xref: /linux/tools/perf/util/machine.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "mem-info.h"
20 #include "path.h"
21 #include "srcline.h"
22 #include "symbol.h"
23 #include "sort.h"
24 #include "strlist.h"
25 #include "target.h"
26 #include "thread.h"
27 #include "util.h"
28 #include "vdso.h"
29 #include <stdbool.h>
30 #include <sys/types.h>
31 #include <sys/stat.h>
32 #include <unistd.h>
33 #include "unwind.h"
34 #include "linux/hash.h"
35 #include "asm/bug.h"
36 #include "bpf-event.h"
37 #include <internal/lib.h> // page_size
38 #include "cgroup.h"
39 #include "arm64-frame-pointer-unwind-support.h"
40 
41 #include <linux/ctype.h>
42 #include <symbol/kallsyms.h>
43 #include <linux/mman.h>
44 #include <linux/string.h>
45 #include <linux/zalloc.h>
46 
47 static struct dso *machine__kernel_dso(struct machine *machine)
48 {
49 	return map__dso(machine->vmlinux_map);
50 }
51 
52 static int machine__set_mmap_name(struct machine *machine)
53 {
54 	if (machine__is_host(machine))
55 		machine->mmap_name = strdup("[kernel.kallsyms]");
56 	else if (machine__is_default_guest(machine))
57 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
59 			  machine->pid) < 0)
60 		machine->mmap_name = NULL;
61 
62 	return machine->mmap_name ? 0 : -ENOMEM;
63 }
64 
65 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
66 {
67 	char comm[64];
68 
69 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
70 	thread__set_comm(thread, comm, 0);
71 }
72 
73 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
74 {
75 	int err = -ENOMEM;
76 
77 	memset(machine, 0, sizeof(*machine));
78 	machine->kmaps = maps__new(machine);
79 	if (machine->kmaps == NULL)
80 		return -ENOMEM;
81 
82 	RB_CLEAR_NODE(&machine->rb_node);
83 	dsos__init(&machine->dsos);
84 
85 	threads__init(&machine->threads);
86 
87 	machine->vdso_info = NULL;
88 	machine->env = NULL;
89 
90 	machine->pid = pid;
91 
92 	machine->id_hdr_size = 0;
93 	machine->kptr_restrict_warned = false;
94 	machine->comm_exec = false;
95 	machine->kernel_start = 0;
96 	machine->vmlinux_map = NULL;
97 
98 	machine->root_dir = strdup(root_dir);
99 	if (machine->root_dir == NULL)
100 		goto out;
101 
102 	if (machine__set_mmap_name(machine))
103 		goto out;
104 
105 	if (pid != HOST_KERNEL_ID) {
106 		struct thread *thread = machine__findnew_thread(machine, -1,
107 								pid);
108 
109 		if (thread == NULL)
110 			goto out;
111 
112 		thread__set_guest_comm(thread, pid);
113 		thread__put(thread);
114 	}
115 
116 	machine->current_tid = NULL;
117 	err = 0;
118 
119 out:
120 	if (err) {
121 		zfree(&machine->kmaps);
122 		zfree(&machine->root_dir);
123 		zfree(&machine->mmap_name);
124 	}
125 	return 0;
126 }
127 
128 struct machine *machine__new_host(void)
129 {
130 	struct machine *machine = malloc(sizeof(*machine));
131 
132 	if (machine != NULL) {
133 		machine__init(machine, "", HOST_KERNEL_ID);
134 
135 		if (machine__create_kernel_maps(machine) < 0)
136 			goto out_delete;
137 	}
138 
139 	return machine;
140 out_delete:
141 	free(machine);
142 	return NULL;
143 }
144 
145 struct machine *machine__new_kallsyms(void)
146 {
147 	struct machine *machine = machine__new_host();
148 	/*
149 	 * FIXME:
150 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
151 	 *    ask for not using the kcore parsing code, once this one is fixed
152 	 *    to create a map per module.
153 	 */
154 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
155 		machine__delete(machine);
156 		machine = NULL;
157 	}
158 
159 	return machine;
160 }
161 
162 void machine__delete_threads(struct machine *machine)
163 {
164 	threads__remove_all_threads(&machine->threads);
165 }
166 
167 void machine__exit(struct machine *machine)
168 {
169 	if (machine == NULL)
170 		return;
171 
172 	machine__destroy_kernel_maps(machine);
173 	maps__zput(machine->kmaps);
174 	dsos__exit(&machine->dsos);
175 	machine__exit_vdso(machine);
176 	zfree(&machine->root_dir);
177 	zfree(&machine->mmap_name);
178 	zfree(&machine->current_tid);
179 	zfree(&machine->kallsyms_filename);
180 
181 	threads__exit(&machine->threads);
182 }
183 
184 void machine__delete(struct machine *machine)
185 {
186 	if (machine) {
187 		machine__exit(machine);
188 		free(machine);
189 	}
190 }
191 
192 void machines__init(struct machines *machines)
193 {
194 	machine__init(&machines->host, "", HOST_KERNEL_ID);
195 	machines->guests = RB_ROOT_CACHED;
196 }
197 
198 void machines__exit(struct machines *machines)
199 {
200 	machine__exit(&machines->host);
201 	/* XXX exit guest */
202 }
203 
204 struct machine *machines__add(struct machines *machines, pid_t pid,
205 			      const char *root_dir)
206 {
207 	struct rb_node **p = &machines->guests.rb_root.rb_node;
208 	struct rb_node *parent = NULL;
209 	struct machine *pos, *machine = malloc(sizeof(*machine));
210 	bool leftmost = true;
211 
212 	if (machine == NULL)
213 		return NULL;
214 
215 	if (machine__init(machine, root_dir, pid) != 0) {
216 		free(machine);
217 		return NULL;
218 	}
219 
220 	while (*p != NULL) {
221 		parent = *p;
222 		pos = rb_entry(parent, struct machine, rb_node);
223 		if (pid < pos->pid)
224 			p = &(*p)->rb_left;
225 		else {
226 			p = &(*p)->rb_right;
227 			leftmost = false;
228 		}
229 	}
230 
231 	rb_link_node(&machine->rb_node, parent, p);
232 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
233 
234 	machine->machines = machines;
235 
236 	return machine;
237 }
238 
239 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
240 {
241 	struct rb_node *nd;
242 
243 	machines->host.comm_exec = comm_exec;
244 
245 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
246 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
247 
248 		machine->comm_exec = comm_exec;
249 	}
250 }
251 
252 struct machine *machines__find(struct machines *machines, pid_t pid)
253 {
254 	struct rb_node **p = &machines->guests.rb_root.rb_node;
255 	struct rb_node *parent = NULL;
256 	struct machine *machine;
257 	struct machine *default_machine = NULL;
258 
259 	if (pid == HOST_KERNEL_ID)
260 		return &machines->host;
261 
262 	while (*p != NULL) {
263 		parent = *p;
264 		machine = rb_entry(parent, struct machine, rb_node);
265 		if (pid < machine->pid)
266 			p = &(*p)->rb_left;
267 		else if (pid > machine->pid)
268 			p = &(*p)->rb_right;
269 		else
270 			return machine;
271 		if (!machine->pid)
272 			default_machine = machine;
273 	}
274 
275 	return default_machine;
276 }
277 
278 struct machine *machines__findnew(struct machines *machines, pid_t pid)
279 {
280 	char path[PATH_MAX];
281 	const char *root_dir = "";
282 	struct machine *machine = machines__find(machines, pid);
283 
284 	if (machine && (machine->pid == pid))
285 		goto out;
286 
287 	if ((pid != HOST_KERNEL_ID) &&
288 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
289 	    (symbol_conf.guestmount)) {
290 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
291 		if (access(path, R_OK)) {
292 			static struct strlist *seen;
293 
294 			if (!seen)
295 				seen = strlist__new(NULL, NULL);
296 
297 			if (!strlist__has_entry(seen, path)) {
298 				pr_err("Can't access file %s\n", path);
299 				strlist__add(seen, path);
300 			}
301 			machine = NULL;
302 			goto out;
303 		}
304 		root_dir = path;
305 	}
306 
307 	machine = machines__add(machines, pid, root_dir);
308 out:
309 	return machine;
310 }
311 
312 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
313 {
314 	struct machine *machine = machines__find(machines, pid);
315 
316 	if (!machine)
317 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
318 	return machine;
319 }
320 
321 /*
322  * A common case for KVM test programs is that the test program acts as the
323  * hypervisor, creating, running and destroying the virtual machine, and
324  * providing the guest object code from its own object code. In this case,
325  * the VM is not running an OS, but only the functions loaded into it by the
326  * hypervisor test program, and conveniently, loaded at the same virtual
327  * addresses.
328  *
329  * Normally to resolve addresses, MMAP events are needed to map addresses
330  * back to the object code and debug symbols for that object code.
331  *
332  * Currently, there is no way to get such mapping information from guests
333  * but, in the scenario described above, the guest has the same mappings
334  * as the hypervisor, so support for that scenario can be achieved.
335  *
336  * To support that, copy the host thread's maps to the guest thread's maps.
337  * Note, we do not discover the guest until we encounter a guest event,
338  * which works well because it is not until then that we know that the host
339  * thread's maps have been set up.
340  *
341  * This function returns the guest thread. Apart from keeping the data
342  * structures sane, using a thread belonging to the guest machine, instead
343  * of the host thread, allows it to have its own comm (refer
344  * thread__set_guest_comm()).
345  */
346 static struct thread *findnew_guest_code(struct machine *machine,
347 					 struct machine *host_machine,
348 					 pid_t pid)
349 {
350 	struct thread *host_thread;
351 	struct thread *thread;
352 	int err;
353 
354 	if (!machine)
355 		return NULL;
356 
357 	thread = machine__findnew_thread(machine, -1, pid);
358 	if (!thread)
359 		return NULL;
360 
361 	/* Assume maps are set up if there are any */
362 	if (!maps__empty(thread__maps(thread)))
363 		return thread;
364 
365 	host_thread = machine__find_thread(host_machine, -1, pid);
366 	if (!host_thread)
367 		goto out_err;
368 
369 	thread__set_guest_comm(thread, pid);
370 
371 	/*
372 	 * Guest code can be found in hypervisor process at the same address
373 	 * so copy host maps.
374 	 */
375 	err = maps__copy_from(thread__maps(thread), thread__maps(host_thread));
376 	thread__put(host_thread);
377 	if (err)
378 		goto out_err;
379 
380 	return thread;
381 
382 out_err:
383 	thread__zput(thread);
384 	return NULL;
385 }
386 
387 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
388 {
389 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
390 	struct machine *machine = machines__findnew(machines, pid);
391 
392 	return findnew_guest_code(machine, host_machine, pid);
393 }
394 
395 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
396 {
397 	struct machines *machines = machine->machines;
398 	struct machine *host_machine;
399 
400 	if (!machines)
401 		return NULL;
402 
403 	host_machine = machines__find(machines, HOST_KERNEL_ID);
404 
405 	return findnew_guest_code(machine, host_machine, pid);
406 }
407 
408 void machines__process_guests(struct machines *machines,
409 			      machine__process_t process, void *data)
410 {
411 	struct rb_node *nd;
412 
413 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
414 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
415 		process(pos, data);
416 	}
417 }
418 
419 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
420 {
421 	struct rb_node *node;
422 	struct machine *machine;
423 
424 	machines->host.id_hdr_size = id_hdr_size;
425 
426 	for (node = rb_first_cached(&machines->guests); node;
427 	     node = rb_next(node)) {
428 		machine = rb_entry(node, struct machine, rb_node);
429 		machine->id_hdr_size = id_hdr_size;
430 	}
431 
432 	return;
433 }
434 
435 static void machine__update_thread_pid(struct machine *machine,
436 				       struct thread *th, pid_t pid)
437 {
438 	struct thread *leader;
439 
440 	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
441 		return;
442 
443 	thread__set_pid(th, pid);
444 
445 	if (thread__pid(th) == thread__tid(th))
446 		return;
447 
448 	leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
449 	if (!leader)
450 		goto out_err;
451 
452 	if (!thread__maps(leader))
453 		thread__set_maps(leader, maps__new(machine));
454 
455 	if (!thread__maps(leader))
456 		goto out_err;
457 
458 	if (thread__maps(th) == thread__maps(leader))
459 		goto out_put;
460 
461 	if (thread__maps(th)) {
462 		/*
463 		 * Maps are created from MMAP events which provide the pid and
464 		 * tid.  Consequently there never should be any maps on a thread
465 		 * with an unknown pid.  Just print an error if there are.
466 		 */
467 		if (!maps__empty(thread__maps(th)))
468 			pr_err("Discarding thread maps for %d:%d\n",
469 				thread__pid(th), thread__tid(th));
470 		maps__put(thread__maps(th));
471 	}
472 
473 	thread__set_maps(th, maps__get(thread__maps(leader)));
474 out_put:
475 	thread__put(leader);
476 	return;
477 out_err:
478 	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
479 	goto out_put;
480 }
481 
482 /*
483  * Caller must eventually drop thread->refcnt returned with a successful
484  * lookup/new thread inserted.
485  */
486 static struct thread *__machine__findnew_thread(struct machine *machine,
487 						pid_t pid,
488 						pid_t tid,
489 						bool create)
490 {
491 	struct thread *th = threads__find(&machine->threads, tid);
492 	bool created;
493 
494 	if (th) {
495 		machine__update_thread_pid(machine, th, pid);
496 		return th;
497 	}
498 	if (!create)
499 		return NULL;
500 
501 	th = threads__findnew(&machine->threads, pid, tid, &created);
502 	if (created) {
503 		/*
504 		 * We have to initialize maps separately after rb tree is
505 		 * updated.
506 		 *
507 		 * The reason is that we call machine__findnew_thread within
508 		 * thread__init_maps to find the thread leader and that would
509 		 * screwed the rb tree.
510 		 */
511 		if (thread__init_maps(th, machine)) {
512 			pr_err("Thread init failed thread %d\n", pid);
513 			threads__remove(&machine->threads, th);
514 			thread__put(th);
515 			return NULL;
516 		}
517 	} else
518 		machine__update_thread_pid(machine, th, pid);
519 
520 	return th;
521 }
522 
523 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
524 {
525 	return __machine__findnew_thread(machine, pid, tid, /*create=*/true);
526 }
527 
528 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
529 				    pid_t tid)
530 {
531 	return __machine__findnew_thread(machine, pid, tid, /*create=*/false);
532 }
533 
534 /*
535  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
536  * So here a single thread is created for that, but actually there is a separate
537  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
538  * is only 1. That causes problems for some tools, requiring workarounds. For
539  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
540  */
541 struct thread *machine__idle_thread(struct machine *machine)
542 {
543 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
544 
545 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
546 	    thread__set_namespaces(thread, 0, NULL))
547 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
548 
549 	return thread;
550 }
551 
552 struct comm *machine__thread_exec_comm(struct machine *machine,
553 				       struct thread *thread)
554 {
555 	if (machine->comm_exec)
556 		return thread__exec_comm(thread);
557 	else
558 		return thread__comm(thread);
559 }
560 
561 int machine__process_comm_event(struct machine *machine, union perf_event *event,
562 				struct perf_sample *sample)
563 {
564 	struct thread *thread = machine__findnew_thread(machine,
565 							event->comm.pid,
566 							event->comm.tid);
567 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
568 	int err = 0;
569 
570 	if (exec)
571 		machine->comm_exec = true;
572 
573 	if (dump_trace)
574 		perf_event__fprintf_comm(event, stdout);
575 
576 	if (thread == NULL ||
577 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
578 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
579 		err = -1;
580 	}
581 
582 	thread__put(thread);
583 
584 	return err;
585 }
586 
587 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
588 				      union perf_event *event,
589 				      struct perf_sample *sample __maybe_unused)
590 {
591 	struct thread *thread = machine__findnew_thread(machine,
592 							event->namespaces.pid,
593 							event->namespaces.tid);
594 	int err = 0;
595 
596 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
597 		  "\nWARNING: kernel seems to support more namespaces than perf"
598 		  " tool.\nTry updating the perf tool..\n\n");
599 
600 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
601 		  "\nWARNING: perf tool seems to support more namespaces than"
602 		  " the kernel.\nTry updating the kernel..\n\n");
603 
604 	if (dump_trace)
605 		perf_event__fprintf_namespaces(event, stdout);
606 
607 	if (thread == NULL ||
608 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
609 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
610 		err = -1;
611 	}
612 
613 	thread__put(thread);
614 
615 	return err;
616 }
617 
618 int machine__process_cgroup_event(struct machine *machine,
619 				  union perf_event *event,
620 				  struct perf_sample *sample __maybe_unused)
621 {
622 	struct cgroup *cgrp;
623 
624 	if (dump_trace)
625 		perf_event__fprintf_cgroup(event, stdout);
626 
627 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
628 	if (cgrp == NULL)
629 		return -ENOMEM;
630 
631 	return 0;
632 }
633 
634 int machine__process_lost_event(struct machine *machine __maybe_unused,
635 				union perf_event *event, struct perf_sample *sample __maybe_unused)
636 {
637 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
638 		    event->lost.id, event->lost.lost);
639 	return 0;
640 }
641 
642 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
643 					union perf_event *event, struct perf_sample *sample)
644 {
645 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
646 		    sample->id, event->lost_samples.lost);
647 	return 0;
648 }
649 
650 int machine__process_aux_event(struct machine *machine __maybe_unused,
651 			       union perf_event *event)
652 {
653 	if (dump_trace)
654 		perf_event__fprintf_aux(event, stdout);
655 	return 0;
656 }
657 
658 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
659 					union perf_event *event)
660 {
661 	if (dump_trace)
662 		perf_event__fprintf_itrace_start(event, stdout);
663 	return 0;
664 }
665 
666 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
667 					    union perf_event *event)
668 {
669 	if (dump_trace)
670 		perf_event__fprintf_aux_output_hw_id(event, stdout);
671 	return 0;
672 }
673 
674 int machine__process_switch_event(struct machine *machine __maybe_unused,
675 				  union perf_event *event)
676 {
677 	if (dump_trace)
678 		perf_event__fprintf_switch(event, stdout);
679 	return 0;
680 }
681 
682 static int machine__process_ksymbol_register(struct machine *machine,
683 					     union perf_event *event,
684 					     struct perf_sample *sample __maybe_unused)
685 {
686 	struct symbol *sym;
687 	struct dso *dso = NULL;
688 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
689 	int err = 0;
690 
691 	if (!map) {
692 		dso = dso__new(event->ksymbol.name);
693 
694 		if (!dso) {
695 			err = -ENOMEM;
696 			goto out;
697 		}
698 		dso__set_kernel(dso, DSO_SPACE__KERNEL);
699 		map = map__new2(0, dso);
700 		if (!map) {
701 			err = -ENOMEM;
702 			goto out;
703 		}
704 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
705 			dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL);
706 			dso__data(dso)->file_size = event->ksymbol.len;
707 			dso__set_loaded(dso);
708 		}
709 
710 		map__set_start(map, event->ksymbol.addr);
711 		map__set_end(map, map__start(map) + event->ksymbol.len);
712 		err = maps__insert(machine__kernel_maps(machine), map);
713 		if (err) {
714 			err = -ENOMEM;
715 			goto out;
716 		}
717 
718 		dso__set_loaded(dso);
719 
720 		if (is_bpf_image(event->ksymbol.name)) {
721 			dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE);
722 			dso__set_long_name(dso, "", false);
723 		}
724 	} else {
725 		dso = dso__get(map__dso(map));
726 	}
727 
728 	sym = symbol__new(map__map_ip(map, map__start(map)),
729 			  event->ksymbol.len,
730 			  0, 0, event->ksymbol.name);
731 	if (!sym) {
732 		err = -ENOMEM;
733 		goto out;
734 	}
735 	dso__insert_symbol(dso, sym);
736 out:
737 	map__put(map);
738 	dso__put(dso);
739 	return err;
740 }
741 
742 static int machine__process_ksymbol_unregister(struct machine *machine,
743 					       union perf_event *event,
744 					       struct perf_sample *sample __maybe_unused)
745 {
746 	struct symbol *sym;
747 	struct map *map;
748 
749 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
750 	if (!map)
751 		return 0;
752 
753 	if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
754 		maps__remove(machine__kernel_maps(machine), map);
755 	else {
756 		struct dso *dso = map__dso(map);
757 
758 		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
759 		if (sym)
760 			dso__delete_symbol(dso, sym);
761 	}
762 	map__put(map);
763 	return 0;
764 }
765 
766 int machine__process_ksymbol(struct machine *machine __maybe_unused,
767 			     union perf_event *event,
768 			     struct perf_sample *sample)
769 {
770 	if (dump_trace)
771 		perf_event__fprintf_ksymbol(event, stdout);
772 
773 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
774 		return machine__process_ksymbol_unregister(machine, event,
775 							   sample);
776 	return machine__process_ksymbol_register(machine, event, sample);
777 }
778 
779 int machine__process_text_poke(struct machine *machine, union perf_event *event,
780 			       struct perf_sample *sample __maybe_unused)
781 {
782 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
783 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
784 	struct dso *dso = map ? map__dso(map) : NULL;
785 
786 	if (dump_trace)
787 		perf_event__fprintf_text_poke(event, machine, stdout);
788 
789 	if (!event->text_poke.new_len)
790 		goto out;
791 
792 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
793 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
794 		goto out;
795 	}
796 
797 	if (dso) {
798 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
799 		int ret;
800 
801 		/*
802 		 * Kernel maps might be changed when loading symbols so loading
803 		 * must be done prior to using kernel maps.
804 		 */
805 		map__load(map);
806 		ret = dso__data_write_cache_addr(dso, map, machine,
807 						 event->text_poke.addr,
808 						 new_bytes,
809 						 event->text_poke.new_len);
810 		if (ret != event->text_poke.new_len)
811 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
812 				 event->text_poke.addr);
813 	} else {
814 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
815 			 event->text_poke.addr);
816 	}
817 out:
818 	map__put(map);
819 	return 0;
820 }
821 
822 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
823 					      const char *filename)
824 {
825 	struct map *map = NULL;
826 	struct kmod_path m;
827 	struct dso *dso;
828 	int err;
829 
830 	if (kmod_path__parse_name(&m, filename))
831 		return NULL;
832 
833 	dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename);
834 	if (dso == NULL)
835 		goto out;
836 
837 	map = map__new2(start, dso);
838 	if (map == NULL)
839 		goto out;
840 
841 	err = maps__insert(machine__kernel_maps(machine), map);
842 	/* If maps__insert failed, return NULL. */
843 	if (err) {
844 		map__put(map);
845 		map = NULL;
846 	}
847 out:
848 	/* put the dso here, corresponding to  machine__findnew_module_dso */
849 	dso__put(dso);
850 	zfree(&m.name);
851 	return map;
852 }
853 
854 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
855 {
856 	struct rb_node *nd;
857 	size_t ret = dsos__fprintf(&machines->host.dsos, fp);
858 
859 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
860 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
861 		ret += dsos__fprintf(&pos->dsos, fp);
862 	}
863 
864 	return ret;
865 }
866 
867 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
868 				     bool (skip)(struct dso *dso, int parm), int parm)
869 {
870 	return dsos__fprintf_buildid(&m->dsos, fp, skip, parm);
871 }
872 
873 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
874 				     bool (skip)(struct dso *dso, int parm), int parm)
875 {
876 	struct rb_node *nd;
877 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
878 
879 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
880 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
881 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
882 	}
883 	return ret;
884 }
885 
886 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
887 {
888 	int i;
889 	size_t printed = 0;
890 	struct dso *kdso = machine__kernel_dso(machine);
891 
892 	if (dso__has_build_id(kdso)) {
893 		char filename[PATH_MAX];
894 
895 		if (dso__build_id_filename(kdso, filename, sizeof(filename), false))
896 			printed += fprintf(fp, "[0] %s\n", filename);
897 	}
898 
899 	for (i = 0; i < vmlinux_path__nr_entries; ++i) {
900 		printed += fprintf(fp, "[%d] %s\n", i + dso__has_build_id(kdso),
901 				   vmlinux_path[i]);
902 	}
903 	return printed;
904 }
905 
906 struct machine_fprintf_cb_args {
907 	FILE *fp;
908 	size_t printed;
909 };
910 
911 static int machine_fprintf_cb(struct thread *thread, void *data)
912 {
913 	struct machine_fprintf_cb_args *args = data;
914 
915 	/* TODO: handle fprintf errors. */
916 	args->printed += thread__fprintf(thread, args->fp);
917 	return 0;
918 }
919 
920 size_t machine__fprintf(struct machine *machine, FILE *fp)
921 {
922 	struct machine_fprintf_cb_args args = {
923 		.fp = fp,
924 		.printed = 0,
925 	};
926 	size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads));
927 
928 	machine__for_each_thread(machine, machine_fprintf_cb, &args);
929 	return ret + args.printed;
930 }
931 
932 static struct dso *machine__get_kernel(struct machine *machine)
933 {
934 	const char *vmlinux_name = machine->mmap_name;
935 	struct dso *kernel;
936 
937 	if (machine__is_host(machine)) {
938 		if (symbol_conf.vmlinux_name)
939 			vmlinux_name = symbol_conf.vmlinux_name;
940 
941 		kernel = machine__findnew_kernel(machine, vmlinux_name,
942 						 "[kernel]", DSO_SPACE__KERNEL);
943 	} else {
944 		if (symbol_conf.default_guest_vmlinux_name)
945 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
946 
947 		kernel = machine__findnew_kernel(machine, vmlinux_name,
948 						 "[guest.kernel]",
949 						 DSO_SPACE__KERNEL_GUEST);
950 	}
951 
952 	if (kernel != NULL && (!dso__has_build_id(kernel)))
953 		dso__read_running_kernel_build_id(kernel, machine);
954 
955 	return kernel;
956 }
957 
958 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
959 				    size_t bufsz)
960 {
961 	if (machine__is_default_guest(machine))
962 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
963 	else
964 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
965 }
966 
967 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
968 
969 /* Figure out the start address of kernel map from /proc/kallsyms.
970  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
971  * symbol_name if it's not that important.
972  */
973 static int machine__get_running_kernel_start(struct machine *machine,
974 					     const char **symbol_name,
975 					     u64 *start, u64 *end)
976 {
977 	char filename[PATH_MAX];
978 	int i, err = -1;
979 	const char *name;
980 	u64 addr = 0;
981 
982 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
983 
984 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
985 		return 0;
986 
987 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
988 		err = kallsyms__get_function_start(filename, name, &addr);
989 		if (!err)
990 			break;
991 	}
992 
993 	if (err)
994 		return -1;
995 
996 	if (symbol_name)
997 		*symbol_name = name;
998 
999 	*start = addr;
1000 
1001 	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1002 	if (err)
1003 		err = kallsyms__get_function_start(filename, "_etext", &addr);
1004 	if (!err)
1005 		*end = addr;
1006 
1007 	return 0;
1008 }
1009 
1010 int machine__create_extra_kernel_map(struct machine *machine,
1011 				     struct dso *kernel,
1012 				     struct extra_kernel_map *xm)
1013 {
1014 	struct kmap *kmap;
1015 	struct map *map;
1016 	int err;
1017 
1018 	map = map__new2(xm->start, kernel);
1019 	if (!map)
1020 		return -ENOMEM;
1021 
1022 	map__set_end(map, xm->end);
1023 	map__set_pgoff(map, xm->pgoff);
1024 
1025 	kmap = map__kmap(map);
1026 
1027 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1028 
1029 	err = maps__insert(machine__kernel_maps(machine), map);
1030 
1031 	if (!err) {
1032 		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1033 			kmap->name, map__start(map), map__end(map));
1034 	}
1035 
1036 	map__put(map);
1037 
1038 	return err;
1039 }
1040 
1041 static u64 find_entry_trampoline(struct dso *dso)
1042 {
1043 	/* Duplicates are removed so lookup all aliases */
1044 	const char *syms[] = {
1045 		"_entry_trampoline",
1046 		"__entry_trampoline_start",
1047 		"entry_SYSCALL_64_trampoline",
1048 	};
1049 	struct symbol *sym = dso__first_symbol(dso);
1050 	unsigned int i;
1051 
1052 	for (; sym; sym = dso__next_symbol(sym)) {
1053 		if (sym->binding != STB_GLOBAL)
1054 			continue;
1055 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1056 			if (!strcmp(sym->name, syms[i]))
1057 				return sym->start;
1058 		}
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 /*
1065  * These values can be used for kernels that do not have symbols for the entry
1066  * trampolines in kallsyms.
1067  */
1068 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1069 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1070 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1071 
1072 struct machine__map_x86_64_entry_trampolines_args {
1073 	struct maps *kmaps;
1074 	bool found;
1075 };
1076 
1077 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data)
1078 {
1079 	struct machine__map_x86_64_entry_trampolines_args *args = data;
1080 	struct map *dest_map;
1081 	struct kmap *kmap = __map__kmap(map);
1082 
1083 	if (!kmap || !is_entry_trampoline(kmap->name))
1084 		return 0;
1085 
1086 	dest_map = maps__find(args->kmaps, map__pgoff(map));
1087 	if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map))
1088 		map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1089 
1090 	map__put(dest_map);
1091 	args->found = true;
1092 	return 0;
1093 }
1094 
1095 /* Map x86_64 PTI entry trampolines */
1096 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1097 					  struct dso *kernel)
1098 {
1099 	struct machine__map_x86_64_entry_trampolines_args args = {
1100 		.kmaps = machine__kernel_maps(machine),
1101 		.found = false,
1102 	};
1103 	int nr_cpus_avail, cpu;
1104 	u64 pgoff;
1105 
1106 	/*
1107 	 * In the vmlinux case, pgoff is a virtual address which must now be
1108 	 * mapped to a vmlinux offset.
1109 	 */
1110 	maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args);
1111 
1112 	if (args.found || machine->trampolines_mapped)
1113 		return 0;
1114 
1115 	pgoff = find_entry_trampoline(kernel);
1116 	if (!pgoff)
1117 		return 0;
1118 
1119 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1120 
1121 	/* Add a 1 page map for each CPU's entry trampoline */
1122 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1123 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1124 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1125 			 X86_64_ENTRY_TRAMPOLINE;
1126 		struct extra_kernel_map xm = {
1127 			.start = va,
1128 			.end   = va + page_size,
1129 			.pgoff = pgoff,
1130 		};
1131 
1132 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1133 
1134 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1135 			return -1;
1136 	}
1137 
1138 	machine->trampolines_mapped = nr_cpus_avail;
1139 
1140 	return 0;
1141 }
1142 
1143 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1144 					     struct dso *kernel __maybe_unused)
1145 {
1146 	return 0;
1147 }
1148 
1149 static int
1150 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1151 {
1152 	/* In case of renewal the kernel map, destroy previous one */
1153 	machine__destroy_kernel_maps(machine);
1154 
1155 	map__put(machine->vmlinux_map);
1156 	machine->vmlinux_map = map__new2(0, kernel);
1157 	if (machine->vmlinux_map == NULL)
1158 		return -ENOMEM;
1159 
1160 	map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY);
1161 	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1162 }
1163 
1164 void machine__destroy_kernel_maps(struct machine *machine)
1165 {
1166 	struct kmap *kmap;
1167 	struct map *map = machine__kernel_map(machine);
1168 
1169 	if (map == NULL)
1170 		return;
1171 
1172 	kmap = map__kmap(map);
1173 	maps__remove(machine__kernel_maps(machine), map);
1174 	if (kmap && kmap->ref_reloc_sym) {
1175 		zfree((char **)&kmap->ref_reloc_sym->name);
1176 		zfree(&kmap->ref_reloc_sym);
1177 	}
1178 
1179 	map__zput(machine->vmlinux_map);
1180 }
1181 
1182 int machines__create_guest_kernel_maps(struct machines *machines)
1183 {
1184 	int ret = 0;
1185 	struct dirent **namelist = NULL;
1186 	int i, items = 0;
1187 	char path[PATH_MAX];
1188 	pid_t pid;
1189 	char *endp;
1190 
1191 	if (symbol_conf.default_guest_vmlinux_name ||
1192 	    symbol_conf.default_guest_modules ||
1193 	    symbol_conf.default_guest_kallsyms) {
1194 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1195 	}
1196 
1197 	if (symbol_conf.guestmount) {
1198 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1199 		if (items <= 0)
1200 			return -ENOENT;
1201 		for (i = 0; i < items; i++) {
1202 			if (!isdigit(namelist[i]->d_name[0])) {
1203 				/* Filter out . and .. */
1204 				continue;
1205 			}
1206 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1207 			if ((*endp != '\0') ||
1208 			    (endp == namelist[i]->d_name) ||
1209 			    (errno == ERANGE)) {
1210 				pr_debug("invalid directory (%s). Skipping.\n",
1211 					 namelist[i]->d_name);
1212 				continue;
1213 			}
1214 			sprintf(path, "%s/%s/proc/kallsyms",
1215 				symbol_conf.guestmount,
1216 				namelist[i]->d_name);
1217 			ret = access(path, R_OK);
1218 			if (ret) {
1219 				pr_debug("Can't access file %s\n", path);
1220 				goto failure;
1221 			}
1222 			machines__create_kernel_maps(machines, pid);
1223 		}
1224 failure:
1225 		free(namelist);
1226 	}
1227 
1228 	return ret;
1229 }
1230 
1231 void machines__destroy_kernel_maps(struct machines *machines)
1232 {
1233 	struct rb_node *next = rb_first_cached(&machines->guests);
1234 
1235 	machine__destroy_kernel_maps(&machines->host);
1236 
1237 	while (next) {
1238 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1239 
1240 		next = rb_next(&pos->rb_node);
1241 		rb_erase_cached(&pos->rb_node, &machines->guests);
1242 		machine__delete(pos);
1243 	}
1244 }
1245 
1246 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1247 {
1248 	struct machine *machine = machines__findnew(machines, pid);
1249 
1250 	if (machine == NULL)
1251 		return -1;
1252 
1253 	return machine__create_kernel_maps(machine);
1254 }
1255 
1256 int machine__load_kallsyms(struct machine *machine, const char *filename)
1257 {
1258 	struct map *map = machine__kernel_map(machine);
1259 	struct dso *dso = map__dso(map);
1260 	int ret = __dso__load_kallsyms(dso, filename, map, true);
1261 
1262 	if (ret > 0) {
1263 		dso__set_loaded(dso);
1264 		/*
1265 		 * Since /proc/kallsyms will have multiple sessions for the
1266 		 * kernel, with modules between them, fixup the end of all
1267 		 * sections.
1268 		 */
1269 		maps__fixup_end(machine__kernel_maps(machine));
1270 	}
1271 
1272 	return ret;
1273 }
1274 
1275 int machine__load_vmlinux_path(struct machine *machine)
1276 {
1277 	struct map *map = machine__kernel_map(machine);
1278 	struct dso *dso = map__dso(map);
1279 	int ret = dso__load_vmlinux_path(dso, map);
1280 
1281 	if (ret > 0)
1282 		dso__set_loaded(dso);
1283 
1284 	return ret;
1285 }
1286 
1287 static char *get_kernel_version(const char *root_dir)
1288 {
1289 	char version[PATH_MAX];
1290 	FILE *file;
1291 	char *name, *tmp;
1292 	const char *prefix = "Linux version ";
1293 
1294 	sprintf(version, "%s/proc/version", root_dir);
1295 	file = fopen(version, "r");
1296 	if (!file)
1297 		return NULL;
1298 
1299 	tmp = fgets(version, sizeof(version), file);
1300 	fclose(file);
1301 	if (!tmp)
1302 		return NULL;
1303 
1304 	name = strstr(version, prefix);
1305 	if (!name)
1306 		return NULL;
1307 	name += strlen(prefix);
1308 	tmp = strchr(name, ' ');
1309 	if (tmp)
1310 		*tmp = '\0';
1311 
1312 	return strdup(name);
1313 }
1314 
1315 static bool is_kmod_dso(struct dso *dso)
1316 {
1317 	return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1318 	       dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE;
1319 }
1320 
1321 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1322 {
1323 	char *long_name;
1324 	struct dso *dso;
1325 	struct map *map = maps__find_by_name(maps, m->name);
1326 
1327 	if (map == NULL)
1328 		return 0;
1329 
1330 	long_name = strdup(path);
1331 	if (long_name == NULL) {
1332 		map__put(map);
1333 		return -ENOMEM;
1334 	}
1335 
1336 	dso = map__dso(map);
1337 	dso__set_long_name(dso, long_name, true);
1338 	dso__kernel_module_get_build_id(dso, "");
1339 
1340 	/*
1341 	 * Full name could reveal us kmod compression, so
1342 	 * we need to update the symtab_type if needed.
1343 	 */
1344 	if (m->comp && is_kmod_dso(dso)) {
1345 		dso__set_symtab_type(dso, dso__symtab_type(dso));
1346 		dso__set_comp(dso, m->comp);
1347 	}
1348 	map__put(map);
1349 	return 0;
1350 }
1351 
1352 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1353 {
1354 	struct dirent *dent;
1355 	DIR *dir = opendir(dir_name);
1356 	int ret = 0;
1357 
1358 	if (!dir) {
1359 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1360 		return -1;
1361 	}
1362 
1363 	while ((dent = readdir(dir)) != NULL) {
1364 		char path[PATH_MAX];
1365 		struct stat st;
1366 
1367 		/*sshfs might return bad dent->d_type, so we have to stat*/
1368 		path__join(path, sizeof(path), dir_name, dent->d_name);
1369 		if (stat(path, &st))
1370 			continue;
1371 
1372 		if (S_ISDIR(st.st_mode)) {
1373 			if (!strcmp(dent->d_name, ".") ||
1374 			    !strcmp(dent->d_name, ".."))
1375 				continue;
1376 
1377 			/* Do not follow top-level source and build symlinks */
1378 			if (depth == 0) {
1379 				if (!strcmp(dent->d_name, "source") ||
1380 				    !strcmp(dent->d_name, "build"))
1381 					continue;
1382 			}
1383 
1384 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1385 			if (ret < 0)
1386 				goto out;
1387 		} else {
1388 			struct kmod_path m;
1389 
1390 			ret = kmod_path__parse_name(&m, dent->d_name);
1391 			if (ret)
1392 				goto out;
1393 
1394 			if (m.kmod)
1395 				ret = maps__set_module_path(maps, path, &m);
1396 
1397 			zfree(&m.name);
1398 
1399 			if (ret)
1400 				goto out;
1401 		}
1402 	}
1403 
1404 out:
1405 	closedir(dir);
1406 	return ret;
1407 }
1408 
1409 static int machine__set_modules_path(struct machine *machine)
1410 {
1411 	char *version;
1412 	char modules_path[PATH_MAX];
1413 
1414 	version = get_kernel_version(machine->root_dir);
1415 	if (!version)
1416 		return -1;
1417 
1418 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1419 		 machine->root_dir, version);
1420 	free(version);
1421 
1422 	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1423 }
1424 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1425 				u64 *size __maybe_unused,
1426 				const char *name __maybe_unused)
1427 {
1428 	return 0;
1429 }
1430 
1431 static int machine__create_module(void *arg, const char *name, u64 start,
1432 				  u64 size)
1433 {
1434 	struct machine *machine = arg;
1435 	struct map *map;
1436 
1437 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1438 		return -1;
1439 
1440 	map = machine__addnew_module_map(machine, start, name);
1441 	if (map == NULL)
1442 		return -1;
1443 	map__set_end(map, start + size);
1444 
1445 	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1446 	map__put(map);
1447 	return 0;
1448 }
1449 
1450 static int machine__create_modules(struct machine *machine)
1451 {
1452 	const char *modules;
1453 	char path[PATH_MAX];
1454 
1455 	if (machine__is_default_guest(machine)) {
1456 		modules = symbol_conf.default_guest_modules;
1457 	} else {
1458 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1459 		modules = path;
1460 	}
1461 
1462 	if (symbol__restricted_filename(modules, "/proc/modules"))
1463 		return -1;
1464 
1465 	if (modules__parse(modules, machine, machine__create_module))
1466 		return -1;
1467 
1468 	if (!machine__set_modules_path(machine))
1469 		return 0;
1470 
1471 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1472 
1473 	return 0;
1474 }
1475 
1476 static void machine__set_kernel_mmap(struct machine *machine,
1477 				     u64 start, u64 end)
1478 {
1479 	map__set_start(machine->vmlinux_map, start);
1480 	map__set_end(machine->vmlinux_map, end);
1481 	/*
1482 	 * Be a bit paranoid here, some perf.data file came with
1483 	 * a zero sized synthesized MMAP event for the kernel.
1484 	 */
1485 	if (start == 0 && end == 0)
1486 		map__set_end(machine->vmlinux_map, ~0ULL);
1487 }
1488 
1489 static int machine__update_kernel_mmap(struct machine *machine,
1490 				     u64 start, u64 end)
1491 {
1492 	struct map *orig, *updated;
1493 	int err;
1494 
1495 	orig = machine->vmlinux_map;
1496 	updated = map__get(orig);
1497 
1498 	machine->vmlinux_map = updated;
1499 	maps__remove(machine__kernel_maps(machine), orig);
1500 	machine__set_kernel_mmap(machine, start, end);
1501 	err = maps__insert(machine__kernel_maps(machine), updated);
1502 	map__put(orig);
1503 
1504 	return err;
1505 }
1506 
1507 int machine__create_kernel_maps(struct machine *machine)
1508 {
1509 	struct dso *kernel = machine__get_kernel(machine);
1510 	const char *name = NULL;
1511 	u64 start = 0, end = ~0ULL;
1512 	int ret;
1513 
1514 	if (kernel == NULL)
1515 		return -1;
1516 
1517 	ret = __machine__create_kernel_maps(machine, kernel);
1518 	if (ret < 0)
1519 		goto out_put;
1520 
1521 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1522 		if (machine__is_host(machine))
1523 			pr_debug("Problems creating module maps, "
1524 				 "continuing anyway...\n");
1525 		else
1526 			pr_debug("Problems creating module maps for guest %d, "
1527 				 "continuing anyway...\n", machine->pid);
1528 	}
1529 
1530 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1531 		if (name &&
1532 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1533 			machine__destroy_kernel_maps(machine);
1534 			ret = -1;
1535 			goto out_put;
1536 		}
1537 
1538 		/*
1539 		 * we have a real start address now, so re-order the kmaps
1540 		 * assume it's the last in the kmaps
1541 		 */
1542 		ret = machine__update_kernel_mmap(machine, start, end);
1543 		if (ret < 0)
1544 			goto out_put;
1545 	}
1546 
1547 	if (machine__create_extra_kernel_maps(machine, kernel))
1548 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1549 
1550 	if (end == ~0ULL) {
1551 		/* update end address of the kernel map using adjacent module address */
1552 		struct map *next = maps__find_next_entry(machine__kernel_maps(machine),
1553 							 machine__kernel_map(machine));
1554 
1555 		if (next) {
1556 			machine__set_kernel_mmap(machine, start, map__start(next));
1557 			map__put(next);
1558 		}
1559 	}
1560 
1561 out_put:
1562 	dso__put(kernel);
1563 	return ret;
1564 }
1565 
1566 static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused)
1567 {
1568 	return dso__is_kcore(dso) ? 1 : 0;
1569 }
1570 
1571 static bool machine__uses_kcore(struct machine *machine)
1572 {
1573 	return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false;
1574 }
1575 
1576 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1577 					     struct extra_kernel_map *xm)
1578 {
1579 	return machine__is(machine, "x86_64") &&
1580 	       is_entry_trampoline(xm->name);
1581 }
1582 
1583 static int machine__process_extra_kernel_map(struct machine *machine,
1584 					     struct extra_kernel_map *xm)
1585 {
1586 	struct dso *kernel = machine__kernel_dso(machine);
1587 
1588 	if (kernel == NULL)
1589 		return -1;
1590 
1591 	return machine__create_extra_kernel_map(machine, kernel, xm);
1592 }
1593 
1594 static int machine__process_kernel_mmap_event(struct machine *machine,
1595 					      struct extra_kernel_map *xm,
1596 					      struct build_id *bid)
1597 {
1598 	enum dso_space_type dso_space;
1599 	bool is_kernel_mmap;
1600 	const char *mmap_name = machine->mmap_name;
1601 
1602 	/* If we have maps from kcore then we do not need or want any others */
1603 	if (machine__uses_kcore(machine))
1604 		return 0;
1605 
1606 	if (machine__is_host(machine))
1607 		dso_space = DSO_SPACE__KERNEL;
1608 	else
1609 		dso_space = DSO_SPACE__KERNEL_GUEST;
1610 
1611 	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1612 	if (!is_kernel_mmap && !machine__is_host(machine)) {
1613 		/*
1614 		 * If the event was recorded inside the guest and injected into
1615 		 * the host perf.data file, then it will match a host mmap_name,
1616 		 * so try that - see machine__set_mmap_name().
1617 		 */
1618 		mmap_name = "[kernel.kallsyms]";
1619 		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1620 	}
1621 	if (xm->name[0] == '/' ||
1622 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1623 		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1624 
1625 		if (map == NULL)
1626 			goto out_problem;
1627 
1628 		map__set_end(map, map__start(map) + xm->end - xm->start);
1629 
1630 		if (build_id__is_defined(bid))
1631 			dso__set_build_id(map__dso(map), bid);
1632 
1633 		map__put(map);
1634 	} else if (is_kernel_mmap) {
1635 		const char *symbol_name = xm->name + strlen(mmap_name);
1636 		/*
1637 		 * Should be there already, from the build-id table in
1638 		 * the header.
1639 		 */
1640 		struct dso *kernel = dsos__find_kernel_dso(&machine->dsos);
1641 
1642 		if (kernel == NULL)
1643 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1644 		if (kernel == NULL)
1645 			goto out_problem;
1646 
1647 		dso__set_kernel(kernel, dso_space);
1648 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1649 			dso__put(kernel);
1650 			goto out_problem;
1651 		}
1652 
1653 		if (strstr(dso__long_name(kernel), "vmlinux"))
1654 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1655 
1656 		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1657 			dso__put(kernel);
1658 			goto out_problem;
1659 		}
1660 
1661 		if (build_id__is_defined(bid))
1662 			dso__set_build_id(kernel, bid);
1663 
1664 		/*
1665 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1666 		 * symbol. Effectively having zero here means that at record
1667 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1668 		 */
1669 		if (xm->pgoff != 0) {
1670 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1671 							symbol_name,
1672 							xm->pgoff);
1673 		}
1674 
1675 		if (machine__is_default_guest(machine)) {
1676 			/*
1677 			 * preload dso of guest kernel and modules
1678 			 */
1679 			dso__load(kernel, machine__kernel_map(machine));
1680 		}
1681 		dso__put(kernel);
1682 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1683 		return machine__process_extra_kernel_map(machine, xm);
1684 	}
1685 	return 0;
1686 out_problem:
1687 	return -1;
1688 }
1689 
1690 int machine__process_mmap2_event(struct machine *machine,
1691 				 union perf_event *event,
1692 				 struct perf_sample *sample)
1693 {
1694 	struct thread *thread;
1695 	struct map *map;
1696 	struct dso_id dso_id = {
1697 		.maj = event->mmap2.maj,
1698 		.min = event->mmap2.min,
1699 		.ino = event->mmap2.ino,
1700 		.ino_generation = event->mmap2.ino_generation,
1701 	};
1702 	struct build_id __bid, *bid = NULL;
1703 	int ret = 0;
1704 
1705 	if (dump_trace)
1706 		perf_event__fprintf_mmap2(event, stdout);
1707 
1708 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1709 		bid = &__bid;
1710 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1711 	}
1712 
1713 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1714 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1715 		struct extra_kernel_map xm = {
1716 			.start = event->mmap2.start,
1717 			.end   = event->mmap2.start + event->mmap2.len,
1718 			.pgoff = event->mmap2.pgoff,
1719 		};
1720 
1721 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1722 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1723 		if (ret < 0)
1724 			goto out_problem;
1725 		return 0;
1726 	}
1727 
1728 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1729 					event->mmap2.tid);
1730 	if (thread == NULL)
1731 		goto out_problem;
1732 
1733 	map = map__new(machine, event->mmap2.start,
1734 			event->mmap2.len, event->mmap2.pgoff,
1735 			&dso_id, event->mmap2.prot,
1736 			event->mmap2.flags, bid,
1737 			event->mmap2.filename, thread);
1738 
1739 	if (map == NULL)
1740 		goto out_problem_map;
1741 
1742 	ret = thread__insert_map(thread, map);
1743 	if (ret)
1744 		goto out_problem_insert;
1745 
1746 	thread__put(thread);
1747 	map__put(map);
1748 	return 0;
1749 
1750 out_problem_insert:
1751 	map__put(map);
1752 out_problem_map:
1753 	thread__put(thread);
1754 out_problem:
1755 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1756 	return 0;
1757 }
1758 
1759 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1760 				struct perf_sample *sample)
1761 {
1762 	struct thread *thread;
1763 	struct map *map;
1764 	u32 prot = 0;
1765 	int ret = 0;
1766 
1767 	if (dump_trace)
1768 		perf_event__fprintf_mmap(event, stdout);
1769 
1770 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1771 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1772 		struct extra_kernel_map xm = {
1773 			.start = event->mmap.start,
1774 			.end   = event->mmap.start + event->mmap.len,
1775 			.pgoff = event->mmap.pgoff,
1776 		};
1777 
1778 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1779 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1780 		if (ret < 0)
1781 			goto out_problem;
1782 		return 0;
1783 	}
1784 
1785 	thread = machine__findnew_thread(machine, event->mmap.pid,
1786 					 event->mmap.tid);
1787 	if (thread == NULL)
1788 		goto out_problem;
1789 
1790 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1791 		prot = PROT_EXEC;
1792 
1793 	map = map__new(machine, event->mmap.start,
1794 			event->mmap.len, event->mmap.pgoff,
1795 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1796 
1797 	if (map == NULL)
1798 		goto out_problem_map;
1799 
1800 	ret = thread__insert_map(thread, map);
1801 	if (ret)
1802 		goto out_problem_insert;
1803 
1804 	thread__put(thread);
1805 	map__put(map);
1806 	return 0;
1807 
1808 out_problem_insert:
1809 	map__put(map);
1810 out_problem_map:
1811 	thread__put(thread);
1812 out_problem:
1813 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1814 	return 0;
1815 }
1816 
1817 void machine__remove_thread(struct machine *machine, struct thread *th)
1818 {
1819 	return threads__remove(&machine->threads, th);
1820 }
1821 
1822 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1823 				struct perf_sample *sample)
1824 {
1825 	struct thread *thread = machine__find_thread(machine,
1826 						     event->fork.pid,
1827 						     event->fork.tid);
1828 	struct thread *parent = machine__findnew_thread(machine,
1829 							event->fork.ppid,
1830 							event->fork.ptid);
1831 	bool do_maps_clone = true;
1832 	int err = 0;
1833 
1834 	if (dump_trace)
1835 		perf_event__fprintf_task(event, stdout);
1836 
1837 	/*
1838 	 * There may be an existing thread that is not actually the parent,
1839 	 * either because we are processing events out of order, or because the
1840 	 * (fork) event that would have removed the thread was lost. Assume the
1841 	 * latter case and continue on as best we can.
1842 	 */
1843 	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
1844 		dump_printf("removing erroneous parent thread %d/%d\n",
1845 			    thread__pid(parent), thread__tid(parent));
1846 		machine__remove_thread(machine, parent);
1847 		thread__put(parent);
1848 		parent = machine__findnew_thread(machine, event->fork.ppid,
1849 						 event->fork.ptid);
1850 	}
1851 
1852 	/* if a thread currently exists for the thread id remove it */
1853 	if (thread != NULL) {
1854 		machine__remove_thread(machine, thread);
1855 		thread__put(thread);
1856 	}
1857 
1858 	thread = machine__findnew_thread(machine, event->fork.pid,
1859 					 event->fork.tid);
1860 	/*
1861 	 * When synthesizing FORK events, we are trying to create thread
1862 	 * objects for the already running tasks on the machine.
1863 	 *
1864 	 * Normally, for a kernel FORK event, we want to clone the parent's
1865 	 * maps because that is what the kernel just did.
1866 	 *
1867 	 * But when synthesizing, this should not be done.  If we do, we end up
1868 	 * with overlapping maps as we process the synthesized MMAP2 events that
1869 	 * get delivered shortly thereafter.
1870 	 *
1871 	 * Use the FORK event misc flags in an internal way to signal this
1872 	 * situation, so we can elide the map clone when appropriate.
1873 	 */
1874 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1875 		do_maps_clone = false;
1876 
1877 	if (thread == NULL || parent == NULL ||
1878 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1879 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1880 		err = -1;
1881 	}
1882 	thread__put(thread);
1883 	thread__put(parent);
1884 
1885 	return err;
1886 }
1887 
1888 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1889 				struct perf_sample *sample __maybe_unused)
1890 {
1891 	struct thread *thread = machine__find_thread(machine,
1892 						     event->fork.pid,
1893 						     event->fork.tid);
1894 
1895 	if (dump_trace)
1896 		perf_event__fprintf_task(event, stdout);
1897 
1898 	if (thread != NULL) {
1899 		if (symbol_conf.keep_exited_threads)
1900 			thread__set_exited(thread, /*exited=*/true);
1901 		else
1902 			machine__remove_thread(machine, thread);
1903 	}
1904 	thread__put(thread);
1905 	return 0;
1906 }
1907 
1908 int machine__process_event(struct machine *machine, union perf_event *event,
1909 			   struct perf_sample *sample)
1910 {
1911 	int ret;
1912 
1913 	switch (event->header.type) {
1914 	case PERF_RECORD_COMM:
1915 		ret = machine__process_comm_event(machine, event, sample); break;
1916 	case PERF_RECORD_MMAP:
1917 		ret = machine__process_mmap_event(machine, event, sample); break;
1918 	case PERF_RECORD_NAMESPACES:
1919 		ret = machine__process_namespaces_event(machine, event, sample); break;
1920 	case PERF_RECORD_CGROUP:
1921 		ret = machine__process_cgroup_event(machine, event, sample); break;
1922 	case PERF_RECORD_MMAP2:
1923 		ret = machine__process_mmap2_event(machine, event, sample); break;
1924 	case PERF_RECORD_FORK:
1925 		ret = machine__process_fork_event(machine, event, sample); break;
1926 	case PERF_RECORD_EXIT:
1927 		ret = machine__process_exit_event(machine, event, sample); break;
1928 	case PERF_RECORD_LOST:
1929 		ret = machine__process_lost_event(machine, event, sample); break;
1930 	case PERF_RECORD_AUX:
1931 		ret = machine__process_aux_event(machine, event); break;
1932 	case PERF_RECORD_ITRACE_START:
1933 		ret = machine__process_itrace_start_event(machine, event); break;
1934 	case PERF_RECORD_LOST_SAMPLES:
1935 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1936 	case PERF_RECORD_SWITCH:
1937 	case PERF_RECORD_SWITCH_CPU_WIDE:
1938 		ret = machine__process_switch_event(machine, event); break;
1939 	case PERF_RECORD_KSYMBOL:
1940 		ret = machine__process_ksymbol(machine, event, sample); break;
1941 	case PERF_RECORD_BPF_EVENT:
1942 		ret = machine__process_bpf(machine, event, sample); break;
1943 	case PERF_RECORD_TEXT_POKE:
1944 		ret = machine__process_text_poke(machine, event, sample); break;
1945 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
1946 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
1947 	default:
1948 		ret = -1;
1949 		break;
1950 	}
1951 
1952 	return ret;
1953 }
1954 
1955 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1956 {
1957 	return regexec(regex, sym->name, 0, NULL, 0) == 0;
1958 }
1959 
1960 static void ip__resolve_ams(struct thread *thread,
1961 			    struct addr_map_symbol *ams,
1962 			    u64 ip)
1963 {
1964 	struct addr_location al;
1965 
1966 	addr_location__init(&al);
1967 	/*
1968 	 * We cannot use the header.misc hint to determine whether a
1969 	 * branch stack address is user, kernel, guest, hypervisor.
1970 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1971 	 * Thus, we have to try consecutively until we find a match
1972 	 * or else, the symbol is unknown
1973 	 */
1974 	thread__find_cpumode_addr_location(thread, ip, &al);
1975 
1976 	ams->addr = ip;
1977 	ams->al_addr = al.addr;
1978 	ams->al_level = al.level;
1979 	ams->ms.maps = maps__get(al.maps);
1980 	ams->ms.sym = al.sym;
1981 	ams->ms.map = map__get(al.map);
1982 	ams->phys_addr = 0;
1983 	ams->data_page_size = 0;
1984 	addr_location__exit(&al);
1985 }
1986 
1987 static void ip__resolve_data(struct thread *thread,
1988 			     u8 m, struct addr_map_symbol *ams,
1989 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
1990 {
1991 	struct addr_location al;
1992 
1993 	addr_location__init(&al);
1994 
1995 	thread__find_symbol(thread, m, addr, &al);
1996 
1997 	ams->addr = addr;
1998 	ams->al_addr = al.addr;
1999 	ams->al_level = al.level;
2000 	ams->ms.maps = maps__get(al.maps);
2001 	ams->ms.sym = al.sym;
2002 	ams->ms.map = map__get(al.map);
2003 	ams->phys_addr = phys_addr;
2004 	ams->data_page_size = daddr_page_size;
2005 	addr_location__exit(&al);
2006 }
2007 
2008 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2009 				     struct addr_location *al)
2010 {
2011 	struct mem_info *mi = mem_info__new();
2012 
2013 	if (!mi)
2014 		return NULL;
2015 
2016 	ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip);
2017 	ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi),
2018 			 sample->addr, sample->phys_addr,
2019 			 sample->data_page_size);
2020 	mem_info__data_src(mi)->val = sample->data_src;
2021 
2022 	return mi;
2023 }
2024 
2025 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2026 {
2027 	struct map *map = ms->map;
2028 	char *srcline = NULL;
2029 	struct dso *dso;
2030 
2031 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2032 		return srcline;
2033 
2034 	dso = map__dso(map);
2035 	srcline = srcline__tree_find(dso__srclines(dso), ip);
2036 	if (!srcline) {
2037 		bool show_sym = false;
2038 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2039 
2040 		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2041 				      ms->sym, show_sym, show_addr, ip);
2042 		srcline__tree_insert(dso__srclines(dso), ip, srcline);
2043 	}
2044 
2045 	return srcline;
2046 }
2047 
2048 struct iterations {
2049 	int nr_loop_iter;
2050 	u64 cycles;
2051 };
2052 
2053 static int add_callchain_ip(struct thread *thread,
2054 			    struct callchain_cursor *cursor,
2055 			    struct symbol **parent,
2056 			    struct addr_location *root_al,
2057 			    u8 *cpumode,
2058 			    u64 ip,
2059 			    bool branch,
2060 			    struct branch_flags *flags,
2061 			    struct iterations *iter,
2062 			    u64 branch_from)
2063 {
2064 	struct map_symbol ms = {};
2065 	struct addr_location al;
2066 	int nr_loop_iter = 0, err = 0;
2067 	u64 iter_cycles = 0;
2068 	const char *srcline = NULL;
2069 
2070 	addr_location__init(&al);
2071 	al.filtered = 0;
2072 	al.sym = NULL;
2073 	al.srcline = NULL;
2074 	if (!cpumode) {
2075 		thread__find_cpumode_addr_location(thread, ip, &al);
2076 	} else {
2077 		if (ip >= PERF_CONTEXT_MAX) {
2078 			switch (ip) {
2079 			case PERF_CONTEXT_HV:
2080 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2081 				break;
2082 			case PERF_CONTEXT_KERNEL:
2083 				*cpumode = PERF_RECORD_MISC_KERNEL;
2084 				break;
2085 			case PERF_CONTEXT_USER:
2086 				*cpumode = PERF_RECORD_MISC_USER;
2087 				break;
2088 			default:
2089 				pr_debug("invalid callchain context: "
2090 					 "%"PRId64"\n", (s64) ip);
2091 				/*
2092 				 * It seems the callchain is corrupted.
2093 				 * Discard all.
2094 				 */
2095 				callchain_cursor_reset(cursor);
2096 				err = 1;
2097 				goto out;
2098 			}
2099 			goto out;
2100 		}
2101 		thread__find_symbol(thread, *cpumode, ip, &al);
2102 	}
2103 
2104 	if (al.sym != NULL) {
2105 		if (perf_hpp_list.parent && !*parent &&
2106 		    symbol__match_regex(al.sym, &parent_regex))
2107 			*parent = al.sym;
2108 		else if (have_ignore_callees && root_al &&
2109 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2110 			/* Treat this symbol as the root,
2111 			   forgetting its callees. */
2112 			addr_location__copy(root_al, &al);
2113 			callchain_cursor_reset(cursor);
2114 		}
2115 	}
2116 
2117 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2118 		goto out;
2119 
2120 	if (iter) {
2121 		nr_loop_iter = iter->nr_loop_iter;
2122 		iter_cycles = iter->cycles;
2123 	}
2124 
2125 	ms.maps = maps__get(al.maps);
2126 	ms.map = map__get(al.map);
2127 	ms.sym = al.sym;
2128 	srcline = callchain_srcline(&ms, al.addr);
2129 	err = callchain_cursor_append(cursor, ip, &ms,
2130 				      branch, flags, nr_loop_iter,
2131 				      iter_cycles, branch_from, srcline);
2132 out:
2133 	addr_location__exit(&al);
2134 	map_symbol__exit(&ms);
2135 	return err;
2136 }
2137 
2138 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2139 					   struct addr_location *al)
2140 {
2141 	unsigned int i;
2142 	const struct branch_stack *bs = sample->branch_stack;
2143 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2144 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2145 
2146 	if (!bi)
2147 		return NULL;
2148 
2149 	for (i = 0; i < bs->nr; i++) {
2150 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2151 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2152 		bi[i].flags = entries[i].flags;
2153 	}
2154 	return bi;
2155 }
2156 
2157 static void save_iterations(struct iterations *iter,
2158 			    struct branch_entry *be, int nr)
2159 {
2160 	int i;
2161 
2162 	iter->nr_loop_iter++;
2163 	iter->cycles = 0;
2164 
2165 	for (i = 0; i < nr; i++)
2166 		iter->cycles += be[i].flags.cycles;
2167 }
2168 
2169 #define CHASHSZ 127
2170 #define CHASHBITS 7
2171 #define NO_ENTRY 0xff
2172 
2173 #define PERF_MAX_BRANCH_DEPTH 127
2174 
2175 /* Remove loops. */
2176 static int remove_loops(struct branch_entry *l, int nr,
2177 			struct iterations *iter)
2178 {
2179 	int i, j, off;
2180 	unsigned char chash[CHASHSZ];
2181 
2182 	memset(chash, NO_ENTRY, sizeof(chash));
2183 
2184 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2185 
2186 	for (i = 0; i < nr; i++) {
2187 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2188 
2189 		/* no collision handling for now */
2190 		if (chash[h] == NO_ENTRY) {
2191 			chash[h] = i;
2192 		} else if (l[chash[h]].from == l[i].from) {
2193 			bool is_loop = true;
2194 			/* check if it is a real loop */
2195 			off = 0;
2196 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2197 				if (l[j].from != l[i + off].from) {
2198 					is_loop = false;
2199 					break;
2200 				}
2201 			if (is_loop) {
2202 				j = nr - (i + off);
2203 				if (j > 0) {
2204 					save_iterations(iter + i + off,
2205 						l + i, off);
2206 
2207 					memmove(iter + i, iter + i + off,
2208 						j * sizeof(*iter));
2209 
2210 					memmove(l + i, l + i + off,
2211 						j * sizeof(*l));
2212 				}
2213 
2214 				nr -= off;
2215 			}
2216 		}
2217 	}
2218 	return nr;
2219 }
2220 
2221 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2222 				       struct callchain_cursor *cursor,
2223 				       struct perf_sample *sample,
2224 				       struct symbol **parent,
2225 				       struct addr_location *root_al,
2226 				       u64 branch_from,
2227 				       bool callee, int end)
2228 {
2229 	struct ip_callchain *chain = sample->callchain;
2230 	u8 cpumode = PERF_RECORD_MISC_USER;
2231 	int err, i;
2232 
2233 	if (callee) {
2234 		for (i = 0; i < end + 1; i++) {
2235 			err = add_callchain_ip(thread, cursor, parent,
2236 					       root_al, &cpumode, chain->ips[i],
2237 					       false, NULL, NULL, branch_from);
2238 			if (err)
2239 				return err;
2240 		}
2241 		return 0;
2242 	}
2243 
2244 	for (i = end; i >= 0; i--) {
2245 		err = add_callchain_ip(thread, cursor, parent,
2246 				       root_al, &cpumode, chain->ips[i],
2247 				       false, NULL, NULL, branch_from);
2248 		if (err)
2249 			return err;
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static void save_lbr_cursor_node(struct thread *thread,
2256 				 struct callchain_cursor *cursor,
2257 				 int idx)
2258 {
2259 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2260 
2261 	if (!lbr_stitch)
2262 		return;
2263 
2264 	if (cursor->pos == cursor->nr) {
2265 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2266 		return;
2267 	}
2268 
2269 	if (!cursor->curr)
2270 		cursor->curr = cursor->first;
2271 	else
2272 		cursor->curr = cursor->curr->next;
2273 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2274 	       sizeof(struct callchain_cursor_node));
2275 
2276 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2277 	cursor->pos++;
2278 }
2279 
2280 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2281 				    struct callchain_cursor *cursor,
2282 				    struct perf_sample *sample,
2283 				    struct symbol **parent,
2284 				    struct addr_location *root_al,
2285 				    u64 *branch_from,
2286 				    bool callee)
2287 {
2288 	struct branch_stack *lbr_stack = sample->branch_stack;
2289 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2290 	u8 cpumode = PERF_RECORD_MISC_USER;
2291 	int lbr_nr = lbr_stack->nr;
2292 	struct branch_flags *flags;
2293 	int err, i;
2294 	u64 ip;
2295 
2296 	/*
2297 	 * The curr and pos are not used in writing session. They are cleared
2298 	 * in callchain_cursor_commit() when the writing session is closed.
2299 	 * Using curr and pos to track the current cursor node.
2300 	 */
2301 	if (thread__lbr_stitch(thread)) {
2302 		cursor->curr = NULL;
2303 		cursor->pos = cursor->nr;
2304 		if (cursor->nr) {
2305 			cursor->curr = cursor->first;
2306 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2307 				cursor->curr = cursor->curr->next;
2308 		}
2309 	}
2310 
2311 	if (callee) {
2312 		/* Add LBR ip from first entries.to */
2313 		ip = entries[0].to;
2314 		flags = &entries[0].flags;
2315 		*branch_from = entries[0].from;
2316 		err = add_callchain_ip(thread, cursor, parent,
2317 				       root_al, &cpumode, ip,
2318 				       true, flags, NULL,
2319 				       *branch_from);
2320 		if (err)
2321 			return err;
2322 
2323 		/*
2324 		 * The number of cursor node increases.
2325 		 * Move the current cursor node.
2326 		 * But does not need to save current cursor node for entry 0.
2327 		 * It's impossible to stitch the whole LBRs of previous sample.
2328 		 */
2329 		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2330 			if (!cursor->curr)
2331 				cursor->curr = cursor->first;
2332 			else
2333 				cursor->curr = cursor->curr->next;
2334 			cursor->pos++;
2335 		}
2336 
2337 		/* Add LBR ip from entries.from one by one. */
2338 		for (i = 0; i < lbr_nr; i++) {
2339 			ip = entries[i].from;
2340 			flags = &entries[i].flags;
2341 			err = add_callchain_ip(thread, cursor, parent,
2342 					       root_al, &cpumode, ip,
2343 					       true, flags, NULL,
2344 					       *branch_from);
2345 			if (err)
2346 				return err;
2347 			save_lbr_cursor_node(thread, cursor, i);
2348 		}
2349 		return 0;
2350 	}
2351 
2352 	/* Add LBR ip from entries.from one by one. */
2353 	for (i = lbr_nr - 1; i >= 0; i--) {
2354 		ip = entries[i].from;
2355 		flags = &entries[i].flags;
2356 		err = add_callchain_ip(thread, cursor, parent,
2357 				       root_al, &cpumode, ip,
2358 				       true, flags, NULL,
2359 				       *branch_from);
2360 		if (err)
2361 			return err;
2362 		save_lbr_cursor_node(thread, cursor, i);
2363 	}
2364 
2365 	if (lbr_nr > 0) {
2366 		/* Add LBR ip from first entries.to */
2367 		ip = entries[0].to;
2368 		flags = &entries[0].flags;
2369 		*branch_from = entries[0].from;
2370 		err = add_callchain_ip(thread, cursor, parent,
2371 				root_al, &cpumode, ip,
2372 				true, flags, NULL,
2373 				*branch_from);
2374 		if (err)
2375 			return err;
2376 	}
2377 
2378 	return 0;
2379 }
2380 
2381 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2382 					     struct callchain_cursor *cursor)
2383 {
2384 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2385 	struct callchain_cursor_node *cnode;
2386 	struct stitch_list *stitch_node;
2387 	int err;
2388 
2389 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2390 		cnode = &stitch_node->cursor;
2391 
2392 		err = callchain_cursor_append(cursor, cnode->ip,
2393 					      &cnode->ms,
2394 					      cnode->branch,
2395 					      &cnode->branch_flags,
2396 					      cnode->nr_loop_iter,
2397 					      cnode->iter_cycles,
2398 					      cnode->branch_from,
2399 					      cnode->srcline);
2400 		if (err)
2401 			return err;
2402 	}
2403 	return 0;
2404 }
2405 
2406 static struct stitch_list *get_stitch_node(struct thread *thread)
2407 {
2408 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2409 	struct stitch_list *stitch_node;
2410 
2411 	if (!list_empty(&lbr_stitch->free_lists)) {
2412 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2413 					       struct stitch_list, node);
2414 		list_del(&stitch_node->node);
2415 
2416 		return stitch_node;
2417 	}
2418 
2419 	return malloc(sizeof(struct stitch_list));
2420 }
2421 
2422 static bool has_stitched_lbr(struct thread *thread,
2423 			     struct perf_sample *cur,
2424 			     struct perf_sample *prev,
2425 			     unsigned int max_lbr,
2426 			     bool callee)
2427 {
2428 	struct branch_stack *cur_stack = cur->branch_stack;
2429 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2430 	struct branch_stack *prev_stack = prev->branch_stack;
2431 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2432 	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2433 	int i, j, nr_identical_branches = 0;
2434 	struct stitch_list *stitch_node;
2435 	u64 cur_base, distance;
2436 
2437 	if (!cur_stack || !prev_stack)
2438 		return false;
2439 
2440 	/* Find the physical index of the base-of-stack for current sample. */
2441 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2442 
2443 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2444 						     (max_lbr + prev_stack->hw_idx - cur_base);
2445 	/* Previous sample has shorter stack. Nothing can be stitched. */
2446 	if (distance + 1 > prev_stack->nr)
2447 		return false;
2448 
2449 	/*
2450 	 * Check if there are identical LBRs between two samples.
2451 	 * Identical LBRs must have same from, to and flags values. Also,
2452 	 * they have to be saved in the same LBR registers (same physical
2453 	 * index).
2454 	 *
2455 	 * Starts from the base-of-stack of current sample.
2456 	 */
2457 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2458 		if ((prev_entries[i].from != cur_entries[j].from) ||
2459 		    (prev_entries[i].to != cur_entries[j].to) ||
2460 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2461 			break;
2462 		nr_identical_branches++;
2463 	}
2464 
2465 	if (!nr_identical_branches)
2466 		return false;
2467 
2468 	/*
2469 	 * Save the LBRs between the base-of-stack of previous sample
2470 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2471 	 * These LBRs will be stitched later.
2472 	 */
2473 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2474 
2475 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2476 			continue;
2477 
2478 		stitch_node = get_stitch_node(thread);
2479 		if (!stitch_node)
2480 			return false;
2481 
2482 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2483 		       sizeof(struct callchain_cursor_node));
2484 
2485 		if (callee)
2486 			list_add(&stitch_node->node, &lbr_stitch->lists);
2487 		else
2488 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2489 	}
2490 
2491 	return true;
2492 }
2493 
2494 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2495 {
2496 	if (thread__lbr_stitch(thread))
2497 		return true;
2498 
2499 	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2500 	if (!thread__lbr_stitch(thread))
2501 		goto err;
2502 
2503 	thread__lbr_stitch(thread)->prev_lbr_cursor =
2504 		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2505 	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2506 		goto free_lbr_stitch;
2507 
2508 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2509 	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2510 
2511 	return true;
2512 
2513 free_lbr_stitch:
2514 	free(thread__lbr_stitch(thread));
2515 	thread__set_lbr_stitch(thread, NULL);
2516 err:
2517 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2518 	thread__set_lbr_stitch_enable(thread, false);
2519 	return false;
2520 }
2521 
2522 /*
2523  * Resolve LBR callstack chain sample
2524  * Return:
2525  * 1 on success get LBR callchain information
2526  * 0 no available LBR callchain information, should try fp
2527  * negative error code on other errors.
2528  */
2529 static int resolve_lbr_callchain_sample(struct thread *thread,
2530 					struct callchain_cursor *cursor,
2531 					struct perf_sample *sample,
2532 					struct symbol **parent,
2533 					struct addr_location *root_al,
2534 					int max_stack,
2535 					unsigned int max_lbr)
2536 {
2537 	bool callee = (callchain_param.order == ORDER_CALLEE);
2538 	struct ip_callchain *chain = sample->callchain;
2539 	int chain_nr = min(max_stack, (int)chain->nr), i;
2540 	struct lbr_stitch *lbr_stitch;
2541 	bool stitched_lbr = false;
2542 	u64 branch_from = 0;
2543 	int err;
2544 
2545 	for (i = 0; i < chain_nr; i++) {
2546 		if (chain->ips[i] == PERF_CONTEXT_USER)
2547 			break;
2548 	}
2549 
2550 	/* LBR only affects the user callchain */
2551 	if (i == chain_nr)
2552 		return 0;
2553 
2554 	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2555 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2556 		lbr_stitch = thread__lbr_stitch(thread);
2557 
2558 		stitched_lbr = has_stitched_lbr(thread, sample,
2559 						&lbr_stitch->prev_sample,
2560 						max_lbr, callee);
2561 
2562 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2563 			list_replace_init(&lbr_stitch->lists,
2564 					  &lbr_stitch->free_lists);
2565 		}
2566 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2567 	}
2568 
2569 	if (callee) {
2570 		/* Add kernel ip */
2571 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2572 						  parent, root_al, branch_from,
2573 						  true, i);
2574 		if (err)
2575 			goto error;
2576 
2577 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2578 					       root_al, &branch_from, true);
2579 		if (err)
2580 			goto error;
2581 
2582 		if (stitched_lbr) {
2583 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2584 			if (err)
2585 				goto error;
2586 		}
2587 
2588 	} else {
2589 		if (stitched_lbr) {
2590 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2591 			if (err)
2592 				goto error;
2593 		}
2594 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2595 					       root_al, &branch_from, false);
2596 		if (err)
2597 			goto error;
2598 
2599 		/* Add kernel ip */
2600 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2601 						  parent, root_al, branch_from,
2602 						  false, i);
2603 		if (err)
2604 			goto error;
2605 	}
2606 	return 1;
2607 
2608 error:
2609 	return (err < 0) ? err : 0;
2610 }
2611 
2612 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2613 			     struct callchain_cursor *cursor,
2614 			     struct symbol **parent,
2615 			     struct addr_location *root_al,
2616 			     u8 *cpumode, int ent)
2617 {
2618 	int err = 0;
2619 
2620 	while (--ent >= 0) {
2621 		u64 ip = chain->ips[ent];
2622 
2623 		if (ip >= PERF_CONTEXT_MAX) {
2624 			err = add_callchain_ip(thread, cursor, parent,
2625 					       root_al, cpumode, ip,
2626 					       false, NULL, NULL, 0);
2627 			break;
2628 		}
2629 	}
2630 	return err;
2631 }
2632 
2633 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2634 		struct thread *thread, int usr_idx)
2635 {
2636 	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2637 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2638 	else
2639 		return 0;
2640 }
2641 
2642 static int thread__resolve_callchain_sample(struct thread *thread,
2643 					    struct callchain_cursor *cursor,
2644 					    struct evsel *evsel,
2645 					    struct perf_sample *sample,
2646 					    struct symbol **parent,
2647 					    struct addr_location *root_al,
2648 					    int max_stack)
2649 {
2650 	struct branch_stack *branch = sample->branch_stack;
2651 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2652 	struct ip_callchain *chain = sample->callchain;
2653 	int chain_nr = 0;
2654 	u8 cpumode = PERF_RECORD_MISC_USER;
2655 	int i, j, err, nr_entries, usr_idx;
2656 	int skip_idx = -1;
2657 	int first_call = 0;
2658 	u64 leaf_frame_caller;
2659 
2660 	if (chain)
2661 		chain_nr = chain->nr;
2662 
2663 	if (evsel__has_branch_callstack(evsel)) {
2664 		struct perf_env *env = evsel__env(evsel);
2665 
2666 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2667 						   root_al, max_stack,
2668 						   !env ? 0 : env->max_branches);
2669 		if (err)
2670 			return (err < 0) ? err : 0;
2671 	}
2672 
2673 	/*
2674 	 * Based on DWARF debug information, some architectures skip
2675 	 * a callchain entry saved by the kernel.
2676 	 */
2677 	skip_idx = arch_skip_callchain_idx(thread, chain);
2678 
2679 	/*
2680 	 * Add branches to call stack for easier browsing. This gives
2681 	 * more context for a sample than just the callers.
2682 	 *
2683 	 * This uses individual histograms of paths compared to the
2684 	 * aggregated histograms the normal LBR mode uses.
2685 	 *
2686 	 * Limitations for now:
2687 	 * - No extra filters
2688 	 * - No annotations (should annotate somehow)
2689 	 */
2690 
2691 	if (branch && callchain_param.branch_callstack) {
2692 		int nr = min(max_stack, (int)branch->nr);
2693 		struct branch_entry be[nr];
2694 		struct iterations iter[nr];
2695 
2696 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2697 			pr_warning("corrupted branch chain. skipping...\n");
2698 			goto check_calls;
2699 		}
2700 
2701 		for (i = 0; i < nr; i++) {
2702 			if (callchain_param.order == ORDER_CALLEE) {
2703 				be[i] = entries[i];
2704 
2705 				if (chain == NULL)
2706 					continue;
2707 
2708 				/*
2709 				 * Check for overlap into the callchain.
2710 				 * The return address is one off compared to
2711 				 * the branch entry. To adjust for this
2712 				 * assume the calling instruction is not longer
2713 				 * than 8 bytes.
2714 				 */
2715 				if (i == skip_idx ||
2716 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2717 					first_call++;
2718 				else if (be[i].from < chain->ips[first_call] &&
2719 				    be[i].from >= chain->ips[first_call] - 8)
2720 					first_call++;
2721 			} else
2722 				be[i] = entries[branch->nr - i - 1];
2723 		}
2724 
2725 		memset(iter, 0, sizeof(struct iterations) * nr);
2726 		nr = remove_loops(be, nr, iter);
2727 
2728 		for (i = 0; i < nr; i++) {
2729 			err = add_callchain_ip(thread, cursor, parent,
2730 					       root_al,
2731 					       NULL, be[i].to,
2732 					       true, &be[i].flags,
2733 					       NULL, be[i].from);
2734 
2735 			if (!err)
2736 				err = add_callchain_ip(thread, cursor, parent, root_al,
2737 						       NULL, be[i].from,
2738 						       true, &be[i].flags,
2739 						       &iter[i], 0);
2740 			if (err == -EINVAL)
2741 				break;
2742 			if (err)
2743 				return err;
2744 		}
2745 
2746 		if (chain_nr == 0)
2747 			return 0;
2748 
2749 		chain_nr -= nr;
2750 	}
2751 
2752 check_calls:
2753 	if (chain && callchain_param.order != ORDER_CALLEE) {
2754 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2755 					&cpumode, chain->nr - first_call);
2756 		if (err)
2757 			return (err < 0) ? err : 0;
2758 	}
2759 	for (i = first_call, nr_entries = 0;
2760 	     i < chain_nr && nr_entries < max_stack; i++) {
2761 		u64 ip;
2762 
2763 		if (callchain_param.order == ORDER_CALLEE)
2764 			j = i;
2765 		else
2766 			j = chain->nr - i - 1;
2767 
2768 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2769 		if (j == skip_idx)
2770 			continue;
2771 #endif
2772 		ip = chain->ips[j];
2773 		if (ip < PERF_CONTEXT_MAX)
2774                        ++nr_entries;
2775 		else if (callchain_param.order != ORDER_CALLEE) {
2776 			err = find_prev_cpumode(chain, thread, cursor, parent,
2777 						root_al, &cpumode, j);
2778 			if (err)
2779 				return (err < 0) ? err : 0;
2780 			continue;
2781 		}
2782 
2783 		/*
2784 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2785 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2786 		 * the index will be different in order to add the missing frame
2787 		 * at the right place.
2788 		 */
2789 
2790 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2791 
2792 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2793 
2794 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2795 
2796 			/*
2797 			 * check if leaf_frame_Caller != ip to not add the same
2798 			 * value twice.
2799 			 */
2800 
2801 			if (leaf_frame_caller && leaf_frame_caller != ip) {
2802 
2803 				err = add_callchain_ip(thread, cursor, parent,
2804 					       root_al, &cpumode, leaf_frame_caller,
2805 					       false, NULL, NULL, 0);
2806 				if (err)
2807 					return (err < 0) ? err : 0;
2808 			}
2809 		}
2810 
2811 		err = add_callchain_ip(thread, cursor, parent,
2812 				       root_al, &cpumode, ip,
2813 				       false, NULL, NULL, 0);
2814 
2815 		if (err)
2816 			return (err < 0) ? err : 0;
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2823 {
2824 	struct symbol *sym = ms->sym;
2825 	struct map *map = ms->map;
2826 	struct inline_node *inline_node;
2827 	struct inline_list *ilist;
2828 	struct dso *dso;
2829 	u64 addr;
2830 	int ret = 1;
2831 	struct map_symbol ilist_ms;
2832 
2833 	if (!symbol_conf.inline_name || !map || !sym)
2834 		return ret;
2835 
2836 	addr = map__dso_map_ip(map, ip);
2837 	addr = map__rip_2objdump(map, addr);
2838 	dso = map__dso(map);
2839 
2840 	inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr);
2841 	if (!inline_node) {
2842 		inline_node = dso__parse_addr_inlines(dso, addr, sym);
2843 		if (!inline_node)
2844 			return ret;
2845 		inlines__tree_insert(dso__inlined_nodes(dso), inline_node);
2846 	}
2847 
2848 	ilist_ms = (struct map_symbol) {
2849 		.maps = maps__get(ms->maps),
2850 		.map = map__get(map),
2851 	};
2852 	list_for_each_entry(ilist, &inline_node->val, list) {
2853 		ilist_ms.sym = ilist->symbol;
2854 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2855 					      NULL, 0, 0, 0, ilist->srcline);
2856 
2857 		if (ret != 0)
2858 			return ret;
2859 	}
2860 	map_symbol__exit(&ilist_ms);
2861 
2862 	return ret;
2863 }
2864 
2865 static int unwind_entry(struct unwind_entry *entry, void *arg)
2866 {
2867 	struct callchain_cursor *cursor = arg;
2868 	const char *srcline = NULL;
2869 	u64 addr = entry->ip;
2870 
2871 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2872 		return 0;
2873 
2874 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2875 		return 0;
2876 
2877 	/*
2878 	 * Convert entry->ip from a virtual address to an offset in
2879 	 * its corresponding binary.
2880 	 */
2881 	if (entry->ms.map)
2882 		addr = map__dso_map_ip(entry->ms.map, entry->ip);
2883 
2884 	srcline = callchain_srcline(&entry->ms, addr);
2885 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2886 				       false, NULL, 0, 0, 0, srcline);
2887 }
2888 
2889 static int thread__resolve_callchain_unwind(struct thread *thread,
2890 					    struct callchain_cursor *cursor,
2891 					    struct evsel *evsel,
2892 					    struct perf_sample *sample,
2893 					    int max_stack)
2894 {
2895 	/* Can we do dwarf post unwind? */
2896 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2897 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2898 		return 0;
2899 
2900 	/* Bail out if nothing was captured. */
2901 	if ((!sample->user_regs.regs) ||
2902 	    (!sample->user_stack.size))
2903 		return 0;
2904 
2905 	return unwind__get_entries(unwind_entry, cursor,
2906 				   thread, sample, max_stack, false);
2907 }
2908 
2909 int thread__resolve_callchain(struct thread *thread,
2910 			      struct callchain_cursor *cursor,
2911 			      struct evsel *evsel,
2912 			      struct perf_sample *sample,
2913 			      struct symbol **parent,
2914 			      struct addr_location *root_al,
2915 			      int max_stack)
2916 {
2917 	int ret = 0;
2918 
2919 	if (cursor == NULL)
2920 		return -ENOMEM;
2921 
2922 	callchain_cursor_reset(cursor);
2923 
2924 	if (callchain_param.order == ORDER_CALLEE) {
2925 		ret = thread__resolve_callchain_sample(thread, cursor,
2926 						       evsel, sample,
2927 						       parent, root_al,
2928 						       max_stack);
2929 		if (ret)
2930 			return ret;
2931 		ret = thread__resolve_callchain_unwind(thread, cursor,
2932 						       evsel, sample,
2933 						       max_stack);
2934 	} else {
2935 		ret = thread__resolve_callchain_unwind(thread, cursor,
2936 						       evsel, sample,
2937 						       max_stack);
2938 		if (ret)
2939 			return ret;
2940 		ret = thread__resolve_callchain_sample(thread, cursor,
2941 						       evsel, sample,
2942 						       parent, root_al,
2943 						       max_stack);
2944 	}
2945 
2946 	return ret;
2947 }
2948 
2949 int machine__for_each_thread(struct machine *machine,
2950 			     int (*fn)(struct thread *thread, void *p),
2951 			     void *priv)
2952 {
2953 	return threads__for_each_thread(&machine->threads, fn, priv);
2954 }
2955 
2956 int machines__for_each_thread(struct machines *machines,
2957 			      int (*fn)(struct thread *thread, void *p),
2958 			      void *priv)
2959 {
2960 	struct rb_node *nd;
2961 	int rc = 0;
2962 
2963 	rc = machine__for_each_thread(&machines->host, fn, priv);
2964 	if (rc != 0)
2965 		return rc;
2966 
2967 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2968 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2969 
2970 		rc = machine__for_each_thread(machine, fn, priv);
2971 		if (rc != 0)
2972 			return rc;
2973 	}
2974 	return rc;
2975 }
2976 
2977 
2978 static int thread_list_cb(struct thread *thread, void *data)
2979 {
2980 	struct list_head *list = data;
2981 	struct thread_list *entry = malloc(sizeof(*entry));
2982 
2983 	if (!entry)
2984 		return -ENOMEM;
2985 
2986 	entry->thread = thread__get(thread);
2987 	list_add_tail(&entry->list, list);
2988 	return 0;
2989 }
2990 
2991 int machine__thread_list(struct machine *machine, struct list_head *list)
2992 {
2993 	return machine__for_each_thread(machine, thread_list_cb, list);
2994 }
2995 
2996 void thread_list__delete(struct list_head *list)
2997 {
2998 	struct thread_list *pos, *next;
2999 
3000 	list_for_each_entry_safe(pos, next, list, list) {
3001 		thread__zput(pos->thread);
3002 		list_del(&pos->list);
3003 		free(pos);
3004 	}
3005 }
3006 
3007 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3008 {
3009 	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3010 		return -1;
3011 
3012 	return machine->current_tid[cpu];
3013 }
3014 
3015 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3016 			     pid_t tid)
3017 {
3018 	struct thread *thread;
3019 	const pid_t init_val = -1;
3020 
3021 	if (cpu < 0)
3022 		return -EINVAL;
3023 
3024 	if (realloc_array_as_needed(machine->current_tid,
3025 				    machine->current_tid_sz,
3026 				    (unsigned int)cpu,
3027 				    &init_val))
3028 		return -ENOMEM;
3029 
3030 	machine->current_tid[cpu] = tid;
3031 
3032 	thread = machine__findnew_thread(machine, pid, tid);
3033 	if (!thread)
3034 		return -ENOMEM;
3035 
3036 	thread__set_cpu(thread, cpu);
3037 	thread__put(thread);
3038 
3039 	return 0;
3040 }
3041 
3042 /*
3043  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3044  * machine__normalized_is() if a normalized arch is needed.
3045  */
3046 bool machine__is(struct machine *machine, const char *arch)
3047 {
3048 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3049 }
3050 
3051 bool machine__normalized_is(struct machine *machine, const char *arch)
3052 {
3053 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3054 }
3055 
3056 int machine__nr_cpus_avail(struct machine *machine)
3057 {
3058 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3059 }
3060 
3061 int machine__get_kernel_start(struct machine *machine)
3062 {
3063 	struct map *map = machine__kernel_map(machine);
3064 	int err = 0;
3065 
3066 	/*
3067 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3068 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3069 	 * all addresses including kernel addresses are less than 2^32.  In
3070 	 * that case (32-bit system), if the kernel mapping is unknown, all
3071 	 * addresses will be assumed to be in user space - see
3072 	 * machine__kernel_ip().
3073 	 */
3074 	machine->kernel_start = 1ULL << 63;
3075 	if (map) {
3076 		err = map__load(map);
3077 		/*
3078 		 * On x86_64, PTI entry trampolines are less than the
3079 		 * start of kernel text, but still above 2^63. So leave
3080 		 * kernel_start = 1ULL << 63 for x86_64.
3081 		 */
3082 		if (!err && !machine__is(machine, "x86_64"))
3083 			machine->kernel_start = map__start(map);
3084 	}
3085 	return err;
3086 }
3087 
3088 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3089 {
3090 	u8 addr_cpumode = cpumode;
3091 	bool kernel_ip;
3092 
3093 	if (!machine->single_address_space)
3094 		goto out;
3095 
3096 	kernel_ip = machine__kernel_ip(machine, addr);
3097 	switch (cpumode) {
3098 	case PERF_RECORD_MISC_KERNEL:
3099 	case PERF_RECORD_MISC_USER:
3100 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3101 					   PERF_RECORD_MISC_USER;
3102 		break;
3103 	case PERF_RECORD_MISC_GUEST_KERNEL:
3104 	case PERF_RECORD_MISC_GUEST_USER:
3105 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3106 					   PERF_RECORD_MISC_GUEST_USER;
3107 		break;
3108 	default:
3109 		break;
3110 	}
3111 out:
3112 	return addr_cpumode;
3113 }
3114 
3115 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3116 {
3117 	return dsos__findnew_id(&machine->dsos, filename, id);
3118 }
3119 
3120 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3121 {
3122 	return machine__findnew_dso_id(machine, filename, NULL);
3123 }
3124 
3125 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3126 {
3127 	struct machine *machine = vmachine;
3128 	struct map *map;
3129 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3130 
3131 	if (sym == NULL)
3132 		return NULL;
3133 
3134 	*modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL;
3135 	*addrp = map__unmap_ip(map, sym->start);
3136 	return sym->name;
3137 }
3138 
3139 struct machine__for_each_dso_cb_args {
3140 	struct machine *machine;
3141 	machine__dso_t fn;
3142 	void *priv;
3143 };
3144 
3145 static int machine__for_each_dso_cb(struct dso *dso, void *data)
3146 {
3147 	struct machine__for_each_dso_cb_args *args = data;
3148 
3149 	return args->fn(dso, args->machine, args->priv);
3150 }
3151 
3152 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3153 {
3154 	struct machine__for_each_dso_cb_args args = {
3155 		.machine = machine,
3156 		.fn = fn,
3157 		.priv = priv,
3158 	};
3159 
3160 	return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args);
3161 }
3162 
3163 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3164 {
3165 	struct maps *maps = machine__kernel_maps(machine);
3166 
3167 	return maps__for_each_map(maps, fn, priv);
3168 }
3169 
3170 bool machine__is_lock_function(struct machine *machine, u64 addr)
3171 {
3172 	if (!machine->sched.text_start) {
3173 		struct map *kmap;
3174 		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3175 
3176 		if (!sym) {
3177 			/* to avoid retry */
3178 			machine->sched.text_start = 1;
3179 			return false;
3180 		}
3181 
3182 		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3183 
3184 		/* should not fail from here */
3185 		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3186 		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3187 
3188 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3189 		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3190 
3191 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3192 		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3193 
3194 		sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap);
3195 		if (sym) {
3196 			machine->traceiter.text_start = map__unmap_ip(kmap, sym->start);
3197 			machine->traceiter.text_end = map__unmap_ip(kmap, sym->end);
3198 		}
3199 		sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap);
3200 		if (sym) {
3201 			machine->trace.text_start = map__unmap_ip(kmap, sym->start);
3202 			machine->trace.text_end = map__unmap_ip(kmap, sym->end);
3203 		}
3204 	}
3205 
3206 	/* failed to get kernel symbols */
3207 	if (machine->sched.text_start == 1)
3208 		return false;
3209 
3210 	/* mutex and rwsem functions are in sched text section */
3211 	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3212 		return true;
3213 
3214 	/* spinlock functions are in lock text section */
3215 	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3216 		return true;
3217 
3218 	/* traceiter functions currently don't have their own section
3219 	 * but we consider them lock functions
3220 	 */
3221 	if (machine->traceiter.text_start != 0) {
3222 		if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end)
3223 			return true;
3224 	}
3225 
3226 	if (machine->trace.text_start != 0) {
3227 		if (machine->trace.text_start <= addr && addr < machine->trace.text_end)
3228 			return true;
3229 	}
3230 
3231 	return false;
3232 }
3233 
3234 int machine__hit_all_dsos(struct machine *machine)
3235 {
3236 	return dsos__hit_all(&machine->dsos);
3237 }
3238