xref: /linux/tools/perf/util/machine.c (revision 8520a98dbab61e9e340cdfb72dd17ccc8a98961e)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "srcline.h"
14 #include "symbol.h"
15 #include "sort.h"
16 #include "strlist.h"
17 #include "target.h"
18 #include "thread.h"
19 #include "util.h"
20 #include "vdso.h"
21 #include <stdbool.h>
22 #include <sys/types.h>
23 #include <sys/stat.h>
24 #include <unistd.h>
25 #include "unwind.h"
26 #include "linux/hash.h"
27 #include "asm/bug.h"
28 #include "bpf-event.h"
29 
30 #include <linux/ctype.h>
31 #include <symbol/kallsyms.h>
32 #include <linux/mman.h>
33 #include <linux/string.h>
34 #include <linux/zalloc.h>
35 
36 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
37 
38 static void dsos__init(struct dsos *dsos)
39 {
40 	INIT_LIST_HEAD(&dsos->head);
41 	dsos->root = RB_ROOT;
42 	init_rwsem(&dsos->lock);
43 }
44 
45 static void machine__threads_init(struct machine *machine)
46 {
47 	int i;
48 
49 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
50 		struct threads *threads = &machine->threads[i];
51 		threads->entries = RB_ROOT_CACHED;
52 		init_rwsem(&threads->lock);
53 		threads->nr = 0;
54 		INIT_LIST_HEAD(&threads->dead);
55 		threads->last_match = NULL;
56 	}
57 }
58 
59 static int machine__set_mmap_name(struct machine *machine)
60 {
61 	if (machine__is_host(machine))
62 		machine->mmap_name = strdup("[kernel.kallsyms]");
63 	else if (machine__is_default_guest(machine))
64 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
65 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
66 			  machine->pid) < 0)
67 		machine->mmap_name = NULL;
68 
69 	return machine->mmap_name ? 0 : -ENOMEM;
70 }
71 
72 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
73 {
74 	int err = -ENOMEM;
75 
76 	memset(machine, 0, sizeof(*machine));
77 	map_groups__init(&machine->kmaps, machine);
78 	RB_CLEAR_NODE(&machine->rb_node);
79 	dsos__init(&machine->dsos);
80 
81 	machine__threads_init(machine);
82 
83 	machine->vdso_info = NULL;
84 	machine->env = NULL;
85 
86 	machine->pid = pid;
87 
88 	machine->id_hdr_size = 0;
89 	machine->kptr_restrict_warned = false;
90 	machine->comm_exec = false;
91 	machine->kernel_start = 0;
92 	machine->vmlinux_map = NULL;
93 
94 	machine->root_dir = strdup(root_dir);
95 	if (machine->root_dir == NULL)
96 		return -ENOMEM;
97 
98 	if (machine__set_mmap_name(machine))
99 		goto out;
100 
101 	if (pid != HOST_KERNEL_ID) {
102 		struct thread *thread = machine__findnew_thread(machine, -1,
103 								pid);
104 		char comm[64];
105 
106 		if (thread == NULL)
107 			goto out;
108 
109 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
110 		thread__set_comm(thread, comm, 0);
111 		thread__put(thread);
112 	}
113 
114 	machine->current_tid = NULL;
115 	err = 0;
116 
117 out:
118 	if (err) {
119 		zfree(&machine->root_dir);
120 		zfree(&machine->mmap_name);
121 	}
122 	return 0;
123 }
124 
125 struct machine *machine__new_host(void)
126 {
127 	struct machine *machine = malloc(sizeof(*machine));
128 
129 	if (machine != NULL) {
130 		machine__init(machine, "", HOST_KERNEL_ID);
131 
132 		if (machine__create_kernel_maps(machine) < 0)
133 			goto out_delete;
134 	}
135 
136 	return machine;
137 out_delete:
138 	free(machine);
139 	return NULL;
140 }
141 
142 struct machine *machine__new_kallsyms(void)
143 {
144 	struct machine *machine = machine__new_host();
145 	/*
146 	 * FIXME:
147 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
148 	 *    ask for not using the kcore parsing code, once this one is fixed
149 	 *    to create a map per module.
150 	 */
151 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
152 		machine__delete(machine);
153 		machine = NULL;
154 	}
155 
156 	return machine;
157 }
158 
159 static void dsos__purge(struct dsos *dsos)
160 {
161 	struct dso *pos, *n;
162 
163 	down_write(&dsos->lock);
164 
165 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
166 		RB_CLEAR_NODE(&pos->rb_node);
167 		pos->root = NULL;
168 		list_del_init(&pos->node);
169 		dso__put(pos);
170 	}
171 
172 	up_write(&dsos->lock);
173 }
174 
175 static void dsos__exit(struct dsos *dsos)
176 {
177 	dsos__purge(dsos);
178 	exit_rwsem(&dsos->lock);
179 }
180 
181 void machine__delete_threads(struct machine *machine)
182 {
183 	struct rb_node *nd;
184 	int i;
185 
186 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
187 		struct threads *threads = &machine->threads[i];
188 		down_write(&threads->lock);
189 		nd = rb_first_cached(&threads->entries);
190 		while (nd) {
191 			struct thread *t = rb_entry(nd, struct thread, rb_node);
192 
193 			nd = rb_next(nd);
194 			__machine__remove_thread(machine, t, false);
195 		}
196 		up_write(&threads->lock);
197 	}
198 }
199 
200 void machine__exit(struct machine *machine)
201 {
202 	int i;
203 
204 	if (machine == NULL)
205 		return;
206 
207 	machine__destroy_kernel_maps(machine);
208 	map_groups__exit(&machine->kmaps);
209 	dsos__exit(&machine->dsos);
210 	machine__exit_vdso(machine);
211 	zfree(&machine->root_dir);
212 	zfree(&machine->mmap_name);
213 	zfree(&machine->current_tid);
214 
215 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
216 		struct threads *threads = &machine->threads[i];
217 		struct thread *thread, *n;
218 		/*
219 		 * Forget about the dead, at this point whatever threads were
220 		 * left in the dead lists better have a reference count taken
221 		 * by who is using them, and then, when they drop those references
222 		 * and it finally hits zero, thread__put() will check and see that
223 		 * its not in the dead threads list and will not try to remove it
224 		 * from there, just calling thread__delete() straight away.
225 		 */
226 		list_for_each_entry_safe(thread, n, &threads->dead, node)
227 			list_del_init(&thread->node);
228 
229 		exit_rwsem(&threads->lock);
230 	}
231 }
232 
233 void machine__delete(struct machine *machine)
234 {
235 	if (machine) {
236 		machine__exit(machine);
237 		free(machine);
238 	}
239 }
240 
241 void machines__init(struct machines *machines)
242 {
243 	machine__init(&machines->host, "", HOST_KERNEL_ID);
244 	machines->guests = RB_ROOT_CACHED;
245 }
246 
247 void machines__exit(struct machines *machines)
248 {
249 	machine__exit(&machines->host);
250 	/* XXX exit guest */
251 }
252 
253 struct machine *machines__add(struct machines *machines, pid_t pid,
254 			      const char *root_dir)
255 {
256 	struct rb_node **p = &machines->guests.rb_root.rb_node;
257 	struct rb_node *parent = NULL;
258 	struct machine *pos, *machine = malloc(sizeof(*machine));
259 	bool leftmost = true;
260 
261 	if (machine == NULL)
262 		return NULL;
263 
264 	if (machine__init(machine, root_dir, pid) != 0) {
265 		free(machine);
266 		return NULL;
267 	}
268 
269 	while (*p != NULL) {
270 		parent = *p;
271 		pos = rb_entry(parent, struct machine, rb_node);
272 		if (pid < pos->pid)
273 			p = &(*p)->rb_left;
274 		else {
275 			p = &(*p)->rb_right;
276 			leftmost = false;
277 		}
278 	}
279 
280 	rb_link_node(&machine->rb_node, parent, p);
281 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
282 
283 	return machine;
284 }
285 
286 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
287 {
288 	struct rb_node *nd;
289 
290 	machines->host.comm_exec = comm_exec;
291 
292 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
293 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
294 
295 		machine->comm_exec = comm_exec;
296 	}
297 }
298 
299 struct machine *machines__find(struct machines *machines, pid_t pid)
300 {
301 	struct rb_node **p = &machines->guests.rb_root.rb_node;
302 	struct rb_node *parent = NULL;
303 	struct machine *machine;
304 	struct machine *default_machine = NULL;
305 
306 	if (pid == HOST_KERNEL_ID)
307 		return &machines->host;
308 
309 	while (*p != NULL) {
310 		parent = *p;
311 		machine = rb_entry(parent, struct machine, rb_node);
312 		if (pid < machine->pid)
313 			p = &(*p)->rb_left;
314 		else if (pid > machine->pid)
315 			p = &(*p)->rb_right;
316 		else
317 			return machine;
318 		if (!machine->pid)
319 			default_machine = machine;
320 	}
321 
322 	return default_machine;
323 }
324 
325 struct machine *machines__findnew(struct machines *machines, pid_t pid)
326 {
327 	char path[PATH_MAX];
328 	const char *root_dir = "";
329 	struct machine *machine = machines__find(machines, pid);
330 
331 	if (machine && (machine->pid == pid))
332 		goto out;
333 
334 	if ((pid != HOST_KERNEL_ID) &&
335 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
336 	    (symbol_conf.guestmount)) {
337 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
338 		if (access(path, R_OK)) {
339 			static struct strlist *seen;
340 
341 			if (!seen)
342 				seen = strlist__new(NULL, NULL);
343 
344 			if (!strlist__has_entry(seen, path)) {
345 				pr_err("Can't access file %s\n", path);
346 				strlist__add(seen, path);
347 			}
348 			machine = NULL;
349 			goto out;
350 		}
351 		root_dir = path;
352 	}
353 
354 	machine = machines__add(machines, pid, root_dir);
355 out:
356 	return machine;
357 }
358 
359 void machines__process_guests(struct machines *machines,
360 			      machine__process_t process, void *data)
361 {
362 	struct rb_node *nd;
363 
364 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
365 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
366 		process(pos, data);
367 	}
368 }
369 
370 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
371 {
372 	struct rb_node *node;
373 	struct machine *machine;
374 
375 	machines->host.id_hdr_size = id_hdr_size;
376 
377 	for (node = rb_first_cached(&machines->guests); node;
378 	     node = rb_next(node)) {
379 		machine = rb_entry(node, struct machine, rb_node);
380 		machine->id_hdr_size = id_hdr_size;
381 	}
382 
383 	return;
384 }
385 
386 static void machine__update_thread_pid(struct machine *machine,
387 				       struct thread *th, pid_t pid)
388 {
389 	struct thread *leader;
390 
391 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
392 		return;
393 
394 	th->pid_ = pid;
395 
396 	if (th->pid_ == th->tid)
397 		return;
398 
399 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
400 	if (!leader)
401 		goto out_err;
402 
403 	if (!leader->mg)
404 		leader->mg = map_groups__new(machine);
405 
406 	if (!leader->mg)
407 		goto out_err;
408 
409 	if (th->mg == leader->mg)
410 		return;
411 
412 	if (th->mg) {
413 		/*
414 		 * Maps are created from MMAP events which provide the pid and
415 		 * tid.  Consequently there never should be any maps on a thread
416 		 * with an unknown pid.  Just print an error if there are.
417 		 */
418 		if (!map_groups__empty(th->mg))
419 			pr_err("Discarding thread maps for %d:%d\n",
420 			       th->pid_, th->tid);
421 		map_groups__put(th->mg);
422 	}
423 
424 	th->mg = map_groups__get(leader->mg);
425 out_put:
426 	thread__put(leader);
427 	return;
428 out_err:
429 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
430 	goto out_put;
431 }
432 
433 /*
434  * Front-end cache - TID lookups come in blocks,
435  * so most of the time we dont have to look up
436  * the full rbtree:
437  */
438 static struct thread*
439 __threads__get_last_match(struct threads *threads, struct machine *machine,
440 			  int pid, int tid)
441 {
442 	struct thread *th;
443 
444 	th = threads->last_match;
445 	if (th != NULL) {
446 		if (th->tid == tid) {
447 			machine__update_thread_pid(machine, th, pid);
448 			return thread__get(th);
449 		}
450 
451 		threads->last_match = NULL;
452 	}
453 
454 	return NULL;
455 }
456 
457 static struct thread*
458 threads__get_last_match(struct threads *threads, struct machine *machine,
459 			int pid, int tid)
460 {
461 	struct thread *th = NULL;
462 
463 	if (perf_singlethreaded)
464 		th = __threads__get_last_match(threads, machine, pid, tid);
465 
466 	return th;
467 }
468 
469 static void
470 __threads__set_last_match(struct threads *threads, struct thread *th)
471 {
472 	threads->last_match = th;
473 }
474 
475 static void
476 threads__set_last_match(struct threads *threads, struct thread *th)
477 {
478 	if (perf_singlethreaded)
479 		__threads__set_last_match(threads, th);
480 }
481 
482 /*
483  * Caller must eventually drop thread->refcnt returned with a successful
484  * lookup/new thread inserted.
485  */
486 static struct thread *____machine__findnew_thread(struct machine *machine,
487 						  struct threads *threads,
488 						  pid_t pid, pid_t tid,
489 						  bool create)
490 {
491 	struct rb_node **p = &threads->entries.rb_root.rb_node;
492 	struct rb_node *parent = NULL;
493 	struct thread *th;
494 	bool leftmost = true;
495 
496 	th = threads__get_last_match(threads, machine, pid, tid);
497 	if (th)
498 		return th;
499 
500 	while (*p != NULL) {
501 		parent = *p;
502 		th = rb_entry(parent, struct thread, rb_node);
503 
504 		if (th->tid == tid) {
505 			threads__set_last_match(threads, th);
506 			machine__update_thread_pid(machine, th, pid);
507 			return thread__get(th);
508 		}
509 
510 		if (tid < th->tid)
511 			p = &(*p)->rb_left;
512 		else {
513 			p = &(*p)->rb_right;
514 			leftmost = false;
515 		}
516 	}
517 
518 	if (!create)
519 		return NULL;
520 
521 	th = thread__new(pid, tid);
522 	if (th != NULL) {
523 		rb_link_node(&th->rb_node, parent, p);
524 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
525 
526 		/*
527 		 * We have to initialize map_groups separately
528 		 * after rb tree is updated.
529 		 *
530 		 * The reason is that we call machine__findnew_thread
531 		 * within thread__init_map_groups to find the thread
532 		 * leader and that would screwed the rb tree.
533 		 */
534 		if (thread__init_map_groups(th, machine)) {
535 			rb_erase_cached(&th->rb_node, &threads->entries);
536 			RB_CLEAR_NODE(&th->rb_node);
537 			thread__put(th);
538 			return NULL;
539 		}
540 		/*
541 		 * It is now in the rbtree, get a ref
542 		 */
543 		thread__get(th);
544 		threads__set_last_match(threads, th);
545 		++threads->nr;
546 	}
547 
548 	return th;
549 }
550 
551 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
552 {
553 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
554 }
555 
556 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
557 				       pid_t tid)
558 {
559 	struct threads *threads = machine__threads(machine, tid);
560 	struct thread *th;
561 
562 	down_write(&threads->lock);
563 	th = __machine__findnew_thread(machine, pid, tid);
564 	up_write(&threads->lock);
565 	return th;
566 }
567 
568 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
569 				    pid_t tid)
570 {
571 	struct threads *threads = machine__threads(machine, tid);
572 	struct thread *th;
573 
574 	down_read(&threads->lock);
575 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
576 	up_read(&threads->lock);
577 	return th;
578 }
579 
580 struct comm *machine__thread_exec_comm(struct machine *machine,
581 				       struct thread *thread)
582 {
583 	if (machine->comm_exec)
584 		return thread__exec_comm(thread);
585 	else
586 		return thread__comm(thread);
587 }
588 
589 int machine__process_comm_event(struct machine *machine, union perf_event *event,
590 				struct perf_sample *sample)
591 {
592 	struct thread *thread = machine__findnew_thread(machine,
593 							event->comm.pid,
594 							event->comm.tid);
595 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
596 	int err = 0;
597 
598 	if (exec)
599 		machine->comm_exec = true;
600 
601 	if (dump_trace)
602 		perf_event__fprintf_comm(event, stdout);
603 
604 	if (thread == NULL ||
605 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
606 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
607 		err = -1;
608 	}
609 
610 	thread__put(thread);
611 
612 	return err;
613 }
614 
615 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
616 				      union perf_event *event,
617 				      struct perf_sample *sample __maybe_unused)
618 {
619 	struct thread *thread = machine__findnew_thread(machine,
620 							event->namespaces.pid,
621 							event->namespaces.tid);
622 	int err = 0;
623 
624 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
625 		  "\nWARNING: kernel seems to support more namespaces than perf"
626 		  " tool.\nTry updating the perf tool..\n\n");
627 
628 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
629 		  "\nWARNING: perf tool seems to support more namespaces than"
630 		  " the kernel.\nTry updating the kernel..\n\n");
631 
632 	if (dump_trace)
633 		perf_event__fprintf_namespaces(event, stdout);
634 
635 	if (thread == NULL ||
636 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
637 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
638 		err = -1;
639 	}
640 
641 	thread__put(thread);
642 
643 	return err;
644 }
645 
646 int machine__process_lost_event(struct machine *machine __maybe_unused,
647 				union perf_event *event, struct perf_sample *sample __maybe_unused)
648 {
649 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
650 		    event->lost.id, event->lost.lost);
651 	return 0;
652 }
653 
654 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
655 					union perf_event *event, struct perf_sample *sample)
656 {
657 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
658 		    sample->id, event->lost_samples.lost);
659 	return 0;
660 }
661 
662 static struct dso *machine__findnew_module_dso(struct machine *machine,
663 					       struct kmod_path *m,
664 					       const char *filename)
665 {
666 	struct dso *dso;
667 
668 	down_write(&machine->dsos.lock);
669 
670 	dso = __dsos__find(&machine->dsos, m->name, true);
671 	if (!dso) {
672 		dso = __dsos__addnew(&machine->dsos, m->name);
673 		if (dso == NULL)
674 			goto out_unlock;
675 
676 		dso__set_module_info(dso, m, machine);
677 		dso__set_long_name(dso, strdup(filename), true);
678 	}
679 
680 	dso__get(dso);
681 out_unlock:
682 	up_write(&machine->dsos.lock);
683 	return dso;
684 }
685 
686 int machine__process_aux_event(struct machine *machine __maybe_unused,
687 			       union perf_event *event)
688 {
689 	if (dump_trace)
690 		perf_event__fprintf_aux(event, stdout);
691 	return 0;
692 }
693 
694 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
695 					union perf_event *event)
696 {
697 	if (dump_trace)
698 		perf_event__fprintf_itrace_start(event, stdout);
699 	return 0;
700 }
701 
702 int machine__process_switch_event(struct machine *machine __maybe_unused,
703 				  union perf_event *event)
704 {
705 	if (dump_trace)
706 		perf_event__fprintf_switch(event, stdout);
707 	return 0;
708 }
709 
710 static int machine__process_ksymbol_register(struct machine *machine,
711 					     union perf_event *event,
712 					     struct perf_sample *sample __maybe_unused)
713 {
714 	struct symbol *sym;
715 	struct map *map;
716 
717 	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
718 	if (!map) {
719 		map = dso__new_map(event->ksymbol.name);
720 		if (!map)
721 			return -ENOMEM;
722 
723 		map->start = event->ksymbol.addr;
724 		map->end = map->start + event->ksymbol.len;
725 		map_groups__insert(&machine->kmaps, map);
726 	}
727 
728 	sym = symbol__new(map->map_ip(map, map->start),
729 			  event->ksymbol.len,
730 			  0, 0, event->ksymbol.name);
731 	if (!sym)
732 		return -ENOMEM;
733 	dso__insert_symbol(map->dso, sym);
734 	return 0;
735 }
736 
737 static int machine__process_ksymbol_unregister(struct machine *machine,
738 					       union perf_event *event,
739 					       struct perf_sample *sample __maybe_unused)
740 {
741 	struct map *map;
742 
743 	map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
744 	if (map)
745 		map_groups__remove(&machine->kmaps, map);
746 
747 	return 0;
748 }
749 
750 int machine__process_ksymbol(struct machine *machine __maybe_unused,
751 			     union perf_event *event,
752 			     struct perf_sample *sample)
753 {
754 	if (dump_trace)
755 		perf_event__fprintf_ksymbol(event, stdout);
756 
757 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
758 		return machine__process_ksymbol_unregister(machine, event,
759 							   sample);
760 	return machine__process_ksymbol_register(machine, event, sample);
761 }
762 
763 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
764 {
765 	const char *dup_filename;
766 
767 	if (!filename || !dso || !dso->long_name)
768 		return;
769 	if (dso->long_name[0] != '[')
770 		return;
771 	if (!strchr(filename, '/'))
772 		return;
773 
774 	dup_filename = strdup(filename);
775 	if (!dup_filename)
776 		return;
777 
778 	dso__set_long_name(dso, dup_filename, true);
779 }
780 
781 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
782 					const char *filename)
783 {
784 	struct map *map = NULL;
785 	struct dso *dso = NULL;
786 	struct kmod_path m;
787 
788 	if (kmod_path__parse_name(&m, filename))
789 		return NULL;
790 
791 	map = map_groups__find_by_name(&machine->kmaps, m.name);
792 	if (map) {
793 		/*
794 		 * If the map's dso is an offline module, give dso__load()
795 		 * a chance to find the file path of that module by fixing
796 		 * long_name.
797 		 */
798 		dso__adjust_kmod_long_name(map->dso, filename);
799 		goto out;
800 	}
801 
802 	dso = machine__findnew_module_dso(machine, &m, filename);
803 	if (dso == NULL)
804 		goto out;
805 
806 	map = map__new2(start, dso);
807 	if (map == NULL)
808 		goto out;
809 
810 	map_groups__insert(&machine->kmaps, map);
811 
812 	/* Put the map here because map_groups__insert alread got it */
813 	map__put(map);
814 out:
815 	/* put the dso here, corresponding to  machine__findnew_module_dso */
816 	dso__put(dso);
817 	zfree(&m.name);
818 	return map;
819 }
820 
821 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
822 {
823 	struct rb_node *nd;
824 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
825 
826 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
827 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
828 		ret += __dsos__fprintf(&pos->dsos.head, fp);
829 	}
830 
831 	return ret;
832 }
833 
834 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
835 				     bool (skip)(struct dso *dso, int parm), int parm)
836 {
837 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
838 }
839 
840 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
841 				     bool (skip)(struct dso *dso, int parm), int parm)
842 {
843 	struct rb_node *nd;
844 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
845 
846 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
847 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
848 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
849 	}
850 	return ret;
851 }
852 
853 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
854 {
855 	int i;
856 	size_t printed = 0;
857 	struct dso *kdso = machine__kernel_map(machine)->dso;
858 
859 	if (kdso->has_build_id) {
860 		char filename[PATH_MAX];
861 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
862 					   false))
863 			printed += fprintf(fp, "[0] %s\n", filename);
864 	}
865 
866 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
867 		printed += fprintf(fp, "[%d] %s\n",
868 				   i + kdso->has_build_id, vmlinux_path[i]);
869 
870 	return printed;
871 }
872 
873 size_t machine__fprintf(struct machine *machine, FILE *fp)
874 {
875 	struct rb_node *nd;
876 	size_t ret;
877 	int i;
878 
879 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
880 		struct threads *threads = &machine->threads[i];
881 
882 		down_read(&threads->lock);
883 
884 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
885 
886 		for (nd = rb_first_cached(&threads->entries); nd;
887 		     nd = rb_next(nd)) {
888 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
889 
890 			ret += thread__fprintf(pos, fp);
891 		}
892 
893 		up_read(&threads->lock);
894 	}
895 	return ret;
896 }
897 
898 static struct dso *machine__get_kernel(struct machine *machine)
899 {
900 	const char *vmlinux_name = machine->mmap_name;
901 	struct dso *kernel;
902 
903 	if (machine__is_host(machine)) {
904 		if (symbol_conf.vmlinux_name)
905 			vmlinux_name = symbol_conf.vmlinux_name;
906 
907 		kernel = machine__findnew_kernel(machine, vmlinux_name,
908 						 "[kernel]", DSO_TYPE_KERNEL);
909 	} else {
910 		if (symbol_conf.default_guest_vmlinux_name)
911 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
912 
913 		kernel = machine__findnew_kernel(machine, vmlinux_name,
914 						 "[guest.kernel]",
915 						 DSO_TYPE_GUEST_KERNEL);
916 	}
917 
918 	if (kernel != NULL && (!kernel->has_build_id))
919 		dso__read_running_kernel_build_id(kernel, machine);
920 
921 	return kernel;
922 }
923 
924 struct process_args {
925 	u64 start;
926 };
927 
928 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
929 				    size_t bufsz)
930 {
931 	if (machine__is_default_guest(machine))
932 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
933 	else
934 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
935 }
936 
937 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
938 
939 /* Figure out the start address of kernel map from /proc/kallsyms.
940  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
941  * symbol_name if it's not that important.
942  */
943 static int machine__get_running_kernel_start(struct machine *machine,
944 					     const char **symbol_name,
945 					     u64 *start, u64 *end)
946 {
947 	char filename[PATH_MAX];
948 	int i, err = -1;
949 	const char *name;
950 	u64 addr = 0;
951 
952 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
953 
954 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
955 		return 0;
956 
957 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
958 		err = kallsyms__get_function_start(filename, name, &addr);
959 		if (!err)
960 			break;
961 	}
962 
963 	if (err)
964 		return -1;
965 
966 	if (symbol_name)
967 		*symbol_name = name;
968 
969 	*start = addr;
970 
971 	err = kallsyms__get_function_start(filename, "_etext", &addr);
972 	if (!err)
973 		*end = addr;
974 
975 	return 0;
976 }
977 
978 int machine__create_extra_kernel_map(struct machine *machine,
979 				     struct dso *kernel,
980 				     struct extra_kernel_map *xm)
981 {
982 	struct kmap *kmap;
983 	struct map *map;
984 
985 	map = map__new2(xm->start, kernel);
986 	if (!map)
987 		return -1;
988 
989 	map->end   = xm->end;
990 	map->pgoff = xm->pgoff;
991 
992 	kmap = map__kmap(map);
993 
994 	kmap->kmaps = &machine->kmaps;
995 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
996 
997 	map_groups__insert(&machine->kmaps, map);
998 
999 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1000 		  kmap->name, map->start, map->end);
1001 
1002 	map__put(map);
1003 
1004 	return 0;
1005 }
1006 
1007 static u64 find_entry_trampoline(struct dso *dso)
1008 {
1009 	/* Duplicates are removed so lookup all aliases */
1010 	const char *syms[] = {
1011 		"_entry_trampoline",
1012 		"__entry_trampoline_start",
1013 		"entry_SYSCALL_64_trampoline",
1014 	};
1015 	struct symbol *sym = dso__first_symbol(dso);
1016 	unsigned int i;
1017 
1018 	for (; sym; sym = dso__next_symbol(sym)) {
1019 		if (sym->binding != STB_GLOBAL)
1020 			continue;
1021 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1022 			if (!strcmp(sym->name, syms[i]))
1023 				return sym->start;
1024 		}
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 /*
1031  * These values can be used for kernels that do not have symbols for the entry
1032  * trampolines in kallsyms.
1033  */
1034 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1035 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1036 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1037 
1038 /* Map x86_64 PTI entry trampolines */
1039 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1040 					  struct dso *kernel)
1041 {
1042 	struct map_groups *kmaps = &machine->kmaps;
1043 	struct maps *maps = &kmaps->maps;
1044 	int nr_cpus_avail, cpu;
1045 	bool found = false;
1046 	struct map *map;
1047 	u64 pgoff;
1048 
1049 	/*
1050 	 * In the vmlinux case, pgoff is a virtual address which must now be
1051 	 * mapped to a vmlinux offset.
1052 	 */
1053 	for (map = maps__first(maps); map; map = map__next(map)) {
1054 		struct kmap *kmap = __map__kmap(map);
1055 		struct map *dest_map;
1056 
1057 		if (!kmap || !is_entry_trampoline(kmap->name))
1058 			continue;
1059 
1060 		dest_map = map_groups__find(kmaps, map->pgoff);
1061 		if (dest_map != map)
1062 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1063 		found = true;
1064 	}
1065 	if (found || machine->trampolines_mapped)
1066 		return 0;
1067 
1068 	pgoff = find_entry_trampoline(kernel);
1069 	if (!pgoff)
1070 		return 0;
1071 
1072 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1073 
1074 	/* Add a 1 page map for each CPU's entry trampoline */
1075 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1076 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1077 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1078 			 X86_64_ENTRY_TRAMPOLINE;
1079 		struct extra_kernel_map xm = {
1080 			.start = va,
1081 			.end   = va + page_size,
1082 			.pgoff = pgoff,
1083 		};
1084 
1085 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1086 
1087 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1088 			return -1;
1089 	}
1090 
1091 	machine->trampolines_mapped = nr_cpus_avail;
1092 
1093 	return 0;
1094 }
1095 
1096 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1097 					     struct dso *kernel __maybe_unused)
1098 {
1099 	return 0;
1100 }
1101 
1102 static int
1103 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1104 {
1105 	struct kmap *kmap;
1106 	struct map *map;
1107 
1108 	/* In case of renewal the kernel map, destroy previous one */
1109 	machine__destroy_kernel_maps(machine);
1110 
1111 	machine->vmlinux_map = map__new2(0, kernel);
1112 	if (machine->vmlinux_map == NULL)
1113 		return -1;
1114 
1115 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1116 	map = machine__kernel_map(machine);
1117 	kmap = map__kmap(map);
1118 	if (!kmap)
1119 		return -1;
1120 
1121 	kmap->kmaps = &machine->kmaps;
1122 	map_groups__insert(&machine->kmaps, map);
1123 
1124 	return 0;
1125 }
1126 
1127 void machine__destroy_kernel_maps(struct machine *machine)
1128 {
1129 	struct kmap *kmap;
1130 	struct map *map = machine__kernel_map(machine);
1131 
1132 	if (map == NULL)
1133 		return;
1134 
1135 	kmap = map__kmap(map);
1136 	map_groups__remove(&machine->kmaps, map);
1137 	if (kmap && kmap->ref_reloc_sym) {
1138 		zfree((char **)&kmap->ref_reloc_sym->name);
1139 		zfree(&kmap->ref_reloc_sym);
1140 	}
1141 
1142 	map__zput(machine->vmlinux_map);
1143 }
1144 
1145 int machines__create_guest_kernel_maps(struct machines *machines)
1146 {
1147 	int ret = 0;
1148 	struct dirent **namelist = NULL;
1149 	int i, items = 0;
1150 	char path[PATH_MAX];
1151 	pid_t pid;
1152 	char *endp;
1153 
1154 	if (symbol_conf.default_guest_vmlinux_name ||
1155 	    symbol_conf.default_guest_modules ||
1156 	    symbol_conf.default_guest_kallsyms) {
1157 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1158 	}
1159 
1160 	if (symbol_conf.guestmount) {
1161 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1162 		if (items <= 0)
1163 			return -ENOENT;
1164 		for (i = 0; i < items; i++) {
1165 			if (!isdigit(namelist[i]->d_name[0])) {
1166 				/* Filter out . and .. */
1167 				continue;
1168 			}
1169 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1170 			if ((*endp != '\0') ||
1171 			    (endp == namelist[i]->d_name) ||
1172 			    (errno == ERANGE)) {
1173 				pr_debug("invalid directory (%s). Skipping.\n",
1174 					 namelist[i]->d_name);
1175 				continue;
1176 			}
1177 			sprintf(path, "%s/%s/proc/kallsyms",
1178 				symbol_conf.guestmount,
1179 				namelist[i]->d_name);
1180 			ret = access(path, R_OK);
1181 			if (ret) {
1182 				pr_debug("Can't access file %s\n", path);
1183 				goto failure;
1184 			}
1185 			machines__create_kernel_maps(machines, pid);
1186 		}
1187 failure:
1188 		free(namelist);
1189 	}
1190 
1191 	return ret;
1192 }
1193 
1194 void machines__destroy_kernel_maps(struct machines *machines)
1195 {
1196 	struct rb_node *next = rb_first_cached(&machines->guests);
1197 
1198 	machine__destroy_kernel_maps(&machines->host);
1199 
1200 	while (next) {
1201 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1202 
1203 		next = rb_next(&pos->rb_node);
1204 		rb_erase_cached(&pos->rb_node, &machines->guests);
1205 		machine__delete(pos);
1206 	}
1207 }
1208 
1209 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1210 {
1211 	struct machine *machine = machines__findnew(machines, pid);
1212 
1213 	if (machine == NULL)
1214 		return -1;
1215 
1216 	return machine__create_kernel_maps(machine);
1217 }
1218 
1219 int machine__load_kallsyms(struct machine *machine, const char *filename)
1220 {
1221 	struct map *map = machine__kernel_map(machine);
1222 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1223 
1224 	if (ret > 0) {
1225 		dso__set_loaded(map->dso);
1226 		/*
1227 		 * Since /proc/kallsyms will have multiple sessions for the
1228 		 * kernel, with modules between them, fixup the end of all
1229 		 * sections.
1230 		 */
1231 		map_groups__fixup_end(&machine->kmaps);
1232 	}
1233 
1234 	return ret;
1235 }
1236 
1237 int machine__load_vmlinux_path(struct machine *machine)
1238 {
1239 	struct map *map = machine__kernel_map(machine);
1240 	int ret = dso__load_vmlinux_path(map->dso, map);
1241 
1242 	if (ret > 0)
1243 		dso__set_loaded(map->dso);
1244 
1245 	return ret;
1246 }
1247 
1248 static char *get_kernel_version(const char *root_dir)
1249 {
1250 	char version[PATH_MAX];
1251 	FILE *file;
1252 	char *name, *tmp;
1253 	const char *prefix = "Linux version ";
1254 
1255 	sprintf(version, "%s/proc/version", root_dir);
1256 	file = fopen(version, "r");
1257 	if (!file)
1258 		return NULL;
1259 
1260 	tmp = fgets(version, sizeof(version), file);
1261 	fclose(file);
1262 	if (!tmp)
1263 		return NULL;
1264 
1265 	name = strstr(version, prefix);
1266 	if (!name)
1267 		return NULL;
1268 	name += strlen(prefix);
1269 	tmp = strchr(name, ' ');
1270 	if (tmp)
1271 		*tmp = '\0';
1272 
1273 	return strdup(name);
1274 }
1275 
1276 static bool is_kmod_dso(struct dso *dso)
1277 {
1278 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1279 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1280 }
1281 
1282 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1283 				       struct kmod_path *m)
1284 {
1285 	char *long_name;
1286 	struct map *map = map_groups__find_by_name(mg, m->name);
1287 
1288 	if (map == NULL)
1289 		return 0;
1290 
1291 	long_name = strdup(path);
1292 	if (long_name == NULL)
1293 		return -ENOMEM;
1294 
1295 	dso__set_long_name(map->dso, long_name, true);
1296 	dso__kernel_module_get_build_id(map->dso, "");
1297 
1298 	/*
1299 	 * Full name could reveal us kmod compression, so
1300 	 * we need to update the symtab_type if needed.
1301 	 */
1302 	if (m->comp && is_kmod_dso(map->dso)) {
1303 		map->dso->symtab_type++;
1304 		map->dso->comp = m->comp;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1311 				const char *dir_name, int depth)
1312 {
1313 	struct dirent *dent;
1314 	DIR *dir = opendir(dir_name);
1315 	int ret = 0;
1316 
1317 	if (!dir) {
1318 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1319 		return -1;
1320 	}
1321 
1322 	while ((dent = readdir(dir)) != NULL) {
1323 		char path[PATH_MAX];
1324 		struct stat st;
1325 
1326 		/*sshfs might return bad dent->d_type, so we have to stat*/
1327 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1328 		if (stat(path, &st))
1329 			continue;
1330 
1331 		if (S_ISDIR(st.st_mode)) {
1332 			if (!strcmp(dent->d_name, ".") ||
1333 			    !strcmp(dent->d_name, ".."))
1334 				continue;
1335 
1336 			/* Do not follow top-level source and build symlinks */
1337 			if (depth == 0) {
1338 				if (!strcmp(dent->d_name, "source") ||
1339 				    !strcmp(dent->d_name, "build"))
1340 					continue;
1341 			}
1342 
1343 			ret = map_groups__set_modules_path_dir(mg, path,
1344 							       depth + 1);
1345 			if (ret < 0)
1346 				goto out;
1347 		} else {
1348 			struct kmod_path m;
1349 
1350 			ret = kmod_path__parse_name(&m, dent->d_name);
1351 			if (ret)
1352 				goto out;
1353 
1354 			if (m.kmod)
1355 				ret = map_groups__set_module_path(mg, path, &m);
1356 
1357 			zfree(&m.name);
1358 
1359 			if (ret)
1360 				goto out;
1361 		}
1362 	}
1363 
1364 out:
1365 	closedir(dir);
1366 	return ret;
1367 }
1368 
1369 static int machine__set_modules_path(struct machine *machine)
1370 {
1371 	char *version;
1372 	char modules_path[PATH_MAX];
1373 
1374 	version = get_kernel_version(machine->root_dir);
1375 	if (!version)
1376 		return -1;
1377 
1378 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1379 		 machine->root_dir, version);
1380 	free(version);
1381 
1382 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1383 }
1384 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1385 				u64 *size __maybe_unused,
1386 				const char *name __maybe_unused)
1387 {
1388 	return 0;
1389 }
1390 
1391 static int machine__create_module(void *arg, const char *name, u64 start,
1392 				  u64 size)
1393 {
1394 	struct machine *machine = arg;
1395 	struct map *map;
1396 
1397 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1398 		return -1;
1399 
1400 	map = machine__findnew_module_map(machine, start, name);
1401 	if (map == NULL)
1402 		return -1;
1403 	map->end = start + size;
1404 
1405 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1406 
1407 	return 0;
1408 }
1409 
1410 static int machine__create_modules(struct machine *machine)
1411 {
1412 	const char *modules;
1413 	char path[PATH_MAX];
1414 
1415 	if (machine__is_default_guest(machine)) {
1416 		modules = symbol_conf.default_guest_modules;
1417 	} else {
1418 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1419 		modules = path;
1420 	}
1421 
1422 	if (symbol__restricted_filename(modules, "/proc/modules"))
1423 		return -1;
1424 
1425 	if (modules__parse(modules, machine, machine__create_module))
1426 		return -1;
1427 
1428 	if (!machine__set_modules_path(machine))
1429 		return 0;
1430 
1431 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1432 
1433 	return 0;
1434 }
1435 
1436 static void machine__set_kernel_mmap(struct machine *machine,
1437 				     u64 start, u64 end)
1438 {
1439 	machine->vmlinux_map->start = start;
1440 	machine->vmlinux_map->end   = end;
1441 	/*
1442 	 * Be a bit paranoid here, some perf.data file came with
1443 	 * a zero sized synthesized MMAP event for the kernel.
1444 	 */
1445 	if (start == 0 && end == 0)
1446 		machine->vmlinux_map->end = ~0ULL;
1447 }
1448 
1449 static void machine__update_kernel_mmap(struct machine *machine,
1450 				     u64 start, u64 end)
1451 {
1452 	struct map *map = machine__kernel_map(machine);
1453 
1454 	map__get(map);
1455 	map_groups__remove(&machine->kmaps, map);
1456 
1457 	machine__set_kernel_mmap(machine, start, end);
1458 
1459 	map_groups__insert(&machine->kmaps, map);
1460 	map__put(map);
1461 }
1462 
1463 int machine__create_kernel_maps(struct machine *machine)
1464 {
1465 	struct dso *kernel = machine__get_kernel(machine);
1466 	const char *name = NULL;
1467 	struct map *map;
1468 	u64 start = 0, end = ~0ULL;
1469 	int ret;
1470 
1471 	if (kernel == NULL)
1472 		return -1;
1473 
1474 	ret = __machine__create_kernel_maps(machine, kernel);
1475 	if (ret < 0)
1476 		goto out_put;
1477 
1478 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1479 		if (machine__is_host(machine))
1480 			pr_debug("Problems creating module maps, "
1481 				 "continuing anyway...\n");
1482 		else
1483 			pr_debug("Problems creating module maps for guest %d, "
1484 				 "continuing anyway...\n", machine->pid);
1485 	}
1486 
1487 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1488 		if (name &&
1489 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1490 			machine__destroy_kernel_maps(machine);
1491 			ret = -1;
1492 			goto out_put;
1493 		}
1494 
1495 		/*
1496 		 * we have a real start address now, so re-order the kmaps
1497 		 * assume it's the last in the kmaps
1498 		 */
1499 		machine__update_kernel_mmap(machine, start, end);
1500 	}
1501 
1502 	if (machine__create_extra_kernel_maps(machine, kernel))
1503 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1504 
1505 	if (end == ~0ULL) {
1506 		/* update end address of the kernel map using adjacent module address */
1507 		map = map__next(machine__kernel_map(machine));
1508 		if (map)
1509 			machine__set_kernel_mmap(machine, start, map->start);
1510 	}
1511 
1512 out_put:
1513 	dso__put(kernel);
1514 	return ret;
1515 }
1516 
1517 static bool machine__uses_kcore(struct machine *machine)
1518 {
1519 	struct dso *dso;
1520 
1521 	list_for_each_entry(dso, &machine->dsos.head, node) {
1522 		if (dso__is_kcore(dso))
1523 			return true;
1524 	}
1525 
1526 	return false;
1527 }
1528 
1529 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1530 					     union perf_event *event)
1531 {
1532 	return machine__is(machine, "x86_64") &&
1533 	       is_entry_trampoline(event->mmap.filename);
1534 }
1535 
1536 static int machine__process_extra_kernel_map(struct machine *machine,
1537 					     union perf_event *event)
1538 {
1539 	struct map *kernel_map = machine__kernel_map(machine);
1540 	struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1541 	struct extra_kernel_map xm = {
1542 		.start = event->mmap.start,
1543 		.end   = event->mmap.start + event->mmap.len,
1544 		.pgoff = event->mmap.pgoff,
1545 	};
1546 
1547 	if (kernel == NULL)
1548 		return -1;
1549 
1550 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1551 
1552 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1553 }
1554 
1555 static int machine__process_kernel_mmap_event(struct machine *machine,
1556 					      union perf_event *event)
1557 {
1558 	struct map *map;
1559 	enum dso_kernel_type kernel_type;
1560 	bool is_kernel_mmap;
1561 
1562 	/* If we have maps from kcore then we do not need or want any others */
1563 	if (machine__uses_kcore(machine))
1564 		return 0;
1565 
1566 	if (machine__is_host(machine))
1567 		kernel_type = DSO_TYPE_KERNEL;
1568 	else
1569 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1570 
1571 	is_kernel_mmap = memcmp(event->mmap.filename,
1572 				machine->mmap_name,
1573 				strlen(machine->mmap_name) - 1) == 0;
1574 	if (event->mmap.filename[0] == '/' ||
1575 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1576 		map = machine__findnew_module_map(machine, event->mmap.start,
1577 						  event->mmap.filename);
1578 		if (map == NULL)
1579 			goto out_problem;
1580 
1581 		map->end = map->start + event->mmap.len;
1582 	} else if (is_kernel_mmap) {
1583 		const char *symbol_name = (event->mmap.filename +
1584 				strlen(machine->mmap_name));
1585 		/*
1586 		 * Should be there already, from the build-id table in
1587 		 * the header.
1588 		 */
1589 		struct dso *kernel = NULL;
1590 		struct dso *dso;
1591 
1592 		down_read(&machine->dsos.lock);
1593 
1594 		list_for_each_entry(dso, &machine->dsos.head, node) {
1595 
1596 			/*
1597 			 * The cpumode passed to is_kernel_module is not the
1598 			 * cpumode of *this* event. If we insist on passing
1599 			 * correct cpumode to is_kernel_module, we should
1600 			 * record the cpumode when we adding this dso to the
1601 			 * linked list.
1602 			 *
1603 			 * However we don't really need passing correct
1604 			 * cpumode.  We know the correct cpumode must be kernel
1605 			 * mode (if not, we should not link it onto kernel_dsos
1606 			 * list).
1607 			 *
1608 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1609 			 * is_kernel_module() treats it as a kernel cpumode.
1610 			 */
1611 
1612 			if (!dso->kernel ||
1613 			    is_kernel_module(dso->long_name,
1614 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1615 				continue;
1616 
1617 
1618 			kernel = dso;
1619 			break;
1620 		}
1621 
1622 		up_read(&machine->dsos.lock);
1623 
1624 		if (kernel == NULL)
1625 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1626 		if (kernel == NULL)
1627 			goto out_problem;
1628 
1629 		kernel->kernel = kernel_type;
1630 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1631 			dso__put(kernel);
1632 			goto out_problem;
1633 		}
1634 
1635 		if (strstr(kernel->long_name, "vmlinux"))
1636 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1637 
1638 		machine__update_kernel_mmap(machine, event->mmap.start,
1639 					 event->mmap.start + event->mmap.len);
1640 
1641 		/*
1642 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1643 		 * symbol. Effectively having zero here means that at record
1644 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1645 		 */
1646 		if (event->mmap.pgoff != 0) {
1647 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1648 							symbol_name,
1649 							event->mmap.pgoff);
1650 		}
1651 
1652 		if (machine__is_default_guest(machine)) {
1653 			/*
1654 			 * preload dso of guest kernel and modules
1655 			 */
1656 			dso__load(kernel, machine__kernel_map(machine));
1657 		}
1658 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1659 		return machine__process_extra_kernel_map(machine, event);
1660 	}
1661 	return 0;
1662 out_problem:
1663 	return -1;
1664 }
1665 
1666 int machine__process_mmap2_event(struct machine *machine,
1667 				 union perf_event *event,
1668 				 struct perf_sample *sample)
1669 {
1670 	struct thread *thread;
1671 	struct map *map;
1672 	int ret = 0;
1673 
1674 	if (dump_trace)
1675 		perf_event__fprintf_mmap2(event, stdout);
1676 
1677 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1678 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1679 		ret = machine__process_kernel_mmap_event(machine, event);
1680 		if (ret < 0)
1681 			goto out_problem;
1682 		return 0;
1683 	}
1684 
1685 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1686 					event->mmap2.tid);
1687 	if (thread == NULL)
1688 		goto out_problem;
1689 
1690 	map = map__new(machine, event->mmap2.start,
1691 			event->mmap2.len, event->mmap2.pgoff,
1692 			event->mmap2.maj,
1693 			event->mmap2.min, event->mmap2.ino,
1694 			event->mmap2.ino_generation,
1695 			event->mmap2.prot,
1696 			event->mmap2.flags,
1697 			event->mmap2.filename, thread);
1698 
1699 	if (map == NULL)
1700 		goto out_problem_map;
1701 
1702 	ret = thread__insert_map(thread, map);
1703 	if (ret)
1704 		goto out_problem_insert;
1705 
1706 	thread__put(thread);
1707 	map__put(map);
1708 	return 0;
1709 
1710 out_problem_insert:
1711 	map__put(map);
1712 out_problem_map:
1713 	thread__put(thread);
1714 out_problem:
1715 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1716 	return 0;
1717 }
1718 
1719 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1720 				struct perf_sample *sample)
1721 {
1722 	struct thread *thread;
1723 	struct map *map;
1724 	u32 prot = 0;
1725 	int ret = 0;
1726 
1727 	if (dump_trace)
1728 		perf_event__fprintf_mmap(event, stdout);
1729 
1730 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1731 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1732 		ret = machine__process_kernel_mmap_event(machine, event);
1733 		if (ret < 0)
1734 			goto out_problem;
1735 		return 0;
1736 	}
1737 
1738 	thread = machine__findnew_thread(machine, event->mmap.pid,
1739 					 event->mmap.tid);
1740 	if (thread == NULL)
1741 		goto out_problem;
1742 
1743 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1744 		prot = PROT_EXEC;
1745 
1746 	map = map__new(machine, event->mmap.start,
1747 			event->mmap.len, event->mmap.pgoff,
1748 			0, 0, 0, 0, prot, 0,
1749 			event->mmap.filename,
1750 			thread);
1751 
1752 	if (map == NULL)
1753 		goto out_problem_map;
1754 
1755 	ret = thread__insert_map(thread, map);
1756 	if (ret)
1757 		goto out_problem_insert;
1758 
1759 	thread__put(thread);
1760 	map__put(map);
1761 	return 0;
1762 
1763 out_problem_insert:
1764 	map__put(map);
1765 out_problem_map:
1766 	thread__put(thread);
1767 out_problem:
1768 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1769 	return 0;
1770 }
1771 
1772 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1773 {
1774 	struct threads *threads = machine__threads(machine, th->tid);
1775 
1776 	if (threads->last_match == th)
1777 		threads__set_last_match(threads, NULL);
1778 
1779 	if (lock)
1780 		down_write(&threads->lock);
1781 
1782 	BUG_ON(refcount_read(&th->refcnt) == 0);
1783 
1784 	rb_erase_cached(&th->rb_node, &threads->entries);
1785 	RB_CLEAR_NODE(&th->rb_node);
1786 	--threads->nr;
1787 	/*
1788 	 * Move it first to the dead_threads list, then drop the reference,
1789 	 * if this is the last reference, then the thread__delete destructor
1790 	 * will be called and we will remove it from the dead_threads list.
1791 	 */
1792 	list_add_tail(&th->node, &threads->dead);
1793 
1794 	/*
1795 	 * We need to do the put here because if this is the last refcount,
1796 	 * then we will be touching the threads->dead head when removing the
1797 	 * thread.
1798 	 */
1799 	thread__put(th);
1800 
1801 	if (lock)
1802 		up_write(&threads->lock);
1803 }
1804 
1805 void machine__remove_thread(struct machine *machine, struct thread *th)
1806 {
1807 	return __machine__remove_thread(machine, th, true);
1808 }
1809 
1810 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1811 				struct perf_sample *sample)
1812 {
1813 	struct thread *thread = machine__find_thread(machine,
1814 						     event->fork.pid,
1815 						     event->fork.tid);
1816 	struct thread *parent = machine__findnew_thread(machine,
1817 							event->fork.ppid,
1818 							event->fork.ptid);
1819 	bool do_maps_clone = true;
1820 	int err = 0;
1821 
1822 	if (dump_trace)
1823 		perf_event__fprintf_task(event, stdout);
1824 
1825 	/*
1826 	 * There may be an existing thread that is not actually the parent,
1827 	 * either because we are processing events out of order, or because the
1828 	 * (fork) event that would have removed the thread was lost. Assume the
1829 	 * latter case and continue on as best we can.
1830 	 */
1831 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1832 		dump_printf("removing erroneous parent thread %d/%d\n",
1833 			    parent->pid_, parent->tid);
1834 		machine__remove_thread(machine, parent);
1835 		thread__put(parent);
1836 		parent = machine__findnew_thread(machine, event->fork.ppid,
1837 						 event->fork.ptid);
1838 	}
1839 
1840 	/* if a thread currently exists for the thread id remove it */
1841 	if (thread != NULL) {
1842 		machine__remove_thread(machine, thread);
1843 		thread__put(thread);
1844 	}
1845 
1846 	thread = machine__findnew_thread(machine, event->fork.pid,
1847 					 event->fork.tid);
1848 	/*
1849 	 * When synthesizing FORK events, we are trying to create thread
1850 	 * objects for the already running tasks on the machine.
1851 	 *
1852 	 * Normally, for a kernel FORK event, we want to clone the parent's
1853 	 * maps because that is what the kernel just did.
1854 	 *
1855 	 * But when synthesizing, this should not be done.  If we do, we end up
1856 	 * with overlapping maps as we process the sythesized MMAP2 events that
1857 	 * get delivered shortly thereafter.
1858 	 *
1859 	 * Use the FORK event misc flags in an internal way to signal this
1860 	 * situation, so we can elide the map clone when appropriate.
1861 	 */
1862 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1863 		do_maps_clone = false;
1864 
1865 	if (thread == NULL || parent == NULL ||
1866 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1867 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1868 		err = -1;
1869 	}
1870 	thread__put(thread);
1871 	thread__put(parent);
1872 
1873 	return err;
1874 }
1875 
1876 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1877 				struct perf_sample *sample __maybe_unused)
1878 {
1879 	struct thread *thread = machine__find_thread(machine,
1880 						     event->fork.pid,
1881 						     event->fork.tid);
1882 
1883 	if (dump_trace)
1884 		perf_event__fprintf_task(event, stdout);
1885 
1886 	if (thread != NULL) {
1887 		thread__exited(thread);
1888 		thread__put(thread);
1889 	}
1890 
1891 	return 0;
1892 }
1893 
1894 int machine__process_event(struct machine *machine, union perf_event *event,
1895 			   struct perf_sample *sample)
1896 {
1897 	int ret;
1898 
1899 	switch (event->header.type) {
1900 	case PERF_RECORD_COMM:
1901 		ret = machine__process_comm_event(machine, event, sample); break;
1902 	case PERF_RECORD_MMAP:
1903 		ret = machine__process_mmap_event(machine, event, sample); break;
1904 	case PERF_RECORD_NAMESPACES:
1905 		ret = machine__process_namespaces_event(machine, event, sample); break;
1906 	case PERF_RECORD_MMAP2:
1907 		ret = machine__process_mmap2_event(machine, event, sample); break;
1908 	case PERF_RECORD_FORK:
1909 		ret = machine__process_fork_event(machine, event, sample); break;
1910 	case PERF_RECORD_EXIT:
1911 		ret = machine__process_exit_event(machine, event, sample); break;
1912 	case PERF_RECORD_LOST:
1913 		ret = machine__process_lost_event(machine, event, sample); break;
1914 	case PERF_RECORD_AUX:
1915 		ret = machine__process_aux_event(machine, event); break;
1916 	case PERF_RECORD_ITRACE_START:
1917 		ret = machine__process_itrace_start_event(machine, event); break;
1918 	case PERF_RECORD_LOST_SAMPLES:
1919 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1920 	case PERF_RECORD_SWITCH:
1921 	case PERF_RECORD_SWITCH_CPU_WIDE:
1922 		ret = machine__process_switch_event(machine, event); break;
1923 	case PERF_RECORD_KSYMBOL:
1924 		ret = machine__process_ksymbol(machine, event, sample); break;
1925 	case PERF_RECORD_BPF_EVENT:
1926 		ret = machine__process_bpf(machine, event, sample); break;
1927 	default:
1928 		ret = -1;
1929 		break;
1930 	}
1931 
1932 	return ret;
1933 }
1934 
1935 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1936 {
1937 	if (!regexec(regex, sym->name, 0, NULL, 0))
1938 		return 1;
1939 	return 0;
1940 }
1941 
1942 static void ip__resolve_ams(struct thread *thread,
1943 			    struct addr_map_symbol *ams,
1944 			    u64 ip)
1945 {
1946 	struct addr_location al;
1947 
1948 	memset(&al, 0, sizeof(al));
1949 	/*
1950 	 * We cannot use the header.misc hint to determine whether a
1951 	 * branch stack address is user, kernel, guest, hypervisor.
1952 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1953 	 * Thus, we have to try consecutively until we find a match
1954 	 * or else, the symbol is unknown
1955 	 */
1956 	thread__find_cpumode_addr_location(thread, ip, &al);
1957 
1958 	ams->addr = ip;
1959 	ams->al_addr = al.addr;
1960 	ams->sym = al.sym;
1961 	ams->map = al.map;
1962 	ams->phys_addr = 0;
1963 }
1964 
1965 static void ip__resolve_data(struct thread *thread,
1966 			     u8 m, struct addr_map_symbol *ams,
1967 			     u64 addr, u64 phys_addr)
1968 {
1969 	struct addr_location al;
1970 
1971 	memset(&al, 0, sizeof(al));
1972 
1973 	thread__find_symbol(thread, m, addr, &al);
1974 
1975 	ams->addr = addr;
1976 	ams->al_addr = al.addr;
1977 	ams->sym = al.sym;
1978 	ams->map = al.map;
1979 	ams->phys_addr = phys_addr;
1980 }
1981 
1982 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1983 				     struct addr_location *al)
1984 {
1985 	struct mem_info *mi = mem_info__new();
1986 
1987 	if (!mi)
1988 		return NULL;
1989 
1990 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1991 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1992 			 sample->addr, sample->phys_addr);
1993 	mi->data_src.val = sample->data_src;
1994 
1995 	return mi;
1996 }
1997 
1998 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1999 {
2000 	char *srcline = NULL;
2001 
2002 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2003 		return srcline;
2004 
2005 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2006 	if (!srcline) {
2007 		bool show_sym = false;
2008 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2009 
2010 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2011 				      sym, show_sym, show_addr, ip);
2012 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2013 	}
2014 
2015 	return srcline;
2016 }
2017 
2018 struct iterations {
2019 	int nr_loop_iter;
2020 	u64 cycles;
2021 };
2022 
2023 static int add_callchain_ip(struct thread *thread,
2024 			    struct callchain_cursor *cursor,
2025 			    struct symbol **parent,
2026 			    struct addr_location *root_al,
2027 			    u8 *cpumode,
2028 			    u64 ip,
2029 			    bool branch,
2030 			    struct branch_flags *flags,
2031 			    struct iterations *iter,
2032 			    u64 branch_from)
2033 {
2034 	struct addr_location al;
2035 	int nr_loop_iter = 0;
2036 	u64 iter_cycles = 0;
2037 	const char *srcline = NULL;
2038 
2039 	al.filtered = 0;
2040 	al.sym = NULL;
2041 	if (!cpumode) {
2042 		thread__find_cpumode_addr_location(thread, ip, &al);
2043 	} else {
2044 		if (ip >= PERF_CONTEXT_MAX) {
2045 			switch (ip) {
2046 			case PERF_CONTEXT_HV:
2047 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2048 				break;
2049 			case PERF_CONTEXT_KERNEL:
2050 				*cpumode = PERF_RECORD_MISC_KERNEL;
2051 				break;
2052 			case PERF_CONTEXT_USER:
2053 				*cpumode = PERF_RECORD_MISC_USER;
2054 				break;
2055 			default:
2056 				pr_debug("invalid callchain context: "
2057 					 "%"PRId64"\n", (s64) ip);
2058 				/*
2059 				 * It seems the callchain is corrupted.
2060 				 * Discard all.
2061 				 */
2062 				callchain_cursor_reset(cursor);
2063 				return 1;
2064 			}
2065 			return 0;
2066 		}
2067 		thread__find_symbol(thread, *cpumode, ip, &al);
2068 	}
2069 
2070 	if (al.sym != NULL) {
2071 		if (perf_hpp_list.parent && !*parent &&
2072 		    symbol__match_regex(al.sym, &parent_regex))
2073 			*parent = al.sym;
2074 		else if (have_ignore_callees && root_al &&
2075 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2076 			/* Treat this symbol as the root,
2077 			   forgetting its callees. */
2078 			*root_al = al;
2079 			callchain_cursor_reset(cursor);
2080 		}
2081 	}
2082 
2083 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2084 		return 0;
2085 
2086 	if (iter) {
2087 		nr_loop_iter = iter->nr_loop_iter;
2088 		iter_cycles = iter->cycles;
2089 	}
2090 
2091 	srcline = callchain_srcline(al.map, al.sym, al.addr);
2092 	return callchain_cursor_append(cursor, ip, al.map, al.sym,
2093 				       branch, flags, nr_loop_iter,
2094 				       iter_cycles, branch_from, srcline);
2095 }
2096 
2097 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2098 					   struct addr_location *al)
2099 {
2100 	unsigned int i;
2101 	const struct branch_stack *bs = sample->branch_stack;
2102 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2103 
2104 	if (!bi)
2105 		return NULL;
2106 
2107 	for (i = 0; i < bs->nr; i++) {
2108 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2109 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2110 		bi[i].flags = bs->entries[i].flags;
2111 	}
2112 	return bi;
2113 }
2114 
2115 static void save_iterations(struct iterations *iter,
2116 			    struct branch_entry *be, int nr)
2117 {
2118 	int i;
2119 
2120 	iter->nr_loop_iter++;
2121 	iter->cycles = 0;
2122 
2123 	for (i = 0; i < nr; i++)
2124 		iter->cycles += be[i].flags.cycles;
2125 }
2126 
2127 #define CHASHSZ 127
2128 #define CHASHBITS 7
2129 #define NO_ENTRY 0xff
2130 
2131 #define PERF_MAX_BRANCH_DEPTH 127
2132 
2133 /* Remove loops. */
2134 static int remove_loops(struct branch_entry *l, int nr,
2135 			struct iterations *iter)
2136 {
2137 	int i, j, off;
2138 	unsigned char chash[CHASHSZ];
2139 
2140 	memset(chash, NO_ENTRY, sizeof(chash));
2141 
2142 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2143 
2144 	for (i = 0; i < nr; i++) {
2145 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2146 
2147 		/* no collision handling for now */
2148 		if (chash[h] == NO_ENTRY) {
2149 			chash[h] = i;
2150 		} else if (l[chash[h]].from == l[i].from) {
2151 			bool is_loop = true;
2152 			/* check if it is a real loop */
2153 			off = 0;
2154 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2155 				if (l[j].from != l[i + off].from) {
2156 					is_loop = false;
2157 					break;
2158 				}
2159 			if (is_loop) {
2160 				j = nr - (i + off);
2161 				if (j > 0) {
2162 					save_iterations(iter + i + off,
2163 						l + i, off);
2164 
2165 					memmove(iter + i, iter + i + off,
2166 						j * sizeof(*iter));
2167 
2168 					memmove(l + i, l + i + off,
2169 						j * sizeof(*l));
2170 				}
2171 
2172 				nr -= off;
2173 			}
2174 		}
2175 	}
2176 	return nr;
2177 }
2178 
2179 /*
2180  * Recolve LBR callstack chain sample
2181  * Return:
2182  * 1 on success get LBR callchain information
2183  * 0 no available LBR callchain information, should try fp
2184  * negative error code on other errors.
2185  */
2186 static int resolve_lbr_callchain_sample(struct thread *thread,
2187 					struct callchain_cursor *cursor,
2188 					struct perf_sample *sample,
2189 					struct symbol **parent,
2190 					struct addr_location *root_al,
2191 					int max_stack)
2192 {
2193 	struct ip_callchain *chain = sample->callchain;
2194 	int chain_nr = min(max_stack, (int)chain->nr), i;
2195 	u8 cpumode = PERF_RECORD_MISC_USER;
2196 	u64 ip, branch_from = 0;
2197 
2198 	for (i = 0; i < chain_nr; i++) {
2199 		if (chain->ips[i] == PERF_CONTEXT_USER)
2200 			break;
2201 	}
2202 
2203 	/* LBR only affects the user callchain */
2204 	if (i != chain_nr) {
2205 		struct branch_stack *lbr_stack = sample->branch_stack;
2206 		int lbr_nr = lbr_stack->nr, j, k;
2207 		bool branch;
2208 		struct branch_flags *flags;
2209 		/*
2210 		 * LBR callstack can only get user call chain.
2211 		 * The mix_chain_nr is kernel call chain
2212 		 * number plus LBR user call chain number.
2213 		 * i is kernel call chain number,
2214 		 * 1 is PERF_CONTEXT_USER,
2215 		 * lbr_nr + 1 is the user call chain number.
2216 		 * For details, please refer to the comments
2217 		 * in callchain__printf
2218 		 */
2219 		int mix_chain_nr = i + 1 + lbr_nr + 1;
2220 
2221 		for (j = 0; j < mix_chain_nr; j++) {
2222 			int err;
2223 			branch = false;
2224 			flags = NULL;
2225 
2226 			if (callchain_param.order == ORDER_CALLEE) {
2227 				if (j < i + 1)
2228 					ip = chain->ips[j];
2229 				else if (j > i + 1) {
2230 					k = j - i - 2;
2231 					ip = lbr_stack->entries[k].from;
2232 					branch = true;
2233 					flags = &lbr_stack->entries[k].flags;
2234 				} else {
2235 					ip = lbr_stack->entries[0].to;
2236 					branch = true;
2237 					flags = &lbr_stack->entries[0].flags;
2238 					branch_from =
2239 						lbr_stack->entries[0].from;
2240 				}
2241 			} else {
2242 				if (j < lbr_nr) {
2243 					k = lbr_nr - j - 1;
2244 					ip = lbr_stack->entries[k].from;
2245 					branch = true;
2246 					flags = &lbr_stack->entries[k].flags;
2247 				}
2248 				else if (j > lbr_nr)
2249 					ip = chain->ips[i + 1 - (j - lbr_nr)];
2250 				else {
2251 					ip = lbr_stack->entries[0].to;
2252 					branch = true;
2253 					flags = &lbr_stack->entries[0].flags;
2254 					branch_from =
2255 						lbr_stack->entries[0].from;
2256 				}
2257 			}
2258 
2259 			err = add_callchain_ip(thread, cursor, parent,
2260 					       root_al, &cpumode, ip,
2261 					       branch, flags, NULL,
2262 					       branch_from);
2263 			if (err)
2264 				return (err < 0) ? err : 0;
2265 		}
2266 		return 1;
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2273 			     struct callchain_cursor *cursor,
2274 			     struct symbol **parent,
2275 			     struct addr_location *root_al,
2276 			     u8 *cpumode, int ent)
2277 {
2278 	int err = 0;
2279 
2280 	while (--ent >= 0) {
2281 		u64 ip = chain->ips[ent];
2282 
2283 		if (ip >= PERF_CONTEXT_MAX) {
2284 			err = add_callchain_ip(thread, cursor, parent,
2285 					       root_al, cpumode, ip,
2286 					       false, NULL, NULL, 0);
2287 			break;
2288 		}
2289 	}
2290 	return err;
2291 }
2292 
2293 static int thread__resolve_callchain_sample(struct thread *thread,
2294 					    struct callchain_cursor *cursor,
2295 					    struct evsel *evsel,
2296 					    struct perf_sample *sample,
2297 					    struct symbol **parent,
2298 					    struct addr_location *root_al,
2299 					    int max_stack)
2300 {
2301 	struct branch_stack *branch = sample->branch_stack;
2302 	struct ip_callchain *chain = sample->callchain;
2303 	int chain_nr = 0;
2304 	u8 cpumode = PERF_RECORD_MISC_USER;
2305 	int i, j, err, nr_entries;
2306 	int skip_idx = -1;
2307 	int first_call = 0;
2308 
2309 	if (chain)
2310 		chain_nr = chain->nr;
2311 
2312 	if (perf_evsel__has_branch_callstack(evsel)) {
2313 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2314 						   root_al, max_stack);
2315 		if (err)
2316 			return (err < 0) ? err : 0;
2317 	}
2318 
2319 	/*
2320 	 * Based on DWARF debug information, some architectures skip
2321 	 * a callchain entry saved by the kernel.
2322 	 */
2323 	skip_idx = arch_skip_callchain_idx(thread, chain);
2324 
2325 	/*
2326 	 * Add branches to call stack for easier browsing. This gives
2327 	 * more context for a sample than just the callers.
2328 	 *
2329 	 * This uses individual histograms of paths compared to the
2330 	 * aggregated histograms the normal LBR mode uses.
2331 	 *
2332 	 * Limitations for now:
2333 	 * - No extra filters
2334 	 * - No annotations (should annotate somehow)
2335 	 */
2336 
2337 	if (branch && callchain_param.branch_callstack) {
2338 		int nr = min(max_stack, (int)branch->nr);
2339 		struct branch_entry be[nr];
2340 		struct iterations iter[nr];
2341 
2342 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2343 			pr_warning("corrupted branch chain. skipping...\n");
2344 			goto check_calls;
2345 		}
2346 
2347 		for (i = 0; i < nr; i++) {
2348 			if (callchain_param.order == ORDER_CALLEE) {
2349 				be[i] = branch->entries[i];
2350 
2351 				if (chain == NULL)
2352 					continue;
2353 
2354 				/*
2355 				 * Check for overlap into the callchain.
2356 				 * The return address is one off compared to
2357 				 * the branch entry. To adjust for this
2358 				 * assume the calling instruction is not longer
2359 				 * than 8 bytes.
2360 				 */
2361 				if (i == skip_idx ||
2362 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2363 					first_call++;
2364 				else if (be[i].from < chain->ips[first_call] &&
2365 				    be[i].from >= chain->ips[first_call] - 8)
2366 					first_call++;
2367 			} else
2368 				be[i] = branch->entries[branch->nr - i - 1];
2369 		}
2370 
2371 		memset(iter, 0, sizeof(struct iterations) * nr);
2372 		nr = remove_loops(be, nr, iter);
2373 
2374 		for (i = 0; i < nr; i++) {
2375 			err = add_callchain_ip(thread, cursor, parent,
2376 					       root_al,
2377 					       NULL, be[i].to,
2378 					       true, &be[i].flags,
2379 					       NULL, be[i].from);
2380 
2381 			if (!err)
2382 				err = add_callchain_ip(thread, cursor, parent, root_al,
2383 						       NULL, be[i].from,
2384 						       true, &be[i].flags,
2385 						       &iter[i], 0);
2386 			if (err == -EINVAL)
2387 				break;
2388 			if (err)
2389 				return err;
2390 		}
2391 
2392 		if (chain_nr == 0)
2393 			return 0;
2394 
2395 		chain_nr -= nr;
2396 	}
2397 
2398 check_calls:
2399 	if (callchain_param.order != ORDER_CALLEE) {
2400 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2401 					&cpumode, chain->nr - first_call);
2402 		if (err)
2403 			return (err < 0) ? err : 0;
2404 	}
2405 	for (i = first_call, nr_entries = 0;
2406 	     i < chain_nr && nr_entries < max_stack; i++) {
2407 		u64 ip;
2408 
2409 		if (callchain_param.order == ORDER_CALLEE)
2410 			j = i;
2411 		else
2412 			j = chain->nr - i - 1;
2413 
2414 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2415 		if (j == skip_idx)
2416 			continue;
2417 #endif
2418 		ip = chain->ips[j];
2419 		if (ip < PERF_CONTEXT_MAX)
2420                        ++nr_entries;
2421 		else if (callchain_param.order != ORDER_CALLEE) {
2422 			err = find_prev_cpumode(chain, thread, cursor, parent,
2423 						root_al, &cpumode, j);
2424 			if (err)
2425 				return (err < 0) ? err : 0;
2426 			continue;
2427 		}
2428 
2429 		err = add_callchain_ip(thread, cursor, parent,
2430 				       root_al, &cpumode, ip,
2431 				       false, NULL, NULL, 0);
2432 
2433 		if (err)
2434 			return (err < 0) ? err : 0;
2435 	}
2436 
2437 	return 0;
2438 }
2439 
2440 static int append_inlines(struct callchain_cursor *cursor,
2441 			  struct map *map, struct symbol *sym, u64 ip)
2442 {
2443 	struct inline_node *inline_node;
2444 	struct inline_list *ilist;
2445 	u64 addr;
2446 	int ret = 1;
2447 
2448 	if (!symbol_conf.inline_name || !map || !sym)
2449 		return ret;
2450 
2451 	addr = map__map_ip(map, ip);
2452 	addr = map__rip_2objdump(map, addr);
2453 
2454 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2455 	if (!inline_node) {
2456 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2457 		if (!inline_node)
2458 			return ret;
2459 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2460 	}
2461 
2462 	list_for_each_entry(ilist, &inline_node->val, list) {
2463 		ret = callchain_cursor_append(cursor, ip, map,
2464 					      ilist->symbol, false,
2465 					      NULL, 0, 0, 0, ilist->srcline);
2466 
2467 		if (ret != 0)
2468 			return ret;
2469 	}
2470 
2471 	return ret;
2472 }
2473 
2474 static int unwind_entry(struct unwind_entry *entry, void *arg)
2475 {
2476 	struct callchain_cursor *cursor = arg;
2477 	const char *srcline = NULL;
2478 	u64 addr = entry->ip;
2479 
2480 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2481 		return 0;
2482 
2483 	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2484 		return 0;
2485 
2486 	/*
2487 	 * Convert entry->ip from a virtual address to an offset in
2488 	 * its corresponding binary.
2489 	 */
2490 	if (entry->map)
2491 		addr = map__map_ip(entry->map, entry->ip);
2492 
2493 	srcline = callchain_srcline(entry->map, entry->sym, addr);
2494 	return callchain_cursor_append(cursor, entry->ip,
2495 				       entry->map, entry->sym,
2496 				       false, NULL, 0, 0, 0, srcline);
2497 }
2498 
2499 static int thread__resolve_callchain_unwind(struct thread *thread,
2500 					    struct callchain_cursor *cursor,
2501 					    struct evsel *evsel,
2502 					    struct perf_sample *sample,
2503 					    int max_stack)
2504 {
2505 	/* Can we do dwarf post unwind? */
2506 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2507 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2508 		return 0;
2509 
2510 	/* Bail out if nothing was captured. */
2511 	if ((!sample->user_regs.regs) ||
2512 	    (!sample->user_stack.size))
2513 		return 0;
2514 
2515 	return unwind__get_entries(unwind_entry, cursor,
2516 				   thread, sample, max_stack);
2517 }
2518 
2519 int thread__resolve_callchain(struct thread *thread,
2520 			      struct callchain_cursor *cursor,
2521 			      struct evsel *evsel,
2522 			      struct perf_sample *sample,
2523 			      struct symbol **parent,
2524 			      struct addr_location *root_al,
2525 			      int max_stack)
2526 {
2527 	int ret = 0;
2528 
2529 	callchain_cursor_reset(cursor);
2530 
2531 	if (callchain_param.order == ORDER_CALLEE) {
2532 		ret = thread__resolve_callchain_sample(thread, cursor,
2533 						       evsel, sample,
2534 						       parent, root_al,
2535 						       max_stack);
2536 		if (ret)
2537 			return ret;
2538 		ret = thread__resolve_callchain_unwind(thread, cursor,
2539 						       evsel, sample,
2540 						       max_stack);
2541 	} else {
2542 		ret = thread__resolve_callchain_unwind(thread, cursor,
2543 						       evsel, sample,
2544 						       max_stack);
2545 		if (ret)
2546 			return ret;
2547 		ret = thread__resolve_callchain_sample(thread, cursor,
2548 						       evsel, sample,
2549 						       parent, root_al,
2550 						       max_stack);
2551 	}
2552 
2553 	return ret;
2554 }
2555 
2556 int machine__for_each_thread(struct machine *machine,
2557 			     int (*fn)(struct thread *thread, void *p),
2558 			     void *priv)
2559 {
2560 	struct threads *threads;
2561 	struct rb_node *nd;
2562 	struct thread *thread;
2563 	int rc = 0;
2564 	int i;
2565 
2566 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2567 		threads = &machine->threads[i];
2568 		for (nd = rb_first_cached(&threads->entries); nd;
2569 		     nd = rb_next(nd)) {
2570 			thread = rb_entry(nd, struct thread, rb_node);
2571 			rc = fn(thread, priv);
2572 			if (rc != 0)
2573 				return rc;
2574 		}
2575 
2576 		list_for_each_entry(thread, &threads->dead, node) {
2577 			rc = fn(thread, priv);
2578 			if (rc != 0)
2579 				return rc;
2580 		}
2581 	}
2582 	return rc;
2583 }
2584 
2585 int machines__for_each_thread(struct machines *machines,
2586 			      int (*fn)(struct thread *thread, void *p),
2587 			      void *priv)
2588 {
2589 	struct rb_node *nd;
2590 	int rc = 0;
2591 
2592 	rc = machine__for_each_thread(&machines->host, fn, priv);
2593 	if (rc != 0)
2594 		return rc;
2595 
2596 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2597 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2598 
2599 		rc = machine__for_each_thread(machine, fn, priv);
2600 		if (rc != 0)
2601 			return rc;
2602 	}
2603 	return rc;
2604 }
2605 
2606 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2607 				  struct target *target, struct perf_thread_map *threads,
2608 				  perf_event__handler_t process, bool data_mmap,
2609 				  unsigned int nr_threads_synthesize)
2610 {
2611 	if (target__has_task(target))
2612 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2613 	else if (target__has_cpu(target))
2614 		return perf_event__synthesize_threads(tool, process,
2615 						      machine, data_mmap,
2616 						      nr_threads_synthesize);
2617 	/* command specified */
2618 	return 0;
2619 }
2620 
2621 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2622 {
2623 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2624 
2625 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2626 		return -1;
2627 
2628 	return machine->current_tid[cpu];
2629 }
2630 
2631 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2632 			     pid_t tid)
2633 {
2634 	struct thread *thread;
2635 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2636 
2637 	if (cpu < 0)
2638 		return -EINVAL;
2639 
2640 	if (!machine->current_tid) {
2641 		int i;
2642 
2643 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2644 		if (!machine->current_tid)
2645 			return -ENOMEM;
2646 		for (i = 0; i < nr_cpus; i++)
2647 			machine->current_tid[i] = -1;
2648 	}
2649 
2650 	if (cpu >= nr_cpus) {
2651 		pr_err("Requested CPU %d too large. ", cpu);
2652 		pr_err("Consider raising MAX_NR_CPUS\n");
2653 		return -EINVAL;
2654 	}
2655 
2656 	machine->current_tid[cpu] = tid;
2657 
2658 	thread = machine__findnew_thread(machine, pid, tid);
2659 	if (!thread)
2660 		return -ENOMEM;
2661 
2662 	thread->cpu = cpu;
2663 	thread__put(thread);
2664 
2665 	return 0;
2666 }
2667 
2668 /*
2669  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2670  * normalized arch is needed.
2671  */
2672 bool machine__is(struct machine *machine, const char *arch)
2673 {
2674 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2675 }
2676 
2677 int machine__nr_cpus_avail(struct machine *machine)
2678 {
2679 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2680 }
2681 
2682 int machine__get_kernel_start(struct machine *machine)
2683 {
2684 	struct map *map = machine__kernel_map(machine);
2685 	int err = 0;
2686 
2687 	/*
2688 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2689 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2690 	 * all addresses including kernel addresses are less than 2^32.  In
2691 	 * that case (32-bit system), if the kernel mapping is unknown, all
2692 	 * addresses will be assumed to be in user space - see
2693 	 * machine__kernel_ip().
2694 	 */
2695 	machine->kernel_start = 1ULL << 63;
2696 	if (map) {
2697 		err = map__load(map);
2698 		/*
2699 		 * On x86_64, PTI entry trampolines are less than the
2700 		 * start of kernel text, but still above 2^63. So leave
2701 		 * kernel_start = 1ULL << 63 for x86_64.
2702 		 */
2703 		if (!err && !machine__is(machine, "x86_64"))
2704 			machine->kernel_start = map->start;
2705 	}
2706 	return err;
2707 }
2708 
2709 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2710 {
2711 	u8 addr_cpumode = cpumode;
2712 	bool kernel_ip;
2713 
2714 	if (!machine->single_address_space)
2715 		goto out;
2716 
2717 	kernel_ip = machine__kernel_ip(machine, addr);
2718 	switch (cpumode) {
2719 	case PERF_RECORD_MISC_KERNEL:
2720 	case PERF_RECORD_MISC_USER:
2721 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2722 					   PERF_RECORD_MISC_USER;
2723 		break;
2724 	case PERF_RECORD_MISC_GUEST_KERNEL:
2725 	case PERF_RECORD_MISC_GUEST_USER:
2726 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2727 					   PERF_RECORD_MISC_GUEST_USER;
2728 		break;
2729 	default:
2730 		break;
2731 	}
2732 out:
2733 	return addr_cpumode;
2734 }
2735 
2736 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2737 {
2738 	return dsos__findnew(&machine->dsos, filename);
2739 }
2740 
2741 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2742 {
2743 	struct machine *machine = vmachine;
2744 	struct map *map;
2745 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2746 
2747 	if (sym == NULL)
2748 		return NULL;
2749 
2750 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2751 	*addrp = map->unmap_ip(map, sym->start);
2752 	return sym->name;
2753 }
2754