1 #include "callchain.h" 2 #include "debug.h" 3 #include "event.h" 4 #include "evsel.h" 5 #include "hist.h" 6 #include "machine.h" 7 #include "map.h" 8 #include "sort.h" 9 #include "strlist.h" 10 #include "thread.h" 11 #include "vdso.h" 12 #include <stdbool.h> 13 #include <symbol/kallsyms.h> 14 #include "unwind.h" 15 #include "linux/hash.h" 16 17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 18 19 static void dsos__init(struct dsos *dsos) 20 { 21 INIT_LIST_HEAD(&dsos->head); 22 dsos->root = RB_ROOT; 23 pthread_rwlock_init(&dsos->lock, NULL); 24 } 25 26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 27 { 28 memset(machine, 0, sizeof(*machine)); 29 map_groups__init(&machine->kmaps, machine); 30 RB_CLEAR_NODE(&machine->rb_node); 31 dsos__init(&machine->dsos); 32 33 machine->threads = RB_ROOT; 34 pthread_rwlock_init(&machine->threads_lock, NULL); 35 machine->nr_threads = 0; 36 INIT_LIST_HEAD(&machine->dead_threads); 37 machine->last_match = NULL; 38 39 machine->vdso_info = NULL; 40 machine->env = NULL; 41 42 machine->pid = pid; 43 44 machine->id_hdr_size = 0; 45 machine->kptr_restrict_warned = false; 46 machine->comm_exec = false; 47 machine->kernel_start = 0; 48 49 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps)); 50 51 machine->root_dir = strdup(root_dir); 52 if (machine->root_dir == NULL) 53 return -ENOMEM; 54 55 if (pid != HOST_KERNEL_ID) { 56 struct thread *thread = machine__findnew_thread(machine, -1, 57 pid); 58 char comm[64]; 59 60 if (thread == NULL) 61 return -ENOMEM; 62 63 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 64 thread__set_comm(thread, comm, 0); 65 thread__put(thread); 66 } 67 68 machine->current_tid = NULL; 69 70 return 0; 71 } 72 73 struct machine *machine__new_host(void) 74 { 75 struct machine *machine = malloc(sizeof(*machine)); 76 77 if (machine != NULL) { 78 machine__init(machine, "", HOST_KERNEL_ID); 79 80 if (machine__create_kernel_maps(machine) < 0) 81 goto out_delete; 82 } 83 84 return machine; 85 out_delete: 86 free(machine); 87 return NULL; 88 } 89 90 struct machine *machine__new_kallsyms(void) 91 { 92 struct machine *machine = machine__new_host(); 93 /* 94 * FIXME: 95 * 1) MAP__FUNCTION will go away when we stop loading separate maps for 96 * functions and data objects. 97 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely 98 * ask for not using the kcore parsing code, once this one is fixed 99 * to create a map per module. 100 */ 101 if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) { 102 machine__delete(machine); 103 machine = NULL; 104 } 105 106 return machine; 107 } 108 109 static void dsos__purge(struct dsos *dsos) 110 { 111 struct dso *pos, *n; 112 113 pthread_rwlock_wrlock(&dsos->lock); 114 115 list_for_each_entry_safe(pos, n, &dsos->head, node) { 116 RB_CLEAR_NODE(&pos->rb_node); 117 pos->root = NULL; 118 list_del_init(&pos->node); 119 dso__put(pos); 120 } 121 122 pthread_rwlock_unlock(&dsos->lock); 123 } 124 125 static void dsos__exit(struct dsos *dsos) 126 { 127 dsos__purge(dsos); 128 pthread_rwlock_destroy(&dsos->lock); 129 } 130 131 void machine__delete_threads(struct machine *machine) 132 { 133 struct rb_node *nd; 134 135 pthread_rwlock_wrlock(&machine->threads_lock); 136 nd = rb_first(&machine->threads); 137 while (nd) { 138 struct thread *t = rb_entry(nd, struct thread, rb_node); 139 140 nd = rb_next(nd); 141 __machine__remove_thread(machine, t, false); 142 } 143 pthread_rwlock_unlock(&machine->threads_lock); 144 } 145 146 void machine__exit(struct machine *machine) 147 { 148 machine__destroy_kernel_maps(machine); 149 map_groups__exit(&machine->kmaps); 150 dsos__exit(&machine->dsos); 151 machine__exit_vdso(machine); 152 zfree(&machine->root_dir); 153 zfree(&machine->current_tid); 154 pthread_rwlock_destroy(&machine->threads_lock); 155 } 156 157 void machine__delete(struct machine *machine) 158 { 159 if (machine) { 160 machine__exit(machine); 161 free(machine); 162 } 163 } 164 165 void machines__init(struct machines *machines) 166 { 167 machine__init(&machines->host, "", HOST_KERNEL_ID); 168 machines->guests = RB_ROOT; 169 } 170 171 void machines__exit(struct machines *machines) 172 { 173 machine__exit(&machines->host); 174 /* XXX exit guest */ 175 } 176 177 struct machine *machines__add(struct machines *machines, pid_t pid, 178 const char *root_dir) 179 { 180 struct rb_node **p = &machines->guests.rb_node; 181 struct rb_node *parent = NULL; 182 struct machine *pos, *machine = malloc(sizeof(*machine)); 183 184 if (machine == NULL) 185 return NULL; 186 187 if (machine__init(machine, root_dir, pid) != 0) { 188 free(machine); 189 return NULL; 190 } 191 192 while (*p != NULL) { 193 parent = *p; 194 pos = rb_entry(parent, struct machine, rb_node); 195 if (pid < pos->pid) 196 p = &(*p)->rb_left; 197 else 198 p = &(*p)->rb_right; 199 } 200 201 rb_link_node(&machine->rb_node, parent, p); 202 rb_insert_color(&machine->rb_node, &machines->guests); 203 204 return machine; 205 } 206 207 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 208 { 209 struct rb_node *nd; 210 211 machines->host.comm_exec = comm_exec; 212 213 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 214 struct machine *machine = rb_entry(nd, struct machine, rb_node); 215 216 machine->comm_exec = comm_exec; 217 } 218 } 219 220 struct machine *machines__find(struct machines *machines, pid_t pid) 221 { 222 struct rb_node **p = &machines->guests.rb_node; 223 struct rb_node *parent = NULL; 224 struct machine *machine; 225 struct machine *default_machine = NULL; 226 227 if (pid == HOST_KERNEL_ID) 228 return &machines->host; 229 230 while (*p != NULL) { 231 parent = *p; 232 machine = rb_entry(parent, struct machine, rb_node); 233 if (pid < machine->pid) 234 p = &(*p)->rb_left; 235 else if (pid > machine->pid) 236 p = &(*p)->rb_right; 237 else 238 return machine; 239 if (!machine->pid) 240 default_machine = machine; 241 } 242 243 return default_machine; 244 } 245 246 struct machine *machines__findnew(struct machines *machines, pid_t pid) 247 { 248 char path[PATH_MAX]; 249 const char *root_dir = ""; 250 struct machine *machine = machines__find(machines, pid); 251 252 if (machine && (machine->pid == pid)) 253 goto out; 254 255 if ((pid != HOST_KERNEL_ID) && 256 (pid != DEFAULT_GUEST_KERNEL_ID) && 257 (symbol_conf.guestmount)) { 258 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 259 if (access(path, R_OK)) { 260 static struct strlist *seen; 261 262 if (!seen) 263 seen = strlist__new(NULL, NULL); 264 265 if (!strlist__has_entry(seen, path)) { 266 pr_err("Can't access file %s\n", path); 267 strlist__add(seen, path); 268 } 269 machine = NULL; 270 goto out; 271 } 272 root_dir = path; 273 } 274 275 machine = machines__add(machines, pid, root_dir); 276 out: 277 return machine; 278 } 279 280 void machines__process_guests(struct machines *machines, 281 machine__process_t process, void *data) 282 { 283 struct rb_node *nd; 284 285 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 286 struct machine *pos = rb_entry(nd, struct machine, rb_node); 287 process(pos, data); 288 } 289 } 290 291 char *machine__mmap_name(struct machine *machine, char *bf, size_t size) 292 { 293 if (machine__is_host(machine)) 294 snprintf(bf, size, "[%s]", "kernel.kallsyms"); 295 else if (machine__is_default_guest(machine)) 296 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms"); 297 else { 298 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms", 299 machine->pid); 300 } 301 302 return bf; 303 } 304 305 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 306 { 307 struct rb_node *node; 308 struct machine *machine; 309 310 machines->host.id_hdr_size = id_hdr_size; 311 312 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 313 machine = rb_entry(node, struct machine, rb_node); 314 machine->id_hdr_size = id_hdr_size; 315 } 316 317 return; 318 } 319 320 static void machine__update_thread_pid(struct machine *machine, 321 struct thread *th, pid_t pid) 322 { 323 struct thread *leader; 324 325 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 326 return; 327 328 th->pid_ = pid; 329 330 if (th->pid_ == th->tid) 331 return; 332 333 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 334 if (!leader) 335 goto out_err; 336 337 if (!leader->mg) 338 leader->mg = map_groups__new(machine); 339 340 if (!leader->mg) 341 goto out_err; 342 343 if (th->mg == leader->mg) 344 return; 345 346 if (th->mg) { 347 /* 348 * Maps are created from MMAP events which provide the pid and 349 * tid. Consequently there never should be any maps on a thread 350 * with an unknown pid. Just print an error if there are. 351 */ 352 if (!map_groups__empty(th->mg)) 353 pr_err("Discarding thread maps for %d:%d\n", 354 th->pid_, th->tid); 355 map_groups__put(th->mg); 356 } 357 358 th->mg = map_groups__get(leader->mg); 359 out_put: 360 thread__put(leader); 361 return; 362 out_err: 363 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 364 goto out_put; 365 } 366 367 /* 368 * Caller must eventually drop thread->refcnt returned with a successful 369 * lookup/new thread inserted. 370 */ 371 static struct thread *____machine__findnew_thread(struct machine *machine, 372 pid_t pid, pid_t tid, 373 bool create) 374 { 375 struct rb_node **p = &machine->threads.rb_node; 376 struct rb_node *parent = NULL; 377 struct thread *th; 378 379 /* 380 * Front-end cache - TID lookups come in blocks, 381 * so most of the time we dont have to look up 382 * the full rbtree: 383 */ 384 th = machine->last_match; 385 if (th != NULL) { 386 if (th->tid == tid) { 387 machine__update_thread_pid(machine, th, pid); 388 return thread__get(th); 389 } 390 391 machine->last_match = NULL; 392 } 393 394 while (*p != NULL) { 395 parent = *p; 396 th = rb_entry(parent, struct thread, rb_node); 397 398 if (th->tid == tid) { 399 machine->last_match = th; 400 machine__update_thread_pid(machine, th, pid); 401 return thread__get(th); 402 } 403 404 if (tid < th->tid) 405 p = &(*p)->rb_left; 406 else 407 p = &(*p)->rb_right; 408 } 409 410 if (!create) 411 return NULL; 412 413 th = thread__new(pid, tid); 414 if (th != NULL) { 415 rb_link_node(&th->rb_node, parent, p); 416 rb_insert_color(&th->rb_node, &machine->threads); 417 418 /* 419 * We have to initialize map_groups separately 420 * after rb tree is updated. 421 * 422 * The reason is that we call machine__findnew_thread 423 * within thread__init_map_groups to find the thread 424 * leader and that would screwed the rb tree. 425 */ 426 if (thread__init_map_groups(th, machine)) { 427 rb_erase_init(&th->rb_node, &machine->threads); 428 RB_CLEAR_NODE(&th->rb_node); 429 thread__put(th); 430 return NULL; 431 } 432 /* 433 * It is now in the rbtree, get a ref 434 */ 435 thread__get(th); 436 machine->last_match = th; 437 ++machine->nr_threads; 438 } 439 440 return th; 441 } 442 443 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 444 { 445 return ____machine__findnew_thread(machine, pid, tid, true); 446 } 447 448 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 449 pid_t tid) 450 { 451 struct thread *th; 452 453 pthread_rwlock_wrlock(&machine->threads_lock); 454 th = __machine__findnew_thread(machine, pid, tid); 455 pthread_rwlock_unlock(&machine->threads_lock); 456 return th; 457 } 458 459 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 460 pid_t tid) 461 { 462 struct thread *th; 463 pthread_rwlock_rdlock(&machine->threads_lock); 464 th = ____machine__findnew_thread(machine, pid, tid, false); 465 pthread_rwlock_unlock(&machine->threads_lock); 466 return th; 467 } 468 469 struct comm *machine__thread_exec_comm(struct machine *machine, 470 struct thread *thread) 471 { 472 if (machine->comm_exec) 473 return thread__exec_comm(thread); 474 else 475 return thread__comm(thread); 476 } 477 478 int machine__process_comm_event(struct machine *machine, union perf_event *event, 479 struct perf_sample *sample) 480 { 481 struct thread *thread = machine__findnew_thread(machine, 482 event->comm.pid, 483 event->comm.tid); 484 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 485 int err = 0; 486 487 if (exec) 488 machine->comm_exec = true; 489 490 if (dump_trace) 491 perf_event__fprintf_comm(event, stdout); 492 493 if (thread == NULL || 494 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 495 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 496 err = -1; 497 } 498 499 thread__put(thread); 500 501 return err; 502 } 503 504 int machine__process_lost_event(struct machine *machine __maybe_unused, 505 union perf_event *event, struct perf_sample *sample __maybe_unused) 506 { 507 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 508 event->lost.id, event->lost.lost); 509 return 0; 510 } 511 512 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 513 union perf_event *event, struct perf_sample *sample) 514 { 515 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 516 sample->id, event->lost_samples.lost); 517 return 0; 518 } 519 520 static struct dso *machine__findnew_module_dso(struct machine *machine, 521 struct kmod_path *m, 522 const char *filename) 523 { 524 struct dso *dso; 525 526 pthread_rwlock_wrlock(&machine->dsos.lock); 527 528 dso = __dsos__find(&machine->dsos, m->name, true); 529 if (!dso) { 530 dso = __dsos__addnew(&machine->dsos, m->name); 531 if (dso == NULL) 532 goto out_unlock; 533 534 if (machine__is_host(machine)) 535 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE; 536 else 537 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE; 538 539 /* _KMODULE_COMP should be next to _KMODULE */ 540 if (m->kmod && m->comp) 541 dso->symtab_type++; 542 543 dso__set_short_name(dso, strdup(m->name), true); 544 dso__set_long_name(dso, strdup(filename), true); 545 } 546 547 dso__get(dso); 548 out_unlock: 549 pthread_rwlock_unlock(&machine->dsos.lock); 550 return dso; 551 } 552 553 int machine__process_aux_event(struct machine *machine __maybe_unused, 554 union perf_event *event) 555 { 556 if (dump_trace) 557 perf_event__fprintf_aux(event, stdout); 558 return 0; 559 } 560 561 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 562 union perf_event *event) 563 { 564 if (dump_trace) 565 perf_event__fprintf_itrace_start(event, stdout); 566 return 0; 567 } 568 569 int machine__process_switch_event(struct machine *machine __maybe_unused, 570 union perf_event *event) 571 { 572 if (dump_trace) 573 perf_event__fprintf_switch(event, stdout); 574 return 0; 575 } 576 577 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 578 { 579 const char *dup_filename; 580 581 if (!filename || !dso || !dso->long_name) 582 return; 583 if (dso->long_name[0] != '[') 584 return; 585 if (!strchr(filename, '/')) 586 return; 587 588 dup_filename = strdup(filename); 589 if (!dup_filename) 590 return; 591 592 dso__set_long_name(dso, dup_filename, true); 593 } 594 595 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 596 const char *filename) 597 { 598 struct map *map = NULL; 599 struct dso *dso = NULL; 600 struct kmod_path m; 601 602 if (kmod_path__parse_name(&m, filename)) 603 return NULL; 604 605 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION, 606 m.name); 607 if (map) { 608 /* 609 * If the map's dso is an offline module, give dso__load() 610 * a chance to find the file path of that module by fixing 611 * long_name. 612 */ 613 dso__adjust_kmod_long_name(map->dso, filename); 614 goto out; 615 } 616 617 dso = machine__findnew_module_dso(machine, &m, filename); 618 if (dso == NULL) 619 goto out; 620 621 map = map__new2(start, dso, MAP__FUNCTION); 622 if (map == NULL) 623 goto out; 624 625 map_groups__insert(&machine->kmaps, map); 626 627 /* Put the map here because map_groups__insert alread got it */ 628 map__put(map); 629 out: 630 /* put the dso here, corresponding to machine__findnew_module_dso */ 631 dso__put(dso); 632 free(m.name); 633 return map; 634 } 635 636 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 637 { 638 struct rb_node *nd; 639 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 640 641 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 642 struct machine *pos = rb_entry(nd, struct machine, rb_node); 643 ret += __dsos__fprintf(&pos->dsos.head, fp); 644 } 645 646 return ret; 647 } 648 649 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 650 bool (skip)(struct dso *dso, int parm), int parm) 651 { 652 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 653 } 654 655 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 656 bool (skip)(struct dso *dso, int parm), int parm) 657 { 658 struct rb_node *nd; 659 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 660 661 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 662 struct machine *pos = rb_entry(nd, struct machine, rb_node); 663 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 664 } 665 return ret; 666 } 667 668 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 669 { 670 int i; 671 size_t printed = 0; 672 struct dso *kdso = machine__kernel_map(machine)->dso; 673 674 if (kdso->has_build_id) { 675 char filename[PATH_MAX]; 676 if (dso__build_id_filename(kdso, filename, sizeof(filename))) 677 printed += fprintf(fp, "[0] %s\n", filename); 678 } 679 680 for (i = 0; i < vmlinux_path__nr_entries; ++i) 681 printed += fprintf(fp, "[%d] %s\n", 682 i + kdso->has_build_id, vmlinux_path[i]); 683 684 return printed; 685 } 686 687 size_t machine__fprintf(struct machine *machine, FILE *fp) 688 { 689 size_t ret; 690 struct rb_node *nd; 691 692 pthread_rwlock_rdlock(&machine->threads_lock); 693 694 ret = fprintf(fp, "Threads: %u\n", machine->nr_threads); 695 696 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 697 struct thread *pos = rb_entry(nd, struct thread, rb_node); 698 699 ret += thread__fprintf(pos, fp); 700 } 701 702 pthread_rwlock_unlock(&machine->threads_lock); 703 704 return ret; 705 } 706 707 static struct dso *machine__get_kernel(struct machine *machine) 708 { 709 const char *vmlinux_name = NULL; 710 struct dso *kernel; 711 712 if (machine__is_host(machine)) { 713 vmlinux_name = symbol_conf.vmlinux_name; 714 if (!vmlinux_name) 715 vmlinux_name = DSO__NAME_KALLSYMS; 716 717 kernel = machine__findnew_kernel(machine, vmlinux_name, 718 "[kernel]", DSO_TYPE_KERNEL); 719 } else { 720 char bf[PATH_MAX]; 721 722 if (machine__is_default_guest(machine)) 723 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 724 if (!vmlinux_name) 725 vmlinux_name = machine__mmap_name(machine, bf, 726 sizeof(bf)); 727 728 kernel = machine__findnew_kernel(machine, vmlinux_name, 729 "[guest.kernel]", 730 DSO_TYPE_GUEST_KERNEL); 731 } 732 733 if (kernel != NULL && (!kernel->has_build_id)) 734 dso__read_running_kernel_build_id(kernel, machine); 735 736 return kernel; 737 } 738 739 struct process_args { 740 u64 start; 741 }; 742 743 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 744 size_t bufsz) 745 { 746 if (machine__is_default_guest(machine)) 747 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 748 else 749 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 750 } 751 752 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 753 754 /* Figure out the start address of kernel map from /proc/kallsyms. 755 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 756 * symbol_name if it's not that important. 757 */ 758 static u64 machine__get_running_kernel_start(struct machine *machine, 759 const char **symbol_name) 760 { 761 char filename[PATH_MAX]; 762 int i; 763 const char *name; 764 u64 addr = 0; 765 766 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 767 768 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 769 return 0; 770 771 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 772 addr = kallsyms__get_function_start(filename, name); 773 if (addr) 774 break; 775 } 776 777 if (symbol_name) 778 *symbol_name = name; 779 780 return addr; 781 } 782 783 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 784 { 785 int type; 786 u64 start = machine__get_running_kernel_start(machine, NULL); 787 788 /* In case of renewal the kernel map, destroy previous one */ 789 machine__destroy_kernel_maps(machine); 790 791 for (type = 0; type < MAP__NR_TYPES; ++type) { 792 struct kmap *kmap; 793 struct map *map; 794 795 machine->vmlinux_maps[type] = map__new2(start, kernel, type); 796 if (machine->vmlinux_maps[type] == NULL) 797 return -1; 798 799 machine->vmlinux_maps[type]->map_ip = 800 machine->vmlinux_maps[type]->unmap_ip = 801 identity__map_ip; 802 map = __machine__kernel_map(machine, type); 803 kmap = map__kmap(map); 804 if (!kmap) 805 return -1; 806 807 kmap->kmaps = &machine->kmaps; 808 map_groups__insert(&machine->kmaps, map); 809 } 810 811 return 0; 812 } 813 814 void machine__destroy_kernel_maps(struct machine *machine) 815 { 816 int type; 817 818 for (type = 0; type < MAP__NR_TYPES; ++type) { 819 struct kmap *kmap; 820 struct map *map = __machine__kernel_map(machine, type); 821 822 if (map == NULL) 823 continue; 824 825 kmap = map__kmap(map); 826 map_groups__remove(&machine->kmaps, map); 827 if (kmap && kmap->ref_reloc_sym) { 828 /* 829 * ref_reloc_sym is shared among all maps, so free just 830 * on one of them. 831 */ 832 if (type == MAP__FUNCTION) { 833 zfree((char **)&kmap->ref_reloc_sym->name); 834 zfree(&kmap->ref_reloc_sym); 835 } else 836 kmap->ref_reloc_sym = NULL; 837 } 838 839 map__put(machine->vmlinux_maps[type]); 840 machine->vmlinux_maps[type] = NULL; 841 } 842 } 843 844 int machines__create_guest_kernel_maps(struct machines *machines) 845 { 846 int ret = 0; 847 struct dirent **namelist = NULL; 848 int i, items = 0; 849 char path[PATH_MAX]; 850 pid_t pid; 851 char *endp; 852 853 if (symbol_conf.default_guest_vmlinux_name || 854 symbol_conf.default_guest_modules || 855 symbol_conf.default_guest_kallsyms) { 856 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 857 } 858 859 if (symbol_conf.guestmount) { 860 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 861 if (items <= 0) 862 return -ENOENT; 863 for (i = 0; i < items; i++) { 864 if (!isdigit(namelist[i]->d_name[0])) { 865 /* Filter out . and .. */ 866 continue; 867 } 868 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 869 if ((*endp != '\0') || 870 (endp == namelist[i]->d_name) || 871 (errno == ERANGE)) { 872 pr_debug("invalid directory (%s). Skipping.\n", 873 namelist[i]->d_name); 874 continue; 875 } 876 sprintf(path, "%s/%s/proc/kallsyms", 877 symbol_conf.guestmount, 878 namelist[i]->d_name); 879 ret = access(path, R_OK); 880 if (ret) { 881 pr_debug("Can't access file %s\n", path); 882 goto failure; 883 } 884 machines__create_kernel_maps(machines, pid); 885 } 886 failure: 887 free(namelist); 888 } 889 890 return ret; 891 } 892 893 void machines__destroy_kernel_maps(struct machines *machines) 894 { 895 struct rb_node *next = rb_first(&machines->guests); 896 897 machine__destroy_kernel_maps(&machines->host); 898 899 while (next) { 900 struct machine *pos = rb_entry(next, struct machine, rb_node); 901 902 next = rb_next(&pos->rb_node); 903 rb_erase(&pos->rb_node, &machines->guests); 904 machine__delete(pos); 905 } 906 } 907 908 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 909 { 910 struct machine *machine = machines__findnew(machines, pid); 911 912 if (machine == NULL) 913 return -1; 914 915 return machine__create_kernel_maps(machine); 916 } 917 918 int __machine__load_kallsyms(struct machine *machine, const char *filename, 919 enum map_type type, bool no_kcore) 920 { 921 struct map *map = machine__kernel_map(machine); 922 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore); 923 924 if (ret > 0) { 925 dso__set_loaded(map->dso, type); 926 /* 927 * Since /proc/kallsyms will have multiple sessions for the 928 * kernel, with modules between them, fixup the end of all 929 * sections. 930 */ 931 __map_groups__fixup_end(&machine->kmaps, type); 932 } 933 934 return ret; 935 } 936 937 int machine__load_kallsyms(struct machine *machine, const char *filename, 938 enum map_type type) 939 { 940 return __machine__load_kallsyms(machine, filename, type, false); 941 } 942 943 int machine__load_vmlinux_path(struct machine *machine, enum map_type type) 944 { 945 struct map *map = machine__kernel_map(machine); 946 int ret = dso__load_vmlinux_path(map->dso, map); 947 948 if (ret > 0) 949 dso__set_loaded(map->dso, type); 950 951 return ret; 952 } 953 954 static void map_groups__fixup_end(struct map_groups *mg) 955 { 956 int i; 957 for (i = 0; i < MAP__NR_TYPES; ++i) 958 __map_groups__fixup_end(mg, i); 959 } 960 961 static char *get_kernel_version(const char *root_dir) 962 { 963 char version[PATH_MAX]; 964 FILE *file; 965 char *name, *tmp; 966 const char *prefix = "Linux version "; 967 968 sprintf(version, "%s/proc/version", root_dir); 969 file = fopen(version, "r"); 970 if (!file) 971 return NULL; 972 973 version[0] = '\0'; 974 tmp = fgets(version, sizeof(version), file); 975 fclose(file); 976 977 name = strstr(version, prefix); 978 if (!name) 979 return NULL; 980 name += strlen(prefix); 981 tmp = strchr(name, ' '); 982 if (tmp) 983 *tmp = '\0'; 984 985 return strdup(name); 986 } 987 988 static bool is_kmod_dso(struct dso *dso) 989 { 990 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 991 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 992 } 993 994 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 995 struct kmod_path *m) 996 { 997 struct map *map; 998 char *long_name; 999 1000 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name); 1001 if (map == NULL) 1002 return 0; 1003 1004 long_name = strdup(path); 1005 if (long_name == NULL) 1006 return -ENOMEM; 1007 1008 dso__set_long_name(map->dso, long_name, true); 1009 dso__kernel_module_get_build_id(map->dso, ""); 1010 1011 /* 1012 * Full name could reveal us kmod compression, so 1013 * we need to update the symtab_type if needed. 1014 */ 1015 if (m->comp && is_kmod_dso(map->dso)) 1016 map->dso->symtab_type++; 1017 1018 return 0; 1019 } 1020 1021 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1022 const char *dir_name, int depth) 1023 { 1024 struct dirent *dent; 1025 DIR *dir = opendir(dir_name); 1026 int ret = 0; 1027 1028 if (!dir) { 1029 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1030 return -1; 1031 } 1032 1033 while ((dent = readdir(dir)) != NULL) { 1034 char path[PATH_MAX]; 1035 struct stat st; 1036 1037 /*sshfs might return bad dent->d_type, so we have to stat*/ 1038 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1039 if (stat(path, &st)) 1040 continue; 1041 1042 if (S_ISDIR(st.st_mode)) { 1043 if (!strcmp(dent->d_name, ".") || 1044 !strcmp(dent->d_name, "..")) 1045 continue; 1046 1047 /* Do not follow top-level source and build symlinks */ 1048 if (depth == 0) { 1049 if (!strcmp(dent->d_name, "source") || 1050 !strcmp(dent->d_name, "build")) 1051 continue; 1052 } 1053 1054 ret = map_groups__set_modules_path_dir(mg, path, 1055 depth + 1); 1056 if (ret < 0) 1057 goto out; 1058 } else { 1059 struct kmod_path m; 1060 1061 ret = kmod_path__parse_name(&m, dent->d_name); 1062 if (ret) 1063 goto out; 1064 1065 if (m.kmod) 1066 ret = map_groups__set_module_path(mg, path, &m); 1067 1068 free(m.name); 1069 1070 if (ret) 1071 goto out; 1072 } 1073 } 1074 1075 out: 1076 closedir(dir); 1077 return ret; 1078 } 1079 1080 static int machine__set_modules_path(struct machine *machine) 1081 { 1082 char *version; 1083 char modules_path[PATH_MAX]; 1084 1085 version = get_kernel_version(machine->root_dir); 1086 if (!version) 1087 return -1; 1088 1089 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1090 machine->root_dir, version); 1091 free(version); 1092 1093 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1094 } 1095 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1096 const char *name __maybe_unused) 1097 { 1098 return 0; 1099 } 1100 1101 static int machine__create_module(void *arg, const char *name, u64 start) 1102 { 1103 struct machine *machine = arg; 1104 struct map *map; 1105 1106 if (arch__fix_module_text_start(&start, name) < 0) 1107 return -1; 1108 1109 map = machine__findnew_module_map(machine, start, name); 1110 if (map == NULL) 1111 return -1; 1112 1113 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1114 1115 return 0; 1116 } 1117 1118 static int machine__create_modules(struct machine *machine) 1119 { 1120 const char *modules; 1121 char path[PATH_MAX]; 1122 1123 if (machine__is_default_guest(machine)) { 1124 modules = symbol_conf.default_guest_modules; 1125 } else { 1126 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1127 modules = path; 1128 } 1129 1130 if (symbol__restricted_filename(modules, "/proc/modules")) 1131 return -1; 1132 1133 if (modules__parse(modules, machine, machine__create_module)) 1134 return -1; 1135 1136 if (!machine__set_modules_path(machine)) 1137 return 0; 1138 1139 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1140 1141 return 0; 1142 } 1143 1144 int machine__create_kernel_maps(struct machine *machine) 1145 { 1146 struct dso *kernel = machine__get_kernel(machine); 1147 const char *name; 1148 u64 addr; 1149 int ret; 1150 1151 if (kernel == NULL) 1152 return -1; 1153 1154 ret = __machine__create_kernel_maps(machine, kernel); 1155 dso__put(kernel); 1156 if (ret < 0) 1157 return -1; 1158 1159 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1160 if (machine__is_host(machine)) 1161 pr_debug("Problems creating module maps, " 1162 "continuing anyway...\n"); 1163 else 1164 pr_debug("Problems creating module maps for guest %d, " 1165 "continuing anyway...\n", machine->pid); 1166 } 1167 1168 /* 1169 * Now that we have all the maps created, just set the ->end of them: 1170 */ 1171 map_groups__fixup_end(&machine->kmaps); 1172 1173 addr = machine__get_running_kernel_start(machine, &name); 1174 if (!addr) { 1175 } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) { 1176 machine__destroy_kernel_maps(machine); 1177 return -1; 1178 } 1179 1180 return 0; 1181 } 1182 1183 static void machine__set_kernel_mmap_len(struct machine *machine, 1184 union perf_event *event) 1185 { 1186 int i; 1187 1188 for (i = 0; i < MAP__NR_TYPES; i++) { 1189 machine->vmlinux_maps[i]->start = event->mmap.start; 1190 machine->vmlinux_maps[i]->end = (event->mmap.start + 1191 event->mmap.len); 1192 /* 1193 * Be a bit paranoid here, some perf.data file came with 1194 * a zero sized synthesized MMAP event for the kernel. 1195 */ 1196 if (machine->vmlinux_maps[i]->end == 0) 1197 machine->vmlinux_maps[i]->end = ~0ULL; 1198 } 1199 } 1200 1201 static bool machine__uses_kcore(struct machine *machine) 1202 { 1203 struct dso *dso; 1204 1205 list_for_each_entry(dso, &machine->dsos.head, node) { 1206 if (dso__is_kcore(dso)) 1207 return true; 1208 } 1209 1210 return false; 1211 } 1212 1213 static int machine__process_kernel_mmap_event(struct machine *machine, 1214 union perf_event *event) 1215 { 1216 struct map *map; 1217 char kmmap_prefix[PATH_MAX]; 1218 enum dso_kernel_type kernel_type; 1219 bool is_kernel_mmap; 1220 1221 /* If we have maps from kcore then we do not need or want any others */ 1222 if (machine__uses_kcore(machine)) 1223 return 0; 1224 1225 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix)); 1226 if (machine__is_host(machine)) 1227 kernel_type = DSO_TYPE_KERNEL; 1228 else 1229 kernel_type = DSO_TYPE_GUEST_KERNEL; 1230 1231 is_kernel_mmap = memcmp(event->mmap.filename, 1232 kmmap_prefix, 1233 strlen(kmmap_prefix) - 1) == 0; 1234 if (event->mmap.filename[0] == '/' || 1235 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1236 map = machine__findnew_module_map(machine, event->mmap.start, 1237 event->mmap.filename); 1238 if (map == NULL) 1239 goto out_problem; 1240 1241 map->end = map->start + event->mmap.len; 1242 } else if (is_kernel_mmap) { 1243 const char *symbol_name = (event->mmap.filename + 1244 strlen(kmmap_prefix)); 1245 /* 1246 * Should be there already, from the build-id table in 1247 * the header. 1248 */ 1249 struct dso *kernel = NULL; 1250 struct dso *dso; 1251 1252 pthread_rwlock_rdlock(&machine->dsos.lock); 1253 1254 list_for_each_entry(dso, &machine->dsos.head, node) { 1255 1256 /* 1257 * The cpumode passed to is_kernel_module is not the 1258 * cpumode of *this* event. If we insist on passing 1259 * correct cpumode to is_kernel_module, we should 1260 * record the cpumode when we adding this dso to the 1261 * linked list. 1262 * 1263 * However we don't really need passing correct 1264 * cpumode. We know the correct cpumode must be kernel 1265 * mode (if not, we should not link it onto kernel_dsos 1266 * list). 1267 * 1268 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1269 * is_kernel_module() treats it as a kernel cpumode. 1270 */ 1271 1272 if (!dso->kernel || 1273 is_kernel_module(dso->long_name, 1274 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1275 continue; 1276 1277 1278 kernel = dso; 1279 break; 1280 } 1281 1282 pthread_rwlock_unlock(&machine->dsos.lock); 1283 1284 if (kernel == NULL) 1285 kernel = machine__findnew_dso(machine, kmmap_prefix); 1286 if (kernel == NULL) 1287 goto out_problem; 1288 1289 kernel->kernel = kernel_type; 1290 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1291 dso__put(kernel); 1292 goto out_problem; 1293 } 1294 1295 if (strstr(kernel->long_name, "vmlinux")) 1296 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1297 1298 machine__set_kernel_mmap_len(machine, event); 1299 1300 /* 1301 * Avoid using a zero address (kptr_restrict) for the ref reloc 1302 * symbol. Effectively having zero here means that at record 1303 * time /proc/sys/kernel/kptr_restrict was non zero. 1304 */ 1305 if (event->mmap.pgoff != 0) { 1306 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1307 symbol_name, 1308 event->mmap.pgoff); 1309 } 1310 1311 if (machine__is_default_guest(machine)) { 1312 /* 1313 * preload dso of guest kernel and modules 1314 */ 1315 dso__load(kernel, machine__kernel_map(machine)); 1316 } 1317 } 1318 return 0; 1319 out_problem: 1320 return -1; 1321 } 1322 1323 int machine__process_mmap2_event(struct machine *machine, 1324 union perf_event *event, 1325 struct perf_sample *sample) 1326 { 1327 struct thread *thread; 1328 struct map *map; 1329 enum map_type type; 1330 int ret = 0; 1331 1332 if (dump_trace) 1333 perf_event__fprintf_mmap2(event, stdout); 1334 1335 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1336 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1337 ret = machine__process_kernel_mmap_event(machine, event); 1338 if (ret < 0) 1339 goto out_problem; 1340 return 0; 1341 } 1342 1343 thread = machine__findnew_thread(machine, event->mmap2.pid, 1344 event->mmap2.tid); 1345 if (thread == NULL) 1346 goto out_problem; 1347 1348 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1349 type = MAP__VARIABLE; 1350 else 1351 type = MAP__FUNCTION; 1352 1353 map = map__new(machine, event->mmap2.start, 1354 event->mmap2.len, event->mmap2.pgoff, 1355 event->mmap2.pid, event->mmap2.maj, 1356 event->mmap2.min, event->mmap2.ino, 1357 event->mmap2.ino_generation, 1358 event->mmap2.prot, 1359 event->mmap2.flags, 1360 event->mmap2.filename, type, thread); 1361 1362 if (map == NULL) 1363 goto out_problem_map; 1364 1365 ret = thread__insert_map(thread, map); 1366 if (ret) 1367 goto out_problem_insert; 1368 1369 thread__put(thread); 1370 map__put(map); 1371 return 0; 1372 1373 out_problem_insert: 1374 map__put(map); 1375 out_problem_map: 1376 thread__put(thread); 1377 out_problem: 1378 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1379 return 0; 1380 } 1381 1382 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1383 struct perf_sample *sample) 1384 { 1385 struct thread *thread; 1386 struct map *map; 1387 enum map_type type; 1388 int ret = 0; 1389 1390 if (dump_trace) 1391 perf_event__fprintf_mmap(event, stdout); 1392 1393 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1394 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1395 ret = machine__process_kernel_mmap_event(machine, event); 1396 if (ret < 0) 1397 goto out_problem; 1398 return 0; 1399 } 1400 1401 thread = machine__findnew_thread(machine, event->mmap.pid, 1402 event->mmap.tid); 1403 if (thread == NULL) 1404 goto out_problem; 1405 1406 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1407 type = MAP__VARIABLE; 1408 else 1409 type = MAP__FUNCTION; 1410 1411 map = map__new(machine, event->mmap.start, 1412 event->mmap.len, event->mmap.pgoff, 1413 event->mmap.pid, 0, 0, 0, 0, 0, 0, 1414 event->mmap.filename, 1415 type, thread); 1416 1417 if (map == NULL) 1418 goto out_problem_map; 1419 1420 ret = thread__insert_map(thread, map); 1421 if (ret) 1422 goto out_problem_insert; 1423 1424 thread__put(thread); 1425 map__put(map); 1426 return 0; 1427 1428 out_problem_insert: 1429 map__put(map); 1430 out_problem_map: 1431 thread__put(thread); 1432 out_problem: 1433 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1434 return 0; 1435 } 1436 1437 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1438 { 1439 if (machine->last_match == th) 1440 machine->last_match = NULL; 1441 1442 BUG_ON(atomic_read(&th->refcnt) == 0); 1443 if (lock) 1444 pthread_rwlock_wrlock(&machine->threads_lock); 1445 rb_erase_init(&th->rb_node, &machine->threads); 1446 RB_CLEAR_NODE(&th->rb_node); 1447 --machine->nr_threads; 1448 /* 1449 * Move it first to the dead_threads list, then drop the reference, 1450 * if this is the last reference, then the thread__delete destructor 1451 * will be called and we will remove it from the dead_threads list. 1452 */ 1453 list_add_tail(&th->node, &machine->dead_threads); 1454 if (lock) 1455 pthread_rwlock_unlock(&machine->threads_lock); 1456 thread__put(th); 1457 } 1458 1459 void machine__remove_thread(struct machine *machine, struct thread *th) 1460 { 1461 return __machine__remove_thread(machine, th, true); 1462 } 1463 1464 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1465 struct perf_sample *sample) 1466 { 1467 struct thread *thread = machine__find_thread(machine, 1468 event->fork.pid, 1469 event->fork.tid); 1470 struct thread *parent = machine__findnew_thread(machine, 1471 event->fork.ppid, 1472 event->fork.ptid); 1473 int err = 0; 1474 1475 if (dump_trace) 1476 perf_event__fprintf_task(event, stdout); 1477 1478 /* 1479 * There may be an existing thread that is not actually the parent, 1480 * either because we are processing events out of order, or because the 1481 * (fork) event that would have removed the thread was lost. Assume the 1482 * latter case and continue on as best we can. 1483 */ 1484 if (parent->pid_ != (pid_t)event->fork.ppid) { 1485 dump_printf("removing erroneous parent thread %d/%d\n", 1486 parent->pid_, parent->tid); 1487 machine__remove_thread(machine, parent); 1488 thread__put(parent); 1489 parent = machine__findnew_thread(machine, event->fork.ppid, 1490 event->fork.ptid); 1491 } 1492 1493 /* if a thread currently exists for the thread id remove it */ 1494 if (thread != NULL) { 1495 machine__remove_thread(machine, thread); 1496 thread__put(thread); 1497 } 1498 1499 thread = machine__findnew_thread(machine, event->fork.pid, 1500 event->fork.tid); 1501 1502 if (thread == NULL || parent == NULL || 1503 thread__fork(thread, parent, sample->time) < 0) { 1504 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1505 err = -1; 1506 } 1507 thread__put(thread); 1508 thread__put(parent); 1509 1510 return err; 1511 } 1512 1513 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1514 struct perf_sample *sample __maybe_unused) 1515 { 1516 struct thread *thread = machine__find_thread(machine, 1517 event->fork.pid, 1518 event->fork.tid); 1519 1520 if (dump_trace) 1521 perf_event__fprintf_task(event, stdout); 1522 1523 if (thread != NULL) { 1524 thread__exited(thread); 1525 thread__put(thread); 1526 } 1527 1528 return 0; 1529 } 1530 1531 int machine__process_event(struct machine *machine, union perf_event *event, 1532 struct perf_sample *sample) 1533 { 1534 int ret; 1535 1536 switch (event->header.type) { 1537 case PERF_RECORD_COMM: 1538 ret = machine__process_comm_event(machine, event, sample); break; 1539 case PERF_RECORD_MMAP: 1540 ret = machine__process_mmap_event(machine, event, sample); break; 1541 case PERF_RECORD_MMAP2: 1542 ret = machine__process_mmap2_event(machine, event, sample); break; 1543 case PERF_RECORD_FORK: 1544 ret = machine__process_fork_event(machine, event, sample); break; 1545 case PERF_RECORD_EXIT: 1546 ret = machine__process_exit_event(machine, event, sample); break; 1547 case PERF_RECORD_LOST: 1548 ret = machine__process_lost_event(machine, event, sample); break; 1549 case PERF_RECORD_AUX: 1550 ret = machine__process_aux_event(machine, event); break; 1551 case PERF_RECORD_ITRACE_START: 1552 ret = machine__process_itrace_start_event(machine, event); break; 1553 case PERF_RECORD_LOST_SAMPLES: 1554 ret = machine__process_lost_samples_event(machine, event, sample); break; 1555 case PERF_RECORD_SWITCH: 1556 case PERF_RECORD_SWITCH_CPU_WIDE: 1557 ret = machine__process_switch_event(machine, event); break; 1558 default: 1559 ret = -1; 1560 break; 1561 } 1562 1563 return ret; 1564 } 1565 1566 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1567 { 1568 if (!regexec(regex, sym->name, 0, NULL, 0)) 1569 return 1; 1570 return 0; 1571 } 1572 1573 static void ip__resolve_ams(struct thread *thread, 1574 struct addr_map_symbol *ams, 1575 u64 ip) 1576 { 1577 struct addr_location al; 1578 1579 memset(&al, 0, sizeof(al)); 1580 /* 1581 * We cannot use the header.misc hint to determine whether a 1582 * branch stack address is user, kernel, guest, hypervisor. 1583 * Branches may straddle the kernel/user/hypervisor boundaries. 1584 * Thus, we have to try consecutively until we find a match 1585 * or else, the symbol is unknown 1586 */ 1587 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1588 1589 ams->addr = ip; 1590 ams->al_addr = al.addr; 1591 ams->sym = al.sym; 1592 ams->map = al.map; 1593 } 1594 1595 static void ip__resolve_data(struct thread *thread, 1596 u8 m, struct addr_map_symbol *ams, u64 addr) 1597 { 1598 struct addr_location al; 1599 1600 memset(&al, 0, sizeof(al)); 1601 1602 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1603 if (al.map == NULL) { 1604 /* 1605 * some shared data regions have execute bit set which puts 1606 * their mapping in the MAP__FUNCTION type array. 1607 * Check there as a fallback option before dropping the sample. 1608 */ 1609 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1610 } 1611 1612 ams->addr = addr; 1613 ams->al_addr = al.addr; 1614 ams->sym = al.sym; 1615 ams->map = al.map; 1616 } 1617 1618 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1619 struct addr_location *al) 1620 { 1621 struct mem_info *mi = zalloc(sizeof(*mi)); 1622 1623 if (!mi) 1624 return NULL; 1625 1626 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1627 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr); 1628 mi->data_src.val = sample->data_src; 1629 1630 return mi; 1631 } 1632 1633 static int add_callchain_ip(struct thread *thread, 1634 struct callchain_cursor *cursor, 1635 struct symbol **parent, 1636 struct addr_location *root_al, 1637 u8 *cpumode, 1638 u64 ip, 1639 bool branch, 1640 struct branch_flags *flags, 1641 int nr_loop_iter, 1642 int samples) 1643 { 1644 struct addr_location al; 1645 1646 al.filtered = 0; 1647 al.sym = NULL; 1648 if (!cpumode) { 1649 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1650 ip, &al); 1651 } else { 1652 if (ip >= PERF_CONTEXT_MAX) { 1653 switch (ip) { 1654 case PERF_CONTEXT_HV: 1655 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1656 break; 1657 case PERF_CONTEXT_KERNEL: 1658 *cpumode = PERF_RECORD_MISC_KERNEL; 1659 break; 1660 case PERF_CONTEXT_USER: 1661 *cpumode = PERF_RECORD_MISC_USER; 1662 break; 1663 default: 1664 pr_debug("invalid callchain context: " 1665 "%"PRId64"\n", (s64) ip); 1666 /* 1667 * It seems the callchain is corrupted. 1668 * Discard all. 1669 */ 1670 callchain_cursor_reset(cursor); 1671 return 1; 1672 } 1673 return 0; 1674 } 1675 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION, 1676 ip, &al); 1677 } 1678 1679 if (al.sym != NULL) { 1680 if (perf_hpp_list.parent && !*parent && 1681 symbol__match_regex(al.sym, &parent_regex)) 1682 *parent = al.sym; 1683 else if (have_ignore_callees && root_al && 1684 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1685 /* Treat this symbol as the root, 1686 forgetting its callees. */ 1687 *root_al = al; 1688 callchain_cursor_reset(cursor); 1689 } 1690 } 1691 1692 if (symbol_conf.hide_unresolved && al.sym == NULL) 1693 return 0; 1694 return callchain_cursor_append(cursor, al.addr, al.map, al.sym, 1695 branch, flags, nr_loop_iter, samples); 1696 } 1697 1698 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1699 struct addr_location *al) 1700 { 1701 unsigned int i; 1702 const struct branch_stack *bs = sample->branch_stack; 1703 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1704 1705 if (!bi) 1706 return NULL; 1707 1708 for (i = 0; i < bs->nr; i++) { 1709 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1710 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1711 bi[i].flags = bs->entries[i].flags; 1712 } 1713 return bi; 1714 } 1715 1716 #define CHASHSZ 127 1717 #define CHASHBITS 7 1718 #define NO_ENTRY 0xff 1719 1720 #define PERF_MAX_BRANCH_DEPTH 127 1721 1722 /* Remove loops. */ 1723 static int remove_loops(struct branch_entry *l, int nr) 1724 { 1725 int i, j, off; 1726 unsigned char chash[CHASHSZ]; 1727 1728 memset(chash, NO_ENTRY, sizeof(chash)); 1729 1730 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1731 1732 for (i = 0; i < nr; i++) { 1733 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1734 1735 /* no collision handling for now */ 1736 if (chash[h] == NO_ENTRY) { 1737 chash[h] = i; 1738 } else if (l[chash[h]].from == l[i].from) { 1739 bool is_loop = true; 1740 /* check if it is a real loop */ 1741 off = 0; 1742 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1743 if (l[j].from != l[i + off].from) { 1744 is_loop = false; 1745 break; 1746 } 1747 if (is_loop) { 1748 memmove(l + i, l + i + off, 1749 (nr - (i + off)) * sizeof(*l)); 1750 nr -= off; 1751 } 1752 } 1753 } 1754 return nr; 1755 } 1756 1757 /* 1758 * Recolve LBR callstack chain sample 1759 * Return: 1760 * 1 on success get LBR callchain information 1761 * 0 no available LBR callchain information, should try fp 1762 * negative error code on other errors. 1763 */ 1764 static int resolve_lbr_callchain_sample(struct thread *thread, 1765 struct callchain_cursor *cursor, 1766 struct perf_sample *sample, 1767 struct symbol **parent, 1768 struct addr_location *root_al, 1769 int max_stack) 1770 { 1771 struct ip_callchain *chain = sample->callchain; 1772 int chain_nr = min(max_stack, (int)chain->nr), i; 1773 u8 cpumode = PERF_RECORD_MISC_USER; 1774 u64 ip; 1775 1776 for (i = 0; i < chain_nr; i++) { 1777 if (chain->ips[i] == PERF_CONTEXT_USER) 1778 break; 1779 } 1780 1781 /* LBR only affects the user callchain */ 1782 if (i != chain_nr) { 1783 struct branch_stack *lbr_stack = sample->branch_stack; 1784 int lbr_nr = lbr_stack->nr, j, k; 1785 bool branch; 1786 struct branch_flags *flags; 1787 /* 1788 * LBR callstack can only get user call chain. 1789 * The mix_chain_nr is kernel call chain 1790 * number plus LBR user call chain number. 1791 * i is kernel call chain number, 1792 * 1 is PERF_CONTEXT_USER, 1793 * lbr_nr + 1 is the user call chain number. 1794 * For details, please refer to the comments 1795 * in callchain__printf 1796 */ 1797 int mix_chain_nr = i + 1 + lbr_nr + 1; 1798 1799 for (j = 0; j < mix_chain_nr; j++) { 1800 int err; 1801 branch = false; 1802 flags = NULL; 1803 1804 if (callchain_param.order == ORDER_CALLEE) { 1805 if (j < i + 1) 1806 ip = chain->ips[j]; 1807 else if (j > i + 1) { 1808 k = j - i - 2; 1809 ip = lbr_stack->entries[k].from; 1810 branch = true; 1811 flags = &lbr_stack->entries[k].flags; 1812 } else { 1813 ip = lbr_stack->entries[0].to; 1814 branch = true; 1815 flags = &lbr_stack->entries[0].flags; 1816 } 1817 } else { 1818 if (j < lbr_nr) { 1819 k = lbr_nr - j - 1; 1820 ip = lbr_stack->entries[k].from; 1821 branch = true; 1822 flags = &lbr_stack->entries[k].flags; 1823 } 1824 else if (j > lbr_nr) 1825 ip = chain->ips[i + 1 - (j - lbr_nr)]; 1826 else { 1827 ip = lbr_stack->entries[0].to; 1828 branch = true; 1829 flags = &lbr_stack->entries[0].flags; 1830 } 1831 } 1832 1833 err = add_callchain_ip(thread, cursor, parent, 1834 root_al, &cpumode, ip, 1835 branch, flags, 0, 0); 1836 if (err) 1837 return (err < 0) ? err : 0; 1838 } 1839 return 1; 1840 } 1841 1842 return 0; 1843 } 1844 1845 static int thread__resolve_callchain_sample(struct thread *thread, 1846 struct callchain_cursor *cursor, 1847 struct perf_evsel *evsel, 1848 struct perf_sample *sample, 1849 struct symbol **parent, 1850 struct addr_location *root_al, 1851 int max_stack) 1852 { 1853 struct branch_stack *branch = sample->branch_stack; 1854 struct ip_callchain *chain = sample->callchain; 1855 int chain_nr = chain->nr; 1856 u8 cpumode = PERF_RECORD_MISC_USER; 1857 int i, j, err, nr_entries; 1858 int skip_idx = -1; 1859 int first_call = 0; 1860 int nr_loop_iter; 1861 1862 if (perf_evsel__has_branch_callstack(evsel)) { 1863 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 1864 root_al, max_stack); 1865 if (err) 1866 return (err < 0) ? err : 0; 1867 } 1868 1869 /* 1870 * Based on DWARF debug information, some architectures skip 1871 * a callchain entry saved by the kernel. 1872 */ 1873 skip_idx = arch_skip_callchain_idx(thread, chain); 1874 1875 /* 1876 * Add branches to call stack for easier browsing. This gives 1877 * more context for a sample than just the callers. 1878 * 1879 * This uses individual histograms of paths compared to the 1880 * aggregated histograms the normal LBR mode uses. 1881 * 1882 * Limitations for now: 1883 * - No extra filters 1884 * - No annotations (should annotate somehow) 1885 */ 1886 1887 if (branch && callchain_param.branch_callstack) { 1888 int nr = min(max_stack, (int)branch->nr); 1889 struct branch_entry be[nr]; 1890 1891 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 1892 pr_warning("corrupted branch chain. skipping...\n"); 1893 goto check_calls; 1894 } 1895 1896 for (i = 0; i < nr; i++) { 1897 if (callchain_param.order == ORDER_CALLEE) { 1898 be[i] = branch->entries[i]; 1899 /* 1900 * Check for overlap into the callchain. 1901 * The return address is one off compared to 1902 * the branch entry. To adjust for this 1903 * assume the calling instruction is not longer 1904 * than 8 bytes. 1905 */ 1906 if (i == skip_idx || 1907 chain->ips[first_call] >= PERF_CONTEXT_MAX) 1908 first_call++; 1909 else if (be[i].from < chain->ips[first_call] && 1910 be[i].from >= chain->ips[first_call] - 8) 1911 first_call++; 1912 } else 1913 be[i] = branch->entries[branch->nr - i - 1]; 1914 } 1915 1916 nr_loop_iter = nr; 1917 nr = remove_loops(be, nr); 1918 1919 /* 1920 * Get the number of iterations. 1921 * It's only approximation, but good enough in practice. 1922 */ 1923 if (nr_loop_iter > nr) 1924 nr_loop_iter = nr_loop_iter - nr + 1; 1925 else 1926 nr_loop_iter = 0; 1927 1928 for (i = 0; i < nr; i++) { 1929 if (i == nr - 1) 1930 err = add_callchain_ip(thread, cursor, parent, 1931 root_al, 1932 NULL, be[i].to, 1933 true, &be[i].flags, 1934 nr_loop_iter, 1); 1935 else 1936 err = add_callchain_ip(thread, cursor, parent, 1937 root_al, 1938 NULL, be[i].to, 1939 true, &be[i].flags, 1940 0, 0); 1941 1942 if (!err) 1943 err = add_callchain_ip(thread, cursor, parent, root_al, 1944 NULL, be[i].from, 1945 true, &be[i].flags, 1946 0, 0); 1947 if (err == -EINVAL) 1948 break; 1949 if (err) 1950 return err; 1951 } 1952 chain_nr -= nr; 1953 } 1954 1955 check_calls: 1956 for (i = first_call, nr_entries = 0; 1957 i < chain_nr && nr_entries < max_stack; i++) { 1958 u64 ip; 1959 1960 if (callchain_param.order == ORDER_CALLEE) 1961 j = i; 1962 else 1963 j = chain->nr - i - 1; 1964 1965 #ifdef HAVE_SKIP_CALLCHAIN_IDX 1966 if (j == skip_idx) 1967 continue; 1968 #endif 1969 ip = chain->ips[j]; 1970 1971 if (ip < PERF_CONTEXT_MAX) 1972 ++nr_entries; 1973 1974 err = add_callchain_ip(thread, cursor, parent, 1975 root_al, &cpumode, ip, 1976 false, NULL, 0, 0); 1977 1978 if (err) 1979 return (err < 0) ? err : 0; 1980 } 1981 1982 return 0; 1983 } 1984 1985 static int unwind_entry(struct unwind_entry *entry, void *arg) 1986 { 1987 struct callchain_cursor *cursor = arg; 1988 1989 if (symbol_conf.hide_unresolved && entry->sym == NULL) 1990 return 0; 1991 return callchain_cursor_append(cursor, entry->ip, 1992 entry->map, entry->sym, 1993 false, NULL, 0, 0); 1994 } 1995 1996 static int thread__resolve_callchain_unwind(struct thread *thread, 1997 struct callchain_cursor *cursor, 1998 struct perf_evsel *evsel, 1999 struct perf_sample *sample, 2000 int max_stack) 2001 { 2002 /* Can we do dwarf post unwind? */ 2003 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2004 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2005 return 0; 2006 2007 /* Bail out if nothing was captured. */ 2008 if ((!sample->user_regs.regs) || 2009 (!sample->user_stack.size)) 2010 return 0; 2011 2012 return unwind__get_entries(unwind_entry, cursor, 2013 thread, sample, max_stack); 2014 } 2015 2016 int thread__resolve_callchain(struct thread *thread, 2017 struct callchain_cursor *cursor, 2018 struct perf_evsel *evsel, 2019 struct perf_sample *sample, 2020 struct symbol **parent, 2021 struct addr_location *root_al, 2022 int max_stack) 2023 { 2024 int ret = 0; 2025 2026 callchain_cursor_reset(&callchain_cursor); 2027 2028 if (callchain_param.order == ORDER_CALLEE) { 2029 ret = thread__resolve_callchain_sample(thread, cursor, 2030 evsel, sample, 2031 parent, root_al, 2032 max_stack); 2033 if (ret) 2034 return ret; 2035 ret = thread__resolve_callchain_unwind(thread, cursor, 2036 evsel, sample, 2037 max_stack); 2038 } else { 2039 ret = thread__resolve_callchain_unwind(thread, cursor, 2040 evsel, sample, 2041 max_stack); 2042 if (ret) 2043 return ret; 2044 ret = thread__resolve_callchain_sample(thread, cursor, 2045 evsel, sample, 2046 parent, root_al, 2047 max_stack); 2048 } 2049 2050 return ret; 2051 } 2052 2053 int machine__for_each_thread(struct machine *machine, 2054 int (*fn)(struct thread *thread, void *p), 2055 void *priv) 2056 { 2057 struct rb_node *nd; 2058 struct thread *thread; 2059 int rc = 0; 2060 2061 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 2062 thread = rb_entry(nd, struct thread, rb_node); 2063 rc = fn(thread, priv); 2064 if (rc != 0) 2065 return rc; 2066 } 2067 2068 list_for_each_entry(thread, &machine->dead_threads, node) { 2069 rc = fn(thread, priv); 2070 if (rc != 0) 2071 return rc; 2072 } 2073 return rc; 2074 } 2075 2076 int machines__for_each_thread(struct machines *machines, 2077 int (*fn)(struct thread *thread, void *p), 2078 void *priv) 2079 { 2080 struct rb_node *nd; 2081 int rc = 0; 2082 2083 rc = machine__for_each_thread(&machines->host, fn, priv); 2084 if (rc != 0) 2085 return rc; 2086 2087 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 2088 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2089 2090 rc = machine__for_each_thread(machine, fn, priv); 2091 if (rc != 0) 2092 return rc; 2093 } 2094 return rc; 2095 } 2096 2097 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2098 struct target *target, struct thread_map *threads, 2099 perf_event__handler_t process, bool data_mmap, 2100 unsigned int proc_map_timeout) 2101 { 2102 if (target__has_task(target)) 2103 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 2104 else if (target__has_cpu(target)) 2105 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout); 2106 /* command specified */ 2107 return 0; 2108 } 2109 2110 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2111 { 2112 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2113 return -1; 2114 2115 return machine->current_tid[cpu]; 2116 } 2117 2118 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2119 pid_t tid) 2120 { 2121 struct thread *thread; 2122 2123 if (cpu < 0) 2124 return -EINVAL; 2125 2126 if (!machine->current_tid) { 2127 int i; 2128 2129 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2130 if (!machine->current_tid) 2131 return -ENOMEM; 2132 for (i = 0; i < MAX_NR_CPUS; i++) 2133 machine->current_tid[i] = -1; 2134 } 2135 2136 if (cpu >= MAX_NR_CPUS) { 2137 pr_err("Requested CPU %d too large. ", cpu); 2138 pr_err("Consider raising MAX_NR_CPUS\n"); 2139 return -EINVAL; 2140 } 2141 2142 machine->current_tid[cpu] = tid; 2143 2144 thread = machine__findnew_thread(machine, pid, tid); 2145 if (!thread) 2146 return -ENOMEM; 2147 2148 thread->cpu = cpu; 2149 thread__put(thread); 2150 2151 return 0; 2152 } 2153 2154 int machine__get_kernel_start(struct machine *machine) 2155 { 2156 struct map *map = machine__kernel_map(machine); 2157 int err = 0; 2158 2159 /* 2160 * The only addresses above 2^63 are kernel addresses of a 64-bit 2161 * kernel. Note that addresses are unsigned so that on a 32-bit system 2162 * all addresses including kernel addresses are less than 2^32. In 2163 * that case (32-bit system), if the kernel mapping is unknown, all 2164 * addresses will be assumed to be in user space - see 2165 * machine__kernel_ip(). 2166 */ 2167 machine->kernel_start = 1ULL << 63; 2168 if (map) { 2169 err = map__load(map); 2170 if (map->start) 2171 machine->kernel_start = map->start; 2172 } 2173 return err; 2174 } 2175 2176 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2177 { 2178 return dsos__findnew(&machine->dsos, filename); 2179 } 2180 2181 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2182 { 2183 struct machine *machine = vmachine; 2184 struct map *map; 2185 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map); 2186 2187 if (sym == NULL) 2188 return NULL; 2189 2190 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2191 *addrp = map->unmap_ip(map, sym->start); 2192 return sym->name; 2193 } 2194