1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 #include "cgroup.h" 37 38 #include <linux/ctype.h> 39 #include <symbol/kallsyms.h> 40 #include <linux/mman.h> 41 #include <linux/string.h> 42 #include <linux/zalloc.h> 43 44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 45 46 static struct dso *machine__kernel_dso(struct machine *machine) 47 { 48 return machine->vmlinux_map->dso; 49 } 50 51 static void dsos__init(struct dsos *dsos) 52 { 53 INIT_LIST_HEAD(&dsos->head); 54 dsos->root = RB_ROOT; 55 init_rwsem(&dsos->lock); 56 } 57 58 static void machine__threads_init(struct machine *machine) 59 { 60 int i; 61 62 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 63 struct threads *threads = &machine->threads[i]; 64 threads->entries = RB_ROOT_CACHED; 65 init_rwsem(&threads->lock); 66 threads->nr = 0; 67 INIT_LIST_HEAD(&threads->dead); 68 threads->last_match = NULL; 69 } 70 } 71 72 static int machine__set_mmap_name(struct machine *machine) 73 { 74 if (machine__is_host(machine)) 75 machine->mmap_name = strdup("[kernel.kallsyms]"); 76 else if (machine__is_default_guest(machine)) 77 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 79 machine->pid) < 0) 80 machine->mmap_name = NULL; 81 82 return machine->mmap_name ? 0 : -ENOMEM; 83 } 84 85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 86 { 87 int err = -ENOMEM; 88 89 memset(machine, 0, sizeof(*machine)); 90 maps__init(&machine->kmaps, machine); 91 RB_CLEAR_NODE(&machine->rb_node); 92 dsos__init(&machine->dsos); 93 94 machine__threads_init(machine); 95 96 machine->vdso_info = NULL; 97 machine->env = NULL; 98 99 machine->pid = pid; 100 101 machine->id_hdr_size = 0; 102 machine->kptr_restrict_warned = false; 103 machine->comm_exec = false; 104 machine->kernel_start = 0; 105 machine->vmlinux_map = NULL; 106 107 machine->root_dir = strdup(root_dir); 108 if (machine->root_dir == NULL) 109 return -ENOMEM; 110 111 if (machine__set_mmap_name(machine)) 112 goto out; 113 114 if (pid != HOST_KERNEL_ID) { 115 struct thread *thread = machine__findnew_thread(machine, -1, 116 pid); 117 char comm[64]; 118 119 if (thread == NULL) 120 goto out; 121 122 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 123 thread__set_comm(thread, comm, 0); 124 thread__put(thread); 125 } 126 127 machine->current_tid = NULL; 128 err = 0; 129 130 out: 131 if (err) { 132 zfree(&machine->root_dir); 133 zfree(&machine->mmap_name); 134 } 135 return 0; 136 } 137 138 struct machine *machine__new_host(void) 139 { 140 struct machine *machine = malloc(sizeof(*machine)); 141 142 if (machine != NULL) { 143 machine__init(machine, "", HOST_KERNEL_ID); 144 145 if (machine__create_kernel_maps(machine) < 0) 146 goto out_delete; 147 } 148 149 return machine; 150 out_delete: 151 free(machine); 152 return NULL; 153 } 154 155 struct machine *machine__new_kallsyms(void) 156 { 157 struct machine *machine = machine__new_host(); 158 /* 159 * FIXME: 160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 161 * ask for not using the kcore parsing code, once this one is fixed 162 * to create a map per module. 163 */ 164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 165 machine__delete(machine); 166 machine = NULL; 167 } 168 169 return machine; 170 } 171 172 static void dsos__purge(struct dsos *dsos) 173 { 174 struct dso *pos, *n; 175 176 down_write(&dsos->lock); 177 178 list_for_each_entry_safe(pos, n, &dsos->head, node) { 179 RB_CLEAR_NODE(&pos->rb_node); 180 pos->root = NULL; 181 list_del_init(&pos->node); 182 dso__put(pos); 183 } 184 185 up_write(&dsos->lock); 186 } 187 188 static void dsos__exit(struct dsos *dsos) 189 { 190 dsos__purge(dsos); 191 exit_rwsem(&dsos->lock); 192 } 193 194 void machine__delete_threads(struct machine *machine) 195 { 196 struct rb_node *nd; 197 int i; 198 199 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 200 struct threads *threads = &machine->threads[i]; 201 down_write(&threads->lock); 202 nd = rb_first_cached(&threads->entries); 203 while (nd) { 204 struct thread *t = rb_entry(nd, struct thread, rb_node); 205 206 nd = rb_next(nd); 207 __machine__remove_thread(machine, t, false); 208 } 209 up_write(&threads->lock); 210 } 211 } 212 213 void machine__exit(struct machine *machine) 214 { 215 int i; 216 217 if (machine == NULL) 218 return; 219 220 machine__destroy_kernel_maps(machine); 221 maps__exit(&machine->kmaps); 222 dsos__exit(&machine->dsos); 223 machine__exit_vdso(machine); 224 zfree(&machine->root_dir); 225 zfree(&machine->mmap_name); 226 zfree(&machine->current_tid); 227 228 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 229 struct threads *threads = &machine->threads[i]; 230 struct thread *thread, *n; 231 /* 232 * Forget about the dead, at this point whatever threads were 233 * left in the dead lists better have a reference count taken 234 * by who is using them, and then, when they drop those references 235 * and it finally hits zero, thread__put() will check and see that 236 * its not in the dead threads list and will not try to remove it 237 * from there, just calling thread__delete() straight away. 238 */ 239 list_for_each_entry_safe(thread, n, &threads->dead, node) 240 list_del_init(&thread->node); 241 242 exit_rwsem(&threads->lock); 243 } 244 } 245 246 void machine__delete(struct machine *machine) 247 { 248 if (machine) { 249 machine__exit(machine); 250 free(machine); 251 } 252 } 253 254 void machines__init(struct machines *machines) 255 { 256 machine__init(&machines->host, "", HOST_KERNEL_ID); 257 machines->guests = RB_ROOT_CACHED; 258 } 259 260 void machines__exit(struct machines *machines) 261 { 262 machine__exit(&machines->host); 263 /* XXX exit guest */ 264 } 265 266 struct machine *machines__add(struct machines *machines, pid_t pid, 267 const char *root_dir) 268 { 269 struct rb_node **p = &machines->guests.rb_root.rb_node; 270 struct rb_node *parent = NULL; 271 struct machine *pos, *machine = malloc(sizeof(*machine)); 272 bool leftmost = true; 273 274 if (machine == NULL) 275 return NULL; 276 277 if (machine__init(machine, root_dir, pid) != 0) { 278 free(machine); 279 return NULL; 280 } 281 282 while (*p != NULL) { 283 parent = *p; 284 pos = rb_entry(parent, struct machine, rb_node); 285 if (pid < pos->pid) 286 p = &(*p)->rb_left; 287 else { 288 p = &(*p)->rb_right; 289 leftmost = false; 290 } 291 } 292 293 rb_link_node(&machine->rb_node, parent, p); 294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 295 296 return machine; 297 } 298 299 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 300 { 301 struct rb_node *nd; 302 303 machines->host.comm_exec = comm_exec; 304 305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 306 struct machine *machine = rb_entry(nd, struct machine, rb_node); 307 308 machine->comm_exec = comm_exec; 309 } 310 } 311 312 struct machine *machines__find(struct machines *machines, pid_t pid) 313 { 314 struct rb_node **p = &machines->guests.rb_root.rb_node; 315 struct rb_node *parent = NULL; 316 struct machine *machine; 317 struct machine *default_machine = NULL; 318 319 if (pid == HOST_KERNEL_ID) 320 return &machines->host; 321 322 while (*p != NULL) { 323 parent = *p; 324 machine = rb_entry(parent, struct machine, rb_node); 325 if (pid < machine->pid) 326 p = &(*p)->rb_left; 327 else if (pid > machine->pid) 328 p = &(*p)->rb_right; 329 else 330 return machine; 331 if (!machine->pid) 332 default_machine = machine; 333 } 334 335 return default_machine; 336 } 337 338 struct machine *machines__findnew(struct machines *machines, pid_t pid) 339 { 340 char path[PATH_MAX]; 341 const char *root_dir = ""; 342 struct machine *machine = machines__find(machines, pid); 343 344 if (machine && (machine->pid == pid)) 345 goto out; 346 347 if ((pid != HOST_KERNEL_ID) && 348 (pid != DEFAULT_GUEST_KERNEL_ID) && 349 (symbol_conf.guestmount)) { 350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 351 if (access(path, R_OK)) { 352 static struct strlist *seen; 353 354 if (!seen) 355 seen = strlist__new(NULL, NULL); 356 357 if (!strlist__has_entry(seen, path)) { 358 pr_err("Can't access file %s\n", path); 359 strlist__add(seen, path); 360 } 361 machine = NULL; 362 goto out; 363 } 364 root_dir = path; 365 } 366 367 machine = machines__add(machines, pid, root_dir); 368 out: 369 return machine; 370 } 371 372 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 373 { 374 struct machine *machine = machines__find(machines, pid); 375 376 if (!machine) 377 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 378 return machine; 379 } 380 381 void machines__process_guests(struct machines *machines, 382 machine__process_t process, void *data) 383 { 384 struct rb_node *nd; 385 386 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 387 struct machine *pos = rb_entry(nd, struct machine, rb_node); 388 process(pos, data); 389 } 390 } 391 392 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 393 { 394 struct rb_node *node; 395 struct machine *machine; 396 397 machines->host.id_hdr_size = id_hdr_size; 398 399 for (node = rb_first_cached(&machines->guests); node; 400 node = rb_next(node)) { 401 machine = rb_entry(node, struct machine, rb_node); 402 machine->id_hdr_size = id_hdr_size; 403 } 404 405 return; 406 } 407 408 static void machine__update_thread_pid(struct machine *machine, 409 struct thread *th, pid_t pid) 410 { 411 struct thread *leader; 412 413 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 414 return; 415 416 th->pid_ = pid; 417 418 if (th->pid_ == th->tid) 419 return; 420 421 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 422 if (!leader) 423 goto out_err; 424 425 if (!leader->maps) 426 leader->maps = maps__new(machine); 427 428 if (!leader->maps) 429 goto out_err; 430 431 if (th->maps == leader->maps) 432 return; 433 434 if (th->maps) { 435 /* 436 * Maps are created from MMAP events which provide the pid and 437 * tid. Consequently there never should be any maps on a thread 438 * with an unknown pid. Just print an error if there are. 439 */ 440 if (!maps__empty(th->maps)) 441 pr_err("Discarding thread maps for %d:%d\n", 442 th->pid_, th->tid); 443 maps__put(th->maps); 444 } 445 446 th->maps = maps__get(leader->maps); 447 out_put: 448 thread__put(leader); 449 return; 450 out_err: 451 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 452 goto out_put; 453 } 454 455 /* 456 * Front-end cache - TID lookups come in blocks, 457 * so most of the time we dont have to look up 458 * the full rbtree: 459 */ 460 static struct thread* 461 __threads__get_last_match(struct threads *threads, struct machine *machine, 462 int pid, int tid) 463 { 464 struct thread *th; 465 466 th = threads->last_match; 467 if (th != NULL) { 468 if (th->tid == tid) { 469 machine__update_thread_pid(machine, th, pid); 470 return thread__get(th); 471 } 472 473 threads->last_match = NULL; 474 } 475 476 return NULL; 477 } 478 479 static struct thread* 480 threads__get_last_match(struct threads *threads, struct machine *machine, 481 int pid, int tid) 482 { 483 struct thread *th = NULL; 484 485 if (perf_singlethreaded) 486 th = __threads__get_last_match(threads, machine, pid, tid); 487 488 return th; 489 } 490 491 static void 492 __threads__set_last_match(struct threads *threads, struct thread *th) 493 { 494 threads->last_match = th; 495 } 496 497 static void 498 threads__set_last_match(struct threads *threads, struct thread *th) 499 { 500 if (perf_singlethreaded) 501 __threads__set_last_match(threads, th); 502 } 503 504 /* 505 * Caller must eventually drop thread->refcnt returned with a successful 506 * lookup/new thread inserted. 507 */ 508 static struct thread *____machine__findnew_thread(struct machine *machine, 509 struct threads *threads, 510 pid_t pid, pid_t tid, 511 bool create) 512 { 513 struct rb_node **p = &threads->entries.rb_root.rb_node; 514 struct rb_node *parent = NULL; 515 struct thread *th; 516 bool leftmost = true; 517 518 th = threads__get_last_match(threads, machine, pid, tid); 519 if (th) 520 return th; 521 522 while (*p != NULL) { 523 parent = *p; 524 th = rb_entry(parent, struct thread, rb_node); 525 526 if (th->tid == tid) { 527 threads__set_last_match(threads, th); 528 machine__update_thread_pid(machine, th, pid); 529 return thread__get(th); 530 } 531 532 if (tid < th->tid) 533 p = &(*p)->rb_left; 534 else { 535 p = &(*p)->rb_right; 536 leftmost = false; 537 } 538 } 539 540 if (!create) 541 return NULL; 542 543 th = thread__new(pid, tid); 544 if (th != NULL) { 545 rb_link_node(&th->rb_node, parent, p); 546 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 547 548 /* 549 * We have to initialize maps separately after rb tree is updated. 550 * 551 * The reason is that we call machine__findnew_thread 552 * within thread__init_maps to find the thread 553 * leader and that would screwed the rb tree. 554 */ 555 if (thread__init_maps(th, machine)) { 556 rb_erase_cached(&th->rb_node, &threads->entries); 557 RB_CLEAR_NODE(&th->rb_node); 558 thread__put(th); 559 return NULL; 560 } 561 /* 562 * It is now in the rbtree, get a ref 563 */ 564 thread__get(th); 565 threads__set_last_match(threads, th); 566 ++threads->nr; 567 } 568 569 return th; 570 } 571 572 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 573 { 574 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 575 } 576 577 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 578 pid_t tid) 579 { 580 struct threads *threads = machine__threads(machine, tid); 581 struct thread *th; 582 583 down_write(&threads->lock); 584 th = __machine__findnew_thread(machine, pid, tid); 585 up_write(&threads->lock); 586 return th; 587 } 588 589 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 590 pid_t tid) 591 { 592 struct threads *threads = machine__threads(machine, tid); 593 struct thread *th; 594 595 down_read(&threads->lock); 596 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 597 up_read(&threads->lock); 598 return th; 599 } 600 601 /* 602 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 603 * So here a single thread is created for that, but actually there is a separate 604 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 605 * is only 1. That causes problems for some tools, requiring workarounds. For 606 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 607 */ 608 struct thread *machine__idle_thread(struct machine *machine) 609 { 610 struct thread *thread = machine__findnew_thread(machine, 0, 0); 611 612 if (!thread || thread__set_comm(thread, "swapper", 0) || 613 thread__set_namespaces(thread, 0, NULL)) 614 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 615 616 return thread; 617 } 618 619 struct comm *machine__thread_exec_comm(struct machine *machine, 620 struct thread *thread) 621 { 622 if (machine->comm_exec) 623 return thread__exec_comm(thread); 624 else 625 return thread__comm(thread); 626 } 627 628 int machine__process_comm_event(struct machine *machine, union perf_event *event, 629 struct perf_sample *sample) 630 { 631 struct thread *thread = machine__findnew_thread(machine, 632 event->comm.pid, 633 event->comm.tid); 634 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 635 int err = 0; 636 637 if (exec) 638 machine->comm_exec = true; 639 640 if (dump_trace) 641 perf_event__fprintf_comm(event, stdout); 642 643 if (thread == NULL || 644 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 645 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 646 err = -1; 647 } 648 649 thread__put(thread); 650 651 return err; 652 } 653 654 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 655 union perf_event *event, 656 struct perf_sample *sample __maybe_unused) 657 { 658 struct thread *thread = machine__findnew_thread(machine, 659 event->namespaces.pid, 660 event->namespaces.tid); 661 int err = 0; 662 663 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 664 "\nWARNING: kernel seems to support more namespaces than perf" 665 " tool.\nTry updating the perf tool..\n\n"); 666 667 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 668 "\nWARNING: perf tool seems to support more namespaces than" 669 " the kernel.\nTry updating the kernel..\n\n"); 670 671 if (dump_trace) 672 perf_event__fprintf_namespaces(event, stdout); 673 674 if (thread == NULL || 675 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 676 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 677 err = -1; 678 } 679 680 thread__put(thread); 681 682 return err; 683 } 684 685 int machine__process_cgroup_event(struct machine *machine, 686 union perf_event *event, 687 struct perf_sample *sample __maybe_unused) 688 { 689 struct cgroup *cgrp; 690 691 if (dump_trace) 692 perf_event__fprintf_cgroup(event, stdout); 693 694 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 695 if (cgrp == NULL) 696 return -ENOMEM; 697 698 return 0; 699 } 700 701 int machine__process_lost_event(struct machine *machine __maybe_unused, 702 union perf_event *event, struct perf_sample *sample __maybe_unused) 703 { 704 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 705 event->lost.id, event->lost.lost); 706 return 0; 707 } 708 709 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 710 union perf_event *event, struct perf_sample *sample) 711 { 712 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 713 sample->id, event->lost_samples.lost); 714 return 0; 715 } 716 717 static struct dso *machine__findnew_module_dso(struct machine *machine, 718 struct kmod_path *m, 719 const char *filename) 720 { 721 struct dso *dso; 722 723 down_write(&machine->dsos.lock); 724 725 dso = __dsos__find(&machine->dsos, m->name, true); 726 if (!dso) { 727 dso = __dsos__addnew(&machine->dsos, m->name); 728 if (dso == NULL) 729 goto out_unlock; 730 731 dso__set_module_info(dso, m, machine); 732 dso__set_long_name(dso, strdup(filename), true); 733 dso->kernel = DSO_SPACE__KERNEL; 734 } 735 736 dso__get(dso); 737 out_unlock: 738 up_write(&machine->dsos.lock); 739 return dso; 740 } 741 742 int machine__process_aux_event(struct machine *machine __maybe_unused, 743 union perf_event *event) 744 { 745 if (dump_trace) 746 perf_event__fprintf_aux(event, stdout); 747 return 0; 748 } 749 750 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 751 union perf_event *event) 752 { 753 if (dump_trace) 754 perf_event__fprintf_itrace_start(event, stdout); 755 return 0; 756 } 757 758 int machine__process_switch_event(struct machine *machine __maybe_unused, 759 union perf_event *event) 760 { 761 if (dump_trace) 762 perf_event__fprintf_switch(event, stdout); 763 return 0; 764 } 765 766 static int machine__process_ksymbol_register(struct machine *machine, 767 union perf_event *event, 768 struct perf_sample *sample __maybe_unused) 769 { 770 struct symbol *sym; 771 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr); 772 773 if (!map) { 774 struct dso *dso = dso__new(event->ksymbol.name); 775 776 if (dso) { 777 dso->kernel = DSO_SPACE__KERNEL; 778 map = map__new2(0, dso); 779 } 780 781 if (!dso || !map) { 782 dso__put(dso); 783 return -ENOMEM; 784 } 785 786 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 787 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 788 map->dso->data.file_size = event->ksymbol.len; 789 dso__set_loaded(map->dso); 790 } 791 792 map->start = event->ksymbol.addr; 793 map->end = map->start + event->ksymbol.len; 794 maps__insert(&machine->kmaps, map); 795 dso__set_loaded(dso); 796 797 if (is_bpf_image(event->ksymbol.name)) { 798 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 799 dso__set_long_name(dso, "", false); 800 } 801 } 802 803 sym = symbol__new(map->map_ip(map, map->start), 804 event->ksymbol.len, 805 0, 0, event->ksymbol.name); 806 if (!sym) 807 return -ENOMEM; 808 dso__insert_symbol(map->dso, sym); 809 return 0; 810 } 811 812 static int machine__process_ksymbol_unregister(struct machine *machine, 813 union perf_event *event, 814 struct perf_sample *sample __maybe_unused) 815 { 816 struct symbol *sym; 817 struct map *map; 818 819 map = maps__find(&machine->kmaps, event->ksymbol.addr); 820 if (!map) 821 return 0; 822 823 if (map != machine->vmlinux_map) 824 maps__remove(&machine->kmaps, map); 825 else { 826 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start)); 827 if (sym) 828 dso__delete_symbol(map->dso, sym); 829 } 830 831 return 0; 832 } 833 834 int machine__process_ksymbol(struct machine *machine __maybe_unused, 835 union perf_event *event, 836 struct perf_sample *sample) 837 { 838 if (dump_trace) 839 perf_event__fprintf_ksymbol(event, stdout); 840 841 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 842 return machine__process_ksymbol_unregister(machine, event, 843 sample); 844 return machine__process_ksymbol_register(machine, event, sample); 845 } 846 847 int machine__process_text_poke(struct machine *machine, union perf_event *event, 848 struct perf_sample *sample __maybe_unused) 849 { 850 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr); 851 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 852 853 if (dump_trace) 854 perf_event__fprintf_text_poke(event, machine, stdout); 855 856 if (!event->text_poke.new_len) 857 return 0; 858 859 if (cpumode != PERF_RECORD_MISC_KERNEL) { 860 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 861 return 0; 862 } 863 864 if (map && map->dso) { 865 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 866 int ret; 867 868 /* 869 * Kernel maps might be changed when loading symbols so loading 870 * must be done prior to using kernel maps. 871 */ 872 map__load(map); 873 ret = dso__data_write_cache_addr(map->dso, map, machine, 874 event->text_poke.addr, 875 new_bytes, 876 event->text_poke.new_len); 877 if (ret != event->text_poke.new_len) 878 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 879 event->text_poke.addr); 880 } else { 881 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 882 event->text_poke.addr); 883 } 884 885 return 0; 886 } 887 888 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 889 const char *filename) 890 { 891 struct map *map = NULL; 892 struct kmod_path m; 893 struct dso *dso; 894 895 if (kmod_path__parse_name(&m, filename)) 896 return NULL; 897 898 dso = machine__findnew_module_dso(machine, &m, filename); 899 if (dso == NULL) 900 goto out; 901 902 map = map__new2(start, dso); 903 if (map == NULL) 904 goto out; 905 906 maps__insert(&machine->kmaps, map); 907 908 /* Put the map here because maps__insert already got it */ 909 map__put(map); 910 out: 911 /* put the dso here, corresponding to machine__findnew_module_dso */ 912 dso__put(dso); 913 zfree(&m.name); 914 return map; 915 } 916 917 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 918 { 919 struct rb_node *nd; 920 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 921 922 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 923 struct machine *pos = rb_entry(nd, struct machine, rb_node); 924 ret += __dsos__fprintf(&pos->dsos.head, fp); 925 } 926 927 return ret; 928 } 929 930 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 931 bool (skip)(struct dso *dso, int parm), int parm) 932 { 933 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 934 } 935 936 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 937 bool (skip)(struct dso *dso, int parm), int parm) 938 { 939 struct rb_node *nd; 940 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 941 942 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 943 struct machine *pos = rb_entry(nd, struct machine, rb_node); 944 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 945 } 946 return ret; 947 } 948 949 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 950 { 951 int i; 952 size_t printed = 0; 953 struct dso *kdso = machine__kernel_dso(machine); 954 955 if (kdso->has_build_id) { 956 char filename[PATH_MAX]; 957 if (dso__build_id_filename(kdso, filename, sizeof(filename), 958 false)) 959 printed += fprintf(fp, "[0] %s\n", filename); 960 } 961 962 for (i = 0; i < vmlinux_path__nr_entries; ++i) 963 printed += fprintf(fp, "[%d] %s\n", 964 i + kdso->has_build_id, vmlinux_path[i]); 965 966 return printed; 967 } 968 969 size_t machine__fprintf(struct machine *machine, FILE *fp) 970 { 971 struct rb_node *nd; 972 size_t ret; 973 int i; 974 975 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 976 struct threads *threads = &machine->threads[i]; 977 978 down_read(&threads->lock); 979 980 ret = fprintf(fp, "Threads: %u\n", threads->nr); 981 982 for (nd = rb_first_cached(&threads->entries); nd; 983 nd = rb_next(nd)) { 984 struct thread *pos = rb_entry(nd, struct thread, rb_node); 985 986 ret += thread__fprintf(pos, fp); 987 } 988 989 up_read(&threads->lock); 990 } 991 return ret; 992 } 993 994 static struct dso *machine__get_kernel(struct machine *machine) 995 { 996 const char *vmlinux_name = machine->mmap_name; 997 struct dso *kernel; 998 999 if (machine__is_host(machine)) { 1000 if (symbol_conf.vmlinux_name) 1001 vmlinux_name = symbol_conf.vmlinux_name; 1002 1003 kernel = machine__findnew_kernel(machine, vmlinux_name, 1004 "[kernel]", DSO_SPACE__KERNEL); 1005 } else { 1006 if (symbol_conf.default_guest_vmlinux_name) 1007 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1008 1009 kernel = machine__findnew_kernel(machine, vmlinux_name, 1010 "[guest.kernel]", 1011 DSO_SPACE__KERNEL_GUEST); 1012 } 1013 1014 if (kernel != NULL && (!kernel->has_build_id)) 1015 dso__read_running_kernel_build_id(kernel, machine); 1016 1017 return kernel; 1018 } 1019 1020 struct process_args { 1021 u64 start; 1022 }; 1023 1024 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1025 size_t bufsz) 1026 { 1027 if (machine__is_default_guest(machine)) 1028 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1029 else 1030 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1031 } 1032 1033 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1034 1035 /* Figure out the start address of kernel map from /proc/kallsyms. 1036 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1037 * symbol_name if it's not that important. 1038 */ 1039 static int machine__get_running_kernel_start(struct machine *machine, 1040 const char **symbol_name, 1041 u64 *start, u64 *end) 1042 { 1043 char filename[PATH_MAX]; 1044 int i, err = -1; 1045 const char *name; 1046 u64 addr = 0; 1047 1048 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1049 1050 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1051 return 0; 1052 1053 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1054 err = kallsyms__get_function_start(filename, name, &addr); 1055 if (!err) 1056 break; 1057 } 1058 1059 if (err) 1060 return -1; 1061 1062 if (symbol_name) 1063 *symbol_name = name; 1064 1065 *start = addr; 1066 1067 err = kallsyms__get_function_start(filename, "_etext", &addr); 1068 if (!err) 1069 *end = addr; 1070 1071 return 0; 1072 } 1073 1074 int machine__create_extra_kernel_map(struct machine *machine, 1075 struct dso *kernel, 1076 struct extra_kernel_map *xm) 1077 { 1078 struct kmap *kmap; 1079 struct map *map; 1080 1081 map = map__new2(xm->start, kernel); 1082 if (!map) 1083 return -1; 1084 1085 map->end = xm->end; 1086 map->pgoff = xm->pgoff; 1087 1088 kmap = map__kmap(map); 1089 1090 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1091 1092 maps__insert(&machine->kmaps, map); 1093 1094 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1095 kmap->name, map->start, map->end); 1096 1097 map__put(map); 1098 1099 return 0; 1100 } 1101 1102 static u64 find_entry_trampoline(struct dso *dso) 1103 { 1104 /* Duplicates are removed so lookup all aliases */ 1105 const char *syms[] = { 1106 "_entry_trampoline", 1107 "__entry_trampoline_start", 1108 "entry_SYSCALL_64_trampoline", 1109 }; 1110 struct symbol *sym = dso__first_symbol(dso); 1111 unsigned int i; 1112 1113 for (; sym; sym = dso__next_symbol(sym)) { 1114 if (sym->binding != STB_GLOBAL) 1115 continue; 1116 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1117 if (!strcmp(sym->name, syms[i])) 1118 return sym->start; 1119 } 1120 } 1121 1122 return 0; 1123 } 1124 1125 /* 1126 * These values can be used for kernels that do not have symbols for the entry 1127 * trampolines in kallsyms. 1128 */ 1129 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1130 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1131 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1132 1133 /* Map x86_64 PTI entry trampolines */ 1134 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1135 struct dso *kernel) 1136 { 1137 struct maps *kmaps = &machine->kmaps; 1138 int nr_cpus_avail, cpu; 1139 bool found = false; 1140 struct map *map; 1141 u64 pgoff; 1142 1143 /* 1144 * In the vmlinux case, pgoff is a virtual address which must now be 1145 * mapped to a vmlinux offset. 1146 */ 1147 maps__for_each_entry(kmaps, map) { 1148 struct kmap *kmap = __map__kmap(map); 1149 struct map *dest_map; 1150 1151 if (!kmap || !is_entry_trampoline(kmap->name)) 1152 continue; 1153 1154 dest_map = maps__find(kmaps, map->pgoff); 1155 if (dest_map != map) 1156 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1157 found = true; 1158 } 1159 if (found || machine->trampolines_mapped) 1160 return 0; 1161 1162 pgoff = find_entry_trampoline(kernel); 1163 if (!pgoff) 1164 return 0; 1165 1166 nr_cpus_avail = machine__nr_cpus_avail(machine); 1167 1168 /* Add a 1 page map for each CPU's entry trampoline */ 1169 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1170 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1171 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1172 X86_64_ENTRY_TRAMPOLINE; 1173 struct extra_kernel_map xm = { 1174 .start = va, 1175 .end = va + page_size, 1176 .pgoff = pgoff, 1177 }; 1178 1179 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1180 1181 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1182 return -1; 1183 } 1184 1185 machine->trampolines_mapped = nr_cpus_avail; 1186 1187 return 0; 1188 } 1189 1190 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1191 struct dso *kernel __maybe_unused) 1192 { 1193 return 0; 1194 } 1195 1196 static int 1197 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1198 { 1199 /* In case of renewal the kernel map, destroy previous one */ 1200 machine__destroy_kernel_maps(machine); 1201 1202 machine->vmlinux_map = map__new2(0, kernel); 1203 if (machine->vmlinux_map == NULL) 1204 return -1; 1205 1206 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1207 maps__insert(&machine->kmaps, machine->vmlinux_map); 1208 return 0; 1209 } 1210 1211 void machine__destroy_kernel_maps(struct machine *machine) 1212 { 1213 struct kmap *kmap; 1214 struct map *map = machine__kernel_map(machine); 1215 1216 if (map == NULL) 1217 return; 1218 1219 kmap = map__kmap(map); 1220 maps__remove(&machine->kmaps, map); 1221 if (kmap && kmap->ref_reloc_sym) { 1222 zfree((char **)&kmap->ref_reloc_sym->name); 1223 zfree(&kmap->ref_reloc_sym); 1224 } 1225 1226 map__zput(machine->vmlinux_map); 1227 } 1228 1229 int machines__create_guest_kernel_maps(struct machines *machines) 1230 { 1231 int ret = 0; 1232 struct dirent **namelist = NULL; 1233 int i, items = 0; 1234 char path[PATH_MAX]; 1235 pid_t pid; 1236 char *endp; 1237 1238 if (symbol_conf.default_guest_vmlinux_name || 1239 symbol_conf.default_guest_modules || 1240 symbol_conf.default_guest_kallsyms) { 1241 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1242 } 1243 1244 if (symbol_conf.guestmount) { 1245 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1246 if (items <= 0) 1247 return -ENOENT; 1248 for (i = 0; i < items; i++) { 1249 if (!isdigit(namelist[i]->d_name[0])) { 1250 /* Filter out . and .. */ 1251 continue; 1252 } 1253 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1254 if ((*endp != '\0') || 1255 (endp == namelist[i]->d_name) || 1256 (errno == ERANGE)) { 1257 pr_debug("invalid directory (%s). Skipping.\n", 1258 namelist[i]->d_name); 1259 continue; 1260 } 1261 sprintf(path, "%s/%s/proc/kallsyms", 1262 symbol_conf.guestmount, 1263 namelist[i]->d_name); 1264 ret = access(path, R_OK); 1265 if (ret) { 1266 pr_debug("Can't access file %s\n", path); 1267 goto failure; 1268 } 1269 machines__create_kernel_maps(machines, pid); 1270 } 1271 failure: 1272 free(namelist); 1273 } 1274 1275 return ret; 1276 } 1277 1278 void machines__destroy_kernel_maps(struct machines *machines) 1279 { 1280 struct rb_node *next = rb_first_cached(&machines->guests); 1281 1282 machine__destroy_kernel_maps(&machines->host); 1283 1284 while (next) { 1285 struct machine *pos = rb_entry(next, struct machine, rb_node); 1286 1287 next = rb_next(&pos->rb_node); 1288 rb_erase_cached(&pos->rb_node, &machines->guests); 1289 machine__delete(pos); 1290 } 1291 } 1292 1293 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1294 { 1295 struct machine *machine = machines__findnew(machines, pid); 1296 1297 if (machine == NULL) 1298 return -1; 1299 1300 return machine__create_kernel_maps(machine); 1301 } 1302 1303 int machine__load_kallsyms(struct machine *machine, const char *filename) 1304 { 1305 struct map *map = machine__kernel_map(machine); 1306 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1307 1308 if (ret > 0) { 1309 dso__set_loaded(map->dso); 1310 /* 1311 * Since /proc/kallsyms will have multiple sessions for the 1312 * kernel, with modules between them, fixup the end of all 1313 * sections. 1314 */ 1315 maps__fixup_end(&machine->kmaps); 1316 } 1317 1318 return ret; 1319 } 1320 1321 int machine__load_vmlinux_path(struct machine *machine) 1322 { 1323 struct map *map = machine__kernel_map(machine); 1324 int ret = dso__load_vmlinux_path(map->dso, map); 1325 1326 if (ret > 0) 1327 dso__set_loaded(map->dso); 1328 1329 return ret; 1330 } 1331 1332 static char *get_kernel_version(const char *root_dir) 1333 { 1334 char version[PATH_MAX]; 1335 FILE *file; 1336 char *name, *tmp; 1337 const char *prefix = "Linux version "; 1338 1339 sprintf(version, "%s/proc/version", root_dir); 1340 file = fopen(version, "r"); 1341 if (!file) 1342 return NULL; 1343 1344 tmp = fgets(version, sizeof(version), file); 1345 fclose(file); 1346 if (!tmp) 1347 return NULL; 1348 1349 name = strstr(version, prefix); 1350 if (!name) 1351 return NULL; 1352 name += strlen(prefix); 1353 tmp = strchr(name, ' '); 1354 if (tmp) 1355 *tmp = '\0'; 1356 1357 return strdup(name); 1358 } 1359 1360 static bool is_kmod_dso(struct dso *dso) 1361 { 1362 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1363 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1364 } 1365 1366 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1367 { 1368 char *long_name; 1369 struct map *map = maps__find_by_name(maps, m->name); 1370 1371 if (map == NULL) 1372 return 0; 1373 1374 long_name = strdup(path); 1375 if (long_name == NULL) 1376 return -ENOMEM; 1377 1378 dso__set_long_name(map->dso, long_name, true); 1379 dso__kernel_module_get_build_id(map->dso, ""); 1380 1381 /* 1382 * Full name could reveal us kmod compression, so 1383 * we need to update the symtab_type if needed. 1384 */ 1385 if (m->comp && is_kmod_dso(map->dso)) { 1386 map->dso->symtab_type++; 1387 map->dso->comp = m->comp; 1388 } 1389 1390 return 0; 1391 } 1392 1393 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1394 { 1395 struct dirent *dent; 1396 DIR *dir = opendir(dir_name); 1397 int ret = 0; 1398 1399 if (!dir) { 1400 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1401 return -1; 1402 } 1403 1404 while ((dent = readdir(dir)) != NULL) { 1405 char path[PATH_MAX]; 1406 struct stat st; 1407 1408 /*sshfs might return bad dent->d_type, so we have to stat*/ 1409 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1410 if (stat(path, &st)) 1411 continue; 1412 1413 if (S_ISDIR(st.st_mode)) { 1414 if (!strcmp(dent->d_name, ".") || 1415 !strcmp(dent->d_name, "..")) 1416 continue; 1417 1418 /* Do not follow top-level source and build symlinks */ 1419 if (depth == 0) { 1420 if (!strcmp(dent->d_name, "source") || 1421 !strcmp(dent->d_name, "build")) 1422 continue; 1423 } 1424 1425 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1426 if (ret < 0) 1427 goto out; 1428 } else { 1429 struct kmod_path m; 1430 1431 ret = kmod_path__parse_name(&m, dent->d_name); 1432 if (ret) 1433 goto out; 1434 1435 if (m.kmod) 1436 ret = maps__set_module_path(maps, path, &m); 1437 1438 zfree(&m.name); 1439 1440 if (ret) 1441 goto out; 1442 } 1443 } 1444 1445 out: 1446 closedir(dir); 1447 return ret; 1448 } 1449 1450 static int machine__set_modules_path(struct machine *machine) 1451 { 1452 char *version; 1453 char modules_path[PATH_MAX]; 1454 1455 version = get_kernel_version(machine->root_dir); 1456 if (!version) 1457 return -1; 1458 1459 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1460 machine->root_dir, version); 1461 free(version); 1462 1463 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1464 } 1465 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1466 u64 *size __maybe_unused, 1467 const char *name __maybe_unused) 1468 { 1469 return 0; 1470 } 1471 1472 static int machine__create_module(void *arg, const char *name, u64 start, 1473 u64 size) 1474 { 1475 struct machine *machine = arg; 1476 struct map *map; 1477 1478 if (arch__fix_module_text_start(&start, &size, name) < 0) 1479 return -1; 1480 1481 map = machine__addnew_module_map(machine, start, name); 1482 if (map == NULL) 1483 return -1; 1484 map->end = start + size; 1485 1486 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1487 1488 return 0; 1489 } 1490 1491 static int machine__create_modules(struct machine *machine) 1492 { 1493 const char *modules; 1494 char path[PATH_MAX]; 1495 1496 if (machine__is_default_guest(machine)) { 1497 modules = symbol_conf.default_guest_modules; 1498 } else { 1499 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1500 modules = path; 1501 } 1502 1503 if (symbol__restricted_filename(modules, "/proc/modules")) 1504 return -1; 1505 1506 if (modules__parse(modules, machine, machine__create_module)) 1507 return -1; 1508 1509 if (!machine__set_modules_path(machine)) 1510 return 0; 1511 1512 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1513 1514 return 0; 1515 } 1516 1517 static void machine__set_kernel_mmap(struct machine *machine, 1518 u64 start, u64 end) 1519 { 1520 machine->vmlinux_map->start = start; 1521 machine->vmlinux_map->end = end; 1522 /* 1523 * Be a bit paranoid here, some perf.data file came with 1524 * a zero sized synthesized MMAP event for the kernel. 1525 */ 1526 if (start == 0 && end == 0) 1527 machine->vmlinux_map->end = ~0ULL; 1528 } 1529 1530 static void machine__update_kernel_mmap(struct machine *machine, 1531 u64 start, u64 end) 1532 { 1533 struct map *map = machine__kernel_map(machine); 1534 1535 map__get(map); 1536 maps__remove(&machine->kmaps, map); 1537 1538 machine__set_kernel_mmap(machine, start, end); 1539 1540 maps__insert(&machine->kmaps, map); 1541 map__put(map); 1542 } 1543 1544 int machine__create_kernel_maps(struct machine *machine) 1545 { 1546 struct dso *kernel = machine__get_kernel(machine); 1547 const char *name = NULL; 1548 struct map *map; 1549 u64 start = 0, end = ~0ULL; 1550 int ret; 1551 1552 if (kernel == NULL) 1553 return -1; 1554 1555 ret = __machine__create_kernel_maps(machine, kernel); 1556 if (ret < 0) 1557 goto out_put; 1558 1559 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1560 if (machine__is_host(machine)) 1561 pr_debug("Problems creating module maps, " 1562 "continuing anyway...\n"); 1563 else 1564 pr_debug("Problems creating module maps for guest %d, " 1565 "continuing anyway...\n", machine->pid); 1566 } 1567 1568 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1569 if (name && 1570 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1571 machine__destroy_kernel_maps(machine); 1572 ret = -1; 1573 goto out_put; 1574 } 1575 1576 /* 1577 * we have a real start address now, so re-order the kmaps 1578 * assume it's the last in the kmaps 1579 */ 1580 machine__update_kernel_mmap(machine, start, end); 1581 } 1582 1583 if (machine__create_extra_kernel_maps(machine, kernel)) 1584 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1585 1586 if (end == ~0ULL) { 1587 /* update end address of the kernel map using adjacent module address */ 1588 map = map__next(machine__kernel_map(machine)); 1589 if (map) 1590 machine__set_kernel_mmap(machine, start, map->start); 1591 } 1592 1593 out_put: 1594 dso__put(kernel); 1595 return ret; 1596 } 1597 1598 static bool machine__uses_kcore(struct machine *machine) 1599 { 1600 struct dso *dso; 1601 1602 list_for_each_entry(dso, &machine->dsos.head, node) { 1603 if (dso__is_kcore(dso)) 1604 return true; 1605 } 1606 1607 return false; 1608 } 1609 1610 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1611 struct extra_kernel_map *xm) 1612 { 1613 return machine__is(machine, "x86_64") && 1614 is_entry_trampoline(xm->name); 1615 } 1616 1617 static int machine__process_extra_kernel_map(struct machine *machine, 1618 struct extra_kernel_map *xm) 1619 { 1620 struct dso *kernel = machine__kernel_dso(machine); 1621 1622 if (kernel == NULL) 1623 return -1; 1624 1625 return machine__create_extra_kernel_map(machine, kernel, xm); 1626 } 1627 1628 static int machine__process_kernel_mmap_event(struct machine *machine, 1629 struct extra_kernel_map *xm, 1630 struct build_id *bid) 1631 { 1632 struct map *map; 1633 enum dso_space_type dso_space; 1634 bool is_kernel_mmap; 1635 1636 /* If we have maps from kcore then we do not need or want any others */ 1637 if (machine__uses_kcore(machine)) 1638 return 0; 1639 1640 if (machine__is_host(machine)) 1641 dso_space = DSO_SPACE__KERNEL; 1642 else 1643 dso_space = DSO_SPACE__KERNEL_GUEST; 1644 1645 is_kernel_mmap = memcmp(xm->name, machine->mmap_name, 1646 strlen(machine->mmap_name) - 1) == 0; 1647 if (xm->name[0] == '/' || 1648 (!is_kernel_mmap && xm->name[0] == '[')) { 1649 map = machine__addnew_module_map(machine, xm->start, 1650 xm->name); 1651 if (map == NULL) 1652 goto out_problem; 1653 1654 map->end = map->start + xm->end - xm->start; 1655 1656 if (build_id__is_defined(bid)) 1657 dso__set_build_id(map->dso, bid); 1658 1659 } else if (is_kernel_mmap) { 1660 const char *symbol_name = (xm->name + strlen(machine->mmap_name)); 1661 /* 1662 * Should be there already, from the build-id table in 1663 * the header. 1664 */ 1665 struct dso *kernel = NULL; 1666 struct dso *dso; 1667 1668 down_read(&machine->dsos.lock); 1669 1670 list_for_each_entry(dso, &machine->dsos.head, node) { 1671 1672 /* 1673 * The cpumode passed to is_kernel_module is not the 1674 * cpumode of *this* event. If we insist on passing 1675 * correct cpumode to is_kernel_module, we should 1676 * record the cpumode when we adding this dso to the 1677 * linked list. 1678 * 1679 * However we don't really need passing correct 1680 * cpumode. We know the correct cpumode must be kernel 1681 * mode (if not, we should not link it onto kernel_dsos 1682 * list). 1683 * 1684 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1685 * is_kernel_module() treats it as a kernel cpumode. 1686 */ 1687 1688 if (!dso->kernel || 1689 is_kernel_module(dso->long_name, 1690 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1691 continue; 1692 1693 1694 kernel = dso; 1695 break; 1696 } 1697 1698 up_read(&machine->dsos.lock); 1699 1700 if (kernel == NULL) 1701 kernel = machine__findnew_dso(machine, machine->mmap_name); 1702 if (kernel == NULL) 1703 goto out_problem; 1704 1705 kernel->kernel = dso_space; 1706 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1707 dso__put(kernel); 1708 goto out_problem; 1709 } 1710 1711 if (strstr(kernel->long_name, "vmlinux")) 1712 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1713 1714 machine__update_kernel_mmap(machine, xm->start, xm->end); 1715 1716 if (build_id__is_defined(bid)) 1717 dso__set_build_id(kernel, bid); 1718 1719 /* 1720 * Avoid using a zero address (kptr_restrict) for the ref reloc 1721 * symbol. Effectively having zero here means that at record 1722 * time /proc/sys/kernel/kptr_restrict was non zero. 1723 */ 1724 if (xm->pgoff != 0) { 1725 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1726 symbol_name, 1727 xm->pgoff); 1728 } 1729 1730 if (machine__is_default_guest(machine)) { 1731 /* 1732 * preload dso of guest kernel and modules 1733 */ 1734 dso__load(kernel, machine__kernel_map(machine)); 1735 } 1736 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1737 return machine__process_extra_kernel_map(machine, xm); 1738 } 1739 return 0; 1740 out_problem: 1741 return -1; 1742 } 1743 1744 int machine__process_mmap2_event(struct machine *machine, 1745 union perf_event *event, 1746 struct perf_sample *sample) 1747 { 1748 struct thread *thread; 1749 struct map *map; 1750 struct dso_id dso_id = { 1751 .maj = event->mmap2.maj, 1752 .min = event->mmap2.min, 1753 .ino = event->mmap2.ino, 1754 .ino_generation = event->mmap2.ino_generation, 1755 }; 1756 struct build_id __bid, *bid = NULL; 1757 int ret = 0; 1758 1759 if (dump_trace) 1760 perf_event__fprintf_mmap2(event, stdout); 1761 1762 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1763 bid = &__bid; 1764 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1765 } 1766 1767 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1768 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1769 struct extra_kernel_map xm = { 1770 .start = event->mmap2.start, 1771 .end = event->mmap2.start + event->mmap2.len, 1772 .pgoff = event->mmap2.pgoff, 1773 }; 1774 1775 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1776 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1777 if (ret < 0) 1778 goto out_problem; 1779 return 0; 1780 } 1781 1782 thread = machine__findnew_thread(machine, event->mmap2.pid, 1783 event->mmap2.tid); 1784 if (thread == NULL) 1785 goto out_problem; 1786 1787 map = map__new(machine, event->mmap2.start, 1788 event->mmap2.len, event->mmap2.pgoff, 1789 &dso_id, event->mmap2.prot, 1790 event->mmap2.flags, bid, 1791 event->mmap2.filename, thread); 1792 1793 if (map == NULL) 1794 goto out_problem_map; 1795 1796 ret = thread__insert_map(thread, map); 1797 if (ret) 1798 goto out_problem_insert; 1799 1800 thread__put(thread); 1801 map__put(map); 1802 return 0; 1803 1804 out_problem_insert: 1805 map__put(map); 1806 out_problem_map: 1807 thread__put(thread); 1808 out_problem: 1809 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1810 return 0; 1811 } 1812 1813 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1814 struct perf_sample *sample) 1815 { 1816 struct thread *thread; 1817 struct map *map; 1818 u32 prot = 0; 1819 int ret = 0; 1820 1821 if (dump_trace) 1822 perf_event__fprintf_mmap(event, stdout); 1823 1824 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1825 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1826 struct extra_kernel_map xm = { 1827 .start = event->mmap.start, 1828 .end = event->mmap.start + event->mmap.len, 1829 .pgoff = event->mmap.pgoff, 1830 }; 1831 1832 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1833 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1834 if (ret < 0) 1835 goto out_problem; 1836 return 0; 1837 } 1838 1839 thread = machine__findnew_thread(machine, event->mmap.pid, 1840 event->mmap.tid); 1841 if (thread == NULL) 1842 goto out_problem; 1843 1844 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1845 prot = PROT_EXEC; 1846 1847 map = map__new(machine, event->mmap.start, 1848 event->mmap.len, event->mmap.pgoff, 1849 NULL, prot, 0, NULL, event->mmap.filename, thread); 1850 1851 if (map == NULL) 1852 goto out_problem_map; 1853 1854 ret = thread__insert_map(thread, map); 1855 if (ret) 1856 goto out_problem_insert; 1857 1858 thread__put(thread); 1859 map__put(map); 1860 return 0; 1861 1862 out_problem_insert: 1863 map__put(map); 1864 out_problem_map: 1865 thread__put(thread); 1866 out_problem: 1867 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1868 return 0; 1869 } 1870 1871 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1872 { 1873 struct threads *threads = machine__threads(machine, th->tid); 1874 1875 if (threads->last_match == th) 1876 threads__set_last_match(threads, NULL); 1877 1878 if (lock) 1879 down_write(&threads->lock); 1880 1881 BUG_ON(refcount_read(&th->refcnt) == 0); 1882 1883 rb_erase_cached(&th->rb_node, &threads->entries); 1884 RB_CLEAR_NODE(&th->rb_node); 1885 --threads->nr; 1886 /* 1887 * Move it first to the dead_threads list, then drop the reference, 1888 * if this is the last reference, then the thread__delete destructor 1889 * will be called and we will remove it from the dead_threads list. 1890 */ 1891 list_add_tail(&th->node, &threads->dead); 1892 1893 /* 1894 * We need to do the put here because if this is the last refcount, 1895 * then we will be touching the threads->dead head when removing the 1896 * thread. 1897 */ 1898 thread__put(th); 1899 1900 if (lock) 1901 up_write(&threads->lock); 1902 } 1903 1904 void machine__remove_thread(struct machine *machine, struct thread *th) 1905 { 1906 return __machine__remove_thread(machine, th, true); 1907 } 1908 1909 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1910 struct perf_sample *sample) 1911 { 1912 struct thread *thread = machine__find_thread(machine, 1913 event->fork.pid, 1914 event->fork.tid); 1915 struct thread *parent = machine__findnew_thread(machine, 1916 event->fork.ppid, 1917 event->fork.ptid); 1918 bool do_maps_clone = true; 1919 int err = 0; 1920 1921 if (dump_trace) 1922 perf_event__fprintf_task(event, stdout); 1923 1924 /* 1925 * There may be an existing thread that is not actually the parent, 1926 * either because we are processing events out of order, or because the 1927 * (fork) event that would have removed the thread was lost. Assume the 1928 * latter case and continue on as best we can. 1929 */ 1930 if (parent->pid_ != (pid_t)event->fork.ppid) { 1931 dump_printf("removing erroneous parent thread %d/%d\n", 1932 parent->pid_, parent->tid); 1933 machine__remove_thread(machine, parent); 1934 thread__put(parent); 1935 parent = machine__findnew_thread(machine, event->fork.ppid, 1936 event->fork.ptid); 1937 } 1938 1939 /* if a thread currently exists for the thread id remove it */ 1940 if (thread != NULL) { 1941 machine__remove_thread(machine, thread); 1942 thread__put(thread); 1943 } 1944 1945 thread = machine__findnew_thread(machine, event->fork.pid, 1946 event->fork.tid); 1947 /* 1948 * When synthesizing FORK events, we are trying to create thread 1949 * objects for the already running tasks on the machine. 1950 * 1951 * Normally, for a kernel FORK event, we want to clone the parent's 1952 * maps because that is what the kernel just did. 1953 * 1954 * But when synthesizing, this should not be done. If we do, we end up 1955 * with overlapping maps as we process the synthesized MMAP2 events that 1956 * get delivered shortly thereafter. 1957 * 1958 * Use the FORK event misc flags in an internal way to signal this 1959 * situation, so we can elide the map clone when appropriate. 1960 */ 1961 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1962 do_maps_clone = false; 1963 1964 if (thread == NULL || parent == NULL || 1965 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1966 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1967 err = -1; 1968 } 1969 thread__put(thread); 1970 thread__put(parent); 1971 1972 return err; 1973 } 1974 1975 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1976 struct perf_sample *sample __maybe_unused) 1977 { 1978 struct thread *thread = machine__find_thread(machine, 1979 event->fork.pid, 1980 event->fork.tid); 1981 1982 if (dump_trace) 1983 perf_event__fprintf_task(event, stdout); 1984 1985 if (thread != NULL) { 1986 thread__exited(thread); 1987 thread__put(thread); 1988 } 1989 1990 return 0; 1991 } 1992 1993 int machine__process_event(struct machine *machine, union perf_event *event, 1994 struct perf_sample *sample) 1995 { 1996 int ret; 1997 1998 switch (event->header.type) { 1999 case PERF_RECORD_COMM: 2000 ret = machine__process_comm_event(machine, event, sample); break; 2001 case PERF_RECORD_MMAP: 2002 ret = machine__process_mmap_event(machine, event, sample); break; 2003 case PERF_RECORD_NAMESPACES: 2004 ret = machine__process_namespaces_event(machine, event, sample); break; 2005 case PERF_RECORD_CGROUP: 2006 ret = machine__process_cgroup_event(machine, event, sample); break; 2007 case PERF_RECORD_MMAP2: 2008 ret = machine__process_mmap2_event(machine, event, sample); break; 2009 case PERF_RECORD_FORK: 2010 ret = machine__process_fork_event(machine, event, sample); break; 2011 case PERF_RECORD_EXIT: 2012 ret = machine__process_exit_event(machine, event, sample); break; 2013 case PERF_RECORD_LOST: 2014 ret = machine__process_lost_event(machine, event, sample); break; 2015 case PERF_RECORD_AUX: 2016 ret = machine__process_aux_event(machine, event); break; 2017 case PERF_RECORD_ITRACE_START: 2018 ret = machine__process_itrace_start_event(machine, event); break; 2019 case PERF_RECORD_LOST_SAMPLES: 2020 ret = machine__process_lost_samples_event(machine, event, sample); break; 2021 case PERF_RECORD_SWITCH: 2022 case PERF_RECORD_SWITCH_CPU_WIDE: 2023 ret = machine__process_switch_event(machine, event); break; 2024 case PERF_RECORD_KSYMBOL: 2025 ret = machine__process_ksymbol(machine, event, sample); break; 2026 case PERF_RECORD_BPF_EVENT: 2027 ret = machine__process_bpf(machine, event, sample); break; 2028 case PERF_RECORD_TEXT_POKE: 2029 ret = machine__process_text_poke(machine, event, sample); break; 2030 default: 2031 ret = -1; 2032 break; 2033 } 2034 2035 return ret; 2036 } 2037 2038 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2039 { 2040 if (!regexec(regex, sym->name, 0, NULL, 0)) 2041 return true; 2042 return false; 2043 } 2044 2045 static void ip__resolve_ams(struct thread *thread, 2046 struct addr_map_symbol *ams, 2047 u64 ip) 2048 { 2049 struct addr_location al; 2050 2051 memset(&al, 0, sizeof(al)); 2052 /* 2053 * We cannot use the header.misc hint to determine whether a 2054 * branch stack address is user, kernel, guest, hypervisor. 2055 * Branches may straddle the kernel/user/hypervisor boundaries. 2056 * Thus, we have to try consecutively until we find a match 2057 * or else, the symbol is unknown 2058 */ 2059 thread__find_cpumode_addr_location(thread, ip, &al); 2060 2061 ams->addr = ip; 2062 ams->al_addr = al.addr; 2063 ams->ms.maps = al.maps; 2064 ams->ms.sym = al.sym; 2065 ams->ms.map = al.map; 2066 ams->phys_addr = 0; 2067 ams->data_page_size = 0; 2068 } 2069 2070 static void ip__resolve_data(struct thread *thread, 2071 u8 m, struct addr_map_symbol *ams, 2072 u64 addr, u64 phys_addr, u64 daddr_page_size) 2073 { 2074 struct addr_location al; 2075 2076 memset(&al, 0, sizeof(al)); 2077 2078 thread__find_symbol(thread, m, addr, &al); 2079 2080 ams->addr = addr; 2081 ams->al_addr = al.addr; 2082 ams->ms.maps = al.maps; 2083 ams->ms.sym = al.sym; 2084 ams->ms.map = al.map; 2085 ams->phys_addr = phys_addr; 2086 ams->data_page_size = daddr_page_size; 2087 } 2088 2089 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2090 struct addr_location *al) 2091 { 2092 struct mem_info *mi = mem_info__new(); 2093 2094 if (!mi) 2095 return NULL; 2096 2097 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2098 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2099 sample->addr, sample->phys_addr, 2100 sample->data_page_size); 2101 mi->data_src.val = sample->data_src; 2102 2103 return mi; 2104 } 2105 2106 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2107 { 2108 struct map *map = ms->map; 2109 char *srcline = NULL; 2110 2111 if (!map || callchain_param.key == CCKEY_FUNCTION) 2112 return srcline; 2113 2114 srcline = srcline__tree_find(&map->dso->srclines, ip); 2115 if (!srcline) { 2116 bool show_sym = false; 2117 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2118 2119 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2120 ms->sym, show_sym, show_addr, ip); 2121 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2122 } 2123 2124 return srcline; 2125 } 2126 2127 struct iterations { 2128 int nr_loop_iter; 2129 u64 cycles; 2130 }; 2131 2132 static int add_callchain_ip(struct thread *thread, 2133 struct callchain_cursor *cursor, 2134 struct symbol **parent, 2135 struct addr_location *root_al, 2136 u8 *cpumode, 2137 u64 ip, 2138 bool branch, 2139 struct branch_flags *flags, 2140 struct iterations *iter, 2141 u64 branch_from) 2142 { 2143 struct map_symbol ms; 2144 struct addr_location al; 2145 int nr_loop_iter = 0; 2146 u64 iter_cycles = 0; 2147 const char *srcline = NULL; 2148 2149 al.filtered = 0; 2150 al.sym = NULL; 2151 if (!cpumode) { 2152 thread__find_cpumode_addr_location(thread, ip, &al); 2153 } else { 2154 if (ip >= PERF_CONTEXT_MAX) { 2155 switch (ip) { 2156 case PERF_CONTEXT_HV: 2157 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2158 break; 2159 case PERF_CONTEXT_KERNEL: 2160 *cpumode = PERF_RECORD_MISC_KERNEL; 2161 break; 2162 case PERF_CONTEXT_USER: 2163 *cpumode = PERF_RECORD_MISC_USER; 2164 break; 2165 default: 2166 pr_debug("invalid callchain context: " 2167 "%"PRId64"\n", (s64) ip); 2168 /* 2169 * It seems the callchain is corrupted. 2170 * Discard all. 2171 */ 2172 callchain_cursor_reset(cursor); 2173 return 1; 2174 } 2175 return 0; 2176 } 2177 thread__find_symbol(thread, *cpumode, ip, &al); 2178 } 2179 2180 if (al.sym != NULL) { 2181 if (perf_hpp_list.parent && !*parent && 2182 symbol__match_regex(al.sym, &parent_regex)) 2183 *parent = al.sym; 2184 else if (have_ignore_callees && root_al && 2185 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2186 /* Treat this symbol as the root, 2187 forgetting its callees. */ 2188 *root_al = al; 2189 callchain_cursor_reset(cursor); 2190 } 2191 } 2192 2193 if (symbol_conf.hide_unresolved && al.sym == NULL) 2194 return 0; 2195 2196 if (iter) { 2197 nr_loop_iter = iter->nr_loop_iter; 2198 iter_cycles = iter->cycles; 2199 } 2200 2201 ms.maps = al.maps; 2202 ms.map = al.map; 2203 ms.sym = al.sym; 2204 srcline = callchain_srcline(&ms, al.addr); 2205 return callchain_cursor_append(cursor, ip, &ms, 2206 branch, flags, nr_loop_iter, 2207 iter_cycles, branch_from, srcline); 2208 } 2209 2210 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2211 struct addr_location *al) 2212 { 2213 unsigned int i; 2214 const struct branch_stack *bs = sample->branch_stack; 2215 struct branch_entry *entries = perf_sample__branch_entries(sample); 2216 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2217 2218 if (!bi) 2219 return NULL; 2220 2221 for (i = 0; i < bs->nr; i++) { 2222 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2223 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2224 bi[i].flags = entries[i].flags; 2225 } 2226 return bi; 2227 } 2228 2229 static void save_iterations(struct iterations *iter, 2230 struct branch_entry *be, int nr) 2231 { 2232 int i; 2233 2234 iter->nr_loop_iter++; 2235 iter->cycles = 0; 2236 2237 for (i = 0; i < nr; i++) 2238 iter->cycles += be[i].flags.cycles; 2239 } 2240 2241 #define CHASHSZ 127 2242 #define CHASHBITS 7 2243 #define NO_ENTRY 0xff 2244 2245 #define PERF_MAX_BRANCH_DEPTH 127 2246 2247 /* Remove loops. */ 2248 static int remove_loops(struct branch_entry *l, int nr, 2249 struct iterations *iter) 2250 { 2251 int i, j, off; 2252 unsigned char chash[CHASHSZ]; 2253 2254 memset(chash, NO_ENTRY, sizeof(chash)); 2255 2256 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2257 2258 for (i = 0; i < nr; i++) { 2259 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2260 2261 /* no collision handling for now */ 2262 if (chash[h] == NO_ENTRY) { 2263 chash[h] = i; 2264 } else if (l[chash[h]].from == l[i].from) { 2265 bool is_loop = true; 2266 /* check if it is a real loop */ 2267 off = 0; 2268 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2269 if (l[j].from != l[i + off].from) { 2270 is_loop = false; 2271 break; 2272 } 2273 if (is_loop) { 2274 j = nr - (i + off); 2275 if (j > 0) { 2276 save_iterations(iter + i + off, 2277 l + i, off); 2278 2279 memmove(iter + i, iter + i + off, 2280 j * sizeof(*iter)); 2281 2282 memmove(l + i, l + i + off, 2283 j * sizeof(*l)); 2284 } 2285 2286 nr -= off; 2287 } 2288 } 2289 } 2290 return nr; 2291 } 2292 2293 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2294 struct callchain_cursor *cursor, 2295 struct perf_sample *sample, 2296 struct symbol **parent, 2297 struct addr_location *root_al, 2298 u64 branch_from, 2299 bool callee, int end) 2300 { 2301 struct ip_callchain *chain = sample->callchain; 2302 u8 cpumode = PERF_RECORD_MISC_USER; 2303 int err, i; 2304 2305 if (callee) { 2306 for (i = 0; i < end + 1; i++) { 2307 err = add_callchain_ip(thread, cursor, parent, 2308 root_al, &cpumode, chain->ips[i], 2309 false, NULL, NULL, branch_from); 2310 if (err) 2311 return err; 2312 } 2313 return 0; 2314 } 2315 2316 for (i = end; i >= 0; i--) { 2317 err = add_callchain_ip(thread, cursor, parent, 2318 root_al, &cpumode, chain->ips[i], 2319 false, NULL, NULL, branch_from); 2320 if (err) 2321 return err; 2322 } 2323 2324 return 0; 2325 } 2326 2327 static void save_lbr_cursor_node(struct thread *thread, 2328 struct callchain_cursor *cursor, 2329 int idx) 2330 { 2331 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2332 2333 if (!lbr_stitch) 2334 return; 2335 2336 if (cursor->pos == cursor->nr) { 2337 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2338 return; 2339 } 2340 2341 if (!cursor->curr) 2342 cursor->curr = cursor->first; 2343 else 2344 cursor->curr = cursor->curr->next; 2345 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2346 sizeof(struct callchain_cursor_node)); 2347 2348 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2349 cursor->pos++; 2350 } 2351 2352 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2353 struct callchain_cursor *cursor, 2354 struct perf_sample *sample, 2355 struct symbol **parent, 2356 struct addr_location *root_al, 2357 u64 *branch_from, 2358 bool callee) 2359 { 2360 struct branch_stack *lbr_stack = sample->branch_stack; 2361 struct branch_entry *entries = perf_sample__branch_entries(sample); 2362 u8 cpumode = PERF_RECORD_MISC_USER; 2363 int lbr_nr = lbr_stack->nr; 2364 struct branch_flags *flags; 2365 int err, i; 2366 u64 ip; 2367 2368 /* 2369 * The curr and pos are not used in writing session. They are cleared 2370 * in callchain_cursor_commit() when the writing session is closed. 2371 * Using curr and pos to track the current cursor node. 2372 */ 2373 if (thread->lbr_stitch) { 2374 cursor->curr = NULL; 2375 cursor->pos = cursor->nr; 2376 if (cursor->nr) { 2377 cursor->curr = cursor->first; 2378 for (i = 0; i < (int)(cursor->nr - 1); i++) 2379 cursor->curr = cursor->curr->next; 2380 } 2381 } 2382 2383 if (callee) { 2384 /* Add LBR ip from first entries.to */ 2385 ip = entries[0].to; 2386 flags = &entries[0].flags; 2387 *branch_from = entries[0].from; 2388 err = add_callchain_ip(thread, cursor, parent, 2389 root_al, &cpumode, ip, 2390 true, flags, NULL, 2391 *branch_from); 2392 if (err) 2393 return err; 2394 2395 /* 2396 * The number of cursor node increases. 2397 * Move the current cursor node. 2398 * But does not need to save current cursor node for entry 0. 2399 * It's impossible to stitch the whole LBRs of previous sample. 2400 */ 2401 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2402 if (!cursor->curr) 2403 cursor->curr = cursor->first; 2404 else 2405 cursor->curr = cursor->curr->next; 2406 cursor->pos++; 2407 } 2408 2409 /* Add LBR ip from entries.from one by one. */ 2410 for (i = 0; i < lbr_nr; i++) { 2411 ip = entries[i].from; 2412 flags = &entries[i].flags; 2413 err = add_callchain_ip(thread, cursor, parent, 2414 root_al, &cpumode, ip, 2415 true, flags, NULL, 2416 *branch_from); 2417 if (err) 2418 return err; 2419 save_lbr_cursor_node(thread, cursor, i); 2420 } 2421 return 0; 2422 } 2423 2424 /* Add LBR ip from entries.from one by one. */ 2425 for (i = lbr_nr - 1; i >= 0; i--) { 2426 ip = entries[i].from; 2427 flags = &entries[i].flags; 2428 err = add_callchain_ip(thread, cursor, parent, 2429 root_al, &cpumode, ip, 2430 true, flags, NULL, 2431 *branch_from); 2432 if (err) 2433 return err; 2434 save_lbr_cursor_node(thread, cursor, i); 2435 } 2436 2437 /* Add LBR ip from first entries.to */ 2438 ip = entries[0].to; 2439 flags = &entries[0].flags; 2440 *branch_from = entries[0].from; 2441 err = add_callchain_ip(thread, cursor, parent, 2442 root_al, &cpumode, ip, 2443 true, flags, NULL, 2444 *branch_from); 2445 if (err) 2446 return err; 2447 2448 return 0; 2449 } 2450 2451 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2452 struct callchain_cursor *cursor) 2453 { 2454 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2455 struct callchain_cursor_node *cnode; 2456 struct stitch_list *stitch_node; 2457 int err; 2458 2459 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2460 cnode = &stitch_node->cursor; 2461 2462 err = callchain_cursor_append(cursor, cnode->ip, 2463 &cnode->ms, 2464 cnode->branch, 2465 &cnode->branch_flags, 2466 cnode->nr_loop_iter, 2467 cnode->iter_cycles, 2468 cnode->branch_from, 2469 cnode->srcline); 2470 if (err) 2471 return err; 2472 } 2473 return 0; 2474 } 2475 2476 static struct stitch_list *get_stitch_node(struct thread *thread) 2477 { 2478 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2479 struct stitch_list *stitch_node; 2480 2481 if (!list_empty(&lbr_stitch->free_lists)) { 2482 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2483 struct stitch_list, node); 2484 list_del(&stitch_node->node); 2485 2486 return stitch_node; 2487 } 2488 2489 return malloc(sizeof(struct stitch_list)); 2490 } 2491 2492 static bool has_stitched_lbr(struct thread *thread, 2493 struct perf_sample *cur, 2494 struct perf_sample *prev, 2495 unsigned int max_lbr, 2496 bool callee) 2497 { 2498 struct branch_stack *cur_stack = cur->branch_stack; 2499 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2500 struct branch_stack *prev_stack = prev->branch_stack; 2501 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2502 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2503 int i, j, nr_identical_branches = 0; 2504 struct stitch_list *stitch_node; 2505 u64 cur_base, distance; 2506 2507 if (!cur_stack || !prev_stack) 2508 return false; 2509 2510 /* Find the physical index of the base-of-stack for current sample. */ 2511 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2512 2513 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2514 (max_lbr + prev_stack->hw_idx - cur_base); 2515 /* Previous sample has shorter stack. Nothing can be stitched. */ 2516 if (distance + 1 > prev_stack->nr) 2517 return false; 2518 2519 /* 2520 * Check if there are identical LBRs between two samples. 2521 * Identical LBRs must have same from, to and flags values. Also, 2522 * they have to be saved in the same LBR registers (same physical 2523 * index). 2524 * 2525 * Starts from the base-of-stack of current sample. 2526 */ 2527 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2528 if ((prev_entries[i].from != cur_entries[j].from) || 2529 (prev_entries[i].to != cur_entries[j].to) || 2530 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2531 break; 2532 nr_identical_branches++; 2533 } 2534 2535 if (!nr_identical_branches) 2536 return false; 2537 2538 /* 2539 * Save the LBRs between the base-of-stack of previous sample 2540 * and the base-of-stack of current sample into lbr_stitch->lists. 2541 * These LBRs will be stitched later. 2542 */ 2543 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2544 2545 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2546 continue; 2547 2548 stitch_node = get_stitch_node(thread); 2549 if (!stitch_node) 2550 return false; 2551 2552 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2553 sizeof(struct callchain_cursor_node)); 2554 2555 if (callee) 2556 list_add(&stitch_node->node, &lbr_stitch->lists); 2557 else 2558 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2559 } 2560 2561 return true; 2562 } 2563 2564 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2565 { 2566 if (thread->lbr_stitch) 2567 return true; 2568 2569 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2570 if (!thread->lbr_stitch) 2571 goto err; 2572 2573 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2574 if (!thread->lbr_stitch->prev_lbr_cursor) 2575 goto free_lbr_stitch; 2576 2577 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2578 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2579 2580 return true; 2581 2582 free_lbr_stitch: 2583 zfree(&thread->lbr_stitch); 2584 err: 2585 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2586 thread->lbr_stitch_enable = false; 2587 return false; 2588 } 2589 2590 /* 2591 * Resolve LBR callstack chain sample 2592 * Return: 2593 * 1 on success get LBR callchain information 2594 * 0 no available LBR callchain information, should try fp 2595 * negative error code on other errors. 2596 */ 2597 static int resolve_lbr_callchain_sample(struct thread *thread, 2598 struct callchain_cursor *cursor, 2599 struct perf_sample *sample, 2600 struct symbol **parent, 2601 struct addr_location *root_al, 2602 int max_stack, 2603 unsigned int max_lbr) 2604 { 2605 bool callee = (callchain_param.order == ORDER_CALLEE); 2606 struct ip_callchain *chain = sample->callchain; 2607 int chain_nr = min(max_stack, (int)chain->nr), i; 2608 struct lbr_stitch *lbr_stitch; 2609 bool stitched_lbr = false; 2610 u64 branch_from = 0; 2611 int err; 2612 2613 for (i = 0; i < chain_nr; i++) { 2614 if (chain->ips[i] == PERF_CONTEXT_USER) 2615 break; 2616 } 2617 2618 /* LBR only affects the user callchain */ 2619 if (i == chain_nr) 2620 return 0; 2621 2622 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2623 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2624 lbr_stitch = thread->lbr_stitch; 2625 2626 stitched_lbr = has_stitched_lbr(thread, sample, 2627 &lbr_stitch->prev_sample, 2628 max_lbr, callee); 2629 2630 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2631 list_replace_init(&lbr_stitch->lists, 2632 &lbr_stitch->free_lists); 2633 } 2634 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2635 } 2636 2637 if (callee) { 2638 /* Add kernel ip */ 2639 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2640 parent, root_al, branch_from, 2641 true, i); 2642 if (err) 2643 goto error; 2644 2645 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2646 root_al, &branch_from, true); 2647 if (err) 2648 goto error; 2649 2650 if (stitched_lbr) { 2651 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2652 if (err) 2653 goto error; 2654 } 2655 2656 } else { 2657 if (stitched_lbr) { 2658 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2659 if (err) 2660 goto error; 2661 } 2662 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2663 root_al, &branch_from, false); 2664 if (err) 2665 goto error; 2666 2667 /* Add kernel ip */ 2668 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2669 parent, root_al, branch_from, 2670 false, i); 2671 if (err) 2672 goto error; 2673 } 2674 return 1; 2675 2676 error: 2677 return (err < 0) ? err : 0; 2678 } 2679 2680 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2681 struct callchain_cursor *cursor, 2682 struct symbol **parent, 2683 struct addr_location *root_al, 2684 u8 *cpumode, int ent) 2685 { 2686 int err = 0; 2687 2688 while (--ent >= 0) { 2689 u64 ip = chain->ips[ent]; 2690 2691 if (ip >= PERF_CONTEXT_MAX) { 2692 err = add_callchain_ip(thread, cursor, parent, 2693 root_al, cpumode, ip, 2694 false, NULL, NULL, 0); 2695 break; 2696 } 2697 } 2698 return err; 2699 } 2700 2701 static int thread__resolve_callchain_sample(struct thread *thread, 2702 struct callchain_cursor *cursor, 2703 struct evsel *evsel, 2704 struct perf_sample *sample, 2705 struct symbol **parent, 2706 struct addr_location *root_al, 2707 int max_stack) 2708 { 2709 struct branch_stack *branch = sample->branch_stack; 2710 struct branch_entry *entries = perf_sample__branch_entries(sample); 2711 struct ip_callchain *chain = sample->callchain; 2712 int chain_nr = 0; 2713 u8 cpumode = PERF_RECORD_MISC_USER; 2714 int i, j, err, nr_entries; 2715 int skip_idx = -1; 2716 int first_call = 0; 2717 2718 if (chain) 2719 chain_nr = chain->nr; 2720 2721 if (evsel__has_branch_callstack(evsel)) { 2722 struct perf_env *env = evsel__env(evsel); 2723 2724 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2725 root_al, max_stack, 2726 !env ? 0 : env->max_branches); 2727 if (err) 2728 return (err < 0) ? err : 0; 2729 } 2730 2731 /* 2732 * Based on DWARF debug information, some architectures skip 2733 * a callchain entry saved by the kernel. 2734 */ 2735 skip_idx = arch_skip_callchain_idx(thread, chain); 2736 2737 /* 2738 * Add branches to call stack for easier browsing. This gives 2739 * more context for a sample than just the callers. 2740 * 2741 * This uses individual histograms of paths compared to the 2742 * aggregated histograms the normal LBR mode uses. 2743 * 2744 * Limitations for now: 2745 * - No extra filters 2746 * - No annotations (should annotate somehow) 2747 */ 2748 2749 if (branch && callchain_param.branch_callstack) { 2750 int nr = min(max_stack, (int)branch->nr); 2751 struct branch_entry be[nr]; 2752 struct iterations iter[nr]; 2753 2754 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2755 pr_warning("corrupted branch chain. skipping...\n"); 2756 goto check_calls; 2757 } 2758 2759 for (i = 0; i < nr; i++) { 2760 if (callchain_param.order == ORDER_CALLEE) { 2761 be[i] = entries[i]; 2762 2763 if (chain == NULL) 2764 continue; 2765 2766 /* 2767 * Check for overlap into the callchain. 2768 * The return address is one off compared to 2769 * the branch entry. To adjust for this 2770 * assume the calling instruction is not longer 2771 * than 8 bytes. 2772 */ 2773 if (i == skip_idx || 2774 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2775 first_call++; 2776 else if (be[i].from < chain->ips[first_call] && 2777 be[i].from >= chain->ips[first_call] - 8) 2778 first_call++; 2779 } else 2780 be[i] = entries[branch->nr - i - 1]; 2781 } 2782 2783 memset(iter, 0, sizeof(struct iterations) * nr); 2784 nr = remove_loops(be, nr, iter); 2785 2786 for (i = 0; i < nr; i++) { 2787 err = add_callchain_ip(thread, cursor, parent, 2788 root_al, 2789 NULL, be[i].to, 2790 true, &be[i].flags, 2791 NULL, be[i].from); 2792 2793 if (!err) 2794 err = add_callchain_ip(thread, cursor, parent, root_al, 2795 NULL, be[i].from, 2796 true, &be[i].flags, 2797 &iter[i], 0); 2798 if (err == -EINVAL) 2799 break; 2800 if (err) 2801 return err; 2802 } 2803 2804 if (chain_nr == 0) 2805 return 0; 2806 2807 chain_nr -= nr; 2808 } 2809 2810 check_calls: 2811 if (chain && callchain_param.order != ORDER_CALLEE) { 2812 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2813 &cpumode, chain->nr - first_call); 2814 if (err) 2815 return (err < 0) ? err : 0; 2816 } 2817 for (i = first_call, nr_entries = 0; 2818 i < chain_nr && nr_entries < max_stack; i++) { 2819 u64 ip; 2820 2821 if (callchain_param.order == ORDER_CALLEE) 2822 j = i; 2823 else 2824 j = chain->nr - i - 1; 2825 2826 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2827 if (j == skip_idx) 2828 continue; 2829 #endif 2830 ip = chain->ips[j]; 2831 if (ip < PERF_CONTEXT_MAX) 2832 ++nr_entries; 2833 else if (callchain_param.order != ORDER_CALLEE) { 2834 err = find_prev_cpumode(chain, thread, cursor, parent, 2835 root_al, &cpumode, j); 2836 if (err) 2837 return (err < 0) ? err : 0; 2838 continue; 2839 } 2840 2841 err = add_callchain_ip(thread, cursor, parent, 2842 root_al, &cpumode, ip, 2843 false, NULL, NULL, 0); 2844 2845 if (err) 2846 return (err < 0) ? err : 0; 2847 } 2848 2849 return 0; 2850 } 2851 2852 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2853 { 2854 struct symbol *sym = ms->sym; 2855 struct map *map = ms->map; 2856 struct inline_node *inline_node; 2857 struct inline_list *ilist; 2858 u64 addr; 2859 int ret = 1; 2860 2861 if (!symbol_conf.inline_name || !map || !sym) 2862 return ret; 2863 2864 addr = map__map_ip(map, ip); 2865 addr = map__rip_2objdump(map, addr); 2866 2867 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2868 if (!inline_node) { 2869 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2870 if (!inline_node) 2871 return ret; 2872 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2873 } 2874 2875 list_for_each_entry(ilist, &inline_node->val, list) { 2876 struct map_symbol ilist_ms = { 2877 .maps = ms->maps, 2878 .map = map, 2879 .sym = ilist->symbol, 2880 }; 2881 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2882 NULL, 0, 0, 0, ilist->srcline); 2883 2884 if (ret != 0) 2885 return ret; 2886 } 2887 2888 return ret; 2889 } 2890 2891 static int unwind_entry(struct unwind_entry *entry, void *arg) 2892 { 2893 struct callchain_cursor *cursor = arg; 2894 const char *srcline = NULL; 2895 u64 addr = entry->ip; 2896 2897 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2898 return 0; 2899 2900 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2901 return 0; 2902 2903 /* 2904 * Convert entry->ip from a virtual address to an offset in 2905 * its corresponding binary. 2906 */ 2907 if (entry->ms.map) 2908 addr = map__map_ip(entry->ms.map, entry->ip); 2909 2910 srcline = callchain_srcline(&entry->ms, addr); 2911 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2912 false, NULL, 0, 0, 0, srcline); 2913 } 2914 2915 static int thread__resolve_callchain_unwind(struct thread *thread, 2916 struct callchain_cursor *cursor, 2917 struct evsel *evsel, 2918 struct perf_sample *sample, 2919 int max_stack) 2920 { 2921 /* Can we do dwarf post unwind? */ 2922 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2923 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2924 return 0; 2925 2926 /* Bail out if nothing was captured. */ 2927 if ((!sample->user_regs.regs) || 2928 (!sample->user_stack.size)) 2929 return 0; 2930 2931 return unwind__get_entries(unwind_entry, cursor, 2932 thread, sample, max_stack); 2933 } 2934 2935 int thread__resolve_callchain(struct thread *thread, 2936 struct callchain_cursor *cursor, 2937 struct evsel *evsel, 2938 struct perf_sample *sample, 2939 struct symbol **parent, 2940 struct addr_location *root_al, 2941 int max_stack) 2942 { 2943 int ret = 0; 2944 2945 callchain_cursor_reset(cursor); 2946 2947 if (callchain_param.order == ORDER_CALLEE) { 2948 ret = thread__resolve_callchain_sample(thread, cursor, 2949 evsel, sample, 2950 parent, root_al, 2951 max_stack); 2952 if (ret) 2953 return ret; 2954 ret = thread__resolve_callchain_unwind(thread, cursor, 2955 evsel, sample, 2956 max_stack); 2957 } else { 2958 ret = thread__resolve_callchain_unwind(thread, cursor, 2959 evsel, sample, 2960 max_stack); 2961 if (ret) 2962 return ret; 2963 ret = thread__resolve_callchain_sample(thread, cursor, 2964 evsel, sample, 2965 parent, root_al, 2966 max_stack); 2967 } 2968 2969 return ret; 2970 } 2971 2972 int machine__for_each_thread(struct machine *machine, 2973 int (*fn)(struct thread *thread, void *p), 2974 void *priv) 2975 { 2976 struct threads *threads; 2977 struct rb_node *nd; 2978 struct thread *thread; 2979 int rc = 0; 2980 int i; 2981 2982 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2983 threads = &machine->threads[i]; 2984 for (nd = rb_first_cached(&threads->entries); nd; 2985 nd = rb_next(nd)) { 2986 thread = rb_entry(nd, struct thread, rb_node); 2987 rc = fn(thread, priv); 2988 if (rc != 0) 2989 return rc; 2990 } 2991 2992 list_for_each_entry(thread, &threads->dead, node) { 2993 rc = fn(thread, priv); 2994 if (rc != 0) 2995 return rc; 2996 } 2997 } 2998 return rc; 2999 } 3000 3001 int machines__for_each_thread(struct machines *machines, 3002 int (*fn)(struct thread *thread, void *p), 3003 void *priv) 3004 { 3005 struct rb_node *nd; 3006 int rc = 0; 3007 3008 rc = machine__for_each_thread(&machines->host, fn, priv); 3009 if (rc != 0) 3010 return rc; 3011 3012 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3013 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3014 3015 rc = machine__for_each_thread(machine, fn, priv); 3016 if (rc != 0) 3017 return rc; 3018 } 3019 return rc; 3020 } 3021 3022 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3023 { 3024 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 3025 3026 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 3027 return -1; 3028 3029 return machine->current_tid[cpu]; 3030 } 3031 3032 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3033 pid_t tid) 3034 { 3035 struct thread *thread; 3036 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 3037 3038 if (cpu < 0) 3039 return -EINVAL; 3040 3041 if (!machine->current_tid) { 3042 int i; 3043 3044 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 3045 if (!machine->current_tid) 3046 return -ENOMEM; 3047 for (i = 0; i < nr_cpus; i++) 3048 machine->current_tid[i] = -1; 3049 } 3050 3051 if (cpu >= nr_cpus) { 3052 pr_err("Requested CPU %d too large. ", cpu); 3053 pr_err("Consider raising MAX_NR_CPUS\n"); 3054 return -EINVAL; 3055 } 3056 3057 machine->current_tid[cpu] = tid; 3058 3059 thread = machine__findnew_thread(machine, pid, tid); 3060 if (!thread) 3061 return -ENOMEM; 3062 3063 thread->cpu = cpu; 3064 thread__put(thread); 3065 3066 return 0; 3067 } 3068 3069 /* 3070 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 3071 * normalized arch is needed. 3072 */ 3073 bool machine__is(struct machine *machine, const char *arch) 3074 { 3075 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3076 } 3077 3078 int machine__nr_cpus_avail(struct machine *machine) 3079 { 3080 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3081 } 3082 3083 int machine__get_kernel_start(struct machine *machine) 3084 { 3085 struct map *map = machine__kernel_map(machine); 3086 int err = 0; 3087 3088 /* 3089 * The only addresses above 2^63 are kernel addresses of a 64-bit 3090 * kernel. Note that addresses are unsigned so that on a 32-bit system 3091 * all addresses including kernel addresses are less than 2^32. In 3092 * that case (32-bit system), if the kernel mapping is unknown, all 3093 * addresses will be assumed to be in user space - see 3094 * machine__kernel_ip(). 3095 */ 3096 machine->kernel_start = 1ULL << 63; 3097 if (map) { 3098 err = map__load(map); 3099 /* 3100 * On x86_64, PTI entry trampolines are less than the 3101 * start of kernel text, but still above 2^63. So leave 3102 * kernel_start = 1ULL << 63 for x86_64. 3103 */ 3104 if (!err && !machine__is(machine, "x86_64")) 3105 machine->kernel_start = map->start; 3106 } 3107 return err; 3108 } 3109 3110 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3111 { 3112 u8 addr_cpumode = cpumode; 3113 bool kernel_ip; 3114 3115 if (!machine->single_address_space) 3116 goto out; 3117 3118 kernel_ip = machine__kernel_ip(machine, addr); 3119 switch (cpumode) { 3120 case PERF_RECORD_MISC_KERNEL: 3121 case PERF_RECORD_MISC_USER: 3122 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3123 PERF_RECORD_MISC_USER; 3124 break; 3125 case PERF_RECORD_MISC_GUEST_KERNEL: 3126 case PERF_RECORD_MISC_GUEST_USER: 3127 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3128 PERF_RECORD_MISC_GUEST_USER; 3129 break; 3130 default: 3131 break; 3132 } 3133 out: 3134 return addr_cpumode; 3135 } 3136 3137 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3138 { 3139 return dsos__findnew_id(&machine->dsos, filename, id); 3140 } 3141 3142 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3143 { 3144 return machine__findnew_dso_id(machine, filename, NULL); 3145 } 3146 3147 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3148 { 3149 struct machine *machine = vmachine; 3150 struct map *map; 3151 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3152 3153 if (sym == NULL) 3154 return NULL; 3155 3156 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3157 *addrp = map->unmap_ip(map, sym->start); 3158 return sym->name; 3159 } 3160 3161 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3162 { 3163 struct dso *pos; 3164 int err = 0; 3165 3166 list_for_each_entry(pos, &machine->dsos.head, node) { 3167 if (fn(pos, machine, priv)) 3168 err = -1; 3169 } 3170 return err; 3171 } 3172