1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "event.h" 9 #include "evsel.h" 10 #include "hist.h" 11 #include "machine.h" 12 #include "map.h" 13 #include "srcline.h" 14 #include "symbol.h" 15 #include "sort.h" 16 #include "strlist.h" 17 #include "target.h" 18 #include "thread.h" 19 #include "util.h" 20 #include "vdso.h" 21 #include <stdbool.h> 22 #include <sys/types.h> 23 #include <sys/stat.h> 24 #include <unistd.h> 25 #include "unwind.h" 26 #include "linux/hash.h" 27 #include "asm/bug.h" 28 #include "bpf-event.h" 29 30 #include <linux/ctype.h> 31 #include <symbol/kallsyms.h> 32 #include <linux/mman.h> 33 #include <linux/string.h> 34 #include <linux/zalloc.h> 35 36 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 37 38 static void dsos__init(struct dsos *dsos) 39 { 40 INIT_LIST_HEAD(&dsos->head); 41 dsos->root = RB_ROOT; 42 init_rwsem(&dsos->lock); 43 } 44 45 static void machine__threads_init(struct machine *machine) 46 { 47 int i; 48 49 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 50 struct threads *threads = &machine->threads[i]; 51 threads->entries = RB_ROOT_CACHED; 52 init_rwsem(&threads->lock); 53 threads->nr = 0; 54 INIT_LIST_HEAD(&threads->dead); 55 threads->last_match = NULL; 56 } 57 } 58 59 static int machine__set_mmap_name(struct machine *machine) 60 { 61 if (machine__is_host(machine)) 62 machine->mmap_name = strdup("[kernel.kallsyms]"); 63 else if (machine__is_default_guest(machine)) 64 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 65 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 66 machine->pid) < 0) 67 machine->mmap_name = NULL; 68 69 return machine->mmap_name ? 0 : -ENOMEM; 70 } 71 72 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 73 { 74 int err = -ENOMEM; 75 76 memset(machine, 0, sizeof(*machine)); 77 map_groups__init(&machine->kmaps, machine); 78 RB_CLEAR_NODE(&machine->rb_node); 79 dsos__init(&machine->dsos); 80 81 machine__threads_init(machine); 82 83 machine->vdso_info = NULL; 84 machine->env = NULL; 85 86 machine->pid = pid; 87 88 machine->id_hdr_size = 0; 89 machine->kptr_restrict_warned = false; 90 machine->comm_exec = false; 91 machine->kernel_start = 0; 92 machine->vmlinux_map = NULL; 93 94 machine->root_dir = strdup(root_dir); 95 if (machine->root_dir == NULL) 96 return -ENOMEM; 97 98 if (machine__set_mmap_name(machine)) 99 goto out; 100 101 if (pid != HOST_KERNEL_ID) { 102 struct thread *thread = machine__findnew_thread(machine, -1, 103 pid); 104 char comm[64]; 105 106 if (thread == NULL) 107 goto out; 108 109 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 110 thread__set_comm(thread, comm, 0); 111 thread__put(thread); 112 } 113 114 machine->current_tid = NULL; 115 err = 0; 116 117 out: 118 if (err) { 119 zfree(&machine->root_dir); 120 zfree(&machine->mmap_name); 121 } 122 return 0; 123 } 124 125 struct machine *machine__new_host(void) 126 { 127 struct machine *machine = malloc(sizeof(*machine)); 128 129 if (machine != NULL) { 130 machine__init(machine, "", HOST_KERNEL_ID); 131 132 if (machine__create_kernel_maps(machine) < 0) 133 goto out_delete; 134 } 135 136 return machine; 137 out_delete: 138 free(machine); 139 return NULL; 140 } 141 142 struct machine *machine__new_kallsyms(void) 143 { 144 struct machine *machine = machine__new_host(); 145 /* 146 * FIXME: 147 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 148 * ask for not using the kcore parsing code, once this one is fixed 149 * to create a map per module. 150 */ 151 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 152 machine__delete(machine); 153 machine = NULL; 154 } 155 156 return machine; 157 } 158 159 static void dsos__purge(struct dsos *dsos) 160 { 161 struct dso *pos, *n; 162 163 down_write(&dsos->lock); 164 165 list_for_each_entry_safe(pos, n, &dsos->head, node) { 166 RB_CLEAR_NODE(&pos->rb_node); 167 pos->root = NULL; 168 list_del_init(&pos->node); 169 dso__put(pos); 170 } 171 172 up_write(&dsos->lock); 173 } 174 175 static void dsos__exit(struct dsos *dsos) 176 { 177 dsos__purge(dsos); 178 exit_rwsem(&dsos->lock); 179 } 180 181 void machine__delete_threads(struct machine *machine) 182 { 183 struct rb_node *nd; 184 int i; 185 186 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 187 struct threads *threads = &machine->threads[i]; 188 down_write(&threads->lock); 189 nd = rb_first_cached(&threads->entries); 190 while (nd) { 191 struct thread *t = rb_entry(nd, struct thread, rb_node); 192 193 nd = rb_next(nd); 194 __machine__remove_thread(machine, t, false); 195 } 196 up_write(&threads->lock); 197 } 198 } 199 200 void machine__exit(struct machine *machine) 201 { 202 int i; 203 204 if (machine == NULL) 205 return; 206 207 machine__destroy_kernel_maps(machine); 208 map_groups__exit(&machine->kmaps); 209 dsos__exit(&machine->dsos); 210 machine__exit_vdso(machine); 211 zfree(&machine->root_dir); 212 zfree(&machine->mmap_name); 213 zfree(&machine->current_tid); 214 215 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 216 struct threads *threads = &machine->threads[i]; 217 struct thread *thread, *n; 218 /* 219 * Forget about the dead, at this point whatever threads were 220 * left in the dead lists better have a reference count taken 221 * by who is using them, and then, when they drop those references 222 * and it finally hits zero, thread__put() will check and see that 223 * its not in the dead threads list and will not try to remove it 224 * from there, just calling thread__delete() straight away. 225 */ 226 list_for_each_entry_safe(thread, n, &threads->dead, node) 227 list_del_init(&thread->node); 228 229 exit_rwsem(&threads->lock); 230 } 231 } 232 233 void machine__delete(struct machine *machine) 234 { 235 if (machine) { 236 machine__exit(machine); 237 free(machine); 238 } 239 } 240 241 void machines__init(struct machines *machines) 242 { 243 machine__init(&machines->host, "", HOST_KERNEL_ID); 244 machines->guests = RB_ROOT_CACHED; 245 } 246 247 void machines__exit(struct machines *machines) 248 { 249 machine__exit(&machines->host); 250 /* XXX exit guest */ 251 } 252 253 struct machine *machines__add(struct machines *machines, pid_t pid, 254 const char *root_dir) 255 { 256 struct rb_node **p = &machines->guests.rb_root.rb_node; 257 struct rb_node *parent = NULL; 258 struct machine *pos, *machine = malloc(sizeof(*machine)); 259 bool leftmost = true; 260 261 if (machine == NULL) 262 return NULL; 263 264 if (machine__init(machine, root_dir, pid) != 0) { 265 free(machine); 266 return NULL; 267 } 268 269 while (*p != NULL) { 270 parent = *p; 271 pos = rb_entry(parent, struct machine, rb_node); 272 if (pid < pos->pid) 273 p = &(*p)->rb_left; 274 else { 275 p = &(*p)->rb_right; 276 leftmost = false; 277 } 278 } 279 280 rb_link_node(&machine->rb_node, parent, p); 281 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 282 283 return machine; 284 } 285 286 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 287 { 288 struct rb_node *nd; 289 290 machines->host.comm_exec = comm_exec; 291 292 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 293 struct machine *machine = rb_entry(nd, struct machine, rb_node); 294 295 machine->comm_exec = comm_exec; 296 } 297 } 298 299 struct machine *machines__find(struct machines *machines, pid_t pid) 300 { 301 struct rb_node **p = &machines->guests.rb_root.rb_node; 302 struct rb_node *parent = NULL; 303 struct machine *machine; 304 struct machine *default_machine = NULL; 305 306 if (pid == HOST_KERNEL_ID) 307 return &machines->host; 308 309 while (*p != NULL) { 310 parent = *p; 311 machine = rb_entry(parent, struct machine, rb_node); 312 if (pid < machine->pid) 313 p = &(*p)->rb_left; 314 else if (pid > machine->pid) 315 p = &(*p)->rb_right; 316 else 317 return machine; 318 if (!machine->pid) 319 default_machine = machine; 320 } 321 322 return default_machine; 323 } 324 325 struct machine *machines__findnew(struct machines *machines, pid_t pid) 326 { 327 char path[PATH_MAX]; 328 const char *root_dir = ""; 329 struct machine *machine = machines__find(machines, pid); 330 331 if (machine && (machine->pid == pid)) 332 goto out; 333 334 if ((pid != HOST_KERNEL_ID) && 335 (pid != DEFAULT_GUEST_KERNEL_ID) && 336 (symbol_conf.guestmount)) { 337 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 338 if (access(path, R_OK)) { 339 static struct strlist *seen; 340 341 if (!seen) 342 seen = strlist__new(NULL, NULL); 343 344 if (!strlist__has_entry(seen, path)) { 345 pr_err("Can't access file %s\n", path); 346 strlist__add(seen, path); 347 } 348 machine = NULL; 349 goto out; 350 } 351 root_dir = path; 352 } 353 354 machine = machines__add(machines, pid, root_dir); 355 out: 356 return machine; 357 } 358 359 void machines__process_guests(struct machines *machines, 360 machine__process_t process, void *data) 361 { 362 struct rb_node *nd; 363 364 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 365 struct machine *pos = rb_entry(nd, struct machine, rb_node); 366 process(pos, data); 367 } 368 } 369 370 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 371 { 372 struct rb_node *node; 373 struct machine *machine; 374 375 machines->host.id_hdr_size = id_hdr_size; 376 377 for (node = rb_first_cached(&machines->guests); node; 378 node = rb_next(node)) { 379 machine = rb_entry(node, struct machine, rb_node); 380 machine->id_hdr_size = id_hdr_size; 381 } 382 383 return; 384 } 385 386 static void machine__update_thread_pid(struct machine *machine, 387 struct thread *th, pid_t pid) 388 { 389 struct thread *leader; 390 391 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 392 return; 393 394 th->pid_ = pid; 395 396 if (th->pid_ == th->tid) 397 return; 398 399 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 400 if (!leader) 401 goto out_err; 402 403 if (!leader->mg) 404 leader->mg = map_groups__new(machine); 405 406 if (!leader->mg) 407 goto out_err; 408 409 if (th->mg == leader->mg) 410 return; 411 412 if (th->mg) { 413 /* 414 * Maps are created from MMAP events which provide the pid and 415 * tid. Consequently there never should be any maps on a thread 416 * with an unknown pid. Just print an error if there are. 417 */ 418 if (!map_groups__empty(th->mg)) 419 pr_err("Discarding thread maps for %d:%d\n", 420 th->pid_, th->tid); 421 map_groups__put(th->mg); 422 } 423 424 th->mg = map_groups__get(leader->mg); 425 out_put: 426 thread__put(leader); 427 return; 428 out_err: 429 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 430 goto out_put; 431 } 432 433 /* 434 * Front-end cache - TID lookups come in blocks, 435 * so most of the time we dont have to look up 436 * the full rbtree: 437 */ 438 static struct thread* 439 __threads__get_last_match(struct threads *threads, struct machine *machine, 440 int pid, int tid) 441 { 442 struct thread *th; 443 444 th = threads->last_match; 445 if (th != NULL) { 446 if (th->tid == tid) { 447 machine__update_thread_pid(machine, th, pid); 448 return thread__get(th); 449 } 450 451 threads->last_match = NULL; 452 } 453 454 return NULL; 455 } 456 457 static struct thread* 458 threads__get_last_match(struct threads *threads, struct machine *machine, 459 int pid, int tid) 460 { 461 struct thread *th = NULL; 462 463 if (perf_singlethreaded) 464 th = __threads__get_last_match(threads, machine, pid, tid); 465 466 return th; 467 } 468 469 static void 470 __threads__set_last_match(struct threads *threads, struct thread *th) 471 { 472 threads->last_match = th; 473 } 474 475 static void 476 threads__set_last_match(struct threads *threads, struct thread *th) 477 { 478 if (perf_singlethreaded) 479 __threads__set_last_match(threads, th); 480 } 481 482 /* 483 * Caller must eventually drop thread->refcnt returned with a successful 484 * lookup/new thread inserted. 485 */ 486 static struct thread *____machine__findnew_thread(struct machine *machine, 487 struct threads *threads, 488 pid_t pid, pid_t tid, 489 bool create) 490 { 491 struct rb_node **p = &threads->entries.rb_root.rb_node; 492 struct rb_node *parent = NULL; 493 struct thread *th; 494 bool leftmost = true; 495 496 th = threads__get_last_match(threads, machine, pid, tid); 497 if (th) 498 return th; 499 500 while (*p != NULL) { 501 parent = *p; 502 th = rb_entry(parent, struct thread, rb_node); 503 504 if (th->tid == tid) { 505 threads__set_last_match(threads, th); 506 machine__update_thread_pid(machine, th, pid); 507 return thread__get(th); 508 } 509 510 if (tid < th->tid) 511 p = &(*p)->rb_left; 512 else { 513 p = &(*p)->rb_right; 514 leftmost = false; 515 } 516 } 517 518 if (!create) 519 return NULL; 520 521 th = thread__new(pid, tid); 522 if (th != NULL) { 523 rb_link_node(&th->rb_node, parent, p); 524 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 525 526 /* 527 * We have to initialize map_groups separately 528 * after rb tree is updated. 529 * 530 * The reason is that we call machine__findnew_thread 531 * within thread__init_map_groups to find the thread 532 * leader and that would screwed the rb tree. 533 */ 534 if (thread__init_map_groups(th, machine)) { 535 rb_erase_cached(&th->rb_node, &threads->entries); 536 RB_CLEAR_NODE(&th->rb_node); 537 thread__put(th); 538 return NULL; 539 } 540 /* 541 * It is now in the rbtree, get a ref 542 */ 543 thread__get(th); 544 threads__set_last_match(threads, th); 545 ++threads->nr; 546 } 547 548 return th; 549 } 550 551 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 552 { 553 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 554 } 555 556 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 557 pid_t tid) 558 { 559 struct threads *threads = machine__threads(machine, tid); 560 struct thread *th; 561 562 down_write(&threads->lock); 563 th = __machine__findnew_thread(machine, pid, tid); 564 up_write(&threads->lock); 565 return th; 566 } 567 568 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 569 pid_t tid) 570 { 571 struct threads *threads = machine__threads(machine, tid); 572 struct thread *th; 573 574 down_read(&threads->lock); 575 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 576 up_read(&threads->lock); 577 return th; 578 } 579 580 struct comm *machine__thread_exec_comm(struct machine *machine, 581 struct thread *thread) 582 { 583 if (machine->comm_exec) 584 return thread__exec_comm(thread); 585 else 586 return thread__comm(thread); 587 } 588 589 int machine__process_comm_event(struct machine *machine, union perf_event *event, 590 struct perf_sample *sample) 591 { 592 struct thread *thread = machine__findnew_thread(machine, 593 event->comm.pid, 594 event->comm.tid); 595 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 596 int err = 0; 597 598 if (exec) 599 machine->comm_exec = true; 600 601 if (dump_trace) 602 perf_event__fprintf_comm(event, stdout); 603 604 if (thread == NULL || 605 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 606 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 607 err = -1; 608 } 609 610 thread__put(thread); 611 612 return err; 613 } 614 615 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 616 union perf_event *event, 617 struct perf_sample *sample __maybe_unused) 618 { 619 struct thread *thread = machine__findnew_thread(machine, 620 event->namespaces.pid, 621 event->namespaces.tid); 622 int err = 0; 623 624 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 625 "\nWARNING: kernel seems to support more namespaces than perf" 626 " tool.\nTry updating the perf tool..\n\n"); 627 628 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 629 "\nWARNING: perf tool seems to support more namespaces than" 630 " the kernel.\nTry updating the kernel..\n\n"); 631 632 if (dump_trace) 633 perf_event__fprintf_namespaces(event, stdout); 634 635 if (thread == NULL || 636 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 637 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 638 err = -1; 639 } 640 641 thread__put(thread); 642 643 return err; 644 } 645 646 int machine__process_lost_event(struct machine *machine __maybe_unused, 647 union perf_event *event, struct perf_sample *sample __maybe_unused) 648 { 649 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 650 event->lost.id, event->lost.lost); 651 return 0; 652 } 653 654 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 655 union perf_event *event, struct perf_sample *sample) 656 { 657 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 658 sample->id, event->lost_samples.lost); 659 return 0; 660 } 661 662 static struct dso *machine__findnew_module_dso(struct machine *machine, 663 struct kmod_path *m, 664 const char *filename) 665 { 666 struct dso *dso; 667 668 down_write(&machine->dsos.lock); 669 670 dso = __dsos__find(&machine->dsos, m->name, true); 671 if (!dso) { 672 dso = __dsos__addnew(&machine->dsos, m->name); 673 if (dso == NULL) 674 goto out_unlock; 675 676 dso__set_module_info(dso, m, machine); 677 dso__set_long_name(dso, strdup(filename), true); 678 } 679 680 dso__get(dso); 681 out_unlock: 682 up_write(&machine->dsos.lock); 683 return dso; 684 } 685 686 int machine__process_aux_event(struct machine *machine __maybe_unused, 687 union perf_event *event) 688 { 689 if (dump_trace) 690 perf_event__fprintf_aux(event, stdout); 691 return 0; 692 } 693 694 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 695 union perf_event *event) 696 { 697 if (dump_trace) 698 perf_event__fprintf_itrace_start(event, stdout); 699 return 0; 700 } 701 702 int machine__process_switch_event(struct machine *machine __maybe_unused, 703 union perf_event *event) 704 { 705 if (dump_trace) 706 perf_event__fprintf_switch(event, stdout); 707 return 0; 708 } 709 710 static int machine__process_ksymbol_register(struct machine *machine, 711 union perf_event *event, 712 struct perf_sample *sample __maybe_unused) 713 { 714 struct symbol *sym; 715 struct map *map; 716 717 map = map_groups__find(&machine->kmaps, event->ksymbol.addr); 718 if (!map) { 719 map = dso__new_map(event->ksymbol.name); 720 if (!map) 721 return -ENOMEM; 722 723 map->start = event->ksymbol.addr; 724 map->end = map->start + event->ksymbol.len; 725 map_groups__insert(&machine->kmaps, map); 726 } 727 728 sym = symbol__new(map->map_ip(map, map->start), 729 event->ksymbol.len, 730 0, 0, event->ksymbol.name); 731 if (!sym) 732 return -ENOMEM; 733 dso__insert_symbol(map->dso, sym); 734 return 0; 735 } 736 737 static int machine__process_ksymbol_unregister(struct machine *machine, 738 union perf_event *event, 739 struct perf_sample *sample __maybe_unused) 740 { 741 struct map *map; 742 743 map = map_groups__find(&machine->kmaps, event->ksymbol.addr); 744 if (map) 745 map_groups__remove(&machine->kmaps, map); 746 747 return 0; 748 } 749 750 int machine__process_ksymbol(struct machine *machine __maybe_unused, 751 union perf_event *event, 752 struct perf_sample *sample) 753 { 754 if (dump_trace) 755 perf_event__fprintf_ksymbol(event, stdout); 756 757 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 758 return machine__process_ksymbol_unregister(machine, event, 759 sample); 760 return machine__process_ksymbol_register(machine, event, sample); 761 } 762 763 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 764 { 765 const char *dup_filename; 766 767 if (!filename || !dso || !dso->long_name) 768 return; 769 if (dso->long_name[0] != '[') 770 return; 771 if (!strchr(filename, '/')) 772 return; 773 774 dup_filename = strdup(filename); 775 if (!dup_filename) 776 return; 777 778 dso__set_long_name(dso, dup_filename, true); 779 } 780 781 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 782 const char *filename) 783 { 784 struct map *map = NULL; 785 struct dso *dso = NULL; 786 struct kmod_path m; 787 788 if (kmod_path__parse_name(&m, filename)) 789 return NULL; 790 791 map = map_groups__find_by_name(&machine->kmaps, m.name); 792 if (map) { 793 /* 794 * If the map's dso is an offline module, give dso__load() 795 * a chance to find the file path of that module by fixing 796 * long_name. 797 */ 798 dso__adjust_kmod_long_name(map->dso, filename); 799 goto out; 800 } 801 802 dso = machine__findnew_module_dso(machine, &m, filename); 803 if (dso == NULL) 804 goto out; 805 806 map = map__new2(start, dso); 807 if (map == NULL) 808 goto out; 809 810 map_groups__insert(&machine->kmaps, map); 811 812 /* Put the map here because map_groups__insert alread got it */ 813 map__put(map); 814 out: 815 /* put the dso here, corresponding to machine__findnew_module_dso */ 816 dso__put(dso); 817 zfree(&m.name); 818 return map; 819 } 820 821 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 822 { 823 struct rb_node *nd; 824 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 825 826 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 827 struct machine *pos = rb_entry(nd, struct machine, rb_node); 828 ret += __dsos__fprintf(&pos->dsos.head, fp); 829 } 830 831 return ret; 832 } 833 834 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 835 bool (skip)(struct dso *dso, int parm), int parm) 836 { 837 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 838 } 839 840 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 841 bool (skip)(struct dso *dso, int parm), int parm) 842 { 843 struct rb_node *nd; 844 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 845 846 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 847 struct machine *pos = rb_entry(nd, struct machine, rb_node); 848 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 849 } 850 return ret; 851 } 852 853 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 854 { 855 int i; 856 size_t printed = 0; 857 struct dso *kdso = machine__kernel_map(machine)->dso; 858 859 if (kdso->has_build_id) { 860 char filename[PATH_MAX]; 861 if (dso__build_id_filename(kdso, filename, sizeof(filename), 862 false)) 863 printed += fprintf(fp, "[0] %s\n", filename); 864 } 865 866 for (i = 0; i < vmlinux_path__nr_entries; ++i) 867 printed += fprintf(fp, "[%d] %s\n", 868 i + kdso->has_build_id, vmlinux_path[i]); 869 870 return printed; 871 } 872 873 size_t machine__fprintf(struct machine *machine, FILE *fp) 874 { 875 struct rb_node *nd; 876 size_t ret; 877 int i; 878 879 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 880 struct threads *threads = &machine->threads[i]; 881 882 down_read(&threads->lock); 883 884 ret = fprintf(fp, "Threads: %u\n", threads->nr); 885 886 for (nd = rb_first_cached(&threads->entries); nd; 887 nd = rb_next(nd)) { 888 struct thread *pos = rb_entry(nd, struct thread, rb_node); 889 890 ret += thread__fprintf(pos, fp); 891 } 892 893 up_read(&threads->lock); 894 } 895 return ret; 896 } 897 898 static struct dso *machine__get_kernel(struct machine *machine) 899 { 900 const char *vmlinux_name = machine->mmap_name; 901 struct dso *kernel; 902 903 if (machine__is_host(machine)) { 904 if (symbol_conf.vmlinux_name) 905 vmlinux_name = symbol_conf.vmlinux_name; 906 907 kernel = machine__findnew_kernel(machine, vmlinux_name, 908 "[kernel]", DSO_TYPE_KERNEL); 909 } else { 910 if (symbol_conf.default_guest_vmlinux_name) 911 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 912 913 kernel = machine__findnew_kernel(machine, vmlinux_name, 914 "[guest.kernel]", 915 DSO_TYPE_GUEST_KERNEL); 916 } 917 918 if (kernel != NULL && (!kernel->has_build_id)) 919 dso__read_running_kernel_build_id(kernel, machine); 920 921 return kernel; 922 } 923 924 struct process_args { 925 u64 start; 926 }; 927 928 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 929 size_t bufsz) 930 { 931 if (machine__is_default_guest(machine)) 932 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 933 else 934 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 935 } 936 937 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 938 939 /* Figure out the start address of kernel map from /proc/kallsyms. 940 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 941 * symbol_name if it's not that important. 942 */ 943 static int machine__get_running_kernel_start(struct machine *machine, 944 const char **symbol_name, 945 u64 *start, u64 *end) 946 { 947 char filename[PATH_MAX]; 948 int i, err = -1; 949 const char *name; 950 u64 addr = 0; 951 952 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 953 954 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 955 return 0; 956 957 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 958 err = kallsyms__get_function_start(filename, name, &addr); 959 if (!err) 960 break; 961 } 962 963 if (err) 964 return -1; 965 966 if (symbol_name) 967 *symbol_name = name; 968 969 *start = addr; 970 971 err = kallsyms__get_function_start(filename, "_etext", &addr); 972 if (!err) 973 *end = addr; 974 975 return 0; 976 } 977 978 int machine__create_extra_kernel_map(struct machine *machine, 979 struct dso *kernel, 980 struct extra_kernel_map *xm) 981 { 982 struct kmap *kmap; 983 struct map *map; 984 985 map = map__new2(xm->start, kernel); 986 if (!map) 987 return -1; 988 989 map->end = xm->end; 990 map->pgoff = xm->pgoff; 991 992 kmap = map__kmap(map); 993 994 kmap->kmaps = &machine->kmaps; 995 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 996 997 map_groups__insert(&machine->kmaps, map); 998 999 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1000 kmap->name, map->start, map->end); 1001 1002 map__put(map); 1003 1004 return 0; 1005 } 1006 1007 static u64 find_entry_trampoline(struct dso *dso) 1008 { 1009 /* Duplicates are removed so lookup all aliases */ 1010 const char *syms[] = { 1011 "_entry_trampoline", 1012 "__entry_trampoline_start", 1013 "entry_SYSCALL_64_trampoline", 1014 }; 1015 struct symbol *sym = dso__first_symbol(dso); 1016 unsigned int i; 1017 1018 for (; sym; sym = dso__next_symbol(sym)) { 1019 if (sym->binding != STB_GLOBAL) 1020 continue; 1021 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1022 if (!strcmp(sym->name, syms[i])) 1023 return sym->start; 1024 } 1025 } 1026 1027 return 0; 1028 } 1029 1030 /* 1031 * These values can be used for kernels that do not have symbols for the entry 1032 * trampolines in kallsyms. 1033 */ 1034 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1035 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1036 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1037 1038 /* Map x86_64 PTI entry trampolines */ 1039 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1040 struct dso *kernel) 1041 { 1042 struct map_groups *kmaps = &machine->kmaps; 1043 struct maps *maps = &kmaps->maps; 1044 int nr_cpus_avail, cpu; 1045 bool found = false; 1046 struct map *map; 1047 u64 pgoff; 1048 1049 /* 1050 * In the vmlinux case, pgoff is a virtual address which must now be 1051 * mapped to a vmlinux offset. 1052 */ 1053 for (map = maps__first(maps); map; map = map__next(map)) { 1054 struct kmap *kmap = __map__kmap(map); 1055 struct map *dest_map; 1056 1057 if (!kmap || !is_entry_trampoline(kmap->name)) 1058 continue; 1059 1060 dest_map = map_groups__find(kmaps, map->pgoff); 1061 if (dest_map != map) 1062 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1063 found = true; 1064 } 1065 if (found || machine->trampolines_mapped) 1066 return 0; 1067 1068 pgoff = find_entry_trampoline(kernel); 1069 if (!pgoff) 1070 return 0; 1071 1072 nr_cpus_avail = machine__nr_cpus_avail(machine); 1073 1074 /* Add a 1 page map for each CPU's entry trampoline */ 1075 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1076 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1077 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1078 X86_64_ENTRY_TRAMPOLINE; 1079 struct extra_kernel_map xm = { 1080 .start = va, 1081 .end = va + page_size, 1082 .pgoff = pgoff, 1083 }; 1084 1085 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1086 1087 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1088 return -1; 1089 } 1090 1091 machine->trampolines_mapped = nr_cpus_avail; 1092 1093 return 0; 1094 } 1095 1096 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1097 struct dso *kernel __maybe_unused) 1098 { 1099 return 0; 1100 } 1101 1102 static int 1103 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1104 { 1105 struct kmap *kmap; 1106 struct map *map; 1107 1108 /* In case of renewal the kernel map, destroy previous one */ 1109 machine__destroy_kernel_maps(machine); 1110 1111 machine->vmlinux_map = map__new2(0, kernel); 1112 if (machine->vmlinux_map == NULL) 1113 return -1; 1114 1115 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1116 map = machine__kernel_map(machine); 1117 kmap = map__kmap(map); 1118 if (!kmap) 1119 return -1; 1120 1121 kmap->kmaps = &machine->kmaps; 1122 map_groups__insert(&machine->kmaps, map); 1123 1124 return 0; 1125 } 1126 1127 void machine__destroy_kernel_maps(struct machine *machine) 1128 { 1129 struct kmap *kmap; 1130 struct map *map = machine__kernel_map(machine); 1131 1132 if (map == NULL) 1133 return; 1134 1135 kmap = map__kmap(map); 1136 map_groups__remove(&machine->kmaps, map); 1137 if (kmap && kmap->ref_reloc_sym) { 1138 zfree((char **)&kmap->ref_reloc_sym->name); 1139 zfree(&kmap->ref_reloc_sym); 1140 } 1141 1142 map__zput(machine->vmlinux_map); 1143 } 1144 1145 int machines__create_guest_kernel_maps(struct machines *machines) 1146 { 1147 int ret = 0; 1148 struct dirent **namelist = NULL; 1149 int i, items = 0; 1150 char path[PATH_MAX]; 1151 pid_t pid; 1152 char *endp; 1153 1154 if (symbol_conf.default_guest_vmlinux_name || 1155 symbol_conf.default_guest_modules || 1156 symbol_conf.default_guest_kallsyms) { 1157 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1158 } 1159 1160 if (symbol_conf.guestmount) { 1161 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1162 if (items <= 0) 1163 return -ENOENT; 1164 for (i = 0; i < items; i++) { 1165 if (!isdigit(namelist[i]->d_name[0])) { 1166 /* Filter out . and .. */ 1167 continue; 1168 } 1169 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1170 if ((*endp != '\0') || 1171 (endp == namelist[i]->d_name) || 1172 (errno == ERANGE)) { 1173 pr_debug("invalid directory (%s). Skipping.\n", 1174 namelist[i]->d_name); 1175 continue; 1176 } 1177 sprintf(path, "%s/%s/proc/kallsyms", 1178 symbol_conf.guestmount, 1179 namelist[i]->d_name); 1180 ret = access(path, R_OK); 1181 if (ret) { 1182 pr_debug("Can't access file %s\n", path); 1183 goto failure; 1184 } 1185 machines__create_kernel_maps(machines, pid); 1186 } 1187 failure: 1188 free(namelist); 1189 } 1190 1191 return ret; 1192 } 1193 1194 void machines__destroy_kernel_maps(struct machines *machines) 1195 { 1196 struct rb_node *next = rb_first_cached(&machines->guests); 1197 1198 machine__destroy_kernel_maps(&machines->host); 1199 1200 while (next) { 1201 struct machine *pos = rb_entry(next, struct machine, rb_node); 1202 1203 next = rb_next(&pos->rb_node); 1204 rb_erase_cached(&pos->rb_node, &machines->guests); 1205 machine__delete(pos); 1206 } 1207 } 1208 1209 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1210 { 1211 struct machine *machine = machines__findnew(machines, pid); 1212 1213 if (machine == NULL) 1214 return -1; 1215 1216 return machine__create_kernel_maps(machine); 1217 } 1218 1219 int machine__load_kallsyms(struct machine *machine, const char *filename) 1220 { 1221 struct map *map = machine__kernel_map(machine); 1222 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1223 1224 if (ret > 0) { 1225 dso__set_loaded(map->dso); 1226 /* 1227 * Since /proc/kallsyms will have multiple sessions for the 1228 * kernel, with modules between them, fixup the end of all 1229 * sections. 1230 */ 1231 map_groups__fixup_end(&machine->kmaps); 1232 } 1233 1234 return ret; 1235 } 1236 1237 int machine__load_vmlinux_path(struct machine *machine) 1238 { 1239 struct map *map = machine__kernel_map(machine); 1240 int ret = dso__load_vmlinux_path(map->dso, map); 1241 1242 if (ret > 0) 1243 dso__set_loaded(map->dso); 1244 1245 return ret; 1246 } 1247 1248 static char *get_kernel_version(const char *root_dir) 1249 { 1250 char version[PATH_MAX]; 1251 FILE *file; 1252 char *name, *tmp; 1253 const char *prefix = "Linux version "; 1254 1255 sprintf(version, "%s/proc/version", root_dir); 1256 file = fopen(version, "r"); 1257 if (!file) 1258 return NULL; 1259 1260 tmp = fgets(version, sizeof(version), file); 1261 fclose(file); 1262 if (!tmp) 1263 return NULL; 1264 1265 name = strstr(version, prefix); 1266 if (!name) 1267 return NULL; 1268 name += strlen(prefix); 1269 tmp = strchr(name, ' '); 1270 if (tmp) 1271 *tmp = '\0'; 1272 1273 return strdup(name); 1274 } 1275 1276 static bool is_kmod_dso(struct dso *dso) 1277 { 1278 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1279 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1280 } 1281 1282 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1283 struct kmod_path *m) 1284 { 1285 char *long_name; 1286 struct map *map = map_groups__find_by_name(mg, m->name); 1287 1288 if (map == NULL) 1289 return 0; 1290 1291 long_name = strdup(path); 1292 if (long_name == NULL) 1293 return -ENOMEM; 1294 1295 dso__set_long_name(map->dso, long_name, true); 1296 dso__kernel_module_get_build_id(map->dso, ""); 1297 1298 /* 1299 * Full name could reveal us kmod compression, so 1300 * we need to update the symtab_type if needed. 1301 */ 1302 if (m->comp && is_kmod_dso(map->dso)) { 1303 map->dso->symtab_type++; 1304 map->dso->comp = m->comp; 1305 } 1306 1307 return 0; 1308 } 1309 1310 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1311 const char *dir_name, int depth) 1312 { 1313 struct dirent *dent; 1314 DIR *dir = opendir(dir_name); 1315 int ret = 0; 1316 1317 if (!dir) { 1318 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1319 return -1; 1320 } 1321 1322 while ((dent = readdir(dir)) != NULL) { 1323 char path[PATH_MAX]; 1324 struct stat st; 1325 1326 /*sshfs might return bad dent->d_type, so we have to stat*/ 1327 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1328 if (stat(path, &st)) 1329 continue; 1330 1331 if (S_ISDIR(st.st_mode)) { 1332 if (!strcmp(dent->d_name, ".") || 1333 !strcmp(dent->d_name, "..")) 1334 continue; 1335 1336 /* Do not follow top-level source and build symlinks */ 1337 if (depth == 0) { 1338 if (!strcmp(dent->d_name, "source") || 1339 !strcmp(dent->d_name, "build")) 1340 continue; 1341 } 1342 1343 ret = map_groups__set_modules_path_dir(mg, path, 1344 depth + 1); 1345 if (ret < 0) 1346 goto out; 1347 } else { 1348 struct kmod_path m; 1349 1350 ret = kmod_path__parse_name(&m, dent->d_name); 1351 if (ret) 1352 goto out; 1353 1354 if (m.kmod) 1355 ret = map_groups__set_module_path(mg, path, &m); 1356 1357 zfree(&m.name); 1358 1359 if (ret) 1360 goto out; 1361 } 1362 } 1363 1364 out: 1365 closedir(dir); 1366 return ret; 1367 } 1368 1369 static int machine__set_modules_path(struct machine *machine) 1370 { 1371 char *version; 1372 char modules_path[PATH_MAX]; 1373 1374 version = get_kernel_version(machine->root_dir); 1375 if (!version) 1376 return -1; 1377 1378 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1379 machine->root_dir, version); 1380 free(version); 1381 1382 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1383 } 1384 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1385 u64 *size __maybe_unused, 1386 const char *name __maybe_unused) 1387 { 1388 return 0; 1389 } 1390 1391 static int machine__create_module(void *arg, const char *name, u64 start, 1392 u64 size) 1393 { 1394 struct machine *machine = arg; 1395 struct map *map; 1396 1397 if (arch__fix_module_text_start(&start, &size, name) < 0) 1398 return -1; 1399 1400 map = machine__findnew_module_map(machine, start, name); 1401 if (map == NULL) 1402 return -1; 1403 map->end = start + size; 1404 1405 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1406 1407 return 0; 1408 } 1409 1410 static int machine__create_modules(struct machine *machine) 1411 { 1412 const char *modules; 1413 char path[PATH_MAX]; 1414 1415 if (machine__is_default_guest(machine)) { 1416 modules = symbol_conf.default_guest_modules; 1417 } else { 1418 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1419 modules = path; 1420 } 1421 1422 if (symbol__restricted_filename(modules, "/proc/modules")) 1423 return -1; 1424 1425 if (modules__parse(modules, machine, machine__create_module)) 1426 return -1; 1427 1428 if (!machine__set_modules_path(machine)) 1429 return 0; 1430 1431 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1432 1433 return 0; 1434 } 1435 1436 static void machine__set_kernel_mmap(struct machine *machine, 1437 u64 start, u64 end) 1438 { 1439 machine->vmlinux_map->start = start; 1440 machine->vmlinux_map->end = end; 1441 /* 1442 * Be a bit paranoid here, some perf.data file came with 1443 * a zero sized synthesized MMAP event for the kernel. 1444 */ 1445 if (start == 0 && end == 0) 1446 machine->vmlinux_map->end = ~0ULL; 1447 } 1448 1449 static void machine__update_kernel_mmap(struct machine *machine, 1450 u64 start, u64 end) 1451 { 1452 struct map *map = machine__kernel_map(machine); 1453 1454 map__get(map); 1455 map_groups__remove(&machine->kmaps, map); 1456 1457 machine__set_kernel_mmap(machine, start, end); 1458 1459 map_groups__insert(&machine->kmaps, map); 1460 map__put(map); 1461 } 1462 1463 int machine__create_kernel_maps(struct machine *machine) 1464 { 1465 struct dso *kernel = machine__get_kernel(machine); 1466 const char *name = NULL; 1467 struct map *map; 1468 u64 start = 0, end = ~0ULL; 1469 int ret; 1470 1471 if (kernel == NULL) 1472 return -1; 1473 1474 ret = __machine__create_kernel_maps(machine, kernel); 1475 if (ret < 0) 1476 goto out_put; 1477 1478 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1479 if (machine__is_host(machine)) 1480 pr_debug("Problems creating module maps, " 1481 "continuing anyway...\n"); 1482 else 1483 pr_debug("Problems creating module maps for guest %d, " 1484 "continuing anyway...\n", machine->pid); 1485 } 1486 1487 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1488 if (name && 1489 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1490 machine__destroy_kernel_maps(machine); 1491 ret = -1; 1492 goto out_put; 1493 } 1494 1495 /* 1496 * we have a real start address now, so re-order the kmaps 1497 * assume it's the last in the kmaps 1498 */ 1499 machine__update_kernel_mmap(machine, start, end); 1500 } 1501 1502 if (machine__create_extra_kernel_maps(machine, kernel)) 1503 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1504 1505 if (end == ~0ULL) { 1506 /* update end address of the kernel map using adjacent module address */ 1507 map = map__next(machine__kernel_map(machine)); 1508 if (map) 1509 machine__set_kernel_mmap(machine, start, map->start); 1510 } 1511 1512 out_put: 1513 dso__put(kernel); 1514 return ret; 1515 } 1516 1517 static bool machine__uses_kcore(struct machine *machine) 1518 { 1519 struct dso *dso; 1520 1521 list_for_each_entry(dso, &machine->dsos.head, node) { 1522 if (dso__is_kcore(dso)) 1523 return true; 1524 } 1525 1526 return false; 1527 } 1528 1529 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1530 union perf_event *event) 1531 { 1532 return machine__is(machine, "x86_64") && 1533 is_entry_trampoline(event->mmap.filename); 1534 } 1535 1536 static int machine__process_extra_kernel_map(struct machine *machine, 1537 union perf_event *event) 1538 { 1539 struct map *kernel_map = machine__kernel_map(machine); 1540 struct dso *kernel = kernel_map ? kernel_map->dso : NULL; 1541 struct extra_kernel_map xm = { 1542 .start = event->mmap.start, 1543 .end = event->mmap.start + event->mmap.len, 1544 .pgoff = event->mmap.pgoff, 1545 }; 1546 1547 if (kernel == NULL) 1548 return -1; 1549 1550 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1551 1552 return machine__create_extra_kernel_map(machine, kernel, &xm); 1553 } 1554 1555 static int machine__process_kernel_mmap_event(struct machine *machine, 1556 union perf_event *event) 1557 { 1558 struct map *map; 1559 enum dso_kernel_type kernel_type; 1560 bool is_kernel_mmap; 1561 1562 /* If we have maps from kcore then we do not need or want any others */ 1563 if (machine__uses_kcore(machine)) 1564 return 0; 1565 1566 if (machine__is_host(machine)) 1567 kernel_type = DSO_TYPE_KERNEL; 1568 else 1569 kernel_type = DSO_TYPE_GUEST_KERNEL; 1570 1571 is_kernel_mmap = memcmp(event->mmap.filename, 1572 machine->mmap_name, 1573 strlen(machine->mmap_name) - 1) == 0; 1574 if (event->mmap.filename[0] == '/' || 1575 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1576 map = machine__findnew_module_map(machine, event->mmap.start, 1577 event->mmap.filename); 1578 if (map == NULL) 1579 goto out_problem; 1580 1581 map->end = map->start + event->mmap.len; 1582 } else if (is_kernel_mmap) { 1583 const char *symbol_name = (event->mmap.filename + 1584 strlen(machine->mmap_name)); 1585 /* 1586 * Should be there already, from the build-id table in 1587 * the header. 1588 */ 1589 struct dso *kernel = NULL; 1590 struct dso *dso; 1591 1592 down_read(&machine->dsos.lock); 1593 1594 list_for_each_entry(dso, &machine->dsos.head, node) { 1595 1596 /* 1597 * The cpumode passed to is_kernel_module is not the 1598 * cpumode of *this* event. If we insist on passing 1599 * correct cpumode to is_kernel_module, we should 1600 * record the cpumode when we adding this dso to the 1601 * linked list. 1602 * 1603 * However we don't really need passing correct 1604 * cpumode. We know the correct cpumode must be kernel 1605 * mode (if not, we should not link it onto kernel_dsos 1606 * list). 1607 * 1608 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1609 * is_kernel_module() treats it as a kernel cpumode. 1610 */ 1611 1612 if (!dso->kernel || 1613 is_kernel_module(dso->long_name, 1614 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1615 continue; 1616 1617 1618 kernel = dso; 1619 break; 1620 } 1621 1622 up_read(&machine->dsos.lock); 1623 1624 if (kernel == NULL) 1625 kernel = machine__findnew_dso(machine, machine->mmap_name); 1626 if (kernel == NULL) 1627 goto out_problem; 1628 1629 kernel->kernel = kernel_type; 1630 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1631 dso__put(kernel); 1632 goto out_problem; 1633 } 1634 1635 if (strstr(kernel->long_name, "vmlinux")) 1636 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1637 1638 machine__update_kernel_mmap(machine, event->mmap.start, 1639 event->mmap.start + event->mmap.len); 1640 1641 /* 1642 * Avoid using a zero address (kptr_restrict) for the ref reloc 1643 * symbol. Effectively having zero here means that at record 1644 * time /proc/sys/kernel/kptr_restrict was non zero. 1645 */ 1646 if (event->mmap.pgoff != 0) { 1647 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1648 symbol_name, 1649 event->mmap.pgoff); 1650 } 1651 1652 if (machine__is_default_guest(machine)) { 1653 /* 1654 * preload dso of guest kernel and modules 1655 */ 1656 dso__load(kernel, machine__kernel_map(machine)); 1657 } 1658 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1659 return machine__process_extra_kernel_map(machine, event); 1660 } 1661 return 0; 1662 out_problem: 1663 return -1; 1664 } 1665 1666 int machine__process_mmap2_event(struct machine *machine, 1667 union perf_event *event, 1668 struct perf_sample *sample) 1669 { 1670 struct thread *thread; 1671 struct map *map; 1672 int ret = 0; 1673 1674 if (dump_trace) 1675 perf_event__fprintf_mmap2(event, stdout); 1676 1677 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1678 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1679 ret = machine__process_kernel_mmap_event(machine, event); 1680 if (ret < 0) 1681 goto out_problem; 1682 return 0; 1683 } 1684 1685 thread = machine__findnew_thread(machine, event->mmap2.pid, 1686 event->mmap2.tid); 1687 if (thread == NULL) 1688 goto out_problem; 1689 1690 map = map__new(machine, event->mmap2.start, 1691 event->mmap2.len, event->mmap2.pgoff, 1692 event->mmap2.maj, 1693 event->mmap2.min, event->mmap2.ino, 1694 event->mmap2.ino_generation, 1695 event->mmap2.prot, 1696 event->mmap2.flags, 1697 event->mmap2.filename, thread); 1698 1699 if (map == NULL) 1700 goto out_problem_map; 1701 1702 ret = thread__insert_map(thread, map); 1703 if (ret) 1704 goto out_problem_insert; 1705 1706 thread__put(thread); 1707 map__put(map); 1708 return 0; 1709 1710 out_problem_insert: 1711 map__put(map); 1712 out_problem_map: 1713 thread__put(thread); 1714 out_problem: 1715 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1716 return 0; 1717 } 1718 1719 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1720 struct perf_sample *sample) 1721 { 1722 struct thread *thread; 1723 struct map *map; 1724 u32 prot = 0; 1725 int ret = 0; 1726 1727 if (dump_trace) 1728 perf_event__fprintf_mmap(event, stdout); 1729 1730 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1731 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1732 ret = machine__process_kernel_mmap_event(machine, event); 1733 if (ret < 0) 1734 goto out_problem; 1735 return 0; 1736 } 1737 1738 thread = machine__findnew_thread(machine, event->mmap.pid, 1739 event->mmap.tid); 1740 if (thread == NULL) 1741 goto out_problem; 1742 1743 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1744 prot = PROT_EXEC; 1745 1746 map = map__new(machine, event->mmap.start, 1747 event->mmap.len, event->mmap.pgoff, 1748 0, 0, 0, 0, prot, 0, 1749 event->mmap.filename, 1750 thread); 1751 1752 if (map == NULL) 1753 goto out_problem_map; 1754 1755 ret = thread__insert_map(thread, map); 1756 if (ret) 1757 goto out_problem_insert; 1758 1759 thread__put(thread); 1760 map__put(map); 1761 return 0; 1762 1763 out_problem_insert: 1764 map__put(map); 1765 out_problem_map: 1766 thread__put(thread); 1767 out_problem: 1768 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1769 return 0; 1770 } 1771 1772 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1773 { 1774 struct threads *threads = machine__threads(machine, th->tid); 1775 1776 if (threads->last_match == th) 1777 threads__set_last_match(threads, NULL); 1778 1779 if (lock) 1780 down_write(&threads->lock); 1781 1782 BUG_ON(refcount_read(&th->refcnt) == 0); 1783 1784 rb_erase_cached(&th->rb_node, &threads->entries); 1785 RB_CLEAR_NODE(&th->rb_node); 1786 --threads->nr; 1787 /* 1788 * Move it first to the dead_threads list, then drop the reference, 1789 * if this is the last reference, then the thread__delete destructor 1790 * will be called and we will remove it from the dead_threads list. 1791 */ 1792 list_add_tail(&th->node, &threads->dead); 1793 1794 /* 1795 * We need to do the put here because if this is the last refcount, 1796 * then we will be touching the threads->dead head when removing the 1797 * thread. 1798 */ 1799 thread__put(th); 1800 1801 if (lock) 1802 up_write(&threads->lock); 1803 } 1804 1805 void machine__remove_thread(struct machine *machine, struct thread *th) 1806 { 1807 return __machine__remove_thread(machine, th, true); 1808 } 1809 1810 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1811 struct perf_sample *sample) 1812 { 1813 struct thread *thread = machine__find_thread(machine, 1814 event->fork.pid, 1815 event->fork.tid); 1816 struct thread *parent = machine__findnew_thread(machine, 1817 event->fork.ppid, 1818 event->fork.ptid); 1819 bool do_maps_clone = true; 1820 int err = 0; 1821 1822 if (dump_trace) 1823 perf_event__fprintf_task(event, stdout); 1824 1825 /* 1826 * There may be an existing thread that is not actually the parent, 1827 * either because we are processing events out of order, or because the 1828 * (fork) event that would have removed the thread was lost. Assume the 1829 * latter case and continue on as best we can. 1830 */ 1831 if (parent->pid_ != (pid_t)event->fork.ppid) { 1832 dump_printf("removing erroneous parent thread %d/%d\n", 1833 parent->pid_, parent->tid); 1834 machine__remove_thread(machine, parent); 1835 thread__put(parent); 1836 parent = machine__findnew_thread(machine, event->fork.ppid, 1837 event->fork.ptid); 1838 } 1839 1840 /* if a thread currently exists for the thread id remove it */ 1841 if (thread != NULL) { 1842 machine__remove_thread(machine, thread); 1843 thread__put(thread); 1844 } 1845 1846 thread = machine__findnew_thread(machine, event->fork.pid, 1847 event->fork.tid); 1848 /* 1849 * When synthesizing FORK events, we are trying to create thread 1850 * objects for the already running tasks on the machine. 1851 * 1852 * Normally, for a kernel FORK event, we want to clone the parent's 1853 * maps because that is what the kernel just did. 1854 * 1855 * But when synthesizing, this should not be done. If we do, we end up 1856 * with overlapping maps as we process the sythesized MMAP2 events that 1857 * get delivered shortly thereafter. 1858 * 1859 * Use the FORK event misc flags in an internal way to signal this 1860 * situation, so we can elide the map clone when appropriate. 1861 */ 1862 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1863 do_maps_clone = false; 1864 1865 if (thread == NULL || parent == NULL || 1866 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1867 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1868 err = -1; 1869 } 1870 thread__put(thread); 1871 thread__put(parent); 1872 1873 return err; 1874 } 1875 1876 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1877 struct perf_sample *sample __maybe_unused) 1878 { 1879 struct thread *thread = machine__find_thread(machine, 1880 event->fork.pid, 1881 event->fork.tid); 1882 1883 if (dump_trace) 1884 perf_event__fprintf_task(event, stdout); 1885 1886 if (thread != NULL) { 1887 thread__exited(thread); 1888 thread__put(thread); 1889 } 1890 1891 return 0; 1892 } 1893 1894 int machine__process_event(struct machine *machine, union perf_event *event, 1895 struct perf_sample *sample) 1896 { 1897 int ret; 1898 1899 switch (event->header.type) { 1900 case PERF_RECORD_COMM: 1901 ret = machine__process_comm_event(machine, event, sample); break; 1902 case PERF_RECORD_MMAP: 1903 ret = machine__process_mmap_event(machine, event, sample); break; 1904 case PERF_RECORD_NAMESPACES: 1905 ret = machine__process_namespaces_event(machine, event, sample); break; 1906 case PERF_RECORD_MMAP2: 1907 ret = machine__process_mmap2_event(machine, event, sample); break; 1908 case PERF_RECORD_FORK: 1909 ret = machine__process_fork_event(machine, event, sample); break; 1910 case PERF_RECORD_EXIT: 1911 ret = machine__process_exit_event(machine, event, sample); break; 1912 case PERF_RECORD_LOST: 1913 ret = machine__process_lost_event(machine, event, sample); break; 1914 case PERF_RECORD_AUX: 1915 ret = machine__process_aux_event(machine, event); break; 1916 case PERF_RECORD_ITRACE_START: 1917 ret = machine__process_itrace_start_event(machine, event); break; 1918 case PERF_RECORD_LOST_SAMPLES: 1919 ret = machine__process_lost_samples_event(machine, event, sample); break; 1920 case PERF_RECORD_SWITCH: 1921 case PERF_RECORD_SWITCH_CPU_WIDE: 1922 ret = machine__process_switch_event(machine, event); break; 1923 case PERF_RECORD_KSYMBOL: 1924 ret = machine__process_ksymbol(machine, event, sample); break; 1925 case PERF_RECORD_BPF_EVENT: 1926 ret = machine__process_bpf(machine, event, sample); break; 1927 default: 1928 ret = -1; 1929 break; 1930 } 1931 1932 return ret; 1933 } 1934 1935 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1936 { 1937 if (!regexec(regex, sym->name, 0, NULL, 0)) 1938 return 1; 1939 return 0; 1940 } 1941 1942 static void ip__resolve_ams(struct thread *thread, 1943 struct addr_map_symbol *ams, 1944 u64 ip) 1945 { 1946 struct addr_location al; 1947 1948 memset(&al, 0, sizeof(al)); 1949 /* 1950 * We cannot use the header.misc hint to determine whether a 1951 * branch stack address is user, kernel, guest, hypervisor. 1952 * Branches may straddle the kernel/user/hypervisor boundaries. 1953 * Thus, we have to try consecutively until we find a match 1954 * or else, the symbol is unknown 1955 */ 1956 thread__find_cpumode_addr_location(thread, ip, &al); 1957 1958 ams->addr = ip; 1959 ams->al_addr = al.addr; 1960 ams->sym = al.sym; 1961 ams->map = al.map; 1962 ams->phys_addr = 0; 1963 } 1964 1965 static void ip__resolve_data(struct thread *thread, 1966 u8 m, struct addr_map_symbol *ams, 1967 u64 addr, u64 phys_addr) 1968 { 1969 struct addr_location al; 1970 1971 memset(&al, 0, sizeof(al)); 1972 1973 thread__find_symbol(thread, m, addr, &al); 1974 1975 ams->addr = addr; 1976 ams->al_addr = al.addr; 1977 ams->sym = al.sym; 1978 ams->map = al.map; 1979 ams->phys_addr = phys_addr; 1980 } 1981 1982 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1983 struct addr_location *al) 1984 { 1985 struct mem_info *mi = mem_info__new(); 1986 1987 if (!mi) 1988 return NULL; 1989 1990 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1991 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1992 sample->addr, sample->phys_addr); 1993 mi->data_src.val = sample->data_src; 1994 1995 return mi; 1996 } 1997 1998 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 1999 { 2000 char *srcline = NULL; 2001 2002 if (!map || callchain_param.key == CCKEY_FUNCTION) 2003 return srcline; 2004 2005 srcline = srcline__tree_find(&map->dso->srclines, ip); 2006 if (!srcline) { 2007 bool show_sym = false; 2008 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2009 2010 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2011 sym, show_sym, show_addr, ip); 2012 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2013 } 2014 2015 return srcline; 2016 } 2017 2018 struct iterations { 2019 int nr_loop_iter; 2020 u64 cycles; 2021 }; 2022 2023 static int add_callchain_ip(struct thread *thread, 2024 struct callchain_cursor *cursor, 2025 struct symbol **parent, 2026 struct addr_location *root_al, 2027 u8 *cpumode, 2028 u64 ip, 2029 bool branch, 2030 struct branch_flags *flags, 2031 struct iterations *iter, 2032 u64 branch_from) 2033 { 2034 struct addr_location al; 2035 int nr_loop_iter = 0; 2036 u64 iter_cycles = 0; 2037 const char *srcline = NULL; 2038 2039 al.filtered = 0; 2040 al.sym = NULL; 2041 if (!cpumode) { 2042 thread__find_cpumode_addr_location(thread, ip, &al); 2043 } else { 2044 if (ip >= PERF_CONTEXT_MAX) { 2045 switch (ip) { 2046 case PERF_CONTEXT_HV: 2047 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2048 break; 2049 case PERF_CONTEXT_KERNEL: 2050 *cpumode = PERF_RECORD_MISC_KERNEL; 2051 break; 2052 case PERF_CONTEXT_USER: 2053 *cpumode = PERF_RECORD_MISC_USER; 2054 break; 2055 default: 2056 pr_debug("invalid callchain context: " 2057 "%"PRId64"\n", (s64) ip); 2058 /* 2059 * It seems the callchain is corrupted. 2060 * Discard all. 2061 */ 2062 callchain_cursor_reset(cursor); 2063 return 1; 2064 } 2065 return 0; 2066 } 2067 thread__find_symbol(thread, *cpumode, ip, &al); 2068 } 2069 2070 if (al.sym != NULL) { 2071 if (perf_hpp_list.parent && !*parent && 2072 symbol__match_regex(al.sym, &parent_regex)) 2073 *parent = al.sym; 2074 else if (have_ignore_callees && root_al && 2075 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2076 /* Treat this symbol as the root, 2077 forgetting its callees. */ 2078 *root_al = al; 2079 callchain_cursor_reset(cursor); 2080 } 2081 } 2082 2083 if (symbol_conf.hide_unresolved && al.sym == NULL) 2084 return 0; 2085 2086 if (iter) { 2087 nr_loop_iter = iter->nr_loop_iter; 2088 iter_cycles = iter->cycles; 2089 } 2090 2091 srcline = callchain_srcline(al.map, al.sym, al.addr); 2092 return callchain_cursor_append(cursor, ip, al.map, al.sym, 2093 branch, flags, nr_loop_iter, 2094 iter_cycles, branch_from, srcline); 2095 } 2096 2097 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2098 struct addr_location *al) 2099 { 2100 unsigned int i; 2101 const struct branch_stack *bs = sample->branch_stack; 2102 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2103 2104 if (!bi) 2105 return NULL; 2106 2107 for (i = 0; i < bs->nr; i++) { 2108 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 2109 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 2110 bi[i].flags = bs->entries[i].flags; 2111 } 2112 return bi; 2113 } 2114 2115 static void save_iterations(struct iterations *iter, 2116 struct branch_entry *be, int nr) 2117 { 2118 int i; 2119 2120 iter->nr_loop_iter++; 2121 iter->cycles = 0; 2122 2123 for (i = 0; i < nr; i++) 2124 iter->cycles += be[i].flags.cycles; 2125 } 2126 2127 #define CHASHSZ 127 2128 #define CHASHBITS 7 2129 #define NO_ENTRY 0xff 2130 2131 #define PERF_MAX_BRANCH_DEPTH 127 2132 2133 /* Remove loops. */ 2134 static int remove_loops(struct branch_entry *l, int nr, 2135 struct iterations *iter) 2136 { 2137 int i, j, off; 2138 unsigned char chash[CHASHSZ]; 2139 2140 memset(chash, NO_ENTRY, sizeof(chash)); 2141 2142 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2143 2144 for (i = 0; i < nr; i++) { 2145 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2146 2147 /* no collision handling for now */ 2148 if (chash[h] == NO_ENTRY) { 2149 chash[h] = i; 2150 } else if (l[chash[h]].from == l[i].from) { 2151 bool is_loop = true; 2152 /* check if it is a real loop */ 2153 off = 0; 2154 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2155 if (l[j].from != l[i + off].from) { 2156 is_loop = false; 2157 break; 2158 } 2159 if (is_loop) { 2160 j = nr - (i + off); 2161 if (j > 0) { 2162 save_iterations(iter + i + off, 2163 l + i, off); 2164 2165 memmove(iter + i, iter + i + off, 2166 j * sizeof(*iter)); 2167 2168 memmove(l + i, l + i + off, 2169 j * sizeof(*l)); 2170 } 2171 2172 nr -= off; 2173 } 2174 } 2175 } 2176 return nr; 2177 } 2178 2179 /* 2180 * Recolve LBR callstack chain sample 2181 * Return: 2182 * 1 on success get LBR callchain information 2183 * 0 no available LBR callchain information, should try fp 2184 * negative error code on other errors. 2185 */ 2186 static int resolve_lbr_callchain_sample(struct thread *thread, 2187 struct callchain_cursor *cursor, 2188 struct perf_sample *sample, 2189 struct symbol **parent, 2190 struct addr_location *root_al, 2191 int max_stack) 2192 { 2193 struct ip_callchain *chain = sample->callchain; 2194 int chain_nr = min(max_stack, (int)chain->nr), i; 2195 u8 cpumode = PERF_RECORD_MISC_USER; 2196 u64 ip, branch_from = 0; 2197 2198 for (i = 0; i < chain_nr; i++) { 2199 if (chain->ips[i] == PERF_CONTEXT_USER) 2200 break; 2201 } 2202 2203 /* LBR only affects the user callchain */ 2204 if (i != chain_nr) { 2205 struct branch_stack *lbr_stack = sample->branch_stack; 2206 int lbr_nr = lbr_stack->nr, j, k; 2207 bool branch; 2208 struct branch_flags *flags; 2209 /* 2210 * LBR callstack can only get user call chain. 2211 * The mix_chain_nr is kernel call chain 2212 * number plus LBR user call chain number. 2213 * i is kernel call chain number, 2214 * 1 is PERF_CONTEXT_USER, 2215 * lbr_nr + 1 is the user call chain number. 2216 * For details, please refer to the comments 2217 * in callchain__printf 2218 */ 2219 int mix_chain_nr = i + 1 + lbr_nr + 1; 2220 2221 for (j = 0; j < mix_chain_nr; j++) { 2222 int err; 2223 branch = false; 2224 flags = NULL; 2225 2226 if (callchain_param.order == ORDER_CALLEE) { 2227 if (j < i + 1) 2228 ip = chain->ips[j]; 2229 else if (j > i + 1) { 2230 k = j - i - 2; 2231 ip = lbr_stack->entries[k].from; 2232 branch = true; 2233 flags = &lbr_stack->entries[k].flags; 2234 } else { 2235 ip = lbr_stack->entries[0].to; 2236 branch = true; 2237 flags = &lbr_stack->entries[0].flags; 2238 branch_from = 2239 lbr_stack->entries[0].from; 2240 } 2241 } else { 2242 if (j < lbr_nr) { 2243 k = lbr_nr - j - 1; 2244 ip = lbr_stack->entries[k].from; 2245 branch = true; 2246 flags = &lbr_stack->entries[k].flags; 2247 } 2248 else if (j > lbr_nr) 2249 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2250 else { 2251 ip = lbr_stack->entries[0].to; 2252 branch = true; 2253 flags = &lbr_stack->entries[0].flags; 2254 branch_from = 2255 lbr_stack->entries[0].from; 2256 } 2257 } 2258 2259 err = add_callchain_ip(thread, cursor, parent, 2260 root_al, &cpumode, ip, 2261 branch, flags, NULL, 2262 branch_from); 2263 if (err) 2264 return (err < 0) ? err : 0; 2265 } 2266 return 1; 2267 } 2268 2269 return 0; 2270 } 2271 2272 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2273 struct callchain_cursor *cursor, 2274 struct symbol **parent, 2275 struct addr_location *root_al, 2276 u8 *cpumode, int ent) 2277 { 2278 int err = 0; 2279 2280 while (--ent >= 0) { 2281 u64 ip = chain->ips[ent]; 2282 2283 if (ip >= PERF_CONTEXT_MAX) { 2284 err = add_callchain_ip(thread, cursor, parent, 2285 root_al, cpumode, ip, 2286 false, NULL, NULL, 0); 2287 break; 2288 } 2289 } 2290 return err; 2291 } 2292 2293 static int thread__resolve_callchain_sample(struct thread *thread, 2294 struct callchain_cursor *cursor, 2295 struct evsel *evsel, 2296 struct perf_sample *sample, 2297 struct symbol **parent, 2298 struct addr_location *root_al, 2299 int max_stack) 2300 { 2301 struct branch_stack *branch = sample->branch_stack; 2302 struct ip_callchain *chain = sample->callchain; 2303 int chain_nr = 0; 2304 u8 cpumode = PERF_RECORD_MISC_USER; 2305 int i, j, err, nr_entries; 2306 int skip_idx = -1; 2307 int first_call = 0; 2308 2309 if (chain) 2310 chain_nr = chain->nr; 2311 2312 if (perf_evsel__has_branch_callstack(evsel)) { 2313 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2314 root_al, max_stack); 2315 if (err) 2316 return (err < 0) ? err : 0; 2317 } 2318 2319 /* 2320 * Based on DWARF debug information, some architectures skip 2321 * a callchain entry saved by the kernel. 2322 */ 2323 skip_idx = arch_skip_callchain_idx(thread, chain); 2324 2325 /* 2326 * Add branches to call stack for easier browsing. This gives 2327 * more context for a sample than just the callers. 2328 * 2329 * This uses individual histograms of paths compared to the 2330 * aggregated histograms the normal LBR mode uses. 2331 * 2332 * Limitations for now: 2333 * - No extra filters 2334 * - No annotations (should annotate somehow) 2335 */ 2336 2337 if (branch && callchain_param.branch_callstack) { 2338 int nr = min(max_stack, (int)branch->nr); 2339 struct branch_entry be[nr]; 2340 struct iterations iter[nr]; 2341 2342 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2343 pr_warning("corrupted branch chain. skipping...\n"); 2344 goto check_calls; 2345 } 2346 2347 for (i = 0; i < nr; i++) { 2348 if (callchain_param.order == ORDER_CALLEE) { 2349 be[i] = branch->entries[i]; 2350 2351 if (chain == NULL) 2352 continue; 2353 2354 /* 2355 * Check for overlap into the callchain. 2356 * The return address is one off compared to 2357 * the branch entry. To adjust for this 2358 * assume the calling instruction is not longer 2359 * than 8 bytes. 2360 */ 2361 if (i == skip_idx || 2362 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2363 first_call++; 2364 else if (be[i].from < chain->ips[first_call] && 2365 be[i].from >= chain->ips[first_call] - 8) 2366 first_call++; 2367 } else 2368 be[i] = branch->entries[branch->nr - i - 1]; 2369 } 2370 2371 memset(iter, 0, sizeof(struct iterations) * nr); 2372 nr = remove_loops(be, nr, iter); 2373 2374 for (i = 0; i < nr; i++) { 2375 err = add_callchain_ip(thread, cursor, parent, 2376 root_al, 2377 NULL, be[i].to, 2378 true, &be[i].flags, 2379 NULL, be[i].from); 2380 2381 if (!err) 2382 err = add_callchain_ip(thread, cursor, parent, root_al, 2383 NULL, be[i].from, 2384 true, &be[i].flags, 2385 &iter[i], 0); 2386 if (err == -EINVAL) 2387 break; 2388 if (err) 2389 return err; 2390 } 2391 2392 if (chain_nr == 0) 2393 return 0; 2394 2395 chain_nr -= nr; 2396 } 2397 2398 check_calls: 2399 if (callchain_param.order != ORDER_CALLEE) { 2400 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2401 &cpumode, chain->nr - first_call); 2402 if (err) 2403 return (err < 0) ? err : 0; 2404 } 2405 for (i = first_call, nr_entries = 0; 2406 i < chain_nr && nr_entries < max_stack; i++) { 2407 u64 ip; 2408 2409 if (callchain_param.order == ORDER_CALLEE) 2410 j = i; 2411 else 2412 j = chain->nr - i - 1; 2413 2414 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2415 if (j == skip_idx) 2416 continue; 2417 #endif 2418 ip = chain->ips[j]; 2419 if (ip < PERF_CONTEXT_MAX) 2420 ++nr_entries; 2421 else if (callchain_param.order != ORDER_CALLEE) { 2422 err = find_prev_cpumode(chain, thread, cursor, parent, 2423 root_al, &cpumode, j); 2424 if (err) 2425 return (err < 0) ? err : 0; 2426 continue; 2427 } 2428 2429 err = add_callchain_ip(thread, cursor, parent, 2430 root_al, &cpumode, ip, 2431 false, NULL, NULL, 0); 2432 2433 if (err) 2434 return (err < 0) ? err : 0; 2435 } 2436 2437 return 0; 2438 } 2439 2440 static int append_inlines(struct callchain_cursor *cursor, 2441 struct map *map, struct symbol *sym, u64 ip) 2442 { 2443 struct inline_node *inline_node; 2444 struct inline_list *ilist; 2445 u64 addr; 2446 int ret = 1; 2447 2448 if (!symbol_conf.inline_name || !map || !sym) 2449 return ret; 2450 2451 addr = map__map_ip(map, ip); 2452 addr = map__rip_2objdump(map, addr); 2453 2454 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2455 if (!inline_node) { 2456 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2457 if (!inline_node) 2458 return ret; 2459 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2460 } 2461 2462 list_for_each_entry(ilist, &inline_node->val, list) { 2463 ret = callchain_cursor_append(cursor, ip, map, 2464 ilist->symbol, false, 2465 NULL, 0, 0, 0, ilist->srcline); 2466 2467 if (ret != 0) 2468 return ret; 2469 } 2470 2471 return ret; 2472 } 2473 2474 static int unwind_entry(struct unwind_entry *entry, void *arg) 2475 { 2476 struct callchain_cursor *cursor = arg; 2477 const char *srcline = NULL; 2478 u64 addr = entry->ip; 2479 2480 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2481 return 0; 2482 2483 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2484 return 0; 2485 2486 /* 2487 * Convert entry->ip from a virtual address to an offset in 2488 * its corresponding binary. 2489 */ 2490 if (entry->map) 2491 addr = map__map_ip(entry->map, entry->ip); 2492 2493 srcline = callchain_srcline(entry->map, entry->sym, addr); 2494 return callchain_cursor_append(cursor, entry->ip, 2495 entry->map, entry->sym, 2496 false, NULL, 0, 0, 0, srcline); 2497 } 2498 2499 static int thread__resolve_callchain_unwind(struct thread *thread, 2500 struct callchain_cursor *cursor, 2501 struct evsel *evsel, 2502 struct perf_sample *sample, 2503 int max_stack) 2504 { 2505 /* Can we do dwarf post unwind? */ 2506 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2507 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2508 return 0; 2509 2510 /* Bail out if nothing was captured. */ 2511 if ((!sample->user_regs.regs) || 2512 (!sample->user_stack.size)) 2513 return 0; 2514 2515 return unwind__get_entries(unwind_entry, cursor, 2516 thread, sample, max_stack); 2517 } 2518 2519 int thread__resolve_callchain(struct thread *thread, 2520 struct callchain_cursor *cursor, 2521 struct evsel *evsel, 2522 struct perf_sample *sample, 2523 struct symbol **parent, 2524 struct addr_location *root_al, 2525 int max_stack) 2526 { 2527 int ret = 0; 2528 2529 callchain_cursor_reset(cursor); 2530 2531 if (callchain_param.order == ORDER_CALLEE) { 2532 ret = thread__resolve_callchain_sample(thread, cursor, 2533 evsel, sample, 2534 parent, root_al, 2535 max_stack); 2536 if (ret) 2537 return ret; 2538 ret = thread__resolve_callchain_unwind(thread, cursor, 2539 evsel, sample, 2540 max_stack); 2541 } else { 2542 ret = thread__resolve_callchain_unwind(thread, cursor, 2543 evsel, sample, 2544 max_stack); 2545 if (ret) 2546 return ret; 2547 ret = thread__resolve_callchain_sample(thread, cursor, 2548 evsel, sample, 2549 parent, root_al, 2550 max_stack); 2551 } 2552 2553 return ret; 2554 } 2555 2556 int machine__for_each_thread(struct machine *machine, 2557 int (*fn)(struct thread *thread, void *p), 2558 void *priv) 2559 { 2560 struct threads *threads; 2561 struct rb_node *nd; 2562 struct thread *thread; 2563 int rc = 0; 2564 int i; 2565 2566 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2567 threads = &machine->threads[i]; 2568 for (nd = rb_first_cached(&threads->entries); nd; 2569 nd = rb_next(nd)) { 2570 thread = rb_entry(nd, struct thread, rb_node); 2571 rc = fn(thread, priv); 2572 if (rc != 0) 2573 return rc; 2574 } 2575 2576 list_for_each_entry(thread, &threads->dead, node) { 2577 rc = fn(thread, priv); 2578 if (rc != 0) 2579 return rc; 2580 } 2581 } 2582 return rc; 2583 } 2584 2585 int machines__for_each_thread(struct machines *machines, 2586 int (*fn)(struct thread *thread, void *p), 2587 void *priv) 2588 { 2589 struct rb_node *nd; 2590 int rc = 0; 2591 2592 rc = machine__for_each_thread(&machines->host, fn, priv); 2593 if (rc != 0) 2594 return rc; 2595 2596 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2597 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2598 2599 rc = machine__for_each_thread(machine, fn, priv); 2600 if (rc != 0) 2601 return rc; 2602 } 2603 return rc; 2604 } 2605 2606 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2607 struct target *target, struct perf_thread_map *threads, 2608 perf_event__handler_t process, bool data_mmap, 2609 unsigned int nr_threads_synthesize) 2610 { 2611 if (target__has_task(target)) 2612 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap); 2613 else if (target__has_cpu(target)) 2614 return perf_event__synthesize_threads(tool, process, 2615 machine, data_mmap, 2616 nr_threads_synthesize); 2617 /* command specified */ 2618 return 0; 2619 } 2620 2621 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2622 { 2623 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2624 2625 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 2626 return -1; 2627 2628 return machine->current_tid[cpu]; 2629 } 2630 2631 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2632 pid_t tid) 2633 { 2634 struct thread *thread; 2635 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2636 2637 if (cpu < 0) 2638 return -EINVAL; 2639 2640 if (!machine->current_tid) { 2641 int i; 2642 2643 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 2644 if (!machine->current_tid) 2645 return -ENOMEM; 2646 for (i = 0; i < nr_cpus; i++) 2647 machine->current_tid[i] = -1; 2648 } 2649 2650 if (cpu >= nr_cpus) { 2651 pr_err("Requested CPU %d too large. ", cpu); 2652 pr_err("Consider raising MAX_NR_CPUS\n"); 2653 return -EINVAL; 2654 } 2655 2656 machine->current_tid[cpu] = tid; 2657 2658 thread = machine__findnew_thread(machine, pid, tid); 2659 if (!thread) 2660 return -ENOMEM; 2661 2662 thread->cpu = cpu; 2663 thread__put(thread); 2664 2665 return 0; 2666 } 2667 2668 /* 2669 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2670 * normalized arch is needed. 2671 */ 2672 bool machine__is(struct machine *machine, const char *arch) 2673 { 2674 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2675 } 2676 2677 int machine__nr_cpus_avail(struct machine *machine) 2678 { 2679 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2680 } 2681 2682 int machine__get_kernel_start(struct machine *machine) 2683 { 2684 struct map *map = machine__kernel_map(machine); 2685 int err = 0; 2686 2687 /* 2688 * The only addresses above 2^63 are kernel addresses of a 64-bit 2689 * kernel. Note that addresses are unsigned so that on a 32-bit system 2690 * all addresses including kernel addresses are less than 2^32. In 2691 * that case (32-bit system), if the kernel mapping is unknown, all 2692 * addresses will be assumed to be in user space - see 2693 * machine__kernel_ip(). 2694 */ 2695 machine->kernel_start = 1ULL << 63; 2696 if (map) { 2697 err = map__load(map); 2698 /* 2699 * On x86_64, PTI entry trampolines are less than the 2700 * start of kernel text, but still above 2^63. So leave 2701 * kernel_start = 1ULL << 63 for x86_64. 2702 */ 2703 if (!err && !machine__is(machine, "x86_64")) 2704 machine->kernel_start = map->start; 2705 } 2706 return err; 2707 } 2708 2709 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 2710 { 2711 u8 addr_cpumode = cpumode; 2712 bool kernel_ip; 2713 2714 if (!machine->single_address_space) 2715 goto out; 2716 2717 kernel_ip = machine__kernel_ip(machine, addr); 2718 switch (cpumode) { 2719 case PERF_RECORD_MISC_KERNEL: 2720 case PERF_RECORD_MISC_USER: 2721 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 2722 PERF_RECORD_MISC_USER; 2723 break; 2724 case PERF_RECORD_MISC_GUEST_KERNEL: 2725 case PERF_RECORD_MISC_GUEST_USER: 2726 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 2727 PERF_RECORD_MISC_GUEST_USER; 2728 break; 2729 default: 2730 break; 2731 } 2732 out: 2733 return addr_cpumode; 2734 } 2735 2736 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2737 { 2738 return dsos__findnew(&machine->dsos, filename); 2739 } 2740 2741 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2742 { 2743 struct machine *machine = vmachine; 2744 struct map *map; 2745 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2746 2747 if (sym == NULL) 2748 return NULL; 2749 2750 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2751 *addrp = map->unmap_ip(map, sym->start); 2752 return sym->name; 2753 } 2754