1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "mem-info.h" 20 #include "path.h" 21 #include "srcline.h" 22 #include "symbol.h" 23 #include "sort.h" 24 #include "strlist.h" 25 #include "target.h" 26 #include "thread.h" 27 #include "util.h" 28 #include "vdso.h" 29 #include <stdbool.h> 30 #include <sys/types.h> 31 #include <sys/stat.h> 32 #include <unistd.h> 33 #include "unwind.h" 34 #include "linux/hash.h" 35 #include "asm/bug.h" 36 #include "bpf-event.h" 37 #include <internal/lib.h> // page_size 38 #include "cgroup.h" 39 #include "arm64-frame-pointer-unwind-support.h" 40 41 #include <linux/ctype.h> 42 #include <symbol/kallsyms.h> 43 #include <linux/mman.h> 44 #include <linux/string.h> 45 #include <linux/zalloc.h> 46 47 static struct dso *machine__kernel_dso(struct machine *machine) 48 { 49 return map__dso(machine->vmlinux_map); 50 } 51 52 static int machine__set_mmap_name(struct machine *machine) 53 { 54 if (machine__is_host(machine)) 55 machine->mmap_name = strdup("[kernel.kallsyms]"); 56 else if (machine__is_default_guest(machine)) 57 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 58 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 59 machine->pid) < 0) 60 machine->mmap_name = NULL; 61 62 return machine->mmap_name ? 0 : -ENOMEM; 63 } 64 65 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 66 { 67 char comm[64]; 68 69 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 70 thread__set_comm(thread, comm, 0); 71 } 72 73 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 74 { 75 int err = -ENOMEM; 76 77 memset(machine, 0, sizeof(*machine)); 78 machine->kmaps = maps__new(machine); 79 if (machine->kmaps == NULL) 80 return -ENOMEM; 81 82 RB_CLEAR_NODE(&machine->rb_node); 83 dsos__init(&machine->dsos); 84 85 threads__init(&machine->threads); 86 87 machine->vdso_info = NULL; 88 machine->env = NULL; 89 90 machine->pid = pid; 91 92 machine->id_hdr_size = 0; 93 machine->kptr_restrict_warned = false; 94 machine->comm_exec = false; 95 machine->kernel_start = 0; 96 machine->vmlinux_map = NULL; 97 98 machine->root_dir = strdup(root_dir); 99 if (machine->root_dir == NULL) 100 goto out; 101 102 if (machine__set_mmap_name(machine)) 103 goto out; 104 105 if (pid != HOST_KERNEL_ID) { 106 struct thread *thread = machine__findnew_thread(machine, -1, 107 pid); 108 109 if (thread == NULL) 110 goto out; 111 112 thread__set_guest_comm(thread, pid); 113 thread__put(thread); 114 } 115 116 machine->current_tid = NULL; 117 err = 0; 118 119 out: 120 if (err) { 121 zfree(&machine->kmaps); 122 zfree(&machine->root_dir); 123 zfree(&machine->mmap_name); 124 } 125 return 0; 126 } 127 128 struct machine *machine__new_host(void) 129 { 130 struct machine *machine = malloc(sizeof(*machine)); 131 132 if (machine != NULL) { 133 machine__init(machine, "", HOST_KERNEL_ID); 134 135 if (machine__create_kernel_maps(machine) < 0) 136 goto out_delete; 137 } 138 139 return machine; 140 out_delete: 141 free(machine); 142 return NULL; 143 } 144 145 struct machine *machine__new_kallsyms(void) 146 { 147 struct machine *machine = machine__new_host(); 148 /* 149 * FIXME: 150 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 151 * ask for not using the kcore parsing code, once this one is fixed 152 * to create a map per module. 153 */ 154 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 155 machine__delete(machine); 156 machine = NULL; 157 } 158 159 return machine; 160 } 161 162 void machine__delete_threads(struct machine *machine) 163 { 164 threads__remove_all_threads(&machine->threads); 165 } 166 167 void machine__exit(struct machine *machine) 168 { 169 if (machine == NULL) 170 return; 171 172 machine__destroy_kernel_maps(machine); 173 maps__zput(machine->kmaps); 174 dsos__exit(&machine->dsos); 175 machine__exit_vdso(machine); 176 zfree(&machine->root_dir); 177 zfree(&machine->mmap_name); 178 zfree(&machine->current_tid); 179 zfree(&machine->kallsyms_filename); 180 181 threads__exit(&machine->threads); 182 } 183 184 void machine__delete(struct machine *machine) 185 { 186 if (machine) { 187 machine__exit(machine); 188 free(machine); 189 } 190 } 191 192 void machines__init(struct machines *machines) 193 { 194 machine__init(&machines->host, "", HOST_KERNEL_ID); 195 machines->guests = RB_ROOT_CACHED; 196 } 197 198 void machines__exit(struct machines *machines) 199 { 200 machine__exit(&machines->host); 201 /* XXX exit guest */ 202 } 203 204 struct machine *machines__add(struct machines *machines, pid_t pid, 205 const char *root_dir) 206 { 207 struct rb_node **p = &machines->guests.rb_root.rb_node; 208 struct rb_node *parent = NULL; 209 struct machine *pos, *machine = malloc(sizeof(*machine)); 210 bool leftmost = true; 211 212 if (machine == NULL) 213 return NULL; 214 215 if (machine__init(machine, root_dir, pid) != 0) { 216 free(machine); 217 return NULL; 218 } 219 220 while (*p != NULL) { 221 parent = *p; 222 pos = rb_entry(parent, struct machine, rb_node); 223 if (pid < pos->pid) 224 p = &(*p)->rb_left; 225 else { 226 p = &(*p)->rb_right; 227 leftmost = false; 228 } 229 } 230 231 rb_link_node(&machine->rb_node, parent, p); 232 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 233 234 machine->machines = machines; 235 236 return machine; 237 } 238 239 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 240 { 241 struct rb_node *nd; 242 243 machines->host.comm_exec = comm_exec; 244 245 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 246 struct machine *machine = rb_entry(nd, struct machine, rb_node); 247 248 machine->comm_exec = comm_exec; 249 } 250 } 251 252 struct machine *machines__find(struct machines *machines, pid_t pid) 253 { 254 struct rb_node **p = &machines->guests.rb_root.rb_node; 255 struct rb_node *parent = NULL; 256 struct machine *machine; 257 struct machine *default_machine = NULL; 258 259 if (pid == HOST_KERNEL_ID) 260 return &machines->host; 261 262 while (*p != NULL) { 263 parent = *p; 264 machine = rb_entry(parent, struct machine, rb_node); 265 if (pid < machine->pid) 266 p = &(*p)->rb_left; 267 else if (pid > machine->pid) 268 p = &(*p)->rb_right; 269 else 270 return machine; 271 if (!machine->pid) 272 default_machine = machine; 273 } 274 275 return default_machine; 276 } 277 278 struct machine *machines__findnew(struct machines *machines, pid_t pid) 279 { 280 char path[PATH_MAX]; 281 const char *root_dir = ""; 282 struct machine *machine = machines__find(machines, pid); 283 284 if (machine && (machine->pid == pid)) 285 goto out; 286 287 if ((pid != HOST_KERNEL_ID) && 288 (pid != DEFAULT_GUEST_KERNEL_ID) && 289 (symbol_conf.guestmount)) { 290 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 291 if (access(path, R_OK)) { 292 static struct strlist *seen; 293 294 if (!seen) 295 seen = strlist__new(NULL, NULL); 296 297 if (!strlist__has_entry(seen, path)) { 298 pr_err("Can't access file %s\n", path); 299 strlist__add(seen, path); 300 } 301 machine = NULL; 302 goto out; 303 } 304 root_dir = path; 305 } 306 307 machine = machines__add(machines, pid, root_dir); 308 out: 309 return machine; 310 } 311 312 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 313 { 314 struct machine *machine = machines__find(machines, pid); 315 316 if (!machine) 317 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 318 return machine; 319 } 320 321 /* 322 * A common case for KVM test programs is that the test program acts as the 323 * hypervisor, creating, running and destroying the virtual machine, and 324 * providing the guest object code from its own object code. In this case, 325 * the VM is not running an OS, but only the functions loaded into it by the 326 * hypervisor test program, and conveniently, loaded at the same virtual 327 * addresses. 328 * 329 * Normally to resolve addresses, MMAP events are needed to map addresses 330 * back to the object code and debug symbols for that object code. 331 * 332 * Currently, there is no way to get such mapping information from guests 333 * but, in the scenario described above, the guest has the same mappings 334 * as the hypervisor, so support for that scenario can be achieved. 335 * 336 * To support that, copy the host thread's maps to the guest thread's maps. 337 * Note, we do not discover the guest until we encounter a guest event, 338 * which works well because it is not until then that we know that the host 339 * thread's maps have been set up. 340 * 341 * This function returns the guest thread. Apart from keeping the data 342 * structures sane, using a thread belonging to the guest machine, instead 343 * of the host thread, allows it to have its own comm (refer 344 * thread__set_guest_comm()). 345 */ 346 static struct thread *findnew_guest_code(struct machine *machine, 347 struct machine *host_machine, 348 pid_t pid) 349 { 350 struct thread *host_thread; 351 struct thread *thread; 352 int err; 353 354 if (!machine) 355 return NULL; 356 357 thread = machine__findnew_thread(machine, -1, pid); 358 if (!thread) 359 return NULL; 360 361 /* Assume maps are set up if there are any */ 362 if (!maps__empty(thread__maps(thread))) 363 return thread; 364 365 host_thread = machine__find_thread(host_machine, -1, pid); 366 if (!host_thread) 367 goto out_err; 368 369 thread__set_guest_comm(thread, pid); 370 371 /* 372 * Guest code can be found in hypervisor process at the same address 373 * so copy host maps. 374 */ 375 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread)); 376 thread__put(host_thread); 377 if (err) 378 goto out_err; 379 380 return thread; 381 382 out_err: 383 thread__zput(thread); 384 return NULL; 385 } 386 387 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 388 { 389 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 390 struct machine *machine = machines__findnew(machines, pid); 391 392 return findnew_guest_code(machine, host_machine, pid); 393 } 394 395 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 396 { 397 struct machines *machines = machine->machines; 398 struct machine *host_machine; 399 400 if (!machines) 401 return NULL; 402 403 host_machine = machines__find(machines, HOST_KERNEL_ID); 404 405 return findnew_guest_code(machine, host_machine, pid); 406 } 407 408 void machines__process_guests(struct machines *machines, 409 machine__process_t process, void *data) 410 { 411 struct rb_node *nd; 412 413 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 414 struct machine *pos = rb_entry(nd, struct machine, rb_node); 415 process(pos, data); 416 } 417 } 418 419 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 420 { 421 struct rb_node *node; 422 struct machine *machine; 423 424 machines->host.id_hdr_size = id_hdr_size; 425 426 for (node = rb_first_cached(&machines->guests); node; 427 node = rb_next(node)) { 428 machine = rb_entry(node, struct machine, rb_node); 429 machine->id_hdr_size = id_hdr_size; 430 } 431 432 return; 433 } 434 435 static void machine__update_thread_pid(struct machine *machine, 436 struct thread *th, pid_t pid) 437 { 438 struct thread *leader; 439 440 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1) 441 return; 442 443 thread__set_pid(th, pid); 444 445 if (thread__pid(th) == thread__tid(th)) 446 return; 447 448 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th)); 449 if (!leader) 450 goto out_err; 451 452 if (!thread__maps(leader)) 453 thread__set_maps(leader, maps__new(machine)); 454 455 if (!thread__maps(leader)) 456 goto out_err; 457 458 if (thread__maps(th) == thread__maps(leader)) 459 goto out_put; 460 461 if (thread__maps(th)) { 462 /* 463 * Maps are created from MMAP events which provide the pid and 464 * tid. Consequently there never should be any maps on a thread 465 * with an unknown pid. Just print an error if there are. 466 */ 467 if (!maps__empty(thread__maps(th))) 468 pr_err("Discarding thread maps for %d:%d\n", 469 thread__pid(th), thread__tid(th)); 470 maps__put(thread__maps(th)); 471 } 472 473 thread__set_maps(th, maps__get(thread__maps(leader))); 474 out_put: 475 thread__put(leader); 476 return; 477 out_err: 478 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th)); 479 goto out_put; 480 } 481 482 /* 483 * Caller must eventually drop thread->refcnt returned with a successful 484 * lookup/new thread inserted. 485 */ 486 static struct thread *__machine__findnew_thread(struct machine *machine, 487 pid_t pid, 488 pid_t tid, 489 bool create) 490 { 491 struct thread *th = threads__find(&machine->threads, tid); 492 bool created; 493 494 if (th) { 495 machine__update_thread_pid(machine, th, pid); 496 return th; 497 } 498 if (!create) 499 return NULL; 500 501 th = threads__findnew(&machine->threads, pid, tid, &created); 502 if (created) { 503 /* 504 * We have to initialize maps separately after rb tree is 505 * updated. 506 * 507 * The reason is that we call machine__findnew_thread within 508 * thread__init_maps to find the thread leader and that would 509 * screwed the rb tree. 510 */ 511 if (thread__init_maps(th, machine)) { 512 pr_err("Thread init failed thread %d\n", pid); 513 threads__remove(&machine->threads, th); 514 thread__put(th); 515 return NULL; 516 } 517 } else 518 machine__update_thread_pid(machine, th, pid); 519 520 return th; 521 } 522 523 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 524 { 525 return __machine__findnew_thread(machine, pid, tid, /*create=*/true); 526 } 527 528 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 529 pid_t tid) 530 { 531 return __machine__findnew_thread(machine, pid, tid, /*create=*/false); 532 } 533 534 /* 535 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 536 * So here a single thread is created for that, but actually there is a separate 537 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 538 * is only 1. That causes problems for some tools, requiring workarounds. For 539 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 540 */ 541 struct thread *machine__idle_thread(struct machine *machine) 542 { 543 struct thread *thread = machine__findnew_thread(machine, 0, 0); 544 545 if (!thread || thread__set_comm(thread, "swapper", 0) || 546 thread__set_namespaces(thread, 0, NULL)) 547 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 548 549 return thread; 550 } 551 552 struct comm *machine__thread_exec_comm(struct machine *machine, 553 struct thread *thread) 554 { 555 if (machine->comm_exec) 556 return thread__exec_comm(thread); 557 else 558 return thread__comm(thread); 559 } 560 561 int machine__process_comm_event(struct machine *machine, union perf_event *event, 562 struct perf_sample *sample) 563 { 564 struct thread *thread = machine__findnew_thread(machine, 565 event->comm.pid, 566 event->comm.tid); 567 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 568 int err = 0; 569 570 if (exec) 571 machine->comm_exec = true; 572 573 if (dump_trace) 574 perf_event__fprintf_comm(event, stdout); 575 576 if (thread == NULL || 577 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 578 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 579 err = -1; 580 } 581 582 thread__put(thread); 583 584 return err; 585 } 586 587 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 588 union perf_event *event, 589 struct perf_sample *sample __maybe_unused) 590 { 591 struct thread *thread = machine__findnew_thread(machine, 592 event->namespaces.pid, 593 event->namespaces.tid); 594 int err = 0; 595 596 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 597 "\nWARNING: kernel seems to support more namespaces than perf" 598 " tool.\nTry updating the perf tool..\n\n"); 599 600 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 601 "\nWARNING: perf tool seems to support more namespaces than" 602 " the kernel.\nTry updating the kernel..\n\n"); 603 604 if (dump_trace) 605 perf_event__fprintf_namespaces(event, stdout); 606 607 if (thread == NULL || 608 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 609 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 610 err = -1; 611 } 612 613 thread__put(thread); 614 615 return err; 616 } 617 618 int machine__process_cgroup_event(struct machine *machine, 619 union perf_event *event, 620 struct perf_sample *sample __maybe_unused) 621 { 622 struct cgroup *cgrp; 623 624 if (dump_trace) 625 perf_event__fprintf_cgroup(event, stdout); 626 627 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 628 if (cgrp == NULL) 629 return -ENOMEM; 630 631 return 0; 632 } 633 634 int machine__process_lost_event(struct machine *machine __maybe_unused, 635 union perf_event *event, struct perf_sample *sample __maybe_unused) 636 { 637 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 638 event->lost.id, event->lost.lost); 639 return 0; 640 } 641 642 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 643 union perf_event *event, struct perf_sample *sample) 644 { 645 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n", 646 sample->id, event->lost_samples.lost, 647 event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : ""); 648 return 0; 649 } 650 651 int machine__process_aux_event(struct machine *machine __maybe_unused, 652 union perf_event *event) 653 { 654 if (dump_trace) 655 perf_event__fprintf_aux(event, stdout); 656 return 0; 657 } 658 659 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 660 union perf_event *event) 661 { 662 if (dump_trace) 663 perf_event__fprintf_itrace_start(event, stdout); 664 return 0; 665 } 666 667 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 668 union perf_event *event) 669 { 670 if (dump_trace) 671 perf_event__fprintf_aux_output_hw_id(event, stdout); 672 return 0; 673 } 674 675 int machine__process_switch_event(struct machine *machine __maybe_unused, 676 union perf_event *event) 677 { 678 if (dump_trace) 679 perf_event__fprintf_switch(event, stdout); 680 return 0; 681 } 682 683 static int machine__process_ksymbol_register(struct machine *machine, 684 union perf_event *event, 685 struct perf_sample *sample __maybe_unused) 686 { 687 struct symbol *sym; 688 struct dso *dso = NULL; 689 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 690 int err = 0; 691 692 if (!map) { 693 dso = dso__new(event->ksymbol.name); 694 695 if (!dso) { 696 err = -ENOMEM; 697 goto out; 698 } 699 dso__set_kernel(dso, DSO_SPACE__KERNEL); 700 map = map__new2(0, dso); 701 if (!map) { 702 err = -ENOMEM; 703 goto out; 704 } 705 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 706 dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL); 707 dso__data(dso)->file_size = event->ksymbol.len; 708 dso__set_loaded(dso); 709 } 710 711 map__set_start(map, event->ksymbol.addr); 712 map__set_end(map, map__start(map) + event->ksymbol.len); 713 err = maps__insert(machine__kernel_maps(machine), map); 714 if (err) { 715 err = -ENOMEM; 716 goto out; 717 } 718 719 dso__set_loaded(dso); 720 721 if (is_bpf_image(event->ksymbol.name)) { 722 dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE); 723 dso__set_long_name(dso, "", false); 724 } 725 } else { 726 dso = dso__get(map__dso(map)); 727 } 728 729 sym = symbol__new(map__map_ip(map, map__start(map)), 730 event->ksymbol.len, 731 0, 0, event->ksymbol.name); 732 if (!sym) { 733 err = -ENOMEM; 734 goto out; 735 } 736 dso__insert_symbol(dso, sym); 737 out: 738 map__put(map); 739 dso__put(dso); 740 return err; 741 } 742 743 static int machine__process_ksymbol_unregister(struct machine *machine, 744 union perf_event *event, 745 struct perf_sample *sample __maybe_unused) 746 { 747 struct symbol *sym; 748 struct map *map; 749 750 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 751 if (!map) 752 return 0; 753 754 if (!RC_CHK_EQUAL(map, machine->vmlinux_map)) 755 maps__remove(machine__kernel_maps(machine), map); 756 else { 757 struct dso *dso = map__dso(map); 758 759 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map))); 760 if (sym) 761 dso__delete_symbol(dso, sym); 762 } 763 map__put(map); 764 return 0; 765 } 766 767 int machine__process_ksymbol(struct machine *machine __maybe_unused, 768 union perf_event *event, 769 struct perf_sample *sample) 770 { 771 if (dump_trace) 772 perf_event__fprintf_ksymbol(event, stdout); 773 774 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 775 return machine__process_ksymbol_unregister(machine, event, 776 sample); 777 return machine__process_ksymbol_register(machine, event, sample); 778 } 779 780 int machine__process_text_poke(struct machine *machine, union perf_event *event, 781 struct perf_sample *sample __maybe_unused) 782 { 783 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 784 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 785 struct dso *dso = map ? map__dso(map) : NULL; 786 787 if (dump_trace) 788 perf_event__fprintf_text_poke(event, machine, stdout); 789 790 if (!event->text_poke.new_len) 791 goto out; 792 793 if (cpumode != PERF_RECORD_MISC_KERNEL) { 794 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 795 goto out; 796 } 797 798 if (dso) { 799 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 800 int ret; 801 802 /* 803 * Kernel maps might be changed when loading symbols so loading 804 * must be done prior to using kernel maps. 805 */ 806 map__load(map); 807 ret = dso__data_write_cache_addr(dso, map, machine, 808 event->text_poke.addr, 809 new_bytes, 810 event->text_poke.new_len); 811 if (ret != event->text_poke.new_len) 812 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 813 event->text_poke.addr); 814 } else { 815 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 816 event->text_poke.addr); 817 } 818 out: 819 map__put(map); 820 return 0; 821 } 822 823 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 824 const char *filename) 825 { 826 struct map *map = NULL; 827 struct kmod_path m; 828 struct dso *dso; 829 int err; 830 831 if (kmod_path__parse_name(&m, filename)) 832 return NULL; 833 834 dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename); 835 if (dso == NULL) 836 goto out; 837 838 map = map__new2(start, dso); 839 if (map == NULL) 840 goto out; 841 842 err = maps__insert(machine__kernel_maps(machine), map); 843 /* If maps__insert failed, return NULL. */ 844 if (err) { 845 map__put(map); 846 map = NULL; 847 } 848 out: 849 /* put the dso here, corresponding to machine__findnew_module_dso */ 850 dso__put(dso); 851 zfree(&m.name); 852 return map; 853 } 854 855 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 856 { 857 struct rb_node *nd; 858 size_t ret = dsos__fprintf(&machines->host.dsos, fp); 859 860 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 861 struct machine *pos = rb_entry(nd, struct machine, rb_node); 862 ret += dsos__fprintf(&pos->dsos, fp); 863 } 864 865 return ret; 866 } 867 868 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 869 bool (skip)(struct dso *dso, int parm), int parm) 870 { 871 return dsos__fprintf_buildid(&m->dsos, fp, skip, parm); 872 } 873 874 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 875 bool (skip)(struct dso *dso, int parm), int parm) 876 { 877 struct rb_node *nd; 878 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 879 880 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 881 struct machine *pos = rb_entry(nd, struct machine, rb_node); 882 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 883 } 884 return ret; 885 } 886 887 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 888 { 889 int i; 890 size_t printed = 0; 891 struct dso *kdso = machine__kernel_dso(machine); 892 893 if (dso__has_build_id(kdso)) { 894 char filename[PATH_MAX]; 895 896 if (dso__build_id_filename(kdso, filename, sizeof(filename), false)) 897 printed += fprintf(fp, "[0] %s\n", filename); 898 } 899 900 for (i = 0; i < vmlinux_path__nr_entries; ++i) { 901 printed += fprintf(fp, "[%d] %s\n", i + dso__has_build_id(kdso), 902 vmlinux_path[i]); 903 } 904 return printed; 905 } 906 907 struct machine_fprintf_cb_args { 908 FILE *fp; 909 size_t printed; 910 }; 911 912 static int machine_fprintf_cb(struct thread *thread, void *data) 913 { 914 struct machine_fprintf_cb_args *args = data; 915 916 /* TODO: handle fprintf errors. */ 917 args->printed += thread__fprintf(thread, args->fp); 918 return 0; 919 } 920 921 size_t machine__fprintf(struct machine *machine, FILE *fp) 922 { 923 struct machine_fprintf_cb_args args = { 924 .fp = fp, 925 .printed = 0, 926 }; 927 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads)); 928 929 machine__for_each_thread(machine, machine_fprintf_cb, &args); 930 return ret + args.printed; 931 } 932 933 static struct dso *machine__get_kernel(struct machine *machine) 934 { 935 const char *vmlinux_name = machine->mmap_name; 936 struct dso *kernel; 937 938 if (machine__is_host(machine)) { 939 if (symbol_conf.vmlinux_name) 940 vmlinux_name = symbol_conf.vmlinux_name; 941 942 kernel = machine__findnew_kernel(machine, vmlinux_name, 943 "[kernel]", DSO_SPACE__KERNEL); 944 } else { 945 if (symbol_conf.default_guest_vmlinux_name) 946 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 947 948 kernel = machine__findnew_kernel(machine, vmlinux_name, 949 "[guest.kernel]", 950 DSO_SPACE__KERNEL_GUEST); 951 } 952 953 if (kernel != NULL && (!dso__has_build_id(kernel))) 954 dso__read_running_kernel_build_id(kernel, machine); 955 956 return kernel; 957 } 958 959 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 960 size_t bufsz) 961 { 962 if (machine__is_default_guest(machine)) 963 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 964 else 965 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 966 } 967 968 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 969 970 /* Figure out the start address of kernel map from /proc/kallsyms. 971 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 972 * symbol_name if it's not that important. 973 */ 974 static int machine__get_running_kernel_start(struct machine *machine, 975 const char **symbol_name, 976 u64 *start, u64 *end) 977 { 978 char filename[PATH_MAX]; 979 int i, err = -1; 980 const char *name; 981 u64 addr = 0; 982 983 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 984 985 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 986 return 0; 987 988 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 989 err = kallsyms__get_function_start(filename, name, &addr); 990 if (!err) 991 break; 992 } 993 994 if (err) 995 return -1; 996 997 if (symbol_name) 998 *symbol_name = name; 999 1000 *start = addr; 1001 1002 err = kallsyms__get_symbol_start(filename, "_edata", &addr); 1003 if (err) 1004 err = kallsyms__get_function_start(filename, "_etext", &addr); 1005 if (!err) 1006 *end = addr; 1007 1008 return 0; 1009 } 1010 1011 int machine__create_extra_kernel_map(struct machine *machine, 1012 struct dso *kernel, 1013 struct extra_kernel_map *xm) 1014 { 1015 struct kmap *kmap; 1016 struct map *map; 1017 int err; 1018 1019 map = map__new2(xm->start, kernel); 1020 if (!map) 1021 return -ENOMEM; 1022 1023 map__set_end(map, xm->end); 1024 map__set_pgoff(map, xm->pgoff); 1025 1026 kmap = map__kmap(map); 1027 1028 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1029 1030 err = maps__insert(machine__kernel_maps(machine), map); 1031 1032 if (!err) { 1033 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1034 kmap->name, map__start(map), map__end(map)); 1035 } 1036 1037 map__put(map); 1038 1039 return err; 1040 } 1041 1042 static u64 find_entry_trampoline(struct dso *dso) 1043 { 1044 /* Duplicates are removed so lookup all aliases */ 1045 const char *syms[] = { 1046 "_entry_trampoline", 1047 "__entry_trampoline_start", 1048 "entry_SYSCALL_64_trampoline", 1049 }; 1050 struct symbol *sym = dso__first_symbol(dso); 1051 unsigned int i; 1052 1053 for (; sym; sym = dso__next_symbol(sym)) { 1054 if (sym->binding != STB_GLOBAL) 1055 continue; 1056 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1057 if (!strcmp(sym->name, syms[i])) 1058 return sym->start; 1059 } 1060 } 1061 1062 return 0; 1063 } 1064 1065 /* 1066 * These values can be used for kernels that do not have symbols for the entry 1067 * trampolines in kallsyms. 1068 */ 1069 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1070 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1071 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1072 1073 struct machine__map_x86_64_entry_trampolines_args { 1074 struct maps *kmaps; 1075 bool found; 1076 }; 1077 1078 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data) 1079 { 1080 struct machine__map_x86_64_entry_trampolines_args *args = data; 1081 struct map *dest_map; 1082 struct kmap *kmap = __map__kmap(map); 1083 1084 if (!kmap || !is_entry_trampoline(kmap->name)) 1085 return 0; 1086 1087 dest_map = maps__find(args->kmaps, map__pgoff(map)); 1088 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map)) 1089 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map))); 1090 1091 map__put(dest_map); 1092 args->found = true; 1093 return 0; 1094 } 1095 1096 /* Map x86_64 PTI entry trampolines */ 1097 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1098 struct dso *kernel) 1099 { 1100 struct machine__map_x86_64_entry_trampolines_args args = { 1101 .kmaps = machine__kernel_maps(machine), 1102 .found = false, 1103 }; 1104 int nr_cpus_avail, cpu; 1105 u64 pgoff; 1106 1107 /* 1108 * In the vmlinux case, pgoff is a virtual address which must now be 1109 * mapped to a vmlinux offset. 1110 */ 1111 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args); 1112 1113 if (args.found || machine->trampolines_mapped) 1114 return 0; 1115 1116 pgoff = find_entry_trampoline(kernel); 1117 if (!pgoff) 1118 return 0; 1119 1120 nr_cpus_avail = machine__nr_cpus_avail(machine); 1121 1122 /* Add a 1 page map for each CPU's entry trampoline */ 1123 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1124 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1125 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1126 X86_64_ENTRY_TRAMPOLINE; 1127 struct extra_kernel_map xm = { 1128 .start = va, 1129 .end = va + page_size, 1130 .pgoff = pgoff, 1131 }; 1132 1133 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1134 1135 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1136 return -1; 1137 } 1138 1139 machine->trampolines_mapped = nr_cpus_avail; 1140 1141 return 0; 1142 } 1143 1144 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1145 struct dso *kernel __maybe_unused) 1146 { 1147 return 0; 1148 } 1149 1150 static int 1151 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1152 { 1153 /* In case of renewal the kernel map, destroy previous one */ 1154 machine__destroy_kernel_maps(machine); 1155 1156 map__put(machine->vmlinux_map); 1157 machine->vmlinux_map = map__new2(0, kernel); 1158 if (machine->vmlinux_map == NULL) 1159 return -ENOMEM; 1160 1161 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY); 1162 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1163 } 1164 1165 void machine__destroy_kernel_maps(struct machine *machine) 1166 { 1167 struct kmap *kmap; 1168 struct map *map = machine__kernel_map(machine); 1169 1170 if (map == NULL) 1171 return; 1172 1173 kmap = map__kmap(map); 1174 maps__remove(machine__kernel_maps(machine), map); 1175 if (kmap && kmap->ref_reloc_sym) { 1176 zfree((char **)&kmap->ref_reloc_sym->name); 1177 zfree(&kmap->ref_reloc_sym); 1178 } 1179 1180 map__zput(machine->vmlinux_map); 1181 } 1182 1183 int machines__create_guest_kernel_maps(struct machines *machines) 1184 { 1185 int ret = 0; 1186 struct dirent **namelist = NULL; 1187 int i, items = 0; 1188 char path[PATH_MAX]; 1189 pid_t pid; 1190 char *endp; 1191 1192 if (symbol_conf.default_guest_vmlinux_name || 1193 symbol_conf.default_guest_modules || 1194 symbol_conf.default_guest_kallsyms) { 1195 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1196 } 1197 1198 if (symbol_conf.guestmount) { 1199 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1200 if (items <= 0) 1201 return -ENOENT; 1202 for (i = 0; i < items; i++) { 1203 if (!isdigit(namelist[i]->d_name[0])) { 1204 /* Filter out . and .. */ 1205 continue; 1206 } 1207 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1208 if ((*endp != '\0') || 1209 (endp == namelist[i]->d_name) || 1210 (errno == ERANGE)) { 1211 pr_debug("invalid directory (%s). Skipping.\n", 1212 namelist[i]->d_name); 1213 continue; 1214 } 1215 sprintf(path, "%s/%s/proc/kallsyms", 1216 symbol_conf.guestmount, 1217 namelist[i]->d_name); 1218 ret = access(path, R_OK); 1219 if (ret) { 1220 pr_debug("Can't access file %s\n", path); 1221 goto failure; 1222 } 1223 machines__create_kernel_maps(machines, pid); 1224 } 1225 failure: 1226 free(namelist); 1227 } 1228 1229 return ret; 1230 } 1231 1232 void machines__destroy_kernel_maps(struct machines *machines) 1233 { 1234 struct rb_node *next = rb_first_cached(&machines->guests); 1235 1236 machine__destroy_kernel_maps(&machines->host); 1237 1238 while (next) { 1239 struct machine *pos = rb_entry(next, struct machine, rb_node); 1240 1241 next = rb_next(&pos->rb_node); 1242 rb_erase_cached(&pos->rb_node, &machines->guests); 1243 machine__delete(pos); 1244 } 1245 } 1246 1247 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1248 { 1249 struct machine *machine = machines__findnew(machines, pid); 1250 1251 if (machine == NULL) 1252 return -1; 1253 1254 return machine__create_kernel_maps(machine); 1255 } 1256 1257 int machine__load_kallsyms(struct machine *machine, const char *filename) 1258 { 1259 struct map *map = machine__kernel_map(machine); 1260 struct dso *dso = map__dso(map); 1261 int ret = __dso__load_kallsyms(dso, filename, map, true); 1262 1263 if (ret > 0) { 1264 dso__set_loaded(dso); 1265 /* 1266 * Since /proc/kallsyms will have multiple sessions for the 1267 * kernel, with modules between them, fixup the end of all 1268 * sections. 1269 */ 1270 maps__fixup_end(machine__kernel_maps(machine)); 1271 } 1272 1273 return ret; 1274 } 1275 1276 int machine__load_vmlinux_path(struct machine *machine) 1277 { 1278 struct map *map = machine__kernel_map(machine); 1279 struct dso *dso = map__dso(map); 1280 int ret = dso__load_vmlinux_path(dso, map); 1281 1282 if (ret > 0) 1283 dso__set_loaded(dso); 1284 1285 return ret; 1286 } 1287 1288 static char *get_kernel_version(const char *root_dir) 1289 { 1290 char version[PATH_MAX]; 1291 FILE *file; 1292 char *name, *tmp; 1293 const char *prefix = "Linux version "; 1294 1295 sprintf(version, "%s/proc/version", root_dir); 1296 file = fopen(version, "r"); 1297 if (!file) 1298 return NULL; 1299 1300 tmp = fgets(version, sizeof(version), file); 1301 fclose(file); 1302 if (!tmp) 1303 return NULL; 1304 1305 name = strstr(version, prefix); 1306 if (!name) 1307 return NULL; 1308 name += strlen(prefix); 1309 tmp = strchr(name, ' '); 1310 if (tmp) 1311 *tmp = '\0'; 1312 1313 return strdup(name); 1314 } 1315 1316 static bool is_kmod_dso(struct dso *dso) 1317 { 1318 return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1319 dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE; 1320 } 1321 1322 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1323 { 1324 char *long_name; 1325 struct dso *dso; 1326 struct map *map = maps__find_by_name(maps, m->name); 1327 1328 if (map == NULL) 1329 return 0; 1330 1331 long_name = strdup(path); 1332 if (long_name == NULL) { 1333 map__put(map); 1334 return -ENOMEM; 1335 } 1336 1337 dso = map__dso(map); 1338 dso__set_long_name(dso, long_name, true); 1339 dso__kernel_module_get_build_id(dso, ""); 1340 1341 /* 1342 * Full name could reveal us kmod compression, so 1343 * we need to update the symtab_type if needed. 1344 */ 1345 if (m->comp && is_kmod_dso(dso)) { 1346 dso__set_symtab_type(dso, dso__symtab_type(dso)+1); 1347 dso__set_comp(dso, m->comp); 1348 } 1349 map__put(map); 1350 return 0; 1351 } 1352 1353 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1354 { 1355 struct dirent *dent; 1356 DIR *dir = opendir(dir_name); 1357 int ret = 0; 1358 1359 if (!dir) { 1360 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1361 return -1; 1362 } 1363 1364 while ((dent = readdir(dir)) != NULL) { 1365 char path[PATH_MAX]; 1366 struct stat st; 1367 1368 /*sshfs might return bad dent->d_type, so we have to stat*/ 1369 path__join(path, sizeof(path), dir_name, dent->d_name); 1370 if (stat(path, &st)) 1371 continue; 1372 1373 if (S_ISDIR(st.st_mode)) { 1374 if (!strcmp(dent->d_name, ".") || 1375 !strcmp(dent->d_name, "..")) 1376 continue; 1377 1378 /* Do not follow top-level source and build symlinks */ 1379 if (depth == 0) { 1380 if (!strcmp(dent->d_name, "source") || 1381 !strcmp(dent->d_name, "build")) 1382 continue; 1383 } 1384 1385 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1386 if (ret < 0) 1387 goto out; 1388 } else { 1389 struct kmod_path m; 1390 1391 ret = kmod_path__parse_name(&m, dent->d_name); 1392 if (ret) 1393 goto out; 1394 1395 if (m.kmod) 1396 ret = maps__set_module_path(maps, path, &m); 1397 1398 zfree(&m.name); 1399 1400 if (ret) 1401 goto out; 1402 } 1403 } 1404 1405 out: 1406 closedir(dir); 1407 return ret; 1408 } 1409 1410 static int machine__set_modules_path(struct machine *machine) 1411 { 1412 char *version; 1413 char modules_path[PATH_MAX]; 1414 1415 version = get_kernel_version(machine->root_dir); 1416 if (!version) 1417 return -1; 1418 1419 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1420 machine->root_dir, version); 1421 free(version); 1422 1423 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1424 } 1425 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1426 u64 *size __maybe_unused, 1427 const char *name __maybe_unused) 1428 { 1429 return 0; 1430 } 1431 1432 static int machine__create_module(void *arg, const char *name, u64 start, 1433 u64 size) 1434 { 1435 struct machine *machine = arg; 1436 struct map *map; 1437 1438 if (arch__fix_module_text_start(&start, &size, name) < 0) 1439 return -1; 1440 1441 map = machine__addnew_module_map(machine, start, name); 1442 if (map == NULL) 1443 return -1; 1444 map__set_end(map, start + size); 1445 1446 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); 1447 map__put(map); 1448 return 0; 1449 } 1450 1451 static int machine__create_modules(struct machine *machine) 1452 { 1453 const char *modules; 1454 char path[PATH_MAX]; 1455 1456 if (machine__is_default_guest(machine)) { 1457 modules = symbol_conf.default_guest_modules; 1458 } else { 1459 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1460 modules = path; 1461 } 1462 1463 if (symbol__restricted_filename(modules, "/proc/modules")) 1464 return -1; 1465 1466 if (modules__parse(modules, machine, machine__create_module)) 1467 return -1; 1468 1469 if (!machine__set_modules_path(machine)) 1470 return 0; 1471 1472 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1473 1474 return 0; 1475 } 1476 1477 static void machine__set_kernel_mmap(struct machine *machine, 1478 u64 start, u64 end) 1479 { 1480 map__set_start(machine->vmlinux_map, start); 1481 map__set_end(machine->vmlinux_map, end); 1482 /* 1483 * Be a bit paranoid here, some perf.data file came with 1484 * a zero sized synthesized MMAP event for the kernel. 1485 */ 1486 if (start == 0 && end == 0) 1487 map__set_end(machine->vmlinux_map, ~0ULL); 1488 } 1489 1490 static int machine__update_kernel_mmap(struct machine *machine, 1491 u64 start, u64 end) 1492 { 1493 struct map *orig, *updated; 1494 int err; 1495 1496 orig = machine->vmlinux_map; 1497 updated = map__get(orig); 1498 1499 machine->vmlinux_map = updated; 1500 maps__remove(machine__kernel_maps(machine), orig); 1501 machine__set_kernel_mmap(machine, start, end); 1502 err = maps__insert(machine__kernel_maps(machine), updated); 1503 map__put(orig); 1504 1505 return err; 1506 } 1507 1508 int machine__create_kernel_maps(struct machine *machine) 1509 { 1510 struct dso *kernel = machine__get_kernel(machine); 1511 const char *name = NULL; 1512 u64 start = 0, end = ~0ULL; 1513 int ret; 1514 1515 if (kernel == NULL) 1516 return -1; 1517 1518 ret = __machine__create_kernel_maps(machine, kernel); 1519 if (ret < 0) 1520 goto out_put; 1521 1522 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1523 if (machine__is_host(machine)) 1524 pr_debug("Problems creating module maps, " 1525 "continuing anyway...\n"); 1526 else 1527 pr_debug("Problems creating module maps for guest %d, " 1528 "continuing anyway...\n", machine->pid); 1529 } 1530 1531 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1532 if (name && 1533 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1534 machine__destroy_kernel_maps(machine); 1535 ret = -1; 1536 goto out_put; 1537 } 1538 1539 /* 1540 * we have a real start address now, so re-order the kmaps 1541 * assume it's the last in the kmaps 1542 */ 1543 ret = machine__update_kernel_mmap(machine, start, end); 1544 if (ret < 0) 1545 goto out_put; 1546 } 1547 1548 if (machine__create_extra_kernel_maps(machine, kernel)) 1549 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1550 1551 if (end == ~0ULL) { 1552 /* update end address of the kernel map using adjacent module address */ 1553 struct map *next = maps__find_next_entry(machine__kernel_maps(machine), 1554 machine__kernel_map(machine)); 1555 1556 if (next) { 1557 machine__set_kernel_mmap(machine, start, map__start(next)); 1558 map__put(next); 1559 } 1560 } 1561 1562 out_put: 1563 dso__put(kernel); 1564 return ret; 1565 } 1566 1567 static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused) 1568 { 1569 return dso__is_kcore(dso) ? 1 : 0; 1570 } 1571 1572 static bool machine__uses_kcore(struct machine *machine) 1573 { 1574 return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false; 1575 } 1576 1577 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1578 struct extra_kernel_map *xm) 1579 { 1580 return machine__is(machine, "x86_64") && 1581 is_entry_trampoline(xm->name); 1582 } 1583 1584 static int machine__process_extra_kernel_map(struct machine *machine, 1585 struct extra_kernel_map *xm) 1586 { 1587 struct dso *kernel = machine__kernel_dso(machine); 1588 1589 if (kernel == NULL) 1590 return -1; 1591 1592 return machine__create_extra_kernel_map(machine, kernel, xm); 1593 } 1594 1595 static int machine__process_kernel_mmap_event(struct machine *machine, 1596 struct extra_kernel_map *xm, 1597 struct build_id *bid) 1598 { 1599 enum dso_space_type dso_space; 1600 bool is_kernel_mmap; 1601 const char *mmap_name = machine->mmap_name; 1602 1603 /* If we have maps from kcore then we do not need or want any others */ 1604 if (machine__uses_kcore(machine)) 1605 return 0; 1606 1607 if (machine__is_host(machine)) 1608 dso_space = DSO_SPACE__KERNEL; 1609 else 1610 dso_space = DSO_SPACE__KERNEL_GUEST; 1611 1612 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1613 if (!is_kernel_mmap && !machine__is_host(machine)) { 1614 /* 1615 * If the event was recorded inside the guest and injected into 1616 * the host perf.data file, then it will match a host mmap_name, 1617 * so try that - see machine__set_mmap_name(). 1618 */ 1619 mmap_name = "[kernel.kallsyms]"; 1620 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1621 } 1622 if (xm->name[0] == '/' || 1623 (!is_kernel_mmap && xm->name[0] == '[')) { 1624 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name); 1625 1626 if (map == NULL) 1627 goto out_problem; 1628 1629 map__set_end(map, map__start(map) + xm->end - xm->start); 1630 1631 if (build_id__is_defined(bid)) 1632 dso__set_build_id(map__dso(map), bid); 1633 1634 map__put(map); 1635 } else if (is_kernel_mmap) { 1636 const char *symbol_name = xm->name + strlen(mmap_name); 1637 /* 1638 * Should be there already, from the build-id table in 1639 * the header. 1640 */ 1641 struct dso *kernel = dsos__find_kernel_dso(&machine->dsos); 1642 1643 if (kernel == NULL) 1644 kernel = machine__findnew_dso(machine, machine->mmap_name); 1645 if (kernel == NULL) 1646 goto out_problem; 1647 1648 dso__set_kernel(kernel, dso_space); 1649 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1650 dso__put(kernel); 1651 goto out_problem; 1652 } 1653 1654 if (strstr(dso__long_name(kernel), "vmlinux")) 1655 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1656 1657 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { 1658 dso__put(kernel); 1659 goto out_problem; 1660 } 1661 1662 if (build_id__is_defined(bid)) 1663 dso__set_build_id(kernel, bid); 1664 1665 /* 1666 * Avoid using a zero address (kptr_restrict) for the ref reloc 1667 * symbol. Effectively having zero here means that at record 1668 * time /proc/sys/kernel/kptr_restrict was non zero. 1669 */ 1670 if (xm->pgoff != 0) { 1671 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1672 symbol_name, 1673 xm->pgoff); 1674 } 1675 1676 if (machine__is_default_guest(machine)) { 1677 /* 1678 * preload dso of guest kernel and modules 1679 */ 1680 dso__load(kernel, machine__kernel_map(machine)); 1681 } 1682 dso__put(kernel); 1683 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1684 return machine__process_extra_kernel_map(machine, xm); 1685 } 1686 return 0; 1687 out_problem: 1688 return -1; 1689 } 1690 1691 int machine__process_mmap2_event(struct machine *machine, 1692 union perf_event *event, 1693 struct perf_sample *sample) 1694 { 1695 struct thread *thread; 1696 struct map *map; 1697 struct dso_id dso_id = { 1698 .maj = event->mmap2.maj, 1699 .min = event->mmap2.min, 1700 .ino = event->mmap2.ino, 1701 .ino_generation = event->mmap2.ino_generation, 1702 }; 1703 struct build_id __bid, *bid = NULL; 1704 int ret = 0; 1705 1706 if (dump_trace) 1707 perf_event__fprintf_mmap2(event, stdout); 1708 1709 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1710 bid = &__bid; 1711 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1712 } 1713 1714 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1715 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1716 struct extra_kernel_map xm = { 1717 .start = event->mmap2.start, 1718 .end = event->mmap2.start + event->mmap2.len, 1719 .pgoff = event->mmap2.pgoff, 1720 }; 1721 1722 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1723 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1724 if (ret < 0) 1725 goto out_problem; 1726 return 0; 1727 } 1728 1729 thread = machine__findnew_thread(machine, event->mmap2.pid, 1730 event->mmap2.tid); 1731 if (thread == NULL) 1732 goto out_problem; 1733 1734 map = map__new(machine, event->mmap2.start, 1735 event->mmap2.len, event->mmap2.pgoff, 1736 &dso_id, event->mmap2.prot, 1737 event->mmap2.flags, bid, 1738 event->mmap2.filename, thread); 1739 1740 if (map == NULL) 1741 goto out_problem_map; 1742 1743 ret = thread__insert_map(thread, map); 1744 if (ret) 1745 goto out_problem_insert; 1746 1747 thread__put(thread); 1748 map__put(map); 1749 return 0; 1750 1751 out_problem_insert: 1752 map__put(map); 1753 out_problem_map: 1754 thread__put(thread); 1755 out_problem: 1756 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1757 return 0; 1758 } 1759 1760 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1761 struct perf_sample *sample) 1762 { 1763 struct thread *thread; 1764 struct map *map; 1765 u32 prot = 0; 1766 int ret = 0; 1767 1768 if (dump_trace) 1769 perf_event__fprintf_mmap(event, stdout); 1770 1771 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1772 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1773 struct extra_kernel_map xm = { 1774 .start = event->mmap.start, 1775 .end = event->mmap.start + event->mmap.len, 1776 .pgoff = event->mmap.pgoff, 1777 }; 1778 1779 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1780 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1781 if (ret < 0) 1782 goto out_problem; 1783 return 0; 1784 } 1785 1786 thread = machine__findnew_thread(machine, event->mmap.pid, 1787 event->mmap.tid); 1788 if (thread == NULL) 1789 goto out_problem; 1790 1791 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1792 prot = PROT_EXEC; 1793 1794 map = map__new(machine, event->mmap.start, 1795 event->mmap.len, event->mmap.pgoff, 1796 NULL, prot, 0, NULL, event->mmap.filename, thread); 1797 1798 if (map == NULL) 1799 goto out_problem_map; 1800 1801 ret = thread__insert_map(thread, map); 1802 if (ret) 1803 goto out_problem_insert; 1804 1805 thread__put(thread); 1806 map__put(map); 1807 return 0; 1808 1809 out_problem_insert: 1810 map__put(map); 1811 out_problem_map: 1812 thread__put(thread); 1813 out_problem: 1814 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1815 return 0; 1816 } 1817 1818 void machine__remove_thread(struct machine *machine, struct thread *th) 1819 { 1820 return threads__remove(&machine->threads, th); 1821 } 1822 1823 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1824 struct perf_sample *sample) 1825 { 1826 struct thread *thread = machine__find_thread(machine, 1827 event->fork.pid, 1828 event->fork.tid); 1829 struct thread *parent = machine__findnew_thread(machine, 1830 event->fork.ppid, 1831 event->fork.ptid); 1832 bool do_maps_clone = true; 1833 int err = 0; 1834 1835 if (dump_trace) 1836 perf_event__fprintf_task(event, stdout); 1837 1838 /* 1839 * There may be an existing thread that is not actually the parent, 1840 * either because we are processing events out of order, or because the 1841 * (fork) event that would have removed the thread was lost. Assume the 1842 * latter case and continue on as best we can. 1843 */ 1844 if (thread__pid(parent) != (pid_t)event->fork.ppid) { 1845 dump_printf("removing erroneous parent thread %d/%d\n", 1846 thread__pid(parent), thread__tid(parent)); 1847 machine__remove_thread(machine, parent); 1848 thread__put(parent); 1849 parent = machine__findnew_thread(machine, event->fork.ppid, 1850 event->fork.ptid); 1851 } 1852 1853 /* if a thread currently exists for the thread id remove it */ 1854 if (thread != NULL) { 1855 machine__remove_thread(machine, thread); 1856 thread__put(thread); 1857 } 1858 1859 thread = machine__findnew_thread(machine, event->fork.pid, 1860 event->fork.tid); 1861 /* 1862 * When synthesizing FORK events, we are trying to create thread 1863 * objects for the already running tasks on the machine. 1864 * 1865 * Normally, for a kernel FORK event, we want to clone the parent's 1866 * maps because that is what the kernel just did. 1867 * 1868 * But when synthesizing, this should not be done. If we do, we end up 1869 * with overlapping maps as we process the synthesized MMAP2 events that 1870 * get delivered shortly thereafter. 1871 * 1872 * Use the FORK event misc flags in an internal way to signal this 1873 * situation, so we can elide the map clone when appropriate. 1874 */ 1875 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1876 do_maps_clone = false; 1877 1878 if (thread == NULL || parent == NULL || 1879 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1880 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1881 err = -1; 1882 } 1883 thread__put(thread); 1884 thread__put(parent); 1885 1886 return err; 1887 } 1888 1889 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1890 struct perf_sample *sample __maybe_unused) 1891 { 1892 struct thread *thread = machine__find_thread(machine, 1893 event->fork.pid, 1894 event->fork.tid); 1895 1896 if (dump_trace) 1897 perf_event__fprintf_task(event, stdout); 1898 1899 if (thread != NULL) { 1900 if (symbol_conf.keep_exited_threads) 1901 thread__set_exited(thread, /*exited=*/true); 1902 else 1903 machine__remove_thread(machine, thread); 1904 } 1905 thread__put(thread); 1906 return 0; 1907 } 1908 1909 int machine__process_event(struct machine *machine, union perf_event *event, 1910 struct perf_sample *sample) 1911 { 1912 int ret; 1913 1914 switch (event->header.type) { 1915 case PERF_RECORD_COMM: 1916 ret = machine__process_comm_event(machine, event, sample); break; 1917 case PERF_RECORD_MMAP: 1918 ret = machine__process_mmap_event(machine, event, sample); break; 1919 case PERF_RECORD_NAMESPACES: 1920 ret = machine__process_namespaces_event(machine, event, sample); break; 1921 case PERF_RECORD_CGROUP: 1922 ret = machine__process_cgroup_event(machine, event, sample); break; 1923 case PERF_RECORD_MMAP2: 1924 ret = machine__process_mmap2_event(machine, event, sample); break; 1925 case PERF_RECORD_FORK: 1926 ret = machine__process_fork_event(machine, event, sample); break; 1927 case PERF_RECORD_EXIT: 1928 ret = machine__process_exit_event(machine, event, sample); break; 1929 case PERF_RECORD_LOST: 1930 ret = machine__process_lost_event(machine, event, sample); break; 1931 case PERF_RECORD_AUX: 1932 ret = machine__process_aux_event(machine, event); break; 1933 case PERF_RECORD_ITRACE_START: 1934 ret = machine__process_itrace_start_event(machine, event); break; 1935 case PERF_RECORD_LOST_SAMPLES: 1936 ret = machine__process_lost_samples_event(machine, event, sample); break; 1937 case PERF_RECORD_SWITCH: 1938 case PERF_RECORD_SWITCH_CPU_WIDE: 1939 ret = machine__process_switch_event(machine, event); break; 1940 case PERF_RECORD_KSYMBOL: 1941 ret = machine__process_ksymbol(machine, event, sample); break; 1942 case PERF_RECORD_BPF_EVENT: 1943 ret = machine__process_bpf(machine, event, sample); break; 1944 case PERF_RECORD_TEXT_POKE: 1945 ret = machine__process_text_poke(machine, event, sample); break; 1946 case PERF_RECORD_AUX_OUTPUT_HW_ID: 1947 ret = machine__process_aux_output_hw_id_event(machine, event); break; 1948 default: 1949 ret = -1; 1950 break; 1951 } 1952 1953 return ret; 1954 } 1955 1956 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1957 { 1958 return regexec(regex, sym->name, 0, NULL, 0) == 0; 1959 } 1960 1961 static void ip__resolve_ams(struct thread *thread, 1962 struct addr_map_symbol *ams, 1963 u64 ip) 1964 { 1965 struct addr_location al; 1966 1967 addr_location__init(&al); 1968 /* 1969 * We cannot use the header.misc hint to determine whether a 1970 * branch stack address is user, kernel, guest, hypervisor. 1971 * Branches may straddle the kernel/user/hypervisor boundaries. 1972 * Thus, we have to try consecutively until we find a match 1973 * or else, the symbol is unknown 1974 */ 1975 thread__find_cpumode_addr_location(thread, ip, &al); 1976 1977 ams->addr = ip; 1978 ams->al_addr = al.addr; 1979 ams->al_level = al.level; 1980 ams->ms.maps = maps__get(al.maps); 1981 ams->ms.sym = al.sym; 1982 ams->ms.map = map__get(al.map); 1983 ams->phys_addr = 0; 1984 ams->data_page_size = 0; 1985 addr_location__exit(&al); 1986 } 1987 1988 static void ip__resolve_data(struct thread *thread, 1989 u8 m, struct addr_map_symbol *ams, 1990 u64 addr, u64 phys_addr, u64 daddr_page_size) 1991 { 1992 struct addr_location al; 1993 1994 addr_location__init(&al); 1995 1996 thread__find_symbol(thread, m, addr, &al); 1997 1998 ams->addr = addr; 1999 ams->al_addr = al.addr; 2000 ams->al_level = al.level; 2001 ams->ms.maps = maps__get(al.maps); 2002 ams->ms.sym = al.sym; 2003 ams->ms.map = map__get(al.map); 2004 ams->phys_addr = phys_addr; 2005 ams->data_page_size = daddr_page_size; 2006 addr_location__exit(&al); 2007 } 2008 2009 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2010 struct addr_location *al) 2011 { 2012 struct mem_info *mi = mem_info__new(); 2013 2014 if (!mi) 2015 return NULL; 2016 2017 ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip); 2018 ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi), 2019 sample->addr, sample->phys_addr, 2020 sample->data_page_size); 2021 mem_info__data_src(mi)->val = sample->data_src; 2022 2023 return mi; 2024 } 2025 2026 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2027 { 2028 struct map *map = ms->map; 2029 char *srcline = NULL; 2030 struct dso *dso; 2031 2032 if (!map || callchain_param.key == CCKEY_FUNCTION) 2033 return srcline; 2034 2035 dso = map__dso(map); 2036 srcline = srcline__tree_find(dso__srclines(dso), ip); 2037 if (!srcline) { 2038 bool show_sym = false; 2039 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2040 2041 srcline = get_srcline(dso, map__rip_2objdump(map, ip), 2042 ms->sym, show_sym, show_addr, ip); 2043 srcline__tree_insert(dso__srclines(dso), ip, srcline); 2044 } 2045 2046 return srcline; 2047 } 2048 2049 struct iterations { 2050 int nr_loop_iter; 2051 u64 cycles; 2052 }; 2053 2054 static int add_callchain_ip(struct thread *thread, 2055 struct callchain_cursor *cursor, 2056 struct symbol **parent, 2057 struct addr_location *root_al, 2058 u8 *cpumode, 2059 u64 ip, 2060 bool branch, 2061 struct branch_flags *flags, 2062 struct iterations *iter, 2063 u64 branch_from, 2064 bool symbols) 2065 { 2066 struct map_symbol ms = {}; 2067 struct addr_location al; 2068 int nr_loop_iter = 0, err = 0; 2069 u64 iter_cycles = 0; 2070 const char *srcline = NULL; 2071 2072 addr_location__init(&al); 2073 al.filtered = 0; 2074 al.sym = NULL; 2075 al.srcline = NULL; 2076 if (!cpumode) { 2077 thread__find_cpumode_addr_location(thread, ip, &al); 2078 } else { 2079 if (ip >= PERF_CONTEXT_MAX) { 2080 switch (ip) { 2081 case PERF_CONTEXT_HV: 2082 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2083 break; 2084 case PERF_CONTEXT_KERNEL: 2085 *cpumode = PERF_RECORD_MISC_KERNEL; 2086 break; 2087 case PERF_CONTEXT_USER: 2088 *cpumode = PERF_RECORD_MISC_USER; 2089 break; 2090 default: 2091 pr_debug("invalid callchain context: " 2092 "%"PRId64"\n", (s64) ip); 2093 /* 2094 * It seems the callchain is corrupted. 2095 * Discard all. 2096 */ 2097 callchain_cursor_reset(cursor); 2098 err = 1; 2099 goto out; 2100 } 2101 goto out; 2102 } 2103 if (symbols) 2104 thread__find_symbol(thread, *cpumode, ip, &al); 2105 } 2106 2107 if (al.sym != NULL) { 2108 if (perf_hpp_list.parent && !*parent && 2109 symbol__match_regex(al.sym, &parent_regex)) 2110 *parent = al.sym; 2111 else if (have_ignore_callees && root_al && 2112 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2113 /* Treat this symbol as the root, 2114 forgetting its callees. */ 2115 addr_location__copy(root_al, &al); 2116 callchain_cursor_reset(cursor); 2117 } 2118 } 2119 2120 if (symbol_conf.hide_unresolved && al.sym == NULL) 2121 goto out; 2122 2123 if (iter) { 2124 nr_loop_iter = iter->nr_loop_iter; 2125 iter_cycles = iter->cycles; 2126 } 2127 2128 ms.maps = maps__get(al.maps); 2129 ms.map = map__get(al.map); 2130 ms.sym = al.sym; 2131 srcline = callchain_srcline(&ms, al.addr); 2132 err = callchain_cursor_append(cursor, ip, &ms, 2133 branch, flags, nr_loop_iter, 2134 iter_cycles, branch_from, srcline); 2135 out: 2136 addr_location__exit(&al); 2137 map_symbol__exit(&ms); 2138 return err; 2139 } 2140 2141 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2142 struct addr_location *al) 2143 { 2144 unsigned int i; 2145 const struct branch_stack *bs = sample->branch_stack; 2146 struct branch_entry *entries = perf_sample__branch_entries(sample); 2147 u64 *branch_stack_cntr = sample->branch_stack_cntr; 2148 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2149 2150 if (!bi) 2151 return NULL; 2152 2153 for (i = 0; i < bs->nr; i++) { 2154 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2155 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2156 bi[i].flags = entries[i].flags; 2157 if (branch_stack_cntr) 2158 bi[i].branch_stack_cntr = branch_stack_cntr[i]; 2159 } 2160 return bi; 2161 } 2162 2163 static void save_iterations(struct iterations *iter, 2164 struct branch_entry *be, int nr) 2165 { 2166 int i; 2167 2168 iter->nr_loop_iter++; 2169 iter->cycles = 0; 2170 2171 for (i = 0; i < nr; i++) 2172 iter->cycles += be[i].flags.cycles; 2173 } 2174 2175 #define CHASHSZ 127 2176 #define CHASHBITS 7 2177 #define NO_ENTRY 0xff 2178 2179 #define PERF_MAX_BRANCH_DEPTH 127 2180 2181 /* Remove loops. */ 2182 static int remove_loops(struct branch_entry *l, int nr, 2183 struct iterations *iter) 2184 { 2185 int i, j, off; 2186 unsigned char chash[CHASHSZ]; 2187 2188 memset(chash, NO_ENTRY, sizeof(chash)); 2189 2190 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2191 2192 for (i = 0; i < nr; i++) { 2193 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2194 2195 /* no collision handling for now */ 2196 if (chash[h] == NO_ENTRY) { 2197 chash[h] = i; 2198 } else if (l[chash[h]].from == l[i].from) { 2199 bool is_loop = true; 2200 /* check if it is a real loop */ 2201 off = 0; 2202 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2203 if (l[j].from != l[i + off].from) { 2204 is_loop = false; 2205 break; 2206 } 2207 if (is_loop) { 2208 j = nr - (i + off); 2209 if (j > 0) { 2210 save_iterations(iter + i + off, 2211 l + i, off); 2212 2213 memmove(iter + i, iter + i + off, 2214 j * sizeof(*iter)); 2215 2216 memmove(l + i, l + i + off, 2217 j * sizeof(*l)); 2218 } 2219 2220 nr -= off; 2221 } 2222 } 2223 } 2224 return nr; 2225 } 2226 2227 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2228 struct callchain_cursor *cursor, 2229 struct perf_sample *sample, 2230 struct symbol **parent, 2231 struct addr_location *root_al, 2232 u64 branch_from, 2233 bool callee, int end, 2234 bool symbols) 2235 { 2236 struct ip_callchain *chain = sample->callchain; 2237 u8 cpumode = PERF_RECORD_MISC_USER; 2238 int err, i; 2239 2240 if (callee) { 2241 for (i = 0; i < end + 1; i++) { 2242 err = add_callchain_ip(thread, cursor, parent, 2243 root_al, &cpumode, chain->ips[i], 2244 false, NULL, NULL, branch_from, 2245 symbols); 2246 if (err) 2247 return err; 2248 } 2249 return 0; 2250 } 2251 2252 for (i = end; i >= 0; i--) { 2253 err = add_callchain_ip(thread, cursor, parent, 2254 root_al, &cpumode, chain->ips[i], 2255 false, NULL, NULL, branch_from, 2256 symbols); 2257 if (err) 2258 return err; 2259 } 2260 2261 return 0; 2262 } 2263 2264 static void save_lbr_cursor_node(struct thread *thread, 2265 struct callchain_cursor *cursor, 2266 int idx) 2267 { 2268 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2269 2270 if (!lbr_stitch) 2271 return; 2272 2273 if (cursor->pos == cursor->nr) { 2274 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2275 return; 2276 } 2277 2278 if (!cursor->curr) 2279 cursor->curr = cursor->first; 2280 else 2281 cursor->curr = cursor->curr->next; 2282 2283 map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms); 2284 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2285 sizeof(struct callchain_cursor_node)); 2286 lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps); 2287 lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map); 2288 2289 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2290 cursor->pos++; 2291 } 2292 2293 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2294 struct callchain_cursor *cursor, 2295 struct perf_sample *sample, 2296 struct symbol **parent, 2297 struct addr_location *root_al, 2298 u64 *branch_from, 2299 bool callee, 2300 bool symbols) 2301 { 2302 struct branch_stack *lbr_stack = sample->branch_stack; 2303 struct branch_entry *entries = perf_sample__branch_entries(sample); 2304 u8 cpumode = PERF_RECORD_MISC_USER; 2305 int lbr_nr = lbr_stack->nr; 2306 struct branch_flags *flags; 2307 int err, i; 2308 u64 ip; 2309 2310 /* 2311 * The curr and pos are not used in writing session. They are cleared 2312 * in callchain_cursor_commit() when the writing session is closed. 2313 * Using curr and pos to track the current cursor node. 2314 */ 2315 if (thread__lbr_stitch(thread)) { 2316 cursor->curr = NULL; 2317 cursor->pos = cursor->nr; 2318 if (cursor->nr) { 2319 cursor->curr = cursor->first; 2320 for (i = 0; i < (int)(cursor->nr - 1); i++) 2321 cursor->curr = cursor->curr->next; 2322 } 2323 } 2324 2325 if (callee) { 2326 /* Add LBR ip from first entries.to */ 2327 ip = entries[0].to; 2328 flags = &entries[0].flags; 2329 *branch_from = entries[0].from; 2330 err = add_callchain_ip(thread, cursor, parent, 2331 root_al, &cpumode, ip, 2332 true, flags, NULL, 2333 *branch_from, symbols); 2334 if (err) 2335 return err; 2336 2337 /* 2338 * The number of cursor node increases. 2339 * Move the current cursor node. 2340 * But does not need to save current cursor node for entry 0. 2341 * It's impossible to stitch the whole LBRs of previous sample. 2342 */ 2343 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) { 2344 if (!cursor->curr) 2345 cursor->curr = cursor->first; 2346 else 2347 cursor->curr = cursor->curr->next; 2348 cursor->pos++; 2349 } 2350 2351 /* Add LBR ip from entries.from one by one. */ 2352 for (i = 0; i < lbr_nr; i++) { 2353 ip = entries[i].from; 2354 flags = &entries[i].flags; 2355 err = add_callchain_ip(thread, cursor, parent, 2356 root_al, &cpumode, ip, 2357 true, flags, NULL, 2358 *branch_from, symbols); 2359 if (err) 2360 return err; 2361 save_lbr_cursor_node(thread, cursor, i); 2362 } 2363 return 0; 2364 } 2365 2366 /* Add LBR ip from entries.from one by one. */ 2367 for (i = lbr_nr - 1; i >= 0; i--) { 2368 ip = entries[i].from; 2369 flags = &entries[i].flags; 2370 err = add_callchain_ip(thread, cursor, parent, 2371 root_al, &cpumode, ip, 2372 true, flags, NULL, 2373 *branch_from, symbols); 2374 if (err) 2375 return err; 2376 save_lbr_cursor_node(thread, cursor, i); 2377 } 2378 2379 if (lbr_nr > 0) { 2380 /* Add LBR ip from first entries.to */ 2381 ip = entries[0].to; 2382 flags = &entries[0].flags; 2383 *branch_from = entries[0].from; 2384 err = add_callchain_ip(thread, cursor, parent, 2385 root_al, &cpumode, ip, 2386 true, flags, NULL, 2387 *branch_from, symbols); 2388 if (err) 2389 return err; 2390 } 2391 2392 return 0; 2393 } 2394 2395 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2396 struct callchain_cursor *cursor) 2397 { 2398 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2399 struct callchain_cursor_node *cnode; 2400 struct stitch_list *stitch_node; 2401 int err; 2402 2403 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2404 cnode = &stitch_node->cursor; 2405 2406 err = callchain_cursor_append(cursor, cnode->ip, 2407 &cnode->ms, 2408 cnode->branch, 2409 &cnode->branch_flags, 2410 cnode->nr_loop_iter, 2411 cnode->iter_cycles, 2412 cnode->branch_from, 2413 cnode->srcline); 2414 if (err) 2415 return err; 2416 } 2417 return 0; 2418 } 2419 2420 static struct stitch_list *get_stitch_node(struct thread *thread) 2421 { 2422 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2423 struct stitch_list *stitch_node; 2424 2425 if (!list_empty(&lbr_stitch->free_lists)) { 2426 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2427 struct stitch_list, node); 2428 list_del(&stitch_node->node); 2429 2430 return stitch_node; 2431 } 2432 2433 return malloc(sizeof(struct stitch_list)); 2434 } 2435 2436 static bool has_stitched_lbr(struct thread *thread, 2437 struct perf_sample *cur, 2438 struct perf_sample *prev, 2439 unsigned int max_lbr, 2440 bool callee) 2441 { 2442 struct branch_stack *cur_stack = cur->branch_stack; 2443 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2444 struct branch_stack *prev_stack = prev->branch_stack; 2445 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2446 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2447 int i, j, nr_identical_branches = 0; 2448 struct stitch_list *stitch_node; 2449 u64 cur_base, distance; 2450 2451 if (!cur_stack || !prev_stack) 2452 return false; 2453 2454 /* Find the physical index of the base-of-stack for current sample. */ 2455 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2456 2457 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2458 (max_lbr + prev_stack->hw_idx - cur_base); 2459 /* Previous sample has shorter stack. Nothing can be stitched. */ 2460 if (distance + 1 > prev_stack->nr) 2461 return false; 2462 2463 /* 2464 * Check if there are identical LBRs between two samples. 2465 * Identical LBRs must have same from, to and flags values. Also, 2466 * they have to be saved in the same LBR registers (same physical 2467 * index). 2468 * 2469 * Starts from the base-of-stack of current sample. 2470 */ 2471 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2472 if ((prev_entries[i].from != cur_entries[j].from) || 2473 (prev_entries[i].to != cur_entries[j].to) || 2474 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2475 break; 2476 nr_identical_branches++; 2477 } 2478 2479 if (!nr_identical_branches) 2480 return false; 2481 2482 /* 2483 * Save the LBRs between the base-of-stack of previous sample 2484 * and the base-of-stack of current sample into lbr_stitch->lists. 2485 * These LBRs will be stitched later. 2486 */ 2487 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2488 2489 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2490 continue; 2491 2492 stitch_node = get_stitch_node(thread); 2493 if (!stitch_node) 2494 return false; 2495 2496 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2497 sizeof(struct callchain_cursor_node)); 2498 2499 stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps); 2500 stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map); 2501 2502 if (callee) 2503 list_add(&stitch_node->node, &lbr_stitch->lists); 2504 else 2505 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2506 } 2507 2508 return true; 2509 } 2510 2511 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2512 { 2513 if (thread__lbr_stitch(thread)) 2514 return true; 2515 2516 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch))); 2517 if (!thread__lbr_stitch(thread)) 2518 goto err; 2519 2520 thread__lbr_stitch(thread)->prev_lbr_cursor = 2521 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2522 if (!thread__lbr_stitch(thread)->prev_lbr_cursor) 2523 goto free_lbr_stitch; 2524 2525 thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1; 2526 2527 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists); 2528 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists); 2529 2530 return true; 2531 2532 free_lbr_stitch: 2533 free(thread__lbr_stitch(thread)); 2534 thread__set_lbr_stitch(thread, NULL); 2535 err: 2536 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2537 thread__set_lbr_stitch_enable(thread, false); 2538 return false; 2539 } 2540 2541 /* 2542 * Resolve LBR callstack chain sample 2543 * Return: 2544 * 1 on success get LBR callchain information 2545 * 0 no available LBR callchain information, should try fp 2546 * negative error code on other errors. 2547 */ 2548 static int resolve_lbr_callchain_sample(struct thread *thread, 2549 struct callchain_cursor *cursor, 2550 struct perf_sample *sample, 2551 struct symbol **parent, 2552 struct addr_location *root_al, 2553 int max_stack, 2554 unsigned int max_lbr, 2555 bool symbols) 2556 { 2557 bool callee = (callchain_param.order == ORDER_CALLEE); 2558 struct ip_callchain *chain = sample->callchain; 2559 int chain_nr = min(max_stack, (int)chain->nr), i; 2560 struct lbr_stitch *lbr_stitch; 2561 bool stitched_lbr = false; 2562 u64 branch_from = 0; 2563 int err; 2564 2565 for (i = 0; i < chain_nr; i++) { 2566 if (chain->ips[i] == PERF_CONTEXT_USER) 2567 break; 2568 } 2569 2570 /* LBR only affects the user callchain */ 2571 if (i == chain_nr) 2572 return 0; 2573 2574 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx && 2575 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2576 lbr_stitch = thread__lbr_stitch(thread); 2577 2578 stitched_lbr = has_stitched_lbr(thread, sample, 2579 &lbr_stitch->prev_sample, 2580 max_lbr, callee); 2581 2582 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2583 struct stitch_list *stitch_node; 2584 2585 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) 2586 map_symbol__exit(&stitch_node->cursor.ms); 2587 2588 list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists); 2589 } 2590 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2591 } 2592 2593 if (callee) { 2594 /* Add kernel ip */ 2595 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2596 parent, root_al, branch_from, 2597 true, i, symbols); 2598 if (err) 2599 goto error; 2600 2601 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2602 root_al, &branch_from, true, symbols); 2603 if (err) 2604 goto error; 2605 2606 if (stitched_lbr) { 2607 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2608 if (err) 2609 goto error; 2610 } 2611 2612 } else { 2613 if (stitched_lbr) { 2614 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2615 if (err) 2616 goto error; 2617 } 2618 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2619 root_al, &branch_from, false, symbols); 2620 if (err) 2621 goto error; 2622 2623 /* Add kernel ip */ 2624 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2625 parent, root_al, branch_from, 2626 false, i, symbols); 2627 if (err) 2628 goto error; 2629 } 2630 return 1; 2631 2632 error: 2633 return (err < 0) ? err : 0; 2634 } 2635 2636 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2637 struct callchain_cursor *cursor, 2638 struct symbol **parent, 2639 struct addr_location *root_al, 2640 u8 *cpumode, int ent, bool symbols) 2641 { 2642 int err = 0; 2643 2644 while (--ent >= 0) { 2645 u64 ip = chain->ips[ent]; 2646 2647 if (ip >= PERF_CONTEXT_MAX) { 2648 err = add_callchain_ip(thread, cursor, parent, 2649 root_al, cpumode, ip, 2650 false, NULL, NULL, 0, symbols); 2651 break; 2652 } 2653 } 2654 return err; 2655 } 2656 2657 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2658 struct thread *thread, int usr_idx) 2659 { 2660 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64")) 2661 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2662 else 2663 return 0; 2664 } 2665 2666 static int thread__resolve_callchain_sample(struct thread *thread, 2667 struct callchain_cursor *cursor, 2668 struct evsel *evsel, 2669 struct perf_sample *sample, 2670 struct symbol **parent, 2671 struct addr_location *root_al, 2672 int max_stack, 2673 bool symbols) 2674 { 2675 struct branch_stack *branch = sample->branch_stack; 2676 struct branch_entry *entries = perf_sample__branch_entries(sample); 2677 struct ip_callchain *chain = sample->callchain; 2678 int chain_nr = 0; 2679 u8 cpumode = PERF_RECORD_MISC_USER; 2680 int i, j, err, nr_entries, usr_idx; 2681 int skip_idx = -1; 2682 int first_call = 0; 2683 u64 leaf_frame_caller; 2684 2685 if (chain) 2686 chain_nr = chain->nr; 2687 2688 if (evsel__has_branch_callstack(evsel)) { 2689 struct perf_env *env = evsel__env(evsel); 2690 2691 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2692 root_al, max_stack, 2693 !env ? 0 : env->max_branches, 2694 symbols); 2695 if (err) 2696 return (err < 0) ? err : 0; 2697 } 2698 2699 /* 2700 * Based on DWARF debug information, some architectures skip 2701 * a callchain entry saved by the kernel. 2702 */ 2703 skip_idx = arch_skip_callchain_idx(thread, chain); 2704 2705 /* 2706 * Add branches to call stack for easier browsing. This gives 2707 * more context for a sample than just the callers. 2708 * 2709 * This uses individual histograms of paths compared to the 2710 * aggregated histograms the normal LBR mode uses. 2711 * 2712 * Limitations for now: 2713 * - No extra filters 2714 * - No annotations (should annotate somehow) 2715 */ 2716 2717 if (branch && callchain_param.branch_callstack) { 2718 int nr = min(max_stack, (int)branch->nr); 2719 struct branch_entry be[nr]; 2720 struct iterations iter[nr]; 2721 2722 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2723 pr_warning("corrupted branch chain. skipping...\n"); 2724 goto check_calls; 2725 } 2726 2727 for (i = 0; i < nr; i++) { 2728 if (callchain_param.order == ORDER_CALLEE) { 2729 be[i] = entries[i]; 2730 2731 if (chain == NULL) 2732 continue; 2733 2734 /* 2735 * Check for overlap into the callchain. 2736 * The return address is one off compared to 2737 * the branch entry. To adjust for this 2738 * assume the calling instruction is not longer 2739 * than 8 bytes. 2740 */ 2741 if (i == skip_idx || 2742 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2743 first_call++; 2744 else if (be[i].from < chain->ips[first_call] && 2745 be[i].from >= chain->ips[first_call] - 8) 2746 first_call++; 2747 } else 2748 be[i] = entries[branch->nr - i - 1]; 2749 } 2750 2751 memset(iter, 0, sizeof(struct iterations) * nr); 2752 nr = remove_loops(be, nr, iter); 2753 2754 for (i = 0; i < nr; i++) { 2755 err = add_callchain_ip(thread, cursor, parent, 2756 root_al, 2757 NULL, be[i].to, 2758 true, &be[i].flags, 2759 NULL, be[i].from, symbols); 2760 2761 if (!err) { 2762 err = add_callchain_ip(thread, cursor, parent, root_al, 2763 NULL, be[i].from, 2764 true, &be[i].flags, 2765 &iter[i], 0, symbols); 2766 } 2767 if (err == -EINVAL) 2768 break; 2769 if (err) 2770 return err; 2771 } 2772 2773 if (chain_nr == 0) 2774 return 0; 2775 2776 chain_nr -= nr; 2777 } 2778 2779 check_calls: 2780 if (chain && callchain_param.order != ORDER_CALLEE) { 2781 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2782 &cpumode, chain->nr - first_call, symbols); 2783 if (err) 2784 return (err < 0) ? err : 0; 2785 } 2786 for (i = first_call, nr_entries = 0; 2787 i < chain_nr && nr_entries < max_stack; i++) { 2788 u64 ip; 2789 2790 if (callchain_param.order == ORDER_CALLEE) 2791 j = i; 2792 else 2793 j = chain->nr - i - 1; 2794 2795 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2796 if (j == skip_idx) 2797 continue; 2798 #endif 2799 ip = chain->ips[j]; 2800 if (ip < PERF_CONTEXT_MAX) 2801 ++nr_entries; 2802 else if (callchain_param.order != ORDER_CALLEE) { 2803 err = find_prev_cpumode(chain, thread, cursor, parent, 2804 root_al, &cpumode, j, symbols); 2805 if (err) 2806 return (err < 0) ? err : 0; 2807 continue; 2808 } 2809 2810 /* 2811 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 2812 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 2813 * the index will be different in order to add the missing frame 2814 * at the right place. 2815 */ 2816 2817 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 2818 2819 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 2820 2821 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 2822 2823 /* 2824 * check if leaf_frame_Caller != ip to not add the same 2825 * value twice. 2826 */ 2827 2828 if (leaf_frame_caller && leaf_frame_caller != ip) { 2829 2830 err = add_callchain_ip(thread, cursor, parent, 2831 root_al, &cpumode, leaf_frame_caller, 2832 false, NULL, NULL, 0, symbols); 2833 if (err) 2834 return (err < 0) ? err : 0; 2835 } 2836 } 2837 2838 err = add_callchain_ip(thread, cursor, parent, 2839 root_al, &cpumode, ip, 2840 false, NULL, NULL, 0, symbols); 2841 2842 if (err) 2843 return (err < 0) ? err : 0; 2844 } 2845 2846 return 0; 2847 } 2848 2849 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2850 { 2851 struct symbol *sym = ms->sym; 2852 struct map *map = ms->map; 2853 struct inline_node *inline_node; 2854 struct inline_list *ilist; 2855 struct dso *dso; 2856 u64 addr; 2857 int ret = 1; 2858 struct map_symbol ilist_ms; 2859 2860 if (!symbol_conf.inline_name || !map || !sym) 2861 return ret; 2862 2863 addr = map__dso_map_ip(map, ip); 2864 addr = map__rip_2objdump(map, addr); 2865 dso = map__dso(map); 2866 2867 inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr); 2868 if (!inline_node) { 2869 inline_node = dso__parse_addr_inlines(dso, addr, sym); 2870 if (!inline_node) 2871 return ret; 2872 inlines__tree_insert(dso__inlined_nodes(dso), inline_node); 2873 } 2874 2875 ilist_ms = (struct map_symbol) { 2876 .maps = maps__get(ms->maps), 2877 .map = map__get(map), 2878 }; 2879 list_for_each_entry(ilist, &inline_node->val, list) { 2880 ilist_ms.sym = ilist->symbol; 2881 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2882 NULL, 0, 0, 0, ilist->srcline); 2883 2884 if (ret != 0) 2885 return ret; 2886 } 2887 map_symbol__exit(&ilist_ms); 2888 2889 return ret; 2890 } 2891 2892 static int unwind_entry(struct unwind_entry *entry, void *arg) 2893 { 2894 struct callchain_cursor *cursor = arg; 2895 const char *srcline = NULL; 2896 u64 addr = entry->ip; 2897 2898 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2899 return 0; 2900 2901 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2902 return 0; 2903 2904 /* 2905 * Convert entry->ip from a virtual address to an offset in 2906 * its corresponding binary. 2907 */ 2908 if (entry->ms.map) 2909 addr = map__dso_map_ip(entry->ms.map, entry->ip); 2910 2911 srcline = callchain_srcline(&entry->ms, addr); 2912 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2913 false, NULL, 0, 0, 0, srcline); 2914 } 2915 2916 static int thread__resolve_callchain_unwind(struct thread *thread, 2917 struct callchain_cursor *cursor, 2918 struct evsel *evsel, 2919 struct perf_sample *sample, 2920 int max_stack, bool symbols) 2921 { 2922 /* Can we do dwarf post unwind? */ 2923 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2924 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2925 return 0; 2926 2927 /* Bail out if nothing was captured. */ 2928 if ((!sample->user_regs.regs) || 2929 (!sample->user_stack.size)) 2930 return 0; 2931 2932 if (!symbols) 2933 pr_debug("Not resolving symbols with an unwinder isn't currently supported\n"); 2934 2935 return unwind__get_entries(unwind_entry, cursor, 2936 thread, sample, max_stack, false); 2937 } 2938 2939 int __thread__resolve_callchain(struct thread *thread, 2940 struct callchain_cursor *cursor, 2941 struct evsel *evsel, 2942 struct perf_sample *sample, 2943 struct symbol **parent, 2944 struct addr_location *root_al, 2945 int max_stack, 2946 bool symbols) 2947 { 2948 int ret = 0; 2949 2950 if (cursor == NULL) 2951 return -ENOMEM; 2952 2953 callchain_cursor_reset(cursor); 2954 2955 if (callchain_param.order == ORDER_CALLEE) { 2956 ret = thread__resolve_callchain_sample(thread, cursor, 2957 evsel, sample, 2958 parent, root_al, 2959 max_stack, symbols); 2960 if (ret) 2961 return ret; 2962 ret = thread__resolve_callchain_unwind(thread, cursor, 2963 evsel, sample, 2964 max_stack, symbols); 2965 } else { 2966 ret = thread__resolve_callchain_unwind(thread, cursor, 2967 evsel, sample, 2968 max_stack, symbols); 2969 if (ret) 2970 return ret; 2971 ret = thread__resolve_callchain_sample(thread, cursor, 2972 evsel, sample, 2973 parent, root_al, 2974 max_stack, symbols); 2975 } 2976 2977 return ret; 2978 } 2979 2980 int machine__for_each_thread(struct machine *machine, 2981 int (*fn)(struct thread *thread, void *p), 2982 void *priv) 2983 { 2984 return threads__for_each_thread(&machine->threads, fn, priv); 2985 } 2986 2987 int machines__for_each_thread(struct machines *machines, 2988 int (*fn)(struct thread *thread, void *p), 2989 void *priv) 2990 { 2991 struct rb_node *nd; 2992 int rc = 0; 2993 2994 rc = machine__for_each_thread(&machines->host, fn, priv); 2995 if (rc != 0) 2996 return rc; 2997 2998 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2999 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3000 3001 rc = machine__for_each_thread(machine, fn, priv); 3002 if (rc != 0) 3003 return rc; 3004 } 3005 return rc; 3006 } 3007 3008 3009 static int thread_list_cb(struct thread *thread, void *data) 3010 { 3011 struct list_head *list = data; 3012 struct thread_list *entry = malloc(sizeof(*entry)); 3013 3014 if (!entry) 3015 return -ENOMEM; 3016 3017 entry->thread = thread__get(thread); 3018 list_add_tail(&entry->list, list); 3019 return 0; 3020 } 3021 3022 int machine__thread_list(struct machine *machine, struct list_head *list) 3023 { 3024 return machine__for_each_thread(machine, thread_list_cb, list); 3025 } 3026 3027 void thread_list__delete(struct list_head *list) 3028 { 3029 struct thread_list *pos, *next; 3030 3031 list_for_each_entry_safe(pos, next, list, list) { 3032 thread__zput(pos->thread); 3033 list_del(&pos->list); 3034 free(pos); 3035 } 3036 } 3037 3038 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3039 { 3040 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3041 return -1; 3042 3043 return machine->current_tid[cpu]; 3044 } 3045 3046 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3047 pid_t tid) 3048 { 3049 struct thread *thread; 3050 const pid_t init_val = -1; 3051 3052 if (cpu < 0) 3053 return -EINVAL; 3054 3055 if (realloc_array_as_needed(machine->current_tid, 3056 machine->current_tid_sz, 3057 (unsigned int)cpu, 3058 &init_val)) 3059 return -ENOMEM; 3060 3061 machine->current_tid[cpu] = tid; 3062 3063 thread = machine__findnew_thread(machine, pid, tid); 3064 if (!thread) 3065 return -ENOMEM; 3066 3067 thread__set_cpu(thread, cpu); 3068 thread__put(thread); 3069 3070 return 0; 3071 } 3072 3073 /* 3074 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3075 * machine__normalized_is() if a normalized arch is needed. 3076 */ 3077 bool machine__is(struct machine *machine, const char *arch) 3078 { 3079 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3080 } 3081 3082 bool machine__normalized_is(struct machine *machine, const char *arch) 3083 { 3084 return machine && !strcmp(perf_env__arch(machine->env), arch); 3085 } 3086 3087 int machine__nr_cpus_avail(struct machine *machine) 3088 { 3089 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3090 } 3091 3092 int machine__get_kernel_start(struct machine *machine) 3093 { 3094 struct map *map = machine__kernel_map(machine); 3095 int err = 0; 3096 3097 /* 3098 * The only addresses above 2^63 are kernel addresses of a 64-bit 3099 * kernel. Note that addresses are unsigned so that on a 32-bit system 3100 * all addresses including kernel addresses are less than 2^32. In 3101 * that case (32-bit system), if the kernel mapping is unknown, all 3102 * addresses will be assumed to be in user space - see 3103 * machine__kernel_ip(). 3104 */ 3105 machine->kernel_start = 1ULL << 63; 3106 if (map) { 3107 err = map__load(map); 3108 /* 3109 * On x86_64, PTI entry trampolines are less than the 3110 * start of kernel text, but still above 2^63. So leave 3111 * kernel_start = 1ULL << 63 for x86_64. 3112 */ 3113 if (!err && !machine__is(machine, "x86_64")) 3114 machine->kernel_start = map__start(map); 3115 } 3116 return err; 3117 } 3118 3119 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3120 { 3121 u8 addr_cpumode = cpumode; 3122 bool kernel_ip; 3123 3124 if (!machine->single_address_space) 3125 goto out; 3126 3127 kernel_ip = machine__kernel_ip(machine, addr); 3128 switch (cpumode) { 3129 case PERF_RECORD_MISC_KERNEL: 3130 case PERF_RECORD_MISC_USER: 3131 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3132 PERF_RECORD_MISC_USER; 3133 break; 3134 case PERF_RECORD_MISC_GUEST_KERNEL: 3135 case PERF_RECORD_MISC_GUEST_USER: 3136 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3137 PERF_RECORD_MISC_GUEST_USER; 3138 break; 3139 default: 3140 break; 3141 } 3142 out: 3143 return addr_cpumode; 3144 } 3145 3146 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, 3147 const struct dso_id *id) 3148 { 3149 return dsos__findnew_id(&machine->dsos, filename, id); 3150 } 3151 3152 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3153 { 3154 return machine__findnew_dso_id(machine, filename, NULL); 3155 } 3156 3157 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3158 { 3159 struct machine *machine = vmachine; 3160 struct map *map; 3161 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3162 3163 if (sym == NULL) 3164 return NULL; 3165 3166 *modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL; 3167 *addrp = map__unmap_ip(map, sym->start); 3168 return sym->name; 3169 } 3170 3171 struct machine__for_each_dso_cb_args { 3172 struct machine *machine; 3173 machine__dso_t fn; 3174 void *priv; 3175 }; 3176 3177 static int machine__for_each_dso_cb(struct dso *dso, void *data) 3178 { 3179 struct machine__for_each_dso_cb_args *args = data; 3180 3181 return args->fn(dso, args->machine, args->priv); 3182 } 3183 3184 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3185 { 3186 struct machine__for_each_dso_cb_args args = { 3187 .machine = machine, 3188 .fn = fn, 3189 .priv = priv, 3190 }; 3191 3192 return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args); 3193 } 3194 3195 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3196 { 3197 struct maps *maps = machine__kernel_maps(machine); 3198 3199 return maps__for_each_map(maps, fn, priv); 3200 } 3201 3202 bool machine__is_lock_function(struct machine *machine, u64 addr) 3203 { 3204 if (!machine->sched.text_start) { 3205 struct map *kmap; 3206 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3207 3208 if (!sym) { 3209 /* to avoid retry */ 3210 machine->sched.text_start = 1; 3211 return false; 3212 } 3213 3214 machine->sched.text_start = map__unmap_ip(kmap, sym->start); 3215 3216 /* should not fail from here */ 3217 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3218 machine->sched.text_end = map__unmap_ip(kmap, sym->start); 3219 3220 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3221 machine->lock.text_start = map__unmap_ip(kmap, sym->start); 3222 3223 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3224 machine->lock.text_end = map__unmap_ip(kmap, sym->start); 3225 3226 sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap); 3227 if (sym) { 3228 machine->traceiter.text_start = map__unmap_ip(kmap, sym->start); 3229 machine->traceiter.text_end = map__unmap_ip(kmap, sym->end); 3230 } 3231 sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap); 3232 if (sym) { 3233 machine->trace.text_start = map__unmap_ip(kmap, sym->start); 3234 machine->trace.text_end = map__unmap_ip(kmap, sym->end); 3235 } 3236 } 3237 3238 /* failed to get kernel symbols */ 3239 if (machine->sched.text_start == 1) 3240 return false; 3241 3242 /* mutex and rwsem functions are in sched text section */ 3243 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3244 return true; 3245 3246 /* spinlock functions are in lock text section */ 3247 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3248 return true; 3249 3250 /* traceiter functions currently don't have their own section 3251 * but we consider them lock functions 3252 */ 3253 if (machine->traceiter.text_start != 0) { 3254 if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end) 3255 return true; 3256 } 3257 3258 if (machine->trace.text_start != 0) { 3259 if (machine->trace.text_start <= addr && addr < machine->trace.text_end) 3260 return true; 3261 } 3262 3263 return false; 3264 } 3265 3266 int machine__hit_all_dsos(struct machine *machine) 3267 { 3268 return dsos__hit_all(&machine->dsos); 3269 } 3270