain_sample(thread, cursor,
3179 						       evsel, sample,
3180 						       parent, root_al,
3181 						       max_stack);
3182 	}
3183 
3184 	return ret;
3185 }
3186 
3187 int machine__for_each_thread(struct machine *machine,
3188 			     int (*fn)(struct thread *thread, void *p),
3189 			     void *priv)
3190 {
3191 	struct threads *threads;
3192 	struct rb_node *nd;
3193 	struct thread *thread;
3194 	int rc = 0;
3195 	int i;
3196 
3197 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3198 		threads = &machine->threads[i];
3199 		for (nd = rb_first_cached(&threads->entries); nd;
3200 		     nd = rb_next(nd)) {
3201 			thread = rb_entry(nd, struct thread, rb_node);
3202 			rc = fn(thread, priv);
3203 			if (rc != 0)
3204 				return rc;
3205 		}
3206 
3207 		list_for_each_entry(thread, &threads->dead, node) {
3208 			rc = fn(thread, priv);
3209 			if (rc != 0)
3210 				return rc;
3211 		}
3212 	}
3213 	return rc;
3214 }
3215 
3216 int machines__for_each_thread(struct machines *machines,
3217 			      int (*fn)(struct thread *thread, void *p),
3218 			      void *priv)
3219 {
3220 	struct rb_node *nd;
3221 	int rc = 0;
3222 
3223 	rc = machine__for_each_thread(&machines->host, fn, priv);
3224 	if (rc != 0)
3225 		return rc;
3226 
3227 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3228 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3229 
3230 		rc = machine__for_each_thread(machine, fn, priv);
3231 		if (rc != 0)
3232 			return rc;
3233 	}
3234 	return rc;
3235 }
3236 
3237 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3238 {
3239 	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3240 		return -1;
3241 
3242 	return machine->current_tid[cpu];
3243 }
3244 
3245 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3246 			     pid_t tid)
3247 {
3248 	struct thread *thread;
3249 	const pid_t init_val = -1;
3250 
3251 	if (cpu < 0)
3252 		return -EINVAL;
3253 
3254 	if (realloc_array_as_needed(machine->current_tid,
3255 				    machine->current_tid_sz,
3256 				    (unsigned int)cpu,
3257 				    &init_val))
3258 		return -ENOMEM;
3259 
3260 	machine->current_tid[cpu] = tid;
3261 
3262 	thread = machine__findnew_thread(machine, pid, tid);
3263 	if (!thread)
3264 		return -ENOMEM;
3265 
3266 	thread->cpu = cpu;
3267 	thread__put(thread);
3268 
3269 	return 0;
3270 }
3271 
3272 /*
3273  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3274  * machine__normalized_is() if a normalized arch is needed.
3275  */
3276 bool machine__is(struct machine *machine, const char *arch)
3277 {
3278 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3279 }
3280 
3281 bool machine__normalized_is(struct machine *machine, const char *arch)
3282 {
3283 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3284 }
3285 
3286 int machine__nr_cpus_avail(struct machine *machine)
3287 {
3288 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3289 }
3290 
3291 int machine__get_kernel_start(struct machine *machine)
3292 {
3293 	struct map *map = machine__kernel_map(machine);
3294 	int err = 0;
3295 
3296 	/*
3297 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3298 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3299 	 * all addresses including kernel addresses are less than 2^32.  In
3300 	 * that case (32-bit system), if the kernel mapping is unknown, all
3301 	 * addresses will be assumed to be in user space - see
3302 	 * machine__kernel_ip().
3303 	 */
3304 	machine->kernel_start = 1ULL << 63;
3305 	if (map) {
3306 		err = map__load(map);
3307 		/*
3308 		 * On x86_64, PTI entry trampolines are less than the
3309 		 * start of kernel text, but still above 2^63. So leave
3310 		 * kernel_start = 1ULL << 63 for x86_64.
3311 		 */
3312 		if (!err && !machine__is(machine, "x86_64"))
3313 			machine->kernel_start = map__start(map);
3314 	}
3315 	return err;
3316 }
3317 
3318 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3319 {
3320 	u8 addr_cpumode = cpumode;
3321 	bool kernel_ip;
3322 
3323 	if (!machine->single_address_space)
3324 		goto out;
3325 
3326 	kernel_ip = machine__kernel_ip(machine, addr);
3327 	switch (cpumode) {
3328 	case PERF_RECORD_MISC_KERNEL:
3329 	case PERF_RECORD_MISC_USER:
3330 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3331 					   PERF_RECORD_MISC_USER;
3332 		break;
3333 	case PERF_RECORD_MISC_GUEST_KERNEL:
3334 	case PERF_RECORD_MISC_GUEST_USER:
3335 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3336 					   PERF_RECORD_MISC_GUEST_USER;
3337 		break;
3338 	default:
3339 		break;
3340 	}
3341 out:
3342 	return addr_cpumode;
3343 }
3344 
3345 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3346 {
3347 	return dsos__findnew_id(&machine->dsos, filename, id);
3348 }
3349 
3350 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3351 {
3352 	return machine__findnew_dso_id(machine, filename, NULL);
3353 }
3354 
3355 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3356 {
3357 	struct machine *machine = vmachine;
3358 	struct map *map;
3359 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3360 
3361 	if (sym == NULL)
3362 		return NULL;
3363 
3364 	*modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3365 	*addrp = map__unmap_ip(map, sym->start);
3366 	return sym->name;
3367 }
3368 
3369 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3370 {
3371 	struct dso *pos;
3372 	int err = 0;
3373 
3374 	list_for_each_entry(pos, &machine->dsos.head, node) {
3375 		if (fn(pos, machine, priv))
3376 			err = -1;
3377 	}
3378 	return err;
3379 }
3380 
3381 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3382 {
3383 	struct maps *maps = machine__kernel_maps(machine);
3384 	struct map_rb_node *pos;
3385 	int err = 0;
3386 
3387 	maps__for_each_entry(maps, pos) {
3388 		err = fn(pos->map, priv);
3389 		if (err != 0) {
3390 			break;
3391 		}
3392 	}
3393 	return err;
3394 }
3395 
3396 bool machine__is_lock_function(struct machine *machine, u64 addr)
3397 {
3398 	if (!machine->sched.text_start) {
3399 		struct map *kmap;
3400 		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3401 
3402 		if (!sym) {
3403 			/* to avoid retry */
3404 			machine->sched.text_start = 1;
3405 			return false;
3406 		}
3407 
3408 		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3409 
3410 		/* should not fail from here */
3411 		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3412 		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3413 
3414 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3415 		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3416 
3417 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3418 		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3419 	}
3420 
3421 	/* failed to get kernel symbols */
3422 	if (machine->sched.text_start == 1)
3423 		return false;
3424 
3425 	/* mutex and rwsem functions are in sched text section */
3426 	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3427 		return true;
3428 
3429 	/* spinlock functions are in lock text section */
3430 	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3431 		return true;
3432 
3433 	return false;
3434 }
3435