xref: /linux/tools/perf/util/machine.c (revision 83bce9c2baa51e439480a713119a73d3c8b61083)
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16 
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18 
19 static void dsos__init(struct dsos *dsos)
20 {
21 	INIT_LIST_HEAD(&dsos->head);
22 	dsos->root = RB_ROOT;
23 	pthread_rwlock_init(&dsos->lock, NULL);
24 }
25 
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 	memset(machine, 0, sizeof(*machine));
29 	map_groups__init(&machine->kmaps, machine);
30 	RB_CLEAR_NODE(&machine->rb_node);
31 	dsos__init(&machine->dsos);
32 
33 	machine->threads = RB_ROOT;
34 	pthread_rwlock_init(&machine->threads_lock, NULL);
35 	machine->nr_threads = 0;
36 	INIT_LIST_HEAD(&machine->dead_threads);
37 	machine->last_match = NULL;
38 
39 	machine->vdso_info = NULL;
40 	machine->env = NULL;
41 
42 	machine->pid = pid;
43 
44 	machine->id_hdr_size = 0;
45 	machine->kptr_restrict_warned = false;
46 	machine->comm_exec = false;
47 	machine->kernel_start = 0;
48 
49 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
50 
51 	machine->root_dir = strdup(root_dir);
52 	if (machine->root_dir == NULL)
53 		return -ENOMEM;
54 
55 	if (pid != HOST_KERNEL_ID) {
56 		struct thread *thread = machine__findnew_thread(machine, -1,
57 								pid);
58 		char comm[64];
59 
60 		if (thread == NULL)
61 			return -ENOMEM;
62 
63 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
64 		thread__set_comm(thread, comm, 0);
65 		thread__put(thread);
66 	}
67 
68 	machine->current_tid = NULL;
69 
70 	return 0;
71 }
72 
73 struct machine *machine__new_host(void)
74 {
75 	struct machine *machine = malloc(sizeof(*machine));
76 
77 	if (machine != NULL) {
78 		machine__init(machine, "", HOST_KERNEL_ID);
79 
80 		if (machine__create_kernel_maps(machine) < 0)
81 			goto out_delete;
82 	}
83 
84 	return machine;
85 out_delete:
86 	free(machine);
87 	return NULL;
88 }
89 
90 struct machine *machine__new_kallsyms(void)
91 {
92 	struct machine *machine = machine__new_host();
93 	/*
94 	 * FIXME:
95 	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
96 	 *    functions and data objects.
97 	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
98 	 *    ask for not using the kcore parsing code, once this one is fixed
99 	 *    to create a map per module.
100 	 */
101 	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
102 		machine__delete(machine);
103 		machine = NULL;
104 	}
105 
106 	return machine;
107 }
108 
109 static void dsos__purge(struct dsos *dsos)
110 {
111 	struct dso *pos, *n;
112 
113 	pthread_rwlock_wrlock(&dsos->lock);
114 
115 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
116 		RB_CLEAR_NODE(&pos->rb_node);
117 		pos->root = NULL;
118 		list_del_init(&pos->node);
119 		dso__put(pos);
120 	}
121 
122 	pthread_rwlock_unlock(&dsos->lock);
123 }
124 
125 static void dsos__exit(struct dsos *dsos)
126 {
127 	dsos__purge(dsos);
128 	pthread_rwlock_destroy(&dsos->lock);
129 }
130 
131 void machine__delete_threads(struct machine *machine)
132 {
133 	struct rb_node *nd;
134 
135 	pthread_rwlock_wrlock(&machine->threads_lock);
136 	nd = rb_first(&machine->threads);
137 	while (nd) {
138 		struct thread *t = rb_entry(nd, struct thread, rb_node);
139 
140 		nd = rb_next(nd);
141 		__machine__remove_thread(machine, t, false);
142 	}
143 	pthread_rwlock_unlock(&machine->threads_lock);
144 }
145 
146 void machine__exit(struct machine *machine)
147 {
148 	machine__destroy_kernel_maps(machine);
149 	map_groups__exit(&machine->kmaps);
150 	dsos__exit(&machine->dsos);
151 	machine__exit_vdso(machine);
152 	zfree(&machine->root_dir);
153 	zfree(&machine->current_tid);
154 	pthread_rwlock_destroy(&machine->threads_lock);
155 }
156 
157 void machine__delete(struct machine *machine)
158 {
159 	if (machine) {
160 		machine__exit(machine);
161 		free(machine);
162 	}
163 }
164 
165 void machines__init(struct machines *machines)
166 {
167 	machine__init(&machines->host, "", HOST_KERNEL_ID);
168 	machines->guests = RB_ROOT;
169 }
170 
171 void machines__exit(struct machines *machines)
172 {
173 	machine__exit(&machines->host);
174 	/* XXX exit guest */
175 }
176 
177 struct machine *machines__add(struct machines *machines, pid_t pid,
178 			      const char *root_dir)
179 {
180 	struct rb_node **p = &machines->guests.rb_node;
181 	struct rb_node *parent = NULL;
182 	struct machine *pos, *machine = malloc(sizeof(*machine));
183 
184 	if (machine == NULL)
185 		return NULL;
186 
187 	if (machine__init(machine, root_dir, pid) != 0) {
188 		free(machine);
189 		return NULL;
190 	}
191 
192 	while (*p != NULL) {
193 		parent = *p;
194 		pos = rb_entry(parent, struct machine, rb_node);
195 		if (pid < pos->pid)
196 			p = &(*p)->rb_left;
197 		else
198 			p = &(*p)->rb_right;
199 	}
200 
201 	rb_link_node(&machine->rb_node, parent, p);
202 	rb_insert_color(&machine->rb_node, &machines->guests);
203 
204 	return machine;
205 }
206 
207 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
208 {
209 	struct rb_node *nd;
210 
211 	machines->host.comm_exec = comm_exec;
212 
213 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
214 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
215 
216 		machine->comm_exec = comm_exec;
217 	}
218 }
219 
220 struct machine *machines__find(struct machines *machines, pid_t pid)
221 {
222 	struct rb_node **p = &machines->guests.rb_node;
223 	struct rb_node *parent = NULL;
224 	struct machine *machine;
225 	struct machine *default_machine = NULL;
226 
227 	if (pid == HOST_KERNEL_ID)
228 		return &machines->host;
229 
230 	while (*p != NULL) {
231 		parent = *p;
232 		machine = rb_entry(parent, struct machine, rb_node);
233 		if (pid < machine->pid)
234 			p = &(*p)->rb_left;
235 		else if (pid > machine->pid)
236 			p = &(*p)->rb_right;
237 		else
238 			return machine;
239 		if (!machine->pid)
240 			default_machine = machine;
241 	}
242 
243 	return default_machine;
244 }
245 
246 struct machine *machines__findnew(struct machines *machines, pid_t pid)
247 {
248 	char path[PATH_MAX];
249 	const char *root_dir = "";
250 	struct machine *machine = machines__find(machines, pid);
251 
252 	if (machine && (machine->pid == pid))
253 		goto out;
254 
255 	if ((pid != HOST_KERNEL_ID) &&
256 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
257 	    (symbol_conf.guestmount)) {
258 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
259 		if (access(path, R_OK)) {
260 			static struct strlist *seen;
261 
262 			if (!seen)
263 				seen = strlist__new(NULL, NULL);
264 
265 			if (!strlist__has_entry(seen, path)) {
266 				pr_err("Can't access file %s\n", path);
267 				strlist__add(seen, path);
268 			}
269 			machine = NULL;
270 			goto out;
271 		}
272 		root_dir = path;
273 	}
274 
275 	machine = machines__add(machines, pid, root_dir);
276 out:
277 	return machine;
278 }
279 
280 void machines__process_guests(struct machines *machines,
281 			      machine__process_t process, void *data)
282 {
283 	struct rb_node *nd;
284 
285 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
286 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
287 		process(pos, data);
288 	}
289 }
290 
291 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
292 {
293 	if (machine__is_host(machine))
294 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
295 	else if (machine__is_default_guest(machine))
296 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
297 	else {
298 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
299 			 machine->pid);
300 	}
301 
302 	return bf;
303 }
304 
305 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
306 {
307 	struct rb_node *node;
308 	struct machine *machine;
309 
310 	machines->host.id_hdr_size = id_hdr_size;
311 
312 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
313 		machine = rb_entry(node, struct machine, rb_node);
314 		machine->id_hdr_size = id_hdr_size;
315 	}
316 
317 	return;
318 }
319 
320 static void machine__update_thread_pid(struct machine *machine,
321 				       struct thread *th, pid_t pid)
322 {
323 	struct thread *leader;
324 
325 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
326 		return;
327 
328 	th->pid_ = pid;
329 
330 	if (th->pid_ == th->tid)
331 		return;
332 
333 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
334 	if (!leader)
335 		goto out_err;
336 
337 	if (!leader->mg)
338 		leader->mg = map_groups__new(machine);
339 
340 	if (!leader->mg)
341 		goto out_err;
342 
343 	if (th->mg == leader->mg)
344 		return;
345 
346 	if (th->mg) {
347 		/*
348 		 * Maps are created from MMAP events which provide the pid and
349 		 * tid.  Consequently there never should be any maps on a thread
350 		 * with an unknown pid.  Just print an error if there are.
351 		 */
352 		if (!map_groups__empty(th->mg))
353 			pr_err("Discarding thread maps for %d:%d\n",
354 			       th->pid_, th->tid);
355 		map_groups__put(th->mg);
356 	}
357 
358 	th->mg = map_groups__get(leader->mg);
359 out_put:
360 	thread__put(leader);
361 	return;
362 out_err:
363 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
364 	goto out_put;
365 }
366 
367 /*
368  * Caller must eventually drop thread->refcnt returned with a successful
369  * lookup/new thread inserted.
370  */
371 static struct thread *____machine__findnew_thread(struct machine *machine,
372 						  pid_t pid, pid_t tid,
373 						  bool create)
374 {
375 	struct rb_node **p = &machine->threads.rb_node;
376 	struct rb_node *parent = NULL;
377 	struct thread *th;
378 
379 	/*
380 	 * Front-end cache - TID lookups come in blocks,
381 	 * so most of the time we dont have to look up
382 	 * the full rbtree:
383 	 */
384 	th = machine->last_match;
385 	if (th != NULL) {
386 		if (th->tid == tid) {
387 			machine__update_thread_pid(machine, th, pid);
388 			return thread__get(th);
389 		}
390 
391 		machine->last_match = NULL;
392 	}
393 
394 	while (*p != NULL) {
395 		parent = *p;
396 		th = rb_entry(parent, struct thread, rb_node);
397 
398 		if (th->tid == tid) {
399 			machine->last_match = th;
400 			machine__update_thread_pid(machine, th, pid);
401 			return thread__get(th);
402 		}
403 
404 		if (tid < th->tid)
405 			p = &(*p)->rb_left;
406 		else
407 			p = &(*p)->rb_right;
408 	}
409 
410 	if (!create)
411 		return NULL;
412 
413 	th = thread__new(pid, tid);
414 	if (th != NULL) {
415 		rb_link_node(&th->rb_node, parent, p);
416 		rb_insert_color(&th->rb_node, &machine->threads);
417 
418 		/*
419 		 * We have to initialize map_groups separately
420 		 * after rb tree is updated.
421 		 *
422 		 * The reason is that we call machine__findnew_thread
423 		 * within thread__init_map_groups to find the thread
424 		 * leader and that would screwed the rb tree.
425 		 */
426 		if (thread__init_map_groups(th, machine)) {
427 			rb_erase_init(&th->rb_node, &machine->threads);
428 			RB_CLEAR_NODE(&th->rb_node);
429 			thread__put(th);
430 			return NULL;
431 		}
432 		/*
433 		 * It is now in the rbtree, get a ref
434 		 */
435 		thread__get(th);
436 		machine->last_match = th;
437 		++machine->nr_threads;
438 	}
439 
440 	return th;
441 }
442 
443 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
444 {
445 	return ____machine__findnew_thread(machine, pid, tid, true);
446 }
447 
448 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
449 				       pid_t tid)
450 {
451 	struct thread *th;
452 
453 	pthread_rwlock_wrlock(&machine->threads_lock);
454 	th = __machine__findnew_thread(machine, pid, tid);
455 	pthread_rwlock_unlock(&machine->threads_lock);
456 	return th;
457 }
458 
459 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
460 				    pid_t tid)
461 {
462 	struct thread *th;
463 	pthread_rwlock_rdlock(&machine->threads_lock);
464 	th =  ____machine__findnew_thread(machine, pid, tid, false);
465 	pthread_rwlock_unlock(&machine->threads_lock);
466 	return th;
467 }
468 
469 struct comm *machine__thread_exec_comm(struct machine *machine,
470 				       struct thread *thread)
471 {
472 	if (machine->comm_exec)
473 		return thread__exec_comm(thread);
474 	else
475 		return thread__comm(thread);
476 }
477 
478 int machine__process_comm_event(struct machine *machine, union perf_event *event,
479 				struct perf_sample *sample)
480 {
481 	struct thread *thread = machine__findnew_thread(machine,
482 							event->comm.pid,
483 							event->comm.tid);
484 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
485 	int err = 0;
486 
487 	if (exec)
488 		machine->comm_exec = true;
489 
490 	if (dump_trace)
491 		perf_event__fprintf_comm(event, stdout);
492 
493 	if (thread == NULL ||
494 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
495 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
496 		err = -1;
497 	}
498 
499 	thread__put(thread);
500 
501 	return err;
502 }
503 
504 int machine__process_lost_event(struct machine *machine __maybe_unused,
505 				union perf_event *event, struct perf_sample *sample __maybe_unused)
506 {
507 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
508 		    event->lost.id, event->lost.lost);
509 	return 0;
510 }
511 
512 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
513 					union perf_event *event, struct perf_sample *sample)
514 {
515 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
516 		    sample->id, event->lost_samples.lost);
517 	return 0;
518 }
519 
520 static struct dso *machine__findnew_module_dso(struct machine *machine,
521 					       struct kmod_path *m,
522 					       const char *filename)
523 {
524 	struct dso *dso;
525 
526 	pthread_rwlock_wrlock(&machine->dsos.lock);
527 
528 	dso = __dsos__find(&machine->dsos, m->name, true);
529 	if (!dso) {
530 		dso = __dsos__addnew(&machine->dsos, m->name);
531 		if (dso == NULL)
532 			goto out_unlock;
533 
534 		if (machine__is_host(machine))
535 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
536 		else
537 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
538 
539 		/* _KMODULE_COMP should be next to _KMODULE */
540 		if (m->kmod && m->comp)
541 			dso->symtab_type++;
542 
543 		dso__set_short_name(dso, strdup(m->name), true);
544 		dso__set_long_name(dso, strdup(filename), true);
545 	}
546 
547 	dso__get(dso);
548 out_unlock:
549 	pthread_rwlock_unlock(&machine->dsos.lock);
550 	return dso;
551 }
552 
553 int machine__process_aux_event(struct machine *machine __maybe_unused,
554 			       union perf_event *event)
555 {
556 	if (dump_trace)
557 		perf_event__fprintf_aux(event, stdout);
558 	return 0;
559 }
560 
561 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
562 					union perf_event *event)
563 {
564 	if (dump_trace)
565 		perf_event__fprintf_itrace_start(event, stdout);
566 	return 0;
567 }
568 
569 int machine__process_switch_event(struct machine *machine __maybe_unused,
570 				  union perf_event *event)
571 {
572 	if (dump_trace)
573 		perf_event__fprintf_switch(event, stdout);
574 	return 0;
575 }
576 
577 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
578 {
579 	const char *dup_filename;
580 
581 	if (!filename || !dso || !dso->long_name)
582 		return;
583 	if (dso->long_name[0] != '[')
584 		return;
585 	if (!strchr(filename, '/'))
586 		return;
587 
588 	dup_filename = strdup(filename);
589 	if (!dup_filename)
590 		return;
591 
592 	dso__set_long_name(dso, dup_filename, true);
593 }
594 
595 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
596 					const char *filename)
597 {
598 	struct map *map = NULL;
599 	struct dso *dso = NULL;
600 	struct kmod_path m;
601 
602 	if (kmod_path__parse_name(&m, filename))
603 		return NULL;
604 
605 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
606 				       m.name);
607 	if (map) {
608 		/*
609 		 * If the map's dso is an offline module, give dso__load()
610 		 * a chance to find the file path of that module by fixing
611 		 * long_name.
612 		 */
613 		dso__adjust_kmod_long_name(map->dso, filename);
614 		goto out;
615 	}
616 
617 	dso = machine__findnew_module_dso(machine, &m, filename);
618 	if (dso == NULL)
619 		goto out;
620 
621 	map = map__new2(start, dso, MAP__FUNCTION);
622 	if (map == NULL)
623 		goto out;
624 
625 	map_groups__insert(&machine->kmaps, map);
626 
627 	/* Put the map here because map_groups__insert alread got it */
628 	map__put(map);
629 out:
630 	/* put the dso here, corresponding to  machine__findnew_module_dso */
631 	dso__put(dso);
632 	free(m.name);
633 	return map;
634 }
635 
636 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
637 {
638 	struct rb_node *nd;
639 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
640 
641 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
642 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
643 		ret += __dsos__fprintf(&pos->dsos.head, fp);
644 	}
645 
646 	return ret;
647 }
648 
649 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
650 				     bool (skip)(struct dso *dso, int parm), int parm)
651 {
652 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
653 }
654 
655 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
656 				     bool (skip)(struct dso *dso, int parm), int parm)
657 {
658 	struct rb_node *nd;
659 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
660 
661 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
662 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
663 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
664 	}
665 	return ret;
666 }
667 
668 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
669 {
670 	int i;
671 	size_t printed = 0;
672 	struct dso *kdso = machine__kernel_map(machine)->dso;
673 
674 	if (kdso->has_build_id) {
675 		char filename[PATH_MAX];
676 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
677 			printed += fprintf(fp, "[0] %s\n", filename);
678 	}
679 
680 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
681 		printed += fprintf(fp, "[%d] %s\n",
682 				   i + kdso->has_build_id, vmlinux_path[i]);
683 
684 	return printed;
685 }
686 
687 size_t machine__fprintf(struct machine *machine, FILE *fp)
688 {
689 	size_t ret;
690 	struct rb_node *nd;
691 
692 	pthread_rwlock_rdlock(&machine->threads_lock);
693 
694 	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
695 
696 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
697 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
698 
699 		ret += thread__fprintf(pos, fp);
700 	}
701 
702 	pthread_rwlock_unlock(&machine->threads_lock);
703 
704 	return ret;
705 }
706 
707 static struct dso *machine__get_kernel(struct machine *machine)
708 {
709 	const char *vmlinux_name = NULL;
710 	struct dso *kernel;
711 
712 	if (machine__is_host(machine)) {
713 		vmlinux_name = symbol_conf.vmlinux_name;
714 		if (!vmlinux_name)
715 			vmlinux_name = DSO__NAME_KALLSYMS;
716 
717 		kernel = machine__findnew_kernel(machine, vmlinux_name,
718 						 "[kernel]", DSO_TYPE_KERNEL);
719 	} else {
720 		char bf[PATH_MAX];
721 
722 		if (machine__is_default_guest(machine))
723 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
724 		if (!vmlinux_name)
725 			vmlinux_name = machine__mmap_name(machine, bf,
726 							  sizeof(bf));
727 
728 		kernel = machine__findnew_kernel(machine, vmlinux_name,
729 						 "[guest.kernel]",
730 						 DSO_TYPE_GUEST_KERNEL);
731 	}
732 
733 	if (kernel != NULL && (!kernel->has_build_id))
734 		dso__read_running_kernel_build_id(kernel, machine);
735 
736 	return kernel;
737 }
738 
739 struct process_args {
740 	u64 start;
741 };
742 
743 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
744 					   size_t bufsz)
745 {
746 	if (machine__is_default_guest(machine))
747 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
748 	else
749 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
750 }
751 
752 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
753 
754 /* Figure out the start address of kernel map from /proc/kallsyms.
755  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
756  * symbol_name if it's not that important.
757  */
758 static u64 machine__get_running_kernel_start(struct machine *machine,
759 					     const char **symbol_name)
760 {
761 	char filename[PATH_MAX];
762 	int i;
763 	const char *name;
764 	u64 addr = 0;
765 
766 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
767 
768 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
769 		return 0;
770 
771 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
772 		addr = kallsyms__get_function_start(filename, name);
773 		if (addr)
774 			break;
775 	}
776 
777 	if (symbol_name)
778 		*symbol_name = name;
779 
780 	return addr;
781 }
782 
783 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
784 {
785 	int type;
786 	u64 start = machine__get_running_kernel_start(machine, NULL);
787 
788 	/* In case of renewal the kernel map, destroy previous one */
789 	machine__destroy_kernel_maps(machine);
790 
791 	for (type = 0; type < MAP__NR_TYPES; ++type) {
792 		struct kmap *kmap;
793 		struct map *map;
794 
795 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
796 		if (machine->vmlinux_maps[type] == NULL)
797 			return -1;
798 
799 		machine->vmlinux_maps[type]->map_ip =
800 			machine->vmlinux_maps[type]->unmap_ip =
801 				identity__map_ip;
802 		map = __machine__kernel_map(machine, type);
803 		kmap = map__kmap(map);
804 		if (!kmap)
805 			return -1;
806 
807 		kmap->kmaps = &machine->kmaps;
808 		map_groups__insert(&machine->kmaps, map);
809 	}
810 
811 	return 0;
812 }
813 
814 void machine__destroy_kernel_maps(struct machine *machine)
815 {
816 	int type;
817 
818 	for (type = 0; type < MAP__NR_TYPES; ++type) {
819 		struct kmap *kmap;
820 		struct map *map = __machine__kernel_map(machine, type);
821 
822 		if (map == NULL)
823 			continue;
824 
825 		kmap = map__kmap(map);
826 		map_groups__remove(&machine->kmaps, map);
827 		if (kmap && kmap->ref_reloc_sym) {
828 			/*
829 			 * ref_reloc_sym is shared among all maps, so free just
830 			 * on one of them.
831 			 */
832 			if (type == MAP__FUNCTION) {
833 				zfree((char **)&kmap->ref_reloc_sym->name);
834 				zfree(&kmap->ref_reloc_sym);
835 			} else
836 				kmap->ref_reloc_sym = NULL;
837 		}
838 
839 		map__put(machine->vmlinux_maps[type]);
840 		machine->vmlinux_maps[type] = NULL;
841 	}
842 }
843 
844 int machines__create_guest_kernel_maps(struct machines *machines)
845 {
846 	int ret = 0;
847 	struct dirent **namelist = NULL;
848 	int i, items = 0;
849 	char path[PATH_MAX];
850 	pid_t pid;
851 	char *endp;
852 
853 	if (symbol_conf.default_guest_vmlinux_name ||
854 	    symbol_conf.default_guest_modules ||
855 	    symbol_conf.default_guest_kallsyms) {
856 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
857 	}
858 
859 	if (symbol_conf.guestmount) {
860 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
861 		if (items <= 0)
862 			return -ENOENT;
863 		for (i = 0; i < items; i++) {
864 			if (!isdigit(namelist[i]->d_name[0])) {
865 				/* Filter out . and .. */
866 				continue;
867 			}
868 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
869 			if ((*endp != '\0') ||
870 			    (endp == namelist[i]->d_name) ||
871 			    (errno == ERANGE)) {
872 				pr_debug("invalid directory (%s). Skipping.\n",
873 					 namelist[i]->d_name);
874 				continue;
875 			}
876 			sprintf(path, "%s/%s/proc/kallsyms",
877 				symbol_conf.guestmount,
878 				namelist[i]->d_name);
879 			ret = access(path, R_OK);
880 			if (ret) {
881 				pr_debug("Can't access file %s\n", path);
882 				goto failure;
883 			}
884 			machines__create_kernel_maps(machines, pid);
885 		}
886 failure:
887 		free(namelist);
888 	}
889 
890 	return ret;
891 }
892 
893 void machines__destroy_kernel_maps(struct machines *machines)
894 {
895 	struct rb_node *next = rb_first(&machines->guests);
896 
897 	machine__destroy_kernel_maps(&machines->host);
898 
899 	while (next) {
900 		struct machine *pos = rb_entry(next, struct machine, rb_node);
901 
902 		next = rb_next(&pos->rb_node);
903 		rb_erase(&pos->rb_node, &machines->guests);
904 		machine__delete(pos);
905 	}
906 }
907 
908 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
909 {
910 	struct machine *machine = machines__findnew(machines, pid);
911 
912 	if (machine == NULL)
913 		return -1;
914 
915 	return machine__create_kernel_maps(machine);
916 }
917 
918 int __machine__load_kallsyms(struct machine *machine, const char *filename,
919 			     enum map_type type, bool no_kcore)
920 {
921 	struct map *map = machine__kernel_map(machine);
922 	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
923 
924 	if (ret > 0) {
925 		dso__set_loaded(map->dso, type);
926 		/*
927 		 * Since /proc/kallsyms will have multiple sessions for the
928 		 * kernel, with modules between them, fixup the end of all
929 		 * sections.
930 		 */
931 		__map_groups__fixup_end(&machine->kmaps, type);
932 	}
933 
934 	return ret;
935 }
936 
937 int machine__load_kallsyms(struct machine *machine, const char *filename,
938 			   enum map_type type)
939 {
940 	return __machine__load_kallsyms(machine, filename, type, false);
941 }
942 
943 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
944 {
945 	struct map *map = machine__kernel_map(machine);
946 	int ret = dso__load_vmlinux_path(map->dso, map);
947 
948 	if (ret > 0)
949 		dso__set_loaded(map->dso, type);
950 
951 	return ret;
952 }
953 
954 static void map_groups__fixup_end(struct map_groups *mg)
955 {
956 	int i;
957 	for (i = 0; i < MAP__NR_TYPES; ++i)
958 		__map_groups__fixup_end(mg, i);
959 }
960 
961 static char *get_kernel_version(const char *root_dir)
962 {
963 	char version[PATH_MAX];
964 	FILE *file;
965 	char *name, *tmp;
966 	const char *prefix = "Linux version ";
967 
968 	sprintf(version, "%s/proc/version", root_dir);
969 	file = fopen(version, "r");
970 	if (!file)
971 		return NULL;
972 
973 	version[0] = '\0';
974 	tmp = fgets(version, sizeof(version), file);
975 	fclose(file);
976 
977 	name = strstr(version, prefix);
978 	if (!name)
979 		return NULL;
980 	name += strlen(prefix);
981 	tmp = strchr(name, ' ');
982 	if (tmp)
983 		*tmp = '\0';
984 
985 	return strdup(name);
986 }
987 
988 static bool is_kmod_dso(struct dso *dso)
989 {
990 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
991 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
992 }
993 
994 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
995 				       struct kmod_path *m)
996 {
997 	struct map *map;
998 	char *long_name;
999 
1000 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1001 	if (map == NULL)
1002 		return 0;
1003 
1004 	long_name = strdup(path);
1005 	if (long_name == NULL)
1006 		return -ENOMEM;
1007 
1008 	dso__set_long_name(map->dso, long_name, true);
1009 	dso__kernel_module_get_build_id(map->dso, "");
1010 
1011 	/*
1012 	 * Full name could reveal us kmod compression, so
1013 	 * we need to update the symtab_type if needed.
1014 	 */
1015 	if (m->comp && is_kmod_dso(map->dso))
1016 		map->dso->symtab_type++;
1017 
1018 	return 0;
1019 }
1020 
1021 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1022 				const char *dir_name, int depth)
1023 {
1024 	struct dirent *dent;
1025 	DIR *dir = opendir(dir_name);
1026 	int ret = 0;
1027 
1028 	if (!dir) {
1029 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1030 		return -1;
1031 	}
1032 
1033 	while ((dent = readdir(dir)) != NULL) {
1034 		char path[PATH_MAX];
1035 		struct stat st;
1036 
1037 		/*sshfs might return bad dent->d_type, so we have to stat*/
1038 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1039 		if (stat(path, &st))
1040 			continue;
1041 
1042 		if (S_ISDIR(st.st_mode)) {
1043 			if (!strcmp(dent->d_name, ".") ||
1044 			    !strcmp(dent->d_name, ".."))
1045 				continue;
1046 
1047 			/* Do not follow top-level source and build symlinks */
1048 			if (depth == 0) {
1049 				if (!strcmp(dent->d_name, "source") ||
1050 				    !strcmp(dent->d_name, "build"))
1051 					continue;
1052 			}
1053 
1054 			ret = map_groups__set_modules_path_dir(mg, path,
1055 							       depth + 1);
1056 			if (ret < 0)
1057 				goto out;
1058 		} else {
1059 			struct kmod_path m;
1060 
1061 			ret = kmod_path__parse_name(&m, dent->d_name);
1062 			if (ret)
1063 				goto out;
1064 
1065 			if (m.kmod)
1066 				ret = map_groups__set_module_path(mg, path, &m);
1067 
1068 			free(m.name);
1069 
1070 			if (ret)
1071 				goto out;
1072 		}
1073 	}
1074 
1075 out:
1076 	closedir(dir);
1077 	return ret;
1078 }
1079 
1080 static int machine__set_modules_path(struct machine *machine)
1081 {
1082 	char *version;
1083 	char modules_path[PATH_MAX];
1084 
1085 	version = get_kernel_version(machine->root_dir);
1086 	if (!version)
1087 		return -1;
1088 
1089 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1090 		 machine->root_dir, version);
1091 	free(version);
1092 
1093 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1094 }
1095 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1096 				const char *name __maybe_unused)
1097 {
1098 	return 0;
1099 }
1100 
1101 static int machine__create_module(void *arg, const char *name, u64 start)
1102 {
1103 	struct machine *machine = arg;
1104 	struct map *map;
1105 
1106 	if (arch__fix_module_text_start(&start, name) < 0)
1107 		return -1;
1108 
1109 	map = machine__findnew_module_map(machine, start, name);
1110 	if (map == NULL)
1111 		return -1;
1112 
1113 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1114 
1115 	return 0;
1116 }
1117 
1118 static int machine__create_modules(struct machine *machine)
1119 {
1120 	const char *modules;
1121 	char path[PATH_MAX];
1122 
1123 	if (machine__is_default_guest(machine)) {
1124 		modules = symbol_conf.default_guest_modules;
1125 	} else {
1126 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1127 		modules = path;
1128 	}
1129 
1130 	if (symbol__restricted_filename(modules, "/proc/modules"))
1131 		return -1;
1132 
1133 	if (modules__parse(modules, machine, machine__create_module))
1134 		return -1;
1135 
1136 	if (!machine__set_modules_path(machine))
1137 		return 0;
1138 
1139 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1140 
1141 	return 0;
1142 }
1143 
1144 int machine__create_kernel_maps(struct machine *machine)
1145 {
1146 	struct dso *kernel = machine__get_kernel(machine);
1147 	const char *name;
1148 	u64 addr;
1149 	int ret;
1150 
1151 	if (kernel == NULL)
1152 		return -1;
1153 
1154 	ret = __machine__create_kernel_maps(machine, kernel);
1155 	dso__put(kernel);
1156 	if (ret < 0)
1157 		return -1;
1158 
1159 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1160 		if (machine__is_host(machine))
1161 			pr_debug("Problems creating module maps, "
1162 				 "continuing anyway...\n");
1163 		else
1164 			pr_debug("Problems creating module maps for guest %d, "
1165 				 "continuing anyway...\n", machine->pid);
1166 	}
1167 
1168 	/*
1169 	 * Now that we have all the maps created, just set the ->end of them:
1170 	 */
1171 	map_groups__fixup_end(&machine->kmaps);
1172 
1173 	addr = machine__get_running_kernel_start(machine, &name);
1174 	if (!addr) {
1175 	} else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1176 		machine__destroy_kernel_maps(machine);
1177 		return -1;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 static void machine__set_kernel_mmap_len(struct machine *machine,
1184 					 union perf_event *event)
1185 {
1186 	int i;
1187 
1188 	for (i = 0; i < MAP__NR_TYPES; i++) {
1189 		machine->vmlinux_maps[i]->start = event->mmap.start;
1190 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1191 						   event->mmap.len);
1192 		/*
1193 		 * Be a bit paranoid here, some perf.data file came with
1194 		 * a zero sized synthesized MMAP event for the kernel.
1195 		 */
1196 		if (machine->vmlinux_maps[i]->end == 0)
1197 			machine->vmlinux_maps[i]->end = ~0ULL;
1198 	}
1199 }
1200 
1201 static bool machine__uses_kcore(struct machine *machine)
1202 {
1203 	struct dso *dso;
1204 
1205 	list_for_each_entry(dso, &machine->dsos.head, node) {
1206 		if (dso__is_kcore(dso))
1207 			return true;
1208 	}
1209 
1210 	return false;
1211 }
1212 
1213 static int machine__process_kernel_mmap_event(struct machine *machine,
1214 					      union perf_event *event)
1215 {
1216 	struct map *map;
1217 	char kmmap_prefix[PATH_MAX];
1218 	enum dso_kernel_type kernel_type;
1219 	bool is_kernel_mmap;
1220 
1221 	/* If we have maps from kcore then we do not need or want any others */
1222 	if (machine__uses_kcore(machine))
1223 		return 0;
1224 
1225 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1226 	if (machine__is_host(machine))
1227 		kernel_type = DSO_TYPE_KERNEL;
1228 	else
1229 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1230 
1231 	is_kernel_mmap = memcmp(event->mmap.filename,
1232 				kmmap_prefix,
1233 				strlen(kmmap_prefix) - 1) == 0;
1234 	if (event->mmap.filename[0] == '/' ||
1235 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1236 		map = machine__findnew_module_map(machine, event->mmap.start,
1237 						  event->mmap.filename);
1238 		if (map == NULL)
1239 			goto out_problem;
1240 
1241 		map->end = map->start + event->mmap.len;
1242 	} else if (is_kernel_mmap) {
1243 		const char *symbol_name = (event->mmap.filename +
1244 				strlen(kmmap_prefix));
1245 		/*
1246 		 * Should be there already, from the build-id table in
1247 		 * the header.
1248 		 */
1249 		struct dso *kernel = NULL;
1250 		struct dso *dso;
1251 
1252 		pthread_rwlock_rdlock(&machine->dsos.lock);
1253 
1254 		list_for_each_entry(dso, &machine->dsos.head, node) {
1255 
1256 			/*
1257 			 * The cpumode passed to is_kernel_module is not the
1258 			 * cpumode of *this* event. If we insist on passing
1259 			 * correct cpumode to is_kernel_module, we should
1260 			 * record the cpumode when we adding this dso to the
1261 			 * linked list.
1262 			 *
1263 			 * However we don't really need passing correct
1264 			 * cpumode.  We know the correct cpumode must be kernel
1265 			 * mode (if not, we should not link it onto kernel_dsos
1266 			 * list).
1267 			 *
1268 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1269 			 * is_kernel_module() treats it as a kernel cpumode.
1270 			 */
1271 
1272 			if (!dso->kernel ||
1273 			    is_kernel_module(dso->long_name,
1274 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1275 				continue;
1276 
1277 
1278 			kernel = dso;
1279 			break;
1280 		}
1281 
1282 		pthread_rwlock_unlock(&machine->dsos.lock);
1283 
1284 		if (kernel == NULL)
1285 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1286 		if (kernel == NULL)
1287 			goto out_problem;
1288 
1289 		kernel->kernel = kernel_type;
1290 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1291 			dso__put(kernel);
1292 			goto out_problem;
1293 		}
1294 
1295 		if (strstr(kernel->long_name, "vmlinux"))
1296 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1297 
1298 		machine__set_kernel_mmap_len(machine, event);
1299 
1300 		/*
1301 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1302 		 * symbol. Effectively having zero here means that at record
1303 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1304 		 */
1305 		if (event->mmap.pgoff != 0) {
1306 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1307 							 symbol_name,
1308 							 event->mmap.pgoff);
1309 		}
1310 
1311 		if (machine__is_default_guest(machine)) {
1312 			/*
1313 			 * preload dso of guest kernel and modules
1314 			 */
1315 			dso__load(kernel, machine__kernel_map(machine));
1316 		}
1317 	}
1318 	return 0;
1319 out_problem:
1320 	return -1;
1321 }
1322 
1323 int machine__process_mmap2_event(struct machine *machine,
1324 				 union perf_event *event,
1325 				 struct perf_sample *sample)
1326 {
1327 	struct thread *thread;
1328 	struct map *map;
1329 	enum map_type type;
1330 	int ret = 0;
1331 
1332 	if (dump_trace)
1333 		perf_event__fprintf_mmap2(event, stdout);
1334 
1335 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1336 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1337 		ret = machine__process_kernel_mmap_event(machine, event);
1338 		if (ret < 0)
1339 			goto out_problem;
1340 		return 0;
1341 	}
1342 
1343 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1344 					event->mmap2.tid);
1345 	if (thread == NULL)
1346 		goto out_problem;
1347 
1348 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1349 		type = MAP__VARIABLE;
1350 	else
1351 		type = MAP__FUNCTION;
1352 
1353 	map = map__new(machine, event->mmap2.start,
1354 			event->mmap2.len, event->mmap2.pgoff,
1355 			event->mmap2.pid, event->mmap2.maj,
1356 			event->mmap2.min, event->mmap2.ino,
1357 			event->mmap2.ino_generation,
1358 			event->mmap2.prot,
1359 			event->mmap2.flags,
1360 			event->mmap2.filename, type, thread);
1361 
1362 	if (map == NULL)
1363 		goto out_problem_map;
1364 
1365 	ret = thread__insert_map(thread, map);
1366 	if (ret)
1367 		goto out_problem_insert;
1368 
1369 	thread__put(thread);
1370 	map__put(map);
1371 	return 0;
1372 
1373 out_problem_insert:
1374 	map__put(map);
1375 out_problem_map:
1376 	thread__put(thread);
1377 out_problem:
1378 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1379 	return 0;
1380 }
1381 
1382 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1383 				struct perf_sample *sample)
1384 {
1385 	struct thread *thread;
1386 	struct map *map;
1387 	enum map_type type;
1388 	int ret = 0;
1389 
1390 	if (dump_trace)
1391 		perf_event__fprintf_mmap(event, stdout);
1392 
1393 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1394 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1395 		ret = machine__process_kernel_mmap_event(machine, event);
1396 		if (ret < 0)
1397 			goto out_problem;
1398 		return 0;
1399 	}
1400 
1401 	thread = machine__findnew_thread(machine, event->mmap.pid,
1402 					 event->mmap.tid);
1403 	if (thread == NULL)
1404 		goto out_problem;
1405 
1406 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1407 		type = MAP__VARIABLE;
1408 	else
1409 		type = MAP__FUNCTION;
1410 
1411 	map = map__new(machine, event->mmap.start,
1412 			event->mmap.len, event->mmap.pgoff,
1413 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1414 			event->mmap.filename,
1415 			type, thread);
1416 
1417 	if (map == NULL)
1418 		goto out_problem_map;
1419 
1420 	ret = thread__insert_map(thread, map);
1421 	if (ret)
1422 		goto out_problem_insert;
1423 
1424 	thread__put(thread);
1425 	map__put(map);
1426 	return 0;
1427 
1428 out_problem_insert:
1429 	map__put(map);
1430 out_problem_map:
1431 	thread__put(thread);
1432 out_problem:
1433 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1434 	return 0;
1435 }
1436 
1437 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1438 {
1439 	if (machine->last_match == th)
1440 		machine->last_match = NULL;
1441 
1442 	BUG_ON(atomic_read(&th->refcnt) == 0);
1443 	if (lock)
1444 		pthread_rwlock_wrlock(&machine->threads_lock);
1445 	rb_erase_init(&th->rb_node, &machine->threads);
1446 	RB_CLEAR_NODE(&th->rb_node);
1447 	--machine->nr_threads;
1448 	/*
1449 	 * Move it first to the dead_threads list, then drop the reference,
1450 	 * if this is the last reference, then the thread__delete destructor
1451 	 * will be called and we will remove it from the dead_threads list.
1452 	 */
1453 	list_add_tail(&th->node, &machine->dead_threads);
1454 	if (lock)
1455 		pthread_rwlock_unlock(&machine->threads_lock);
1456 	thread__put(th);
1457 }
1458 
1459 void machine__remove_thread(struct machine *machine, struct thread *th)
1460 {
1461 	return __machine__remove_thread(machine, th, true);
1462 }
1463 
1464 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1465 				struct perf_sample *sample)
1466 {
1467 	struct thread *thread = machine__find_thread(machine,
1468 						     event->fork.pid,
1469 						     event->fork.tid);
1470 	struct thread *parent = machine__findnew_thread(machine,
1471 							event->fork.ppid,
1472 							event->fork.ptid);
1473 	int err = 0;
1474 
1475 	if (dump_trace)
1476 		perf_event__fprintf_task(event, stdout);
1477 
1478 	/*
1479 	 * There may be an existing thread that is not actually the parent,
1480 	 * either because we are processing events out of order, or because the
1481 	 * (fork) event that would have removed the thread was lost. Assume the
1482 	 * latter case and continue on as best we can.
1483 	 */
1484 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1485 		dump_printf("removing erroneous parent thread %d/%d\n",
1486 			    parent->pid_, parent->tid);
1487 		machine__remove_thread(machine, parent);
1488 		thread__put(parent);
1489 		parent = machine__findnew_thread(machine, event->fork.ppid,
1490 						 event->fork.ptid);
1491 	}
1492 
1493 	/* if a thread currently exists for the thread id remove it */
1494 	if (thread != NULL) {
1495 		machine__remove_thread(machine, thread);
1496 		thread__put(thread);
1497 	}
1498 
1499 	thread = machine__findnew_thread(machine, event->fork.pid,
1500 					 event->fork.tid);
1501 
1502 	if (thread == NULL || parent == NULL ||
1503 	    thread__fork(thread, parent, sample->time) < 0) {
1504 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1505 		err = -1;
1506 	}
1507 	thread__put(thread);
1508 	thread__put(parent);
1509 
1510 	return err;
1511 }
1512 
1513 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1514 				struct perf_sample *sample __maybe_unused)
1515 {
1516 	struct thread *thread = machine__find_thread(machine,
1517 						     event->fork.pid,
1518 						     event->fork.tid);
1519 
1520 	if (dump_trace)
1521 		perf_event__fprintf_task(event, stdout);
1522 
1523 	if (thread != NULL) {
1524 		thread__exited(thread);
1525 		thread__put(thread);
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 int machine__process_event(struct machine *machine, union perf_event *event,
1532 			   struct perf_sample *sample)
1533 {
1534 	int ret;
1535 
1536 	switch (event->header.type) {
1537 	case PERF_RECORD_COMM:
1538 		ret = machine__process_comm_event(machine, event, sample); break;
1539 	case PERF_RECORD_MMAP:
1540 		ret = machine__process_mmap_event(machine, event, sample); break;
1541 	case PERF_RECORD_MMAP2:
1542 		ret = machine__process_mmap2_event(machine, event, sample); break;
1543 	case PERF_RECORD_FORK:
1544 		ret = machine__process_fork_event(machine, event, sample); break;
1545 	case PERF_RECORD_EXIT:
1546 		ret = machine__process_exit_event(machine, event, sample); break;
1547 	case PERF_RECORD_LOST:
1548 		ret = machine__process_lost_event(machine, event, sample); break;
1549 	case PERF_RECORD_AUX:
1550 		ret = machine__process_aux_event(machine, event); break;
1551 	case PERF_RECORD_ITRACE_START:
1552 		ret = machine__process_itrace_start_event(machine, event); break;
1553 	case PERF_RECORD_LOST_SAMPLES:
1554 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1555 	case PERF_RECORD_SWITCH:
1556 	case PERF_RECORD_SWITCH_CPU_WIDE:
1557 		ret = machine__process_switch_event(machine, event); break;
1558 	default:
1559 		ret = -1;
1560 		break;
1561 	}
1562 
1563 	return ret;
1564 }
1565 
1566 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1567 {
1568 	if (!regexec(regex, sym->name, 0, NULL, 0))
1569 		return 1;
1570 	return 0;
1571 }
1572 
1573 static void ip__resolve_ams(struct thread *thread,
1574 			    struct addr_map_symbol *ams,
1575 			    u64 ip)
1576 {
1577 	struct addr_location al;
1578 
1579 	memset(&al, 0, sizeof(al));
1580 	/*
1581 	 * We cannot use the header.misc hint to determine whether a
1582 	 * branch stack address is user, kernel, guest, hypervisor.
1583 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1584 	 * Thus, we have to try consecutively until we find a match
1585 	 * or else, the symbol is unknown
1586 	 */
1587 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1588 
1589 	ams->addr = ip;
1590 	ams->al_addr = al.addr;
1591 	ams->sym = al.sym;
1592 	ams->map = al.map;
1593 }
1594 
1595 static void ip__resolve_data(struct thread *thread,
1596 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1597 {
1598 	struct addr_location al;
1599 
1600 	memset(&al, 0, sizeof(al));
1601 
1602 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1603 	if (al.map == NULL) {
1604 		/*
1605 		 * some shared data regions have execute bit set which puts
1606 		 * their mapping in the MAP__FUNCTION type array.
1607 		 * Check there as a fallback option before dropping the sample.
1608 		 */
1609 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1610 	}
1611 
1612 	ams->addr = addr;
1613 	ams->al_addr = al.addr;
1614 	ams->sym = al.sym;
1615 	ams->map = al.map;
1616 }
1617 
1618 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1619 				     struct addr_location *al)
1620 {
1621 	struct mem_info *mi = zalloc(sizeof(*mi));
1622 
1623 	if (!mi)
1624 		return NULL;
1625 
1626 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1627 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1628 	mi->data_src.val = sample->data_src;
1629 
1630 	return mi;
1631 }
1632 
1633 static int add_callchain_ip(struct thread *thread,
1634 			    struct callchain_cursor *cursor,
1635 			    struct symbol **parent,
1636 			    struct addr_location *root_al,
1637 			    u8 *cpumode,
1638 			    u64 ip,
1639 			    bool branch,
1640 			    struct branch_flags *flags,
1641 			    int nr_loop_iter,
1642 			    int samples)
1643 {
1644 	struct addr_location al;
1645 
1646 	al.filtered = 0;
1647 	al.sym = NULL;
1648 	if (!cpumode) {
1649 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1650 						   ip, &al);
1651 	} else {
1652 		if (ip >= PERF_CONTEXT_MAX) {
1653 			switch (ip) {
1654 			case PERF_CONTEXT_HV:
1655 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1656 				break;
1657 			case PERF_CONTEXT_KERNEL:
1658 				*cpumode = PERF_RECORD_MISC_KERNEL;
1659 				break;
1660 			case PERF_CONTEXT_USER:
1661 				*cpumode = PERF_RECORD_MISC_USER;
1662 				break;
1663 			default:
1664 				pr_debug("invalid callchain context: "
1665 					 "%"PRId64"\n", (s64) ip);
1666 				/*
1667 				 * It seems the callchain is corrupted.
1668 				 * Discard all.
1669 				 */
1670 				callchain_cursor_reset(cursor);
1671 				return 1;
1672 			}
1673 			return 0;
1674 		}
1675 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1676 					   ip, &al);
1677 	}
1678 
1679 	if (al.sym != NULL) {
1680 		if (perf_hpp_list.parent && !*parent &&
1681 		    symbol__match_regex(al.sym, &parent_regex))
1682 			*parent = al.sym;
1683 		else if (have_ignore_callees && root_al &&
1684 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1685 			/* Treat this symbol as the root,
1686 			   forgetting its callees. */
1687 			*root_al = al;
1688 			callchain_cursor_reset(cursor);
1689 		}
1690 	}
1691 
1692 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1693 		return 0;
1694 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1695 				       branch, flags, nr_loop_iter, samples);
1696 }
1697 
1698 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1699 					   struct addr_location *al)
1700 {
1701 	unsigned int i;
1702 	const struct branch_stack *bs = sample->branch_stack;
1703 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1704 
1705 	if (!bi)
1706 		return NULL;
1707 
1708 	for (i = 0; i < bs->nr; i++) {
1709 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1710 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1711 		bi[i].flags = bs->entries[i].flags;
1712 	}
1713 	return bi;
1714 }
1715 
1716 #define CHASHSZ 127
1717 #define CHASHBITS 7
1718 #define NO_ENTRY 0xff
1719 
1720 #define PERF_MAX_BRANCH_DEPTH 127
1721 
1722 /* Remove loops. */
1723 static int remove_loops(struct branch_entry *l, int nr)
1724 {
1725 	int i, j, off;
1726 	unsigned char chash[CHASHSZ];
1727 
1728 	memset(chash, NO_ENTRY, sizeof(chash));
1729 
1730 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1731 
1732 	for (i = 0; i < nr; i++) {
1733 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1734 
1735 		/* no collision handling for now */
1736 		if (chash[h] == NO_ENTRY) {
1737 			chash[h] = i;
1738 		} else if (l[chash[h]].from == l[i].from) {
1739 			bool is_loop = true;
1740 			/* check if it is a real loop */
1741 			off = 0;
1742 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1743 				if (l[j].from != l[i + off].from) {
1744 					is_loop = false;
1745 					break;
1746 				}
1747 			if (is_loop) {
1748 				memmove(l + i, l + i + off,
1749 					(nr - (i + off)) * sizeof(*l));
1750 				nr -= off;
1751 			}
1752 		}
1753 	}
1754 	return nr;
1755 }
1756 
1757 /*
1758  * Recolve LBR callstack chain sample
1759  * Return:
1760  * 1 on success get LBR callchain information
1761  * 0 no available LBR callchain information, should try fp
1762  * negative error code on other errors.
1763  */
1764 static int resolve_lbr_callchain_sample(struct thread *thread,
1765 					struct callchain_cursor *cursor,
1766 					struct perf_sample *sample,
1767 					struct symbol **parent,
1768 					struct addr_location *root_al,
1769 					int max_stack)
1770 {
1771 	struct ip_callchain *chain = sample->callchain;
1772 	int chain_nr = min(max_stack, (int)chain->nr), i;
1773 	u8 cpumode = PERF_RECORD_MISC_USER;
1774 	u64 ip;
1775 
1776 	for (i = 0; i < chain_nr; i++) {
1777 		if (chain->ips[i] == PERF_CONTEXT_USER)
1778 			break;
1779 	}
1780 
1781 	/* LBR only affects the user callchain */
1782 	if (i != chain_nr) {
1783 		struct branch_stack *lbr_stack = sample->branch_stack;
1784 		int lbr_nr = lbr_stack->nr, j, k;
1785 		bool branch;
1786 		struct branch_flags *flags;
1787 		/*
1788 		 * LBR callstack can only get user call chain.
1789 		 * The mix_chain_nr is kernel call chain
1790 		 * number plus LBR user call chain number.
1791 		 * i is kernel call chain number,
1792 		 * 1 is PERF_CONTEXT_USER,
1793 		 * lbr_nr + 1 is the user call chain number.
1794 		 * For details, please refer to the comments
1795 		 * in callchain__printf
1796 		 */
1797 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1798 
1799 		for (j = 0; j < mix_chain_nr; j++) {
1800 			int err;
1801 			branch = false;
1802 			flags = NULL;
1803 
1804 			if (callchain_param.order == ORDER_CALLEE) {
1805 				if (j < i + 1)
1806 					ip = chain->ips[j];
1807 				else if (j > i + 1) {
1808 					k = j - i - 2;
1809 					ip = lbr_stack->entries[k].from;
1810 					branch = true;
1811 					flags = &lbr_stack->entries[k].flags;
1812 				} else {
1813 					ip = lbr_stack->entries[0].to;
1814 					branch = true;
1815 					flags = &lbr_stack->entries[0].flags;
1816 				}
1817 			} else {
1818 				if (j < lbr_nr) {
1819 					k = lbr_nr - j - 1;
1820 					ip = lbr_stack->entries[k].from;
1821 					branch = true;
1822 					flags = &lbr_stack->entries[k].flags;
1823 				}
1824 				else if (j > lbr_nr)
1825 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1826 				else {
1827 					ip = lbr_stack->entries[0].to;
1828 					branch = true;
1829 					flags = &lbr_stack->entries[0].flags;
1830 				}
1831 			}
1832 
1833 			err = add_callchain_ip(thread, cursor, parent,
1834 					       root_al, &cpumode, ip,
1835 					       branch, flags, 0, 0);
1836 			if (err)
1837 				return (err < 0) ? err : 0;
1838 		}
1839 		return 1;
1840 	}
1841 
1842 	return 0;
1843 }
1844 
1845 static int thread__resolve_callchain_sample(struct thread *thread,
1846 					    struct callchain_cursor *cursor,
1847 					    struct perf_evsel *evsel,
1848 					    struct perf_sample *sample,
1849 					    struct symbol **parent,
1850 					    struct addr_location *root_al,
1851 					    int max_stack)
1852 {
1853 	struct branch_stack *branch = sample->branch_stack;
1854 	struct ip_callchain *chain = sample->callchain;
1855 	int chain_nr = chain->nr;
1856 	u8 cpumode = PERF_RECORD_MISC_USER;
1857 	int i, j, err, nr_entries;
1858 	int skip_idx = -1;
1859 	int first_call = 0;
1860 	int nr_loop_iter;
1861 
1862 	if (perf_evsel__has_branch_callstack(evsel)) {
1863 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1864 						   root_al, max_stack);
1865 		if (err)
1866 			return (err < 0) ? err : 0;
1867 	}
1868 
1869 	/*
1870 	 * Based on DWARF debug information, some architectures skip
1871 	 * a callchain entry saved by the kernel.
1872 	 */
1873 	skip_idx = arch_skip_callchain_idx(thread, chain);
1874 
1875 	/*
1876 	 * Add branches to call stack for easier browsing. This gives
1877 	 * more context for a sample than just the callers.
1878 	 *
1879 	 * This uses individual histograms of paths compared to the
1880 	 * aggregated histograms the normal LBR mode uses.
1881 	 *
1882 	 * Limitations for now:
1883 	 * - No extra filters
1884 	 * - No annotations (should annotate somehow)
1885 	 */
1886 
1887 	if (branch && callchain_param.branch_callstack) {
1888 		int nr = min(max_stack, (int)branch->nr);
1889 		struct branch_entry be[nr];
1890 
1891 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1892 			pr_warning("corrupted branch chain. skipping...\n");
1893 			goto check_calls;
1894 		}
1895 
1896 		for (i = 0; i < nr; i++) {
1897 			if (callchain_param.order == ORDER_CALLEE) {
1898 				be[i] = branch->entries[i];
1899 				/*
1900 				 * Check for overlap into the callchain.
1901 				 * The return address is one off compared to
1902 				 * the branch entry. To adjust for this
1903 				 * assume the calling instruction is not longer
1904 				 * than 8 bytes.
1905 				 */
1906 				if (i == skip_idx ||
1907 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1908 					first_call++;
1909 				else if (be[i].from < chain->ips[first_call] &&
1910 				    be[i].from >= chain->ips[first_call] - 8)
1911 					first_call++;
1912 			} else
1913 				be[i] = branch->entries[branch->nr - i - 1];
1914 		}
1915 
1916 		nr_loop_iter = nr;
1917 		nr = remove_loops(be, nr);
1918 
1919 		/*
1920 		 * Get the number of iterations.
1921 		 * It's only approximation, but good enough in practice.
1922 		 */
1923 		if (nr_loop_iter > nr)
1924 			nr_loop_iter = nr_loop_iter - nr + 1;
1925 		else
1926 			nr_loop_iter = 0;
1927 
1928 		for (i = 0; i < nr; i++) {
1929 			if (i == nr - 1)
1930 				err = add_callchain_ip(thread, cursor, parent,
1931 						       root_al,
1932 						       NULL, be[i].to,
1933 						       true, &be[i].flags,
1934 						       nr_loop_iter, 1);
1935 			else
1936 				err = add_callchain_ip(thread, cursor, parent,
1937 						       root_al,
1938 						       NULL, be[i].to,
1939 						       true, &be[i].flags,
1940 						       0, 0);
1941 
1942 			if (!err)
1943 				err = add_callchain_ip(thread, cursor, parent, root_al,
1944 						       NULL, be[i].from,
1945 						       true, &be[i].flags,
1946 						       0, 0);
1947 			if (err == -EINVAL)
1948 				break;
1949 			if (err)
1950 				return err;
1951 		}
1952 		chain_nr -= nr;
1953 	}
1954 
1955 check_calls:
1956 	for (i = first_call, nr_entries = 0;
1957 	     i < chain_nr && nr_entries < max_stack; i++) {
1958 		u64 ip;
1959 
1960 		if (callchain_param.order == ORDER_CALLEE)
1961 			j = i;
1962 		else
1963 			j = chain->nr - i - 1;
1964 
1965 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1966 		if (j == skip_idx)
1967 			continue;
1968 #endif
1969 		ip = chain->ips[j];
1970 
1971 		if (ip < PERF_CONTEXT_MAX)
1972                        ++nr_entries;
1973 
1974 		err = add_callchain_ip(thread, cursor, parent,
1975 				       root_al, &cpumode, ip,
1976 				       false, NULL, 0, 0);
1977 
1978 		if (err)
1979 			return (err < 0) ? err : 0;
1980 	}
1981 
1982 	return 0;
1983 }
1984 
1985 static int unwind_entry(struct unwind_entry *entry, void *arg)
1986 {
1987 	struct callchain_cursor *cursor = arg;
1988 
1989 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
1990 		return 0;
1991 	return callchain_cursor_append(cursor, entry->ip,
1992 				       entry->map, entry->sym,
1993 				       false, NULL, 0, 0);
1994 }
1995 
1996 static int thread__resolve_callchain_unwind(struct thread *thread,
1997 					    struct callchain_cursor *cursor,
1998 					    struct perf_evsel *evsel,
1999 					    struct perf_sample *sample,
2000 					    int max_stack)
2001 {
2002 	/* Can we do dwarf post unwind? */
2003 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2004 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2005 		return 0;
2006 
2007 	/* Bail out if nothing was captured. */
2008 	if ((!sample->user_regs.regs) ||
2009 	    (!sample->user_stack.size))
2010 		return 0;
2011 
2012 	return unwind__get_entries(unwind_entry, cursor,
2013 				   thread, sample, max_stack);
2014 }
2015 
2016 int thread__resolve_callchain(struct thread *thread,
2017 			      struct callchain_cursor *cursor,
2018 			      struct perf_evsel *evsel,
2019 			      struct perf_sample *sample,
2020 			      struct symbol **parent,
2021 			      struct addr_location *root_al,
2022 			      int max_stack)
2023 {
2024 	int ret = 0;
2025 
2026 	callchain_cursor_reset(&callchain_cursor);
2027 
2028 	if (callchain_param.order == ORDER_CALLEE) {
2029 		ret = thread__resolve_callchain_sample(thread, cursor,
2030 						       evsel, sample,
2031 						       parent, root_al,
2032 						       max_stack);
2033 		if (ret)
2034 			return ret;
2035 		ret = thread__resolve_callchain_unwind(thread, cursor,
2036 						       evsel, sample,
2037 						       max_stack);
2038 	} else {
2039 		ret = thread__resolve_callchain_unwind(thread, cursor,
2040 						       evsel, sample,
2041 						       max_stack);
2042 		if (ret)
2043 			return ret;
2044 		ret = thread__resolve_callchain_sample(thread, cursor,
2045 						       evsel, sample,
2046 						       parent, root_al,
2047 						       max_stack);
2048 	}
2049 
2050 	return ret;
2051 }
2052 
2053 int machine__for_each_thread(struct machine *machine,
2054 			     int (*fn)(struct thread *thread, void *p),
2055 			     void *priv)
2056 {
2057 	struct rb_node *nd;
2058 	struct thread *thread;
2059 	int rc = 0;
2060 
2061 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2062 		thread = rb_entry(nd, struct thread, rb_node);
2063 		rc = fn(thread, priv);
2064 		if (rc != 0)
2065 			return rc;
2066 	}
2067 
2068 	list_for_each_entry(thread, &machine->dead_threads, node) {
2069 		rc = fn(thread, priv);
2070 		if (rc != 0)
2071 			return rc;
2072 	}
2073 	return rc;
2074 }
2075 
2076 int machines__for_each_thread(struct machines *machines,
2077 			      int (*fn)(struct thread *thread, void *p),
2078 			      void *priv)
2079 {
2080 	struct rb_node *nd;
2081 	int rc = 0;
2082 
2083 	rc = machine__for_each_thread(&machines->host, fn, priv);
2084 	if (rc != 0)
2085 		return rc;
2086 
2087 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2088 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2089 
2090 		rc = machine__for_each_thread(machine, fn, priv);
2091 		if (rc != 0)
2092 			return rc;
2093 	}
2094 	return rc;
2095 }
2096 
2097 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2098 				  struct target *target, struct thread_map *threads,
2099 				  perf_event__handler_t process, bool data_mmap,
2100 				  unsigned int proc_map_timeout)
2101 {
2102 	if (target__has_task(target))
2103 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2104 	else if (target__has_cpu(target))
2105 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2106 	/* command specified */
2107 	return 0;
2108 }
2109 
2110 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2111 {
2112 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2113 		return -1;
2114 
2115 	return machine->current_tid[cpu];
2116 }
2117 
2118 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2119 			     pid_t tid)
2120 {
2121 	struct thread *thread;
2122 
2123 	if (cpu < 0)
2124 		return -EINVAL;
2125 
2126 	if (!machine->current_tid) {
2127 		int i;
2128 
2129 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2130 		if (!machine->current_tid)
2131 			return -ENOMEM;
2132 		for (i = 0; i < MAX_NR_CPUS; i++)
2133 			machine->current_tid[i] = -1;
2134 	}
2135 
2136 	if (cpu >= MAX_NR_CPUS) {
2137 		pr_err("Requested CPU %d too large. ", cpu);
2138 		pr_err("Consider raising MAX_NR_CPUS\n");
2139 		return -EINVAL;
2140 	}
2141 
2142 	machine->current_tid[cpu] = tid;
2143 
2144 	thread = machine__findnew_thread(machine, pid, tid);
2145 	if (!thread)
2146 		return -ENOMEM;
2147 
2148 	thread->cpu = cpu;
2149 	thread__put(thread);
2150 
2151 	return 0;
2152 }
2153 
2154 int machine__get_kernel_start(struct machine *machine)
2155 {
2156 	struct map *map = machine__kernel_map(machine);
2157 	int err = 0;
2158 
2159 	/*
2160 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2161 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2162 	 * all addresses including kernel addresses are less than 2^32.  In
2163 	 * that case (32-bit system), if the kernel mapping is unknown, all
2164 	 * addresses will be assumed to be in user space - see
2165 	 * machine__kernel_ip().
2166 	 */
2167 	machine->kernel_start = 1ULL << 63;
2168 	if (map) {
2169 		err = map__load(map);
2170 		if (map->start)
2171 			machine->kernel_start = map->start;
2172 	}
2173 	return err;
2174 }
2175 
2176 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2177 {
2178 	return dsos__findnew(&machine->dsos, filename);
2179 }
2180 
2181 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2182 {
2183 	struct machine *machine = vmachine;
2184 	struct map *map;
2185 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2186 
2187 	if (sym == NULL)
2188 		return NULL;
2189 
2190 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2191 	*addrp = map->unmap_ip(map, sym->start);
2192 	return sym->name;
2193 }
2194