1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "dso.h" 9 #include "event.h" 10 #include "evsel.h" 11 #include "hist.h" 12 #include "machine.h" 13 #include "map.h" 14 #include "srcline.h" 15 #include "symbol.h" 16 #include "sort.h" 17 #include "strlist.h" 18 #include "target.h" 19 #include "thread.h" 20 #include "util.h" 21 #include "vdso.h" 22 #include <stdbool.h> 23 #include <sys/types.h> 24 #include <sys/stat.h> 25 #include <unistd.h> 26 #include "unwind.h" 27 #include "linux/hash.h" 28 #include "asm/bug.h" 29 #include "bpf-event.h" 30 31 #include <linux/ctype.h> 32 #include <symbol/kallsyms.h> 33 #include <linux/mman.h> 34 #include <linux/string.h> 35 #include <linux/zalloc.h> 36 37 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 38 39 static void dsos__init(struct dsos *dsos) 40 { 41 INIT_LIST_HEAD(&dsos->head); 42 dsos->root = RB_ROOT; 43 init_rwsem(&dsos->lock); 44 } 45 46 static void machine__threads_init(struct machine *machine) 47 { 48 int i; 49 50 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 51 struct threads *threads = &machine->threads[i]; 52 threads->entries = RB_ROOT_CACHED; 53 init_rwsem(&threads->lock); 54 threads->nr = 0; 55 INIT_LIST_HEAD(&threads->dead); 56 threads->last_match = NULL; 57 } 58 } 59 60 static int machine__set_mmap_name(struct machine *machine) 61 { 62 if (machine__is_host(machine)) 63 machine->mmap_name = strdup("[kernel.kallsyms]"); 64 else if (machine__is_default_guest(machine)) 65 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 66 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 67 machine->pid) < 0) 68 machine->mmap_name = NULL; 69 70 return machine->mmap_name ? 0 : -ENOMEM; 71 } 72 73 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 74 { 75 int err = -ENOMEM; 76 77 memset(machine, 0, sizeof(*machine)); 78 map_groups__init(&machine->kmaps, machine); 79 RB_CLEAR_NODE(&machine->rb_node); 80 dsos__init(&machine->dsos); 81 82 machine__threads_init(machine); 83 84 machine->vdso_info = NULL; 85 machine->env = NULL; 86 87 machine->pid = pid; 88 89 machine->id_hdr_size = 0; 90 machine->kptr_restrict_warned = false; 91 machine->comm_exec = false; 92 machine->kernel_start = 0; 93 machine->vmlinux_map = NULL; 94 95 machine->root_dir = strdup(root_dir); 96 if (machine->root_dir == NULL) 97 return -ENOMEM; 98 99 if (machine__set_mmap_name(machine)) 100 goto out; 101 102 if (pid != HOST_KERNEL_ID) { 103 struct thread *thread = machine__findnew_thread(machine, -1, 104 pid); 105 char comm[64]; 106 107 if (thread == NULL) 108 goto out; 109 110 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 111 thread__set_comm(thread, comm, 0); 112 thread__put(thread); 113 } 114 115 machine->current_tid = NULL; 116 err = 0; 117 118 out: 119 if (err) { 120 zfree(&machine->root_dir); 121 zfree(&machine->mmap_name); 122 } 123 return 0; 124 } 125 126 struct machine *machine__new_host(void) 127 { 128 struct machine *machine = malloc(sizeof(*machine)); 129 130 if (machine != NULL) { 131 machine__init(machine, "", HOST_KERNEL_ID); 132 133 if (machine__create_kernel_maps(machine) < 0) 134 goto out_delete; 135 } 136 137 return machine; 138 out_delete: 139 free(machine); 140 return NULL; 141 } 142 143 struct machine *machine__new_kallsyms(void) 144 { 145 struct machine *machine = machine__new_host(); 146 /* 147 * FIXME: 148 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 149 * ask for not using the kcore parsing code, once this one is fixed 150 * to create a map per module. 151 */ 152 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 153 machine__delete(machine); 154 machine = NULL; 155 } 156 157 return machine; 158 } 159 160 static void dsos__purge(struct dsos *dsos) 161 { 162 struct dso *pos, *n; 163 164 down_write(&dsos->lock); 165 166 list_for_each_entry_safe(pos, n, &dsos->head, node) { 167 RB_CLEAR_NODE(&pos->rb_node); 168 pos->root = NULL; 169 list_del_init(&pos->node); 170 dso__put(pos); 171 } 172 173 up_write(&dsos->lock); 174 } 175 176 static void dsos__exit(struct dsos *dsos) 177 { 178 dsos__purge(dsos); 179 exit_rwsem(&dsos->lock); 180 } 181 182 void machine__delete_threads(struct machine *machine) 183 { 184 struct rb_node *nd; 185 int i; 186 187 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 188 struct threads *threads = &machine->threads[i]; 189 down_write(&threads->lock); 190 nd = rb_first_cached(&threads->entries); 191 while (nd) { 192 struct thread *t = rb_entry(nd, struct thread, rb_node); 193 194 nd = rb_next(nd); 195 __machine__remove_thread(machine, t, false); 196 } 197 up_write(&threads->lock); 198 } 199 } 200 201 void machine__exit(struct machine *machine) 202 { 203 int i; 204 205 if (machine == NULL) 206 return; 207 208 machine__destroy_kernel_maps(machine); 209 map_groups__exit(&machine->kmaps); 210 dsos__exit(&machine->dsos); 211 machine__exit_vdso(machine); 212 zfree(&machine->root_dir); 213 zfree(&machine->mmap_name); 214 zfree(&machine->current_tid); 215 216 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 217 struct threads *threads = &machine->threads[i]; 218 struct thread *thread, *n; 219 /* 220 * Forget about the dead, at this point whatever threads were 221 * left in the dead lists better have a reference count taken 222 * by who is using them, and then, when they drop those references 223 * and it finally hits zero, thread__put() will check and see that 224 * its not in the dead threads list and will not try to remove it 225 * from there, just calling thread__delete() straight away. 226 */ 227 list_for_each_entry_safe(thread, n, &threads->dead, node) 228 list_del_init(&thread->node); 229 230 exit_rwsem(&threads->lock); 231 } 232 } 233 234 void machine__delete(struct machine *machine) 235 { 236 if (machine) { 237 machine__exit(machine); 238 free(machine); 239 } 240 } 241 242 void machines__init(struct machines *machines) 243 { 244 machine__init(&machines->host, "", HOST_KERNEL_ID); 245 machines->guests = RB_ROOT_CACHED; 246 } 247 248 void machines__exit(struct machines *machines) 249 { 250 machine__exit(&machines->host); 251 /* XXX exit guest */ 252 } 253 254 struct machine *machines__add(struct machines *machines, pid_t pid, 255 const char *root_dir) 256 { 257 struct rb_node **p = &machines->guests.rb_root.rb_node; 258 struct rb_node *parent = NULL; 259 struct machine *pos, *machine = malloc(sizeof(*machine)); 260 bool leftmost = true; 261 262 if (machine == NULL) 263 return NULL; 264 265 if (machine__init(machine, root_dir, pid) != 0) { 266 free(machine); 267 return NULL; 268 } 269 270 while (*p != NULL) { 271 parent = *p; 272 pos = rb_entry(parent, struct machine, rb_node); 273 if (pid < pos->pid) 274 p = &(*p)->rb_left; 275 else { 276 p = &(*p)->rb_right; 277 leftmost = false; 278 } 279 } 280 281 rb_link_node(&machine->rb_node, parent, p); 282 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 283 284 return machine; 285 } 286 287 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 288 { 289 struct rb_node *nd; 290 291 machines->host.comm_exec = comm_exec; 292 293 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 294 struct machine *machine = rb_entry(nd, struct machine, rb_node); 295 296 machine->comm_exec = comm_exec; 297 } 298 } 299 300 struct machine *machines__find(struct machines *machines, pid_t pid) 301 { 302 struct rb_node **p = &machines->guests.rb_root.rb_node; 303 struct rb_node *parent = NULL; 304 struct machine *machine; 305 struct machine *default_machine = NULL; 306 307 if (pid == HOST_KERNEL_ID) 308 return &machines->host; 309 310 while (*p != NULL) { 311 parent = *p; 312 machine = rb_entry(parent, struct machine, rb_node); 313 if (pid < machine->pid) 314 p = &(*p)->rb_left; 315 else if (pid > machine->pid) 316 p = &(*p)->rb_right; 317 else 318 return machine; 319 if (!machine->pid) 320 default_machine = machine; 321 } 322 323 return default_machine; 324 } 325 326 struct machine *machines__findnew(struct machines *machines, pid_t pid) 327 { 328 char path[PATH_MAX]; 329 const char *root_dir = ""; 330 struct machine *machine = machines__find(machines, pid); 331 332 if (machine && (machine->pid == pid)) 333 goto out; 334 335 if ((pid != HOST_KERNEL_ID) && 336 (pid != DEFAULT_GUEST_KERNEL_ID) && 337 (symbol_conf.guestmount)) { 338 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 339 if (access(path, R_OK)) { 340 static struct strlist *seen; 341 342 if (!seen) 343 seen = strlist__new(NULL, NULL); 344 345 if (!strlist__has_entry(seen, path)) { 346 pr_err("Can't access file %s\n", path); 347 strlist__add(seen, path); 348 } 349 machine = NULL; 350 goto out; 351 } 352 root_dir = path; 353 } 354 355 machine = machines__add(machines, pid, root_dir); 356 out: 357 return machine; 358 } 359 360 void machines__process_guests(struct machines *machines, 361 machine__process_t process, void *data) 362 { 363 struct rb_node *nd; 364 365 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 366 struct machine *pos = rb_entry(nd, struct machine, rb_node); 367 process(pos, data); 368 } 369 } 370 371 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 372 { 373 struct rb_node *node; 374 struct machine *machine; 375 376 machines->host.id_hdr_size = id_hdr_size; 377 378 for (node = rb_first_cached(&machines->guests); node; 379 node = rb_next(node)) { 380 machine = rb_entry(node, struct machine, rb_node); 381 machine->id_hdr_size = id_hdr_size; 382 } 383 384 return; 385 } 386 387 static void machine__update_thread_pid(struct machine *machine, 388 struct thread *th, pid_t pid) 389 { 390 struct thread *leader; 391 392 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 393 return; 394 395 th->pid_ = pid; 396 397 if (th->pid_ == th->tid) 398 return; 399 400 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 401 if (!leader) 402 goto out_err; 403 404 if (!leader->mg) 405 leader->mg = map_groups__new(machine); 406 407 if (!leader->mg) 408 goto out_err; 409 410 if (th->mg == leader->mg) 411 return; 412 413 if (th->mg) { 414 /* 415 * Maps are created from MMAP events which provide the pid and 416 * tid. Consequently there never should be any maps on a thread 417 * with an unknown pid. Just print an error if there are. 418 */ 419 if (!map_groups__empty(th->mg)) 420 pr_err("Discarding thread maps for %d:%d\n", 421 th->pid_, th->tid); 422 map_groups__put(th->mg); 423 } 424 425 th->mg = map_groups__get(leader->mg); 426 out_put: 427 thread__put(leader); 428 return; 429 out_err: 430 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 431 goto out_put; 432 } 433 434 /* 435 * Front-end cache - TID lookups come in blocks, 436 * so most of the time we dont have to look up 437 * the full rbtree: 438 */ 439 static struct thread* 440 __threads__get_last_match(struct threads *threads, struct machine *machine, 441 int pid, int tid) 442 { 443 struct thread *th; 444 445 th = threads->last_match; 446 if (th != NULL) { 447 if (th->tid == tid) { 448 machine__update_thread_pid(machine, th, pid); 449 return thread__get(th); 450 } 451 452 threads->last_match = NULL; 453 } 454 455 return NULL; 456 } 457 458 static struct thread* 459 threads__get_last_match(struct threads *threads, struct machine *machine, 460 int pid, int tid) 461 { 462 struct thread *th = NULL; 463 464 if (perf_singlethreaded) 465 th = __threads__get_last_match(threads, machine, pid, tid); 466 467 return th; 468 } 469 470 static void 471 __threads__set_last_match(struct threads *threads, struct thread *th) 472 { 473 threads->last_match = th; 474 } 475 476 static void 477 threads__set_last_match(struct threads *threads, struct thread *th) 478 { 479 if (perf_singlethreaded) 480 __threads__set_last_match(threads, th); 481 } 482 483 /* 484 * Caller must eventually drop thread->refcnt returned with a successful 485 * lookup/new thread inserted. 486 */ 487 static struct thread *____machine__findnew_thread(struct machine *machine, 488 struct threads *threads, 489 pid_t pid, pid_t tid, 490 bool create) 491 { 492 struct rb_node **p = &threads->entries.rb_root.rb_node; 493 struct rb_node *parent = NULL; 494 struct thread *th; 495 bool leftmost = true; 496 497 th = threads__get_last_match(threads, machine, pid, tid); 498 if (th) 499 return th; 500 501 while (*p != NULL) { 502 parent = *p; 503 th = rb_entry(parent, struct thread, rb_node); 504 505 if (th->tid == tid) { 506 threads__set_last_match(threads, th); 507 machine__update_thread_pid(machine, th, pid); 508 return thread__get(th); 509 } 510 511 if (tid < th->tid) 512 p = &(*p)->rb_left; 513 else { 514 p = &(*p)->rb_right; 515 leftmost = false; 516 } 517 } 518 519 if (!create) 520 return NULL; 521 522 th = thread__new(pid, tid); 523 if (th != NULL) { 524 rb_link_node(&th->rb_node, parent, p); 525 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 526 527 /* 528 * We have to initialize map_groups separately 529 * after rb tree is updated. 530 * 531 * The reason is that we call machine__findnew_thread 532 * within thread__init_map_groups to find the thread 533 * leader and that would screwed the rb tree. 534 */ 535 if (thread__init_map_groups(th, machine)) { 536 rb_erase_cached(&th->rb_node, &threads->entries); 537 RB_CLEAR_NODE(&th->rb_node); 538 thread__put(th); 539 return NULL; 540 } 541 /* 542 * It is now in the rbtree, get a ref 543 */ 544 thread__get(th); 545 threads__set_last_match(threads, th); 546 ++threads->nr; 547 } 548 549 return th; 550 } 551 552 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 553 { 554 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 555 } 556 557 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 558 pid_t tid) 559 { 560 struct threads *threads = machine__threads(machine, tid); 561 struct thread *th; 562 563 down_write(&threads->lock); 564 th = __machine__findnew_thread(machine, pid, tid); 565 up_write(&threads->lock); 566 return th; 567 } 568 569 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 570 pid_t tid) 571 { 572 struct threads *threads = machine__threads(machine, tid); 573 struct thread *th; 574 575 down_read(&threads->lock); 576 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 577 up_read(&threads->lock); 578 return th; 579 } 580 581 struct comm *machine__thread_exec_comm(struct machine *machine, 582 struct thread *thread) 583 { 584 if (machine->comm_exec) 585 return thread__exec_comm(thread); 586 else 587 return thread__comm(thread); 588 } 589 590 int machine__process_comm_event(struct machine *machine, union perf_event *event, 591 struct perf_sample *sample) 592 { 593 struct thread *thread = machine__findnew_thread(machine, 594 event->comm.pid, 595 event->comm.tid); 596 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 597 int err = 0; 598 599 if (exec) 600 machine->comm_exec = true; 601 602 if (dump_trace) 603 perf_event__fprintf_comm(event, stdout); 604 605 if (thread == NULL || 606 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 607 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 608 err = -1; 609 } 610 611 thread__put(thread); 612 613 return err; 614 } 615 616 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 617 union perf_event *event, 618 struct perf_sample *sample __maybe_unused) 619 { 620 struct thread *thread = machine__findnew_thread(machine, 621 event->namespaces.pid, 622 event->namespaces.tid); 623 int err = 0; 624 625 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 626 "\nWARNING: kernel seems to support more namespaces than perf" 627 " tool.\nTry updating the perf tool..\n\n"); 628 629 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 630 "\nWARNING: perf tool seems to support more namespaces than" 631 " the kernel.\nTry updating the kernel..\n\n"); 632 633 if (dump_trace) 634 perf_event__fprintf_namespaces(event, stdout); 635 636 if (thread == NULL || 637 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 638 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 639 err = -1; 640 } 641 642 thread__put(thread); 643 644 return err; 645 } 646 647 int machine__process_lost_event(struct machine *machine __maybe_unused, 648 union perf_event *event, struct perf_sample *sample __maybe_unused) 649 { 650 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 651 event->lost.id, event->lost.lost); 652 return 0; 653 } 654 655 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 656 union perf_event *event, struct perf_sample *sample) 657 { 658 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 659 sample->id, event->lost_samples.lost); 660 return 0; 661 } 662 663 static struct dso *machine__findnew_module_dso(struct machine *machine, 664 struct kmod_path *m, 665 const char *filename) 666 { 667 struct dso *dso; 668 669 down_write(&machine->dsos.lock); 670 671 dso = __dsos__find(&machine->dsos, m->name, true); 672 if (!dso) { 673 dso = __dsos__addnew(&machine->dsos, m->name); 674 if (dso == NULL) 675 goto out_unlock; 676 677 dso__set_module_info(dso, m, machine); 678 dso__set_long_name(dso, strdup(filename), true); 679 } 680 681 dso__get(dso); 682 out_unlock: 683 up_write(&machine->dsos.lock); 684 return dso; 685 } 686 687 int machine__process_aux_event(struct machine *machine __maybe_unused, 688 union perf_event *event) 689 { 690 if (dump_trace) 691 perf_event__fprintf_aux(event, stdout); 692 return 0; 693 } 694 695 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 696 union perf_event *event) 697 { 698 if (dump_trace) 699 perf_event__fprintf_itrace_start(event, stdout); 700 return 0; 701 } 702 703 int machine__process_switch_event(struct machine *machine __maybe_unused, 704 union perf_event *event) 705 { 706 if (dump_trace) 707 perf_event__fprintf_switch(event, stdout); 708 return 0; 709 } 710 711 static int machine__process_ksymbol_register(struct machine *machine, 712 union perf_event *event, 713 struct perf_sample *sample __maybe_unused) 714 { 715 struct symbol *sym; 716 struct map *map; 717 718 map = map_groups__find(&machine->kmaps, event->ksymbol.addr); 719 if (!map) { 720 map = dso__new_map(event->ksymbol.name); 721 if (!map) 722 return -ENOMEM; 723 724 map->start = event->ksymbol.addr; 725 map->end = map->start + event->ksymbol.len; 726 map_groups__insert(&machine->kmaps, map); 727 } 728 729 sym = symbol__new(map->map_ip(map, map->start), 730 event->ksymbol.len, 731 0, 0, event->ksymbol.name); 732 if (!sym) 733 return -ENOMEM; 734 dso__insert_symbol(map->dso, sym); 735 return 0; 736 } 737 738 static int machine__process_ksymbol_unregister(struct machine *machine, 739 union perf_event *event, 740 struct perf_sample *sample __maybe_unused) 741 { 742 struct map *map; 743 744 map = map_groups__find(&machine->kmaps, event->ksymbol.addr); 745 if (map) 746 map_groups__remove(&machine->kmaps, map); 747 748 return 0; 749 } 750 751 int machine__process_ksymbol(struct machine *machine __maybe_unused, 752 union perf_event *event, 753 struct perf_sample *sample) 754 { 755 if (dump_trace) 756 perf_event__fprintf_ksymbol(event, stdout); 757 758 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 759 return machine__process_ksymbol_unregister(machine, event, 760 sample); 761 return machine__process_ksymbol_register(machine, event, sample); 762 } 763 764 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 765 { 766 const char *dup_filename; 767 768 if (!filename || !dso || !dso->long_name) 769 return; 770 if (dso->long_name[0] != '[') 771 return; 772 if (!strchr(filename, '/')) 773 return; 774 775 dup_filename = strdup(filename); 776 if (!dup_filename) 777 return; 778 779 dso__set_long_name(dso, dup_filename, true); 780 } 781 782 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 783 const char *filename) 784 { 785 struct map *map = NULL; 786 struct dso *dso = NULL; 787 struct kmod_path m; 788 789 if (kmod_path__parse_name(&m, filename)) 790 return NULL; 791 792 map = map_groups__find_by_name(&machine->kmaps, m.name); 793 if (map) { 794 /* 795 * If the map's dso is an offline module, give dso__load() 796 * a chance to find the file path of that module by fixing 797 * long_name. 798 */ 799 dso__adjust_kmod_long_name(map->dso, filename); 800 goto out; 801 } 802 803 dso = machine__findnew_module_dso(machine, &m, filename); 804 if (dso == NULL) 805 goto out; 806 807 map = map__new2(start, dso); 808 if (map == NULL) 809 goto out; 810 811 map_groups__insert(&machine->kmaps, map); 812 813 /* Put the map here because map_groups__insert alread got it */ 814 map__put(map); 815 out: 816 /* put the dso here, corresponding to machine__findnew_module_dso */ 817 dso__put(dso); 818 zfree(&m.name); 819 return map; 820 } 821 822 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 823 { 824 struct rb_node *nd; 825 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 826 827 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 828 struct machine *pos = rb_entry(nd, struct machine, rb_node); 829 ret += __dsos__fprintf(&pos->dsos.head, fp); 830 } 831 832 return ret; 833 } 834 835 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 836 bool (skip)(struct dso *dso, int parm), int parm) 837 { 838 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 839 } 840 841 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 842 bool (skip)(struct dso *dso, int parm), int parm) 843 { 844 struct rb_node *nd; 845 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 846 847 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 848 struct machine *pos = rb_entry(nd, struct machine, rb_node); 849 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 850 } 851 return ret; 852 } 853 854 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 855 { 856 int i; 857 size_t printed = 0; 858 struct dso *kdso = machine__kernel_map(machine)->dso; 859 860 if (kdso->has_build_id) { 861 char filename[PATH_MAX]; 862 if (dso__build_id_filename(kdso, filename, sizeof(filename), 863 false)) 864 printed += fprintf(fp, "[0] %s\n", filename); 865 } 866 867 for (i = 0; i < vmlinux_path__nr_entries; ++i) 868 printed += fprintf(fp, "[%d] %s\n", 869 i + kdso->has_build_id, vmlinux_path[i]); 870 871 return printed; 872 } 873 874 size_t machine__fprintf(struct machine *machine, FILE *fp) 875 { 876 struct rb_node *nd; 877 size_t ret; 878 int i; 879 880 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 881 struct threads *threads = &machine->threads[i]; 882 883 down_read(&threads->lock); 884 885 ret = fprintf(fp, "Threads: %u\n", threads->nr); 886 887 for (nd = rb_first_cached(&threads->entries); nd; 888 nd = rb_next(nd)) { 889 struct thread *pos = rb_entry(nd, struct thread, rb_node); 890 891 ret += thread__fprintf(pos, fp); 892 } 893 894 up_read(&threads->lock); 895 } 896 return ret; 897 } 898 899 static struct dso *machine__get_kernel(struct machine *machine) 900 { 901 const char *vmlinux_name = machine->mmap_name; 902 struct dso *kernel; 903 904 if (machine__is_host(machine)) { 905 if (symbol_conf.vmlinux_name) 906 vmlinux_name = symbol_conf.vmlinux_name; 907 908 kernel = machine__findnew_kernel(machine, vmlinux_name, 909 "[kernel]", DSO_TYPE_KERNEL); 910 } else { 911 if (symbol_conf.default_guest_vmlinux_name) 912 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 913 914 kernel = machine__findnew_kernel(machine, vmlinux_name, 915 "[guest.kernel]", 916 DSO_TYPE_GUEST_KERNEL); 917 } 918 919 if (kernel != NULL && (!kernel->has_build_id)) 920 dso__read_running_kernel_build_id(kernel, machine); 921 922 return kernel; 923 } 924 925 struct process_args { 926 u64 start; 927 }; 928 929 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 930 size_t bufsz) 931 { 932 if (machine__is_default_guest(machine)) 933 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 934 else 935 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 936 } 937 938 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 939 940 /* Figure out the start address of kernel map from /proc/kallsyms. 941 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 942 * symbol_name if it's not that important. 943 */ 944 static int machine__get_running_kernel_start(struct machine *machine, 945 const char **symbol_name, 946 u64 *start, u64 *end) 947 { 948 char filename[PATH_MAX]; 949 int i, err = -1; 950 const char *name; 951 u64 addr = 0; 952 953 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 954 955 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 956 return 0; 957 958 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 959 err = kallsyms__get_function_start(filename, name, &addr); 960 if (!err) 961 break; 962 } 963 964 if (err) 965 return -1; 966 967 if (symbol_name) 968 *symbol_name = name; 969 970 *start = addr; 971 972 err = kallsyms__get_function_start(filename, "_etext", &addr); 973 if (!err) 974 *end = addr; 975 976 return 0; 977 } 978 979 int machine__create_extra_kernel_map(struct machine *machine, 980 struct dso *kernel, 981 struct extra_kernel_map *xm) 982 { 983 struct kmap *kmap; 984 struct map *map; 985 986 map = map__new2(xm->start, kernel); 987 if (!map) 988 return -1; 989 990 map->end = xm->end; 991 map->pgoff = xm->pgoff; 992 993 kmap = map__kmap(map); 994 995 kmap->kmaps = &machine->kmaps; 996 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 997 998 map_groups__insert(&machine->kmaps, map); 999 1000 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1001 kmap->name, map->start, map->end); 1002 1003 map__put(map); 1004 1005 return 0; 1006 } 1007 1008 static u64 find_entry_trampoline(struct dso *dso) 1009 { 1010 /* Duplicates are removed so lookup all aliases */ 1011 const char *syms[] = { 1012 "_entry_trampoline", 1013 "__entry_trampoline_start", 1014 "entry_SYSCALL_64_trampoline", 1015 }; 1016 struct symbol *sym = dso__first_symbol(dso); 1017 unsigned int i; 1018 1019 for (; sym; sym = dso__next_symbol(sym)) { 1020 if (sym->binding != STB_GLOBAL) 1021 continue; 1022 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1023 if (!strcmp(sym->name, syms[i])) 1024 return sym->start; 1025 } 1026 } 1027 1028 return 0; 1029 } 1030 1031 /* 1032 * These values can be used for kernels that do not have symbols for the entry 1033 * trampolines in kallsyms. 1034 */ 1035 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1036 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1037 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1038 1039 /* Map x86_64 PTI entry trampolines */ 1040 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1041 struct dso *kernel) 1042 { 1043 struct map_groups *kmaps = &machine->kmaps; 1044 struct maps *maps = &kmaps->maps; 1045 int nr_cpus_avail, cpu; 1046 bool found = false; 1047 struct map *map; 1048 u64 pgoff; 1049 1050 /* 1051 * In the vmlinux case, pgoff is a virtual address which must now be 1052 * mapped to a vmlinux offset. 1053 */ 1054 for (map = maps__first(maps); map; map = map__next(map)) { 1055 struct kmap *kmap = __map__kmap(map); 1056 struct map *dest_map; 1057 1058 if (!kmap || !is_entry_trampoline(kmap->name)) 1059 continue; 1060 1061 dest_map = map_groups__find(kmaps, map->pgoff); 1062 if (dest_map != map) 1063 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1064 found = true; 1065 } 1066 if (found || machine->trampolines_mapped) 1067 return 0; 1068 1069 pgoff = find_entry_trampoline(kernel); 1070 if (!pgoff) 1071 return 0; 1072 1073 nr_cpus_avail = machine__nr_cpus_avail(machine); 1074 1075 /* Add a 1 page map for each CPU's entry trampoline */ 1076 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1077 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1078 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1079 X86_64_ENTRY_TRAMPOLINE; 1080 struct extra_kernel_map xm = { 1081 .start = va, 1082 .end = va + page_size, 1083 .pgoff = pgoff, 1084 }; 1085 1086 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1087 1088 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1089 return -1; 1090 } 1091 1092 machine->trampolines_mapped = nr_cpus_avail; 1093 1094 return 0; 1095 } 1096 1097 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1098 struct dso *kernel __maybe_unused) 1099 { 1100 return 0; 1101 } 1102 1103 static int 1104 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1105 { 1106 struct kmap *kmap; 1107 struct map *map; 1108 1109 /* In case of renewal the kernel map, destroy previous one */ 1110 machine__destroy_kernel_maps(machine); 1111 1112 machine->vmlinux_map = map__new2(0, kernel); 1113 if (machine->vmlinux_map == NULL) 1114 return -1; 1115 1116 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1117 map = machine__kernel_map(machine); 1118 kmap = map__kmap(map); 1119 if (!kmap) 1120 return -1; 1121 1122 kmap->kmaps = &machine->kmaps; 1123 map_groups__insert(&machine->kmaps, map); 1124 1125 return 0; 1126 } 1127 1128 void machine__destroy_kernel_maps(struct machine *machine) 1129 { 1130 struct kmap *kmap; 1131 struct map *map = machine__kernel_map(machine); 1132 1133 if (map == NULL) 1134 return; 1135 1136 kmap = map__kmap(map); 1137 map_groups__remove(&machine->kmaps, map); 1138 if (kmap && kmap->ref_reloc_sym) { 1139 zfree((char **)&kmap->ref_reloc_sym->name); 1140 zfree(&kmap->ref_reloc_sym); 1141 } 1142 1143 map__zput(machine->vmlinux_map); 1144 } 1145 1146 int machines__create_guest_kernel_maps(struct machines *machines) 1147 { 1148 int ret = 0; 1149 struct dirent **namelist = NULL; 1150 int i, items = 0; 1151 char path[PATH_MAX]; 1152 pid_t pid; 1153 char *endp; 1154 1155 if (symbol_conf.default_guest_vmlinux_name || 1156 symbol_conf.default_guest_modules || 1157 symbol_conf.default_guest_kallsyms) { 1158 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1159 } 1160 1161 if (symbol_conf.guestmount) { 1162 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1163 if (items <= 0) 1164 return -ENOENT; 1165 for (i = 0; i < items; i++) { 1166 if (!isdigit(namelist[i]->d_name[0])) { 1167 /* Filter out . and .. */ 1168 continue; 1169 } 1170 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1171 if ((*endp != '\0') || 1172 (endp == namelist[i]->d_name) || 1173 (errno == ERANGE)) { 1174 pr_debug("invalid directory (%s). Skipping.\n", 1175 namelist[i]->d_name); 1176 continue; 1177 } 1178 sprintf(path, "%s/%s/proc/kallsyms", 1179 symbol_conf.guestmount, 1180 namelist[i]->d_name); 1181 ret = access(path, R_OK); 1182 if (ret) { 1183 pr_debug("Can't access file %s\n", path); 1184 goto failure; 1185 } 1186 machines__create_kernel_maps(machines, pid); 1187 } 1188 failure: 1189 free(namelist); 1190 } 1191 1192 return ret; 1193 } 1194 1195 void machines__destroy_kernel_maps(struct machines *machines) 1196 { 1197 struct rb_node *next = rb_first_cached(&machines->guests); 1198 1199 machine__destroy_kernel_maps(&machines->host); 1200 1201 while (next) { 1202 struct machine *pos = rb_entry(next, struct machine, rb_node); 1203 1204 next = rb_next(&pos->rb_node); 1205 rb_erase_cached(&pos->rb_node, &machines->guests); 1206 machine__delete(pos); 1207 } 1208 } 1209 1210 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1211 { 1212 struct machine *machine = machines__findnew(machines, pid); 1213 1214 if (machine == NULL) 1215 return -1; 1216 1217 return machine__create_kernel_maps(machine); 1218 } 1219 1220 int machine__load_kallsyms(struct machine *machine, const char *filename) 1221 { 1222 struct map *map = machine__kernel_map(machine); 1223 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1224 1225 if (ret > 0) { 1226 dso__set_loaded(map->dso); 1227 /* 1228 * Since /proc/kallsyms will have multiple sessions for the 1229 * kernel, with modules between them, fixup the end of all 1230 * sections. 1231 */ 1232 map_groups__fixup_end(&machine->kmaps); 1233 } 1234 1235 return ret; 1236 } 1237 1238 int machine__load_vmlinux_path(struct machine *machine) 1239 { 1240 struct map *map = machine__kernel_map(machine); 1241 int ret = dso__load_vmlinux_path(map->dso, map); 1242 1243 if (ret > 0) 1244 dso__set_loaded(map->dso); 1245 1246 return ret; 1247 } 1248 1249 static char *get_kernel_version(const char *root_dir) 1250 { 1251 char version[PATH_MAX]; 1252 FILE *file; 1253 char *name, *tmp; 1254 const char *prefix = "Linux version "; 1255 1256 sprintf(version, "%s/proc/version", root_dir); 1257 file = fopen(version, "r"); 1258 if (!file) 1259 return NULL; 1260 1261 tmp = fgets(version, sizeof(version), file); 1262 fclose(file); 1263 if (!tmp) 1264 return NULL; 1265 1266 name = strstr(version, prefix); 1267 if (!name) 1268 return NULL; 1269 name += strlen(prefix); 1270 tmp = strchr(name, ' '); 1271 if (tmp) 1272 *tmp = '\0'; 1273 1274 return strdup(name); 1275 } 1276 1277 static bool is_kmod_dso(struct dso *dso) 1278 { 1279 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1280 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1281 } 1282 1283 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1284 struct kmod_path *m) 1285 { 1286 char *long_name; 1287 struct map *map = map_groups__find_by_name(mg, m->name); 1288 1289 if (map == NULL) 1290 return 0; 1291 1292 long_name = strdup(path); 1293 if (long_name == NULL) 1294 return -ENOMEM; 1295 1296 dso__set_long_name(map->dso, long_name, true); 1297 dso__kernel_module_get_build_id(map->dso, ""); 1298 1299 /* 1300 * Full name could reveal us kmod compression, so 1301 * we need to update the symtab_type if needed. 1302 */ 1303 if (m->comp && is_kmod_dso(map->dso)) { 1304 map->dso->symtab_type++; 1305 map->dso->comp = m->comp; 1306 } 1307 1308 return 0; 1309 } 1310 1311 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1312 const char *dir_name, int depth) 1313 { 1314 struct dirent *dent; 1315 DIR *dir = opendir(dir_name); 1316 int ret = 0; 1317 1318 if (!dir) { 1319 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1320 return -1; 1321 } 1322 1323 while ((dent = readdir(dir)) != NULL) { 1324 char path[PATH_MAX]; 1325 struct stat st; 1326 1327 /*sshfs might return bad dent->d_type, so we have to stat*/ 1328 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1329 if (stat(path, &st)) 1330 continue; 1331 1332 if (S_ISDIR(st.st_mode)) { 1333 if (!strcmp(dent->d_name, ".") || 1334 !strcmp(dent->d_name, "..")) 1335 continue; 1336 1337 /* Do not follow top-level source and build symlinks */ 1338 if (depth == 0) { 1339 if (!strcmp(dent->d_name, "source") || 1340 !strcmp(dent->d_name, "build")) 1341 continue; 1342 } 1343 1344 ret = map_groups__set_modules_path_dir(mg, path, 1345 depth + 1); 1346 if (ret < 0) 1347 goto out; 1348 } else { 1349 struct kmod_path m; 1350 1351 ret = kmod_path__parse_name(&m, dent->d_name); 1352 if (ret) 1353 goto out; 1354 1355 if (m.kmod) 1356 ret = map_groups__set_module_path(mg, path, &m); 1357 1358 zfree(&m.name); 1359 1360 if (ret) 1361 goto out; 1362 } 1363 } 1364 1365 out: 1366 closedir(dir); 1367 return ret; 1368 } 1369 1370 static int machine__set_modules_path(struct machine *machine) 1371 { 1372 char *version; 1373 char modules_path[PATH_MAX]; 1374 1375 version = get_kernel_version(machine->root_dir); 1376 if (!version) 1377 return -1; 1378 1379 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1380 machine->root_dir, version); 1381 free(version); 1382 1383 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1384 } 1385 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1386 u64 *size __maybe_unused, 1387 const char *name __maybe_unused) 1388 { 1389 return 0; 1390 } 1391 1392 static int machine__create_module(void *arg, const char *name, u64 start, 1393 u64 size) 1394 { 1395 struct machine *machine = arg; 1396 struct map *map; 1397 1398 if (arch__fix_module_text_start(&start, &size, name) < 0) 1399 return -1; 1400 1401 map = machine__findnew_module_map(machine, start, name); 1402 if (map == NULL) 1403 return -1; 1404 map->end = start + size; 1405 1406 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1407 1408 return 0; 1409 } 1410 1411 static int machine__create_modules(struct machine *machine) 1412 { 1413 const char *modules; 1414 char path[PATH_MAX]; 1415 1416 if (machine__is_default_guest(machine)) { 1417 modules = symbol_conf.default_guest_modules; 1418 } else { 1419 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1420 modules = path; 1421 } 1422 1423 if (symbol__restricted_filename(modules, "/proc/modules")) 1424 return -1; 1425 1426 if (modules__parse(modules, machine, machine__create_module)) 1427 return -1; 1428 1429 if (!machine__set_modules_path(machine)) 1430 return 0; 1431 1432 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1433 1434 return 0; 1435 } 1436 1437 static void machine__set_kernel_mmap(struct machine *machine, 1438 u64 start, u64 end) 1439 { 1440 machine->vmlinux_map->start = start; 1441 machine->vmlinux_map->end = end; 1442 /* 1443 * Be a bit paranoid here, some perf.data file came with 1444 * a zero sized synthesized MMAP event for the kernel. 1445 */ 1446 if (start == 0 && end == 0) 1447 machine->vmlinux_map->end = ~0ULL; 1448 } 1449 1450 static void machine__update_kernel_mmap(struct machine *machine, 1451 u64 start, u64 end) 1452 { 1453 struct map *map = machine__kernel_map(machine); 1454 1455 map__get(map); 1456 map_groups__remove(&machine->kmaps, map); 1457 1458 machine__set_kernel_mmap(machine, start, end); 1459 1460 map_groups__insert(&machine->kmaps, map); 1461 map__put(map); 1462 } 1463 1464 int machine__create_kernel_maps(struct machine *machine) 1465 { 1466 struct dso *kernel = machine__get_kernel(machine); 1467 const char *name = NULL; 1468 struct map *map; 1469 u64 start = 0, end = ~0ULL; 1470 int ret; 1471 1472 if (kernel == NULL) 1473 return -1; 1474 1475 ret = __machine__create_kernel_maps(machine, kernel); 1476 if (ret < 0) 1477 goto out_put; 1478 1479 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1480 if (machine__is_host(machine)) 1481 pr_debug("Problems creating module maps, " 1482 "continuing anyway...\n"); 1483 else 1484 pr_debug("Problems creating module maps for guest %d, " 1485 "continuing anyway...\n", machine->pid); 1486 } 1487 1488 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1489 if (name && 1490 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1491 machine__destroy_kernel_maps(machine); 1492 ret = -1; 1493 goto out_put; 1494 } 1495 1496 /* 1497 * we have a real start address now, so re-order the kmaps 1498 * assume it's the last in the kmaps 1499 */ 1500 machine__update_kernel_mmap(machine, start, end); 1501 } 1502 1503 if (machine__create_extra_kernel_maps(machine, kernel)) 1504 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1505 1506 if (end == ~0ULL) { 1507 /* update end address of the kernel map using adjacent module address */ 1508 map = map__next(machine__kernel_map(machine)); 1509 if (map) 1510 machine__set_kernel_mmap(machine, start, map->start); 1511 } 1512 1513 out_put: 1514 dso__put(kernel); 1515 return ret; 1516 } 1517 1518 static bool machine__uses_kcore(struct machine *machine) 1519 { 1520 struct dso *dso; 1521 1522 list_for_each_entry(dso, &machine->dsos.head, node) { 1523 if (dso__is_kcore(dso)) 1524 return true; 1525 } 1526 1527 return false; 1528 } 1529 1530 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1531 union perf_event *event) 1532 { 1533 return machine__is(machine, "x86_64") && 1534 is_entry_trampoline(event->mmap.filename); 1535 } 1536 1537 static int machine__process_extra_kernel_map(struct machine *machine, 1538 union perf_event *event) 1539 { 1540 struct map *kernel_map = machine__kernel_map(machine); 1541 struct dso *kernel = kernel_map ? kernel_map->dso : NULL; 1542 struct extra_kernel_map xm = { 1543 .start = event->mmap.start, 1544 .end = event->mmap.start + event->mmap.len, 1545 .pgoff = event->mmap.pgoff, 1546 }; 1547 1548 if (kernel == NULL) 1549 return -1; 1550 1551 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1552 1553 return machine__create_extra_kernel_map(machine, kernel, &xm); 1554 } 1555 1556 static int machine__process_kernel_mmap_event(struct machine *machine, 1557 union perf_event *event) 1558 { 1559 struct map *map; 1560 enum dso_kernel_type kernel_type; 1561 bool is_kernel_mmap; 1562 1563 /* If we have maps from kcore then we do not need or want any others */ 1564 if (machine__uses_kcore(machine)) 1565 return 0; 1566 1567 if (machine__is_host(machine)) 1568 kernel_type = DSO_TYPE_KERNEL; 1569 else 1570 kernel_type = DSO_TYPE_GUEST_KERNEL; 1571 1572 is_kernel_mmap = memcmp(event->mmap.filename, 1573 machine->mmap_name, 1574 strlen(machine->mmap_name) - 1) == 0; 1575 if (event->mmap.filename[0] == '/' || 1576 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1577 map = machine__findnew_module_map(machine, event->mmap.start, 1578 event->mmap.filename); 1579 if (map == NULL) 1580 goto out_problem; 1581 1582 map->end = map->start + event->mmap.len; 1583 } else if (is_kernel_mmap) { 1584 const char *symbol_name = (event->mmap.filename + 1585 strlen(machine->mmap_name)); 1586 /* 1587 * Should be there already, from the build-id table in 1588 * the header. 1589 */ 1590 struct dso *kernel = NULL; 1591 struct dso *dso; 1592 1593 down_read(&machine->dsos.lock); 1594 1595 list_for_each_entry(dso, &machine->dsos.head, node) { 1596 1597 /* 1598 * The cpumode passed to is_kernel_module is not the 1599 * cpumode of *this* event. If we insist on passing 1600 * correct cpumode to is_kernel_module, we should 1601 * record the cpumode when we adding this dso to the 1602 * linked list. 1603 * 1604 * However we don't really need passing correct 1605 * cpumode. We know the correct cpumode must be kernel 1606 * mode (if not, we should not link it onto kernel_dsos 1607 * list). 1608 * 1609 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1610 * is_kernel_module() treats it as a kernel cpumode. 1611 */ 1612 1613 if (!dso->kernel || 1614 is_kernel_module(dso->long_name, 1615 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1616 continue; 1617 1618 1619 kernel = dso; 1620 break; 1621 } 1622 1623 up_read(&machine->dsos.lock); 1624 1625 if (kernel == NULL) 1626 kernel = machine__findnew_dso(machine, machine->mmap_name); 1627 if (kernel == NULL) 1628 goto out_problem; 1629 1630 kernel->kernel = kernel_type; 1631 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1632 dso__put(kernel); 1633 goto out_problem; 1634 } 1635 1636 if (strstr(kernel->long_name, "vmlinux")) 1637 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1638 1639 machine__update_kernel_mmap(machine, event->mmap.start, 1640 event->mmap.start + event->mmap.len); 1641 1642 /* 1643 * Avoid using a zero address (kptr_restrict) for the ref reloc 1644 * symbol. Effectively having zero here means that at record 1645 * time /proc/sys/kernel/kptr_restrict was non zero. 1646 */ 1647 if (event->mmap.pgoff != 0) { 1648 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1649 symbol_name, 1650 event->mmap.pgoff); 1651 } 1652 1653 if (machine__is_default_guest(machine)) { 1654 /* 1655 * preload dso of guest kernel and modules 1656 */ 1657 dso__load(kernel, machine__kernel_map(machine)); 1658 } 1659 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1660 return machine__process_extra_kernel_map(machine, event); 1661 } 1662 return 0; 1663 out_problem: 1664 return -1; 1665 } 1666 1667 int machine__process_mmap2_event(struct machine *machine, 1668 union perf_event *event, 1669 struct perf_sample *sample) 1670 { 1671 struct thread *thread; 1672 struct map *map; 1673 int ret = 0; 1674 1675 if (dump_trace) 1676 perf_event__fprintf_mmap2(event, stdout); 1677 1678 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1679 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1680 ret = machine__process_kernel_mmap_event(machine, event); 1681 if (ret < 0) 1682 goto out_problem; 1683 return 0; 1684 } 1685 1686 thread = machine__findnew_thread(machine, event->mmap2.pid, 1687 event->mmap2.tid); 1688 if (thread == NULL) 1689 goto out_problem; 1690 1691 map = map__new(machine, event->mmap2.start, 1692 event->mmap2.len, event->mmap2.pgoff, 1693 event->mmap2.maj, 1694 event->mmap2.min, event->mmap2.ino, 1695 event->mmap2.ino_generation, 1696 event->mmap2.prot, 1697 event->mmap2.flags, 1698 event->mmap2.filename, thread); 1699 1700 if (map == NULL) 1701 goto out_problem_map; 1702 1703 ret = thread__insert_map(thread, map); 1704 if (ret) 1705 goto out_problem_insert; 1706 1707 thread__put(thread); 1708 map__put(map); 1709 return 0; 1710 1711 out_problem_insert: 1712 map__put(map); 1713 out_problem_map: 1714 thread__put(thread); 1715 out_problem: 1716 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1717 return 0; 1718 } 1719 1720 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1721 struct perf_sample *sample) 1722 { 1723 struct thread *thread; 1724 struct map *map; 1725 u32 prot = 0; 1726 int ret = 0; 1727 1728 if (dump_trace) 1729 perf_event__fprintf_mmap(event, stdout); 1730 1731 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1732 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1733 ret = machine__process_kernel_mmap_event(machine, event); 1734 if (ret < 0) 1735 goto out_problem; 1736 return 0; 1737 } 1738 1739 thread = machine__findnew_thread(machine, event->mmap.pid, 1740 event->mmap.tid); 1741 if (thread == NULL) 1742 goto out_problem; 1743 1744 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1745 prot = PROT_EXEC; 1746 1747 map = map__new(machine, event->mmap.start, 1748 event->mmap.len, event->mmap.pgoff, 1749 0, 0, 0, 0, prot, 0, 1750 event->mmap.filename, 1751 thread); 1752 1753 if (map == NULL) 1754 goto out_problem_map; 1755 1756 ret = thread__insert_map(thread, map); 1757 if (ret) 1758 goto out_problem_insert; 1759 1760 thread__put(thread); 1761 map__put(map); 1762 return 0; 1763 1764 out_problem_insert: 1765 map__put(map); 1766 out_problem_map: 1767 thread__put(thread); 1768 out_problem: 1769 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1770 return 0; 1771 } 1772 1773 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1774 { 1775 struct threads *threads = machine__threads(machine, th->tid); 1776 1777 if (threads->last_match == th) 1778 threads__set_last_match(threads, NULL); 1779 1780 if (lock) 1781 down_write(&threads->lock); 1782 1783 BUG_ON(refcount_read(&th->refcnt) == 0); 1784 1785 rb_erase_cached(&th->rb_node, &threads->entries); 1786 RB_CLEAR_NODE(&th->rb_node); 1787 --threads->nr; 1788 /* 1789 * Move it first to the dead_threads list, then drop the reference, 1790 * if this is the last reference, then the thread__delete destructor 1791 * will be called and we will remove it from the dead_threads list. 1792 */ 1793 list_add_tail(&th->node, &threads->dead); 1794 1795 /* 1796 * We need to do the put here because if this is the last refcount, 1797 * then we will be touching the threads->dead head when removing the 1798 * thread. 1799 */ 1800 thread__put(th); 1801 1802 if (lock) 1803 up_write(&threads->lock); 1804 } 1805 1806 void machine__remove_thread(struct machine *machine, struct thread *th) 1807 { 1808 return __machine__remove_thread(machine, th, true); 1809 } 1810 1811 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1812 struct perf_sample *sample) 1813 { 1814 struct thread *thread = machine__find_thread(machine, 1815 event->fork.pid, 1816 event->fork.tid); 1817 struct thread *parent = machine__findnew_thread(machine, 1818 event->fork.ppid, 1819 event->fork.ptid); 1820 bool do_maps_clone = true; 1821 int err = 0; 1822 1823 if (dump_trace) 1824 perf_event__fprintf_task(event, stdout); 1825 1826 /* 1827 * There may be an existing thread that is not actually the parent, 1828 * either because we are processing events out of order, or because the 1829 * (fork) event that would have removed the thread was lost. Assume the 1830 * latter case and continue on as best we can. 1831 */ 1832 if (parent->pid_ != (pid_t)event->fork.ppid) { 1833 dump_printf("removing erroneous parent thread %d/%d\n", 1834 parent->pid_, parent->tid); 1835 machine__remove_thread(machine, parent); 1836 thread__put(parent); 1837 parent = machine__findnew_thread(machine, event->fork.ppid, 1838 event->fork.ptid); 1839 } 1840 1841 /* if a thread currently exists for the thread id remove it */ 1842 if (thread != NULL) { 1843 machine__remove_thread(machine, thread); 1844 thread__put(thread); 1845 } 1846 1847 thread = machine__findnew_thread(machine, event->fork.pid, 1848 event->fork.tid); 1849 /* 1850 * When synthesizing FORK events, we are trying to create thread 1851 * objects for the already running tasks on the machine. 1852 * 1853 * Normally, for a kernel FORK event, we want to clone the parent's 1854 * maps because that is what the kernel just did. 1855 * 1856 * But when synthesizing, this should not be done. If we do, we end up 1857 * with overlapping maps as we process the sythesized MMAP2 events that 1858 * get delivered shortly thereafter. 1859 * 1860 * Use the FORK event misc flags in an internal way to signal this 1861 * situation, so we can elide the map clone when appropriate. 1862 */ 1863 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1864 do_maps_clone = false; 1865 1866 if (thread == NULL || parent == NULL || 1867 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1868 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1869 err = -1; 1870 } 1871 thread__put(thread); 1872 thread__put(parent); 1873 1874 return err; 1875 } 1876 1877 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1878 struct perf_sample *sample __maybe_unused) 1879 { 1880 struct thread *thread = machine__find_thread(machine, 1881 event->fork.pid, 1882 event->fork.tid); 1883 1884 if (dump_trace) 1885 perf_event__fprintf_task(event, stdout); 1886 1887 if (thread != NULL) { 1888 thread__exited(thread); 1889 thread__put(thread); 1890 } 1891 1892 return 0; 1893 } 1894 1895 int machine__process_event(struct machine *machine, union perf_event *event, 1896 struct perf_sample *sample) 1897 { 1898 int ret; 1899 1900 switch (event->header.type) { 1901 case PERF_RECORD_COMM: 1902 ret = machine__process_comm_event(machine, event, sample); break; 1903 case PERF_RECORD_MMAP: 1904 ret = machine__process_mmap_event(machine, event, sample); break; 1905 case PERF_RECORD_NAMESPACES: 1906 ret = machine__process_namespaces_event(machine, event, sample); break; 1907 case PERF_RECORD_MMAP2: 1908 ret = machine__process_mmap2_event(machine, event, sample); break; 1909 case PERF_RECORD_FORK: 1910 ret = machine__process_fork_event(machine, event, sample); break; 1911 case PERF_RECORD_EXIT: 1912 ret = machine__process_exit_event(machine, event, sample); break; 1913 case PERF_RECORD_LOST: 1914 ret = machine__process_lost_event(machine, event, sample); break; 1915 case PERF_RECORD_AUX: 1916 ret = machine__process_aux_event(machine, event); break; 1917 case PERF_RECORD_ITRACE_START: 1918 ret = machine__process_itrace_start_event(machine, event); break; 1919 case PERF_RECORD_LOST_SAMPLES: 1920 ret = machine__process_lost_samples_event(machine, event, sample); break; 1921 case PERF_RECORD_SWITCH: 1922 case PERF_RECORD_SWITCH_CPU_WIDE: 1923 ret = machine__process_switch_event(machine, event); break; 1924 case PERF_RECORD_KSYMBOL: 1925 ret = machine__process_ksymbol(machine, event, sample); break; 1926 case PERF_RECORD_BPF_EVENT: 1927 ret = machine__process_bpf(machine, event, sample); break; 1928 default: 1929 ret = -1; 1930 break; 1931 } 1932 1933 return ret; 1934 } 1935 1936 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1937 { 1938 if (!regexec(regex, sym->name, 0, NULL, 0)) 1939 return 1; 1940 return 0; 1941 } 1942 1943 static void ip__resolve_ams(struct thread *thread, 1944 struct addr_map_symbol *ams, 1945 u64 ip) 1946 { 1947 struct addr_location al; 1948 1949 memset(&al, 0, sizeof(al)); 1950 /* 1951 * We cannot use the header.misc hint to determine whether a 1952 * branch stack address is user, kernel, guest, hypervisor. 1953 * Branches may straddle the kernel/user/hypervisor boundaries. 1954 * Thus, we have to try consecutively until we find a match 1955 * or else, the symbol is unknown 1956 */ 1957 thread__find_cpumode_addr_location(thread, ip, &al); 1958 1959 ams->addr = ip; 1960 ams->al_addr = al.addr; 1961 ams->sym = al.sym; 1962 ams->map = al.map; 1963 ams->phys_addr = 0; 1964 } 1965 1966 static void ip__resolve_data(struct thread *thread, 1967 u8 m, struct addr_map_symbol *ams, 1968 u64 addr, u64 phys_addr) 1969 { 1970 struct addr_location al; 1971 1972 memset(&al, 0, sizeof(al)); 1973 1974 thread__find_symbol(thread, m, addr, &al); 1975 1976 ams->addr = addr; 1977 ams->al_addr = al.addr; 1978 ams->sym = al.sym; 1979 ams->map = al.map; 1980 ams->phys_addr = phys_addr; 1981 } 1982 1983 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1984 struct addr_location *al) 1985 { 1986 struct mem_info *mi = mem_info__new(); 1987 1988 if (!mi) 1989 return NULL; 1990 1991 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1992 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1993 sample->addr, sample->phys_addr); 1994 mi->data_src.val = sample->data_src; 1995 1996 return mi; 1997 } 1998 1999 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 2000 { 2001 char *srcline = NULL; 2002 2003 if (!map || callchain_param.key == CCKEY_FUNCTION) 2004 return srcline; 2005 2006 srcline = srcline__tree_find(&map->dso->srclines, ip); 2007 if (!srcline) { 2008 bool show_sym = false; 2009 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2010 2011 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2012 sym, show_sym, show_addr, ip); 2013 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2014 } 2015 2016 return srcline; 2017 } 2018 2019 struct iterations { 2020 int nr_loop_iter; 2021 u64 cycles; 2022 }; 2023 2024 static int add_callchain_ip(struct thread *thread, 2025 struct callchain_cursor *cursor, 2026 struct symbol **parent, 2027 struct addr_location *root_al, 2028 u8 *cpumode, 2029 u64 ip, 2030 bool branch, 2031 struct branch_flags *flags, 2032 struct iterations *iter, 2033 u64 branch_from) 2034 { 2035 struct addr_location al; 2036 int nr_loop_iter = 0; 2037 u64 iter_cycles = 0; 2038 const char *srcline = NULL; 2039 2040 al.filtered = 0; 2041 al.sym = NULL; 2042 if (!cpumode) { 2043 thread__find_cpumode_addr_location(thread, ip, &al); 2044 } else { 2045 if (ip >= PERF_CONTEXT_MAX) { 2046 switch (ip) { 2047 case PERF_CONTEXT_HV: 2048 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2049 break; 2050 case PERF_CONTEXT_KERNEL: 2051 *cpumode = PERF_RECORD_MISC_KERNEL; 2052 break; 2053 case PERF_CONTEXT_USER: 2054 *cpumode = PERF_RECORD_MISC_USER; 2055 break; 2056 default: 2057 pr_debug("invalid callchain context: " 2058 "%"PRId64"\n", (s64) ip); 2059 /* 2060 * It seems the callchain is corrupted. 2061 * Discard all. 2062 */ 2063 callchain_cursor_reset(cursor); 2064 return 1; 2065 } 2066 return 0; 2067 } 2068 thread__find_symbol(thread, *cpumode, ip, &al); 2069 } 2070 2071 if (al.sym != NULL) { 2072 if (perf_hpp_list.parent && !*parent && 2073 symbol__match_regex(al.sym, &parent_regex)) 2074 *parent = al.sym; 2075 else if (have_ignore_callees && root_al && 2076 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2077 /* Treat this symbol as the root, 2078 forgetting its callees. */ 2079 *root_al = al; 2080 callchain_cursor_reset(cursor); 2081 } 2082 } 2083 2084 if (symbol_conf.hide_unresolved && al.sym == NULL) 2085 return 0; 2086 2087 if (iter) { 2088 nr_loop_iter = iter->nr_loop_iter; 2089 iter_cycles = iter->cycles; 2090 } 2091 2092 srcline = callchain_srcline(al.map, al.sym, al.addr); 2093 return callchain_cursor_append(cursor, ip, al.map, al.sym, 2094 branch, flags, nr_loop_iter, 2095 iter_cycles, branch_from, srcline); 2096 } 2097 2098 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2099 struct addr_location *al) 2100 { 2101 unsigned int i; 2102 const struct branch_stack *bs = sample->branch_stack; 2103 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2104 2105 if (!bi) 2106 return NULL; 2107 2108 for (i = 0; i < bs->nr; i++) { 2109 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 2110 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 2111 bi[i].flags = bs->entries[i].flags; 2112 } 2113 return bi; 2114 } 2115 2116 static void save_iterations(struct iterations *iter, 2117 struct branch_entry *be, int nr) 2118 { 2119 int i; 2120 2121 iter->nr_loop_iter++; 2122 iter->cycles = 0; 2123 2124 for (i = 0; i < nr; i++) 2125 iter->cycles += be[i].flags.cycles; 2126 } 2127 2128 #define CHASHSZ 127 2129 #define CHASHBITS 7 2130 #define NO_ENTRY 0xff 2131 2132 #define PERF_MAX_BRANCH_DEPTH 127 2133 2134 /* Remove loops. */ 2135 static int remove_loops(struct branch_entry *l, int nr, 2136 struct iterations *iter) 2137 { 2138 int i, j, off; 2139 unsigned char chash[CHASHSZ]; 2140 2141 memset(chash, NO_ENTRY, sizeof(chash)); 2142 2143 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2144 2145 for (i = 0; i < nr; i++) { 2146 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2147 2148 /* no collision handling for now */ 2149 if (chash[h] == NO_ENTRY) { 2150 chash[h] = i; 2151 } else if (l[chash[h]].from == l[i].from) { 2152 bool is_loop = true; 2153 /* check if it is a real loop */ 2154 off = 0; 2155 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2156 if (l[j].from != l[i + off].from) { 2157 is_loop = false; 2158 break; 2159 } 2160 if (is_loop) { 2161 j = nr - (i + off); 2162 if (j > 0) { 2163 save_iterations(iter + i + off, 2164 l + i, off); 2165 2166 memmove(iter + i, iter + i + off, 2167 j * sizeof(*iter)); 2168 2169 memmove(l + i, l + i + off, 2170 j * sizeof(*l)); 2171 } 2172 2173 nr -= off; 2174 } 2175 } 2176 } 2177 return nr; 2178 } 2179 2180 /* 2181 * Recolve LBR callstack chain sample 2182 * Return: 2183 * 1 on success get LBR callchain information 2184 * 0 no available LBR callchain information, should try fp 2185 * negative error code on other errors. 2186 */ 2187 static int resolve_lbr_callchain_sample(struct thread *thread, 2188 struct callchain_cursor *cursor, 2189 struct perf_sample *sample, 2190 struct symbol **parent, 2191 struct addr_location *root_al, 2192 int max_stack) 2193 { 2194 struct ip_callchain *chain = sample->callchain; 2195 int chain_nr = min(max_stack, (int)chain->nr), i; 2196 u8 cpumode = PERF_RECORD_MISC_USER; 2197 u64 ip, branch_from = 0; 2198 2199 for (i = 0; i < chain_nr; i++) { 2200 if (chain->ips[i] == PERF_CONTEXT_USER) 2201 break; 2202 } 2203 2204 /* LBR only affects the user callchain */ 2205 if (i != chain_nr) { 2206 struct branch_stack *lbr_stack = sample->branch_stack; 2207 int lbr_nr = lbr_stack->nr, j, k; 2208 bool branch; 2209 struct branch_flags *flags; 2210 /* 2211 * LBR callstack can only get user call chain. 2212 * The mix_chain_nr is kernel call chain 2213 * number plus LBR user call chain number. 2214 * i is kernel call chain number, 2215 * 1 is PERF_CONTEXT_USER, 2216 * lbr_nr + 1 is the user call chain number. 2217 * For details, please refer to the comments 2218 * in callchain__printf 2219 */ 2220 int mix_chain_nr = i + 1 + lbr_nr + 1; 2221 2222 for (j = 0; j < mix_chain_nr; j++) { 2223 int err; 2224 branch = false; 2225 flags = NULL; 2226 2227 if (callchain_param.order == ORDER_CALLEE) { 2228 if (j < i + 1) 2229 ip = chain->ips[j]; 2230 else if (j > i + 1) { 2231 k = j - i - 2; 2232 ip = lbr_stack->entries[k].from; 2233 branch = true; 2234 flags = &lbr_stack->entries[k].flags; 2235 } else { 2236 ip = lbr_stack->entries[0].to; 2237 branch = true; 2238 flags = &lbr_stack->entries[0].flags; 2239 branch_from = 2240 lbr_stack->entries[0].from; 2241 } 2242 } else { 2243 if (j < lbr_nr) { 2244 k = lbr_nr - j - 1; 2245 ip = lbr_stack->entries[k].from; 2246 branch = true; 2247 flags = &lbr_stack->entries[k].flags; 2248 } 2249 else if (j > lbr_nr) 2250 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2251 else { 2252 ip = lbr_stack->entries[0].to; 2253 branch = true; 2254 flags = &lbr_stack->entries[0].flags; 2255 branch_from = 2256 lbr_stack->entries[0].from; 2257 } 2258 } 2259 2260 err = add_callchain_ip(thread, cursor, parent, 2261 root_al, &cpumode, ip, 2262 branch, flags, NULL, 2263 branch_from); 2264 if (err) 2265 return (err < 0) ? err : 0; 2266 } 2267 return 1; 2268 } 2269 2270 return 0; 2271 } 2272 2273 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2274 struct callchain_cursor *cursor, 2275 struct symbol **parent, 2276 struct addr_location *root_al, 2277 u8 *cpumode, int ent) 2278 { 2279 int err = 0; 2280 2281 while (--ent >= 0) { 2282 u64 ip = chain->ips[ent]; 2283 2284 if (ip >= PERF_CONTEXT_MAX) { 2285 err = add_callchain_ip(thread, cursor, parent, 2286 root_al, cpumode, ip, 2287 false, NULL, NULL, 0); 2288 break; 2289 } 2290 } 2291 return err; 2292 } 2293 2294 static int thread__resolve_callchain_sample(struct thread *thread, 2295 struct callchain_cursor *cursor, 2296 struct evsel *evsel, 2297 struct perf_sample *sample, 2298 struct symbol **parent, 2299 struct addr_location *root_al, 2300 int max_stack) 2301 { 2302 struct branch_stack *branch = sample->branch_stack; 2303 struct ip_callchain *chain = sample->callchain; 2304 int chain_nr = 0; 2305 u8 cpumode = PERF_RECORD_MISC_USER; 2306 int i, j, err, nr_entries; 2307 int skip_idx = -1; 2308 int first_call = 0; 2309 2310 if (chain) 2311 chain_nr = chain->nr; 2312 2313 if (perf_evsel__has_branch_callstack(evsel)) { 2314 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2315 root_al, max_stack); 2316 if (err) 2317 return (err < 0) ? err : 0; 2318 } 2319 2320 /* 2321 * Based on DWARF debug information, some architectures skip 2322 * a callchain entry saved by the kernel. 2323 */ 2324 skip_idx = arch_skip_callchain_idx(thread, chain); 2325 2326 /* 2327 * Add branches to call stack for easier browsing. This gives 2328 * more context for a sample than just the callers. 2329 * 2330 * This uses individual histograms of paths compared to the 2331 * aggregated histograms the normal LBR mode uses. 2332 * 2333 * Limitations for now: 2334 * - No extra filters 2335 * - No annotations (should annotate somehow) 2336 */ 2337 2338 if (branch && callchain_param.branch_callstack) { 2339 int nr = min(max_stack, (int)branch->nr); 2340 struct branch_entry be[nr]; 2341 struct iterations iter[nr]; 2342 2343 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2344 pr_warning("corrupted branch chain. skipping...\n"); 2345 goto check_calls; 2346 } 2347 2348 for (i = 0; i < nr; i++) { 2349 if (callchain_param.order == ORDER_CALLEE) { 2350 be[i] = branch->entries[i]; 2351 2352 if (chain == NULL) 2353 continue; 2354 2355 /* 2356 * Check for overlap into the callchain. 2357 * The return address is one off compared to 2358 * the branch entry. To adjust for this 2359 * assume the calling instruction is not longer 2360 * than 8 bytes. 2361 */ 2362 if (i == skip_idx || 2363 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2364 first_call++; 2365 else if (be[i].from < chain->ips[first_call] && 2366 be[i].from >= chain->ips[first_call] - 8) 2367 first_call++; 2368 } else 2369 be[i] = branch->entries[branch->nr - i - 1]; 2370 } 2371 2372 memset(iter, 0, sizeof(struct iterations) * nr); 2373 nr = remove_loops(be, nr, iter); 2374 2375 for (i = 0; i < nr; i++) { 2376 err = add_callchain_ip(thread, cursor, parent, 2377 root_al, 2378 NULL, be[i].to, 2379 true, &be[i].flags, 2380 NULL, be[i].from); 2381 2382 if (!err) 2383 err = add_callchain_ip(thread, cursor, parent, root_al, 2384 NULL, be[i].from, 2385 true, &be[i].flags, 2386 &iter[i], 0); 2387 if (err == -EINVAL) 2388 break; 2389 if (err) 2390 return err; 2391 } 2392 2393 if (chain_nr == 0) 2394 return 0; 2395 2396 chain_nr -= nr; 2397 } 2398 2399 check_calls: 2400 if (callchain_param.order != ORDER_CALLEE) { 2401 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2402 &cpumode, chain->nr - first_call); 2403 if (err) 2404 return (err < 0) ? err : 0; 2405 } 2406 for (i = first_call, nr_entries = 0; 2407 i < chain_nr && nr_entries < max_stack; i++) { 2408 u64 ip; 2409 2410 if (callchain_param.order == ORDER_CALLEE) 2411 j = i; 2412 else 2413 j = chain->nr - i - 1; 2414 2415 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2416 if (j == skip_idx) 2417 continue; 2418 #endif 2419 ip = chain->ips[j]; 2420 if (ip < PERF_CONTEXT_MAX) 2421 ++nr_entries; 2422 else if (callchain_param.order != ORDER_CALLEE) { 2423 err = find_prev_cpumode(chain, thread, cursor, parent, 2424 root_al, &cpumode, j); 2425 if (err) 2426 return (err < 0) ? err : 0; 2427 continue; 2428 } 2429 2430 err = add_callchain_ip(thread, cursor, parent, 2431 root_al, &cpumode, ip, 2432 false, NULL, NULL, 0); 2433 2434 if (err) 2435 return (err < 0) ? err : 0; 2436 } 2437 2438 return 0; 2439 } 2440 2441 static int append_inlines(struct callchain_cursor *cursor, 2442 struct map *map, struct symbol *sym, u64 ip) 2443 { 2444 struct inline_node *inline_node; 2445 struct inline_list *ilist; 2446 u64 addr; 2447 int ret = 1; 2448 2449 if (!symbol_conf.inline_name || !map || !sym) 2450 return ret; 2451 2452 addr = map__map_ip(map, ip); 2453 addr = map__rip_2objdump(map, addr); 2454 2455 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2456 if (!inline_node) { 2457 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2458 if (!inline_node) 2459 return ret; 2460 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2461 } 2462 2463 list_for_each_entry(ilist, &inline_node->val, list) { 2464 ret = callchain_cursor_append(cursor, ip, map, 2465 ilist->symbol, false, 2466 NULL, 0, 0, 0, ilist->srcline); 2467 2468 if (ret != 0) 2469 return ret; 2470 } 2471 2472 return ret; 2473 } 2474 2475 static int unwind_entry(struct unwind_entry *entry, void *arg) 2476 { 2477 struct callchain_cursor *cursor = arg; 2478 const char *srcline = NULL; 2479 u64 addr = entry->ip; 2480 2481 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2482 return 0; 2483 2484 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2485 return 0; 2486 2487 /* 2488 * Convert entry->ip from a virtual address to an offset in 2489 * its corresponding binary. 2490 */ 2491 if (entry->map) 2492 addr = map__map_ip(entry->map, entry->ip); 2493 2494 srcline = callchain_srcline(entry->map, entry->sym, addr); 2495 return callchain_cursor_append(cursor, entry->ip, 2496 entry->map, entry->sym, 2497 false, NULL, 0, 0, 0, srcline); 2498 } 2499 2500 static int thread__resolve_callchain_unwind(struct thread *thread, 2501 struct callchain_cursor *cursor, 2502 struct evsel *evsel, 2503 struct perf_sample *sample, 2504 int max_stack) 2505 { 2506 /* Can we do dwarf post unwind? */ 2507 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2508 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2509 return 0; 2510 2511 /* Bail out if nothing was captured. */ 2512 if ((!sample->user_regs.regs) || 2513 (!sample->user_stack.size)) 2514 return 0; 2515 2516 return unwind__get_entries(unwind_entry, cursor, 2517 thread, sample, max_stack); 2518 } 2519 2520 int thread__resolve_callchain(struct thread *thread, 2521 struct callchain_cursor *cursor, 2522 struct evsel *evsel, 2523 struct perf_sample *sample, 2524 struct symbol **parent, 2525 struct addr_location *root_al, 2526 int max_stack) 2527 { 2528 int ret = 0; 2529 2530 callchain_cursor_reset(cursor); 2531 2532 if (callchain_param.order == ORDER_CALLEE) { 2533 ret = thread__resolve_callchain_sample(thread, cursor, 2534 evsel, sample, 2535 parent, root_al, 2536 max_stack); 2537 if (ret) 2538 return ret; 2539 ret = thread__resolve_callchain_unwind(thread, cursor, 2540 evsel, sample, 2541 max_stack); 2542 } else { 2543 ret = thread__resolve_callchain_unwind(thread, cursor, 2544 evsel, sample, 2545 max_stack); 2546 if (ret) 2547 return ret; 2548 ret = thread__resolve_callchain_sample(thread, cursor, 2549 evsel, sample, 2550 parent, root_al, 2551 max_stack); 2552 } 2553 2554 return ret; 2555 } 2556 2557 int machine__for_each_thread(struct machine *machine, 2558 int (*fn)(struct thread *thread, void *p), 2559 void *priv) 2560 { 2561 struct threads *threads; 2562 struct rb_node *nd; 2563 struct thread *thread; 2564 int rc = 0; 2565 int i; 2566 2567 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2568 threads = &machine->threads[i]; 2569 for (nd = rb_first_cached(&threads->entries); nd; 2570 nd = rb_next(nd)) { 2571 thread = rb_entry(nd, struct thread, rb_node); 2572 rc = fn(thread, priv); 2573 if (rc != 0) 2574 return rc; 2575 } 2576 2577 list_for_each_entry(thread, &threads->dead, node) { 2578 rc = fn(thread, priv); 2579 if (rc != 0) 2580 return rc; 2581 } 2582 } 2583 return rc; 2584 } 2585 2586 int machines__for_each_thread(struct machines *machines, 2587 int (*fn)(struct thread *thread, void *p), 2588 void *priv) 2589 { 2590 struct rb_node *nd; 2591 int rc = 0; 2592 2593 rc = machine__for_each_thread(&machines->host, fn, priv); 2594 if (rc != 0) 2595 return rc; 2596 2597 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2598 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2599 2600 rc = machine__for_each_thread(machine, fn, priv); 2601 if (rc != 0) 2602 return rc; 2603 } 2604 return rc; 2605 } 2606 2607 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2608 struct target *target, struct perf_thread_map *threads, 2609 perf_event__handler_t process, bool data_mmap, 2610 unsigned int nr_threads_synthesize) 2611 { 2612 if (target__has_task(target)) 2613 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap); 2614 else if (target__has_cpu(target)) 2615 return perf_event__synthesize_threads(tool, process, 2616 machine, data_mmap, 2617 nr_threads_synthesize); 2618 /* command specified */ 2619 return 0; 2620 } 2621 2622 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2623 { 2624 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2625 2626 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 2627 return -1; 2628 2629 return machine->current_tid[cpu]; 2630 } 2631 2632 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2633 pid_t tid) 2634 { 2635 struct thread *thread; 2636 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS); 2637 2638 if (cpu < 0) 2639 return -EINVAL; 2640 2641 if (!machine->current_tid) { 2642 int i; 2643 2644 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 2645 if (!machine->current_tid) 2646 return -ENOMEM; 2647 for (i = 0; i < nr_cpus; i++) 2648 machine->current_tid[i] = -1; 2649 } 2650 2651 if (cpu >= nr_cpus) { 2652 pr_err("Requested CPU %d too large. ", cpu); 2653 pr_err("Consider raising MAX_NR_CPUS\n"); 2654 return -EINVAL; 2655 } 2656 2657 machine->current_tid[cpu] = tid; 2658 2659 thread = machine__findnew_thread(machine, pid, tid); 2660 if (!thread) 2661 return -ENOMEM; 2662 2663 thread->cpu = cpu; 2664 thread__put(thread); 2665 2666 return 0; 2667 } 2668 2669 /* 2670 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2671 * normalized arch is needed. 2672 */ 2673 bool machine__is(struct machine *machine, const char *arch) 2674 { 2675 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2676 } 2677 2678 int machine__nr_cpus_avail(struct machine *machine) 2679 { 2680 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2681 } 2682 2683 int machine__get_kernel_start(struct machine *machine) 2684 { 2685 struct map *map = machine__kernel_map(machine); 2686 int err = 0; 2687 2688 /* 2689 * The only addresses above 2^63 are kernel addresses of a 64-bit 2690 * kernel. Note that addresses are unsigned so that on a 32-bit system 2691 * all addresses including kernel addresses are less than 2^32. In 2692 * that case (32-bit system), if the kernel mapping is unknown, all 2693 * addresses will be assumed to be in user space - see 2694 * machine__kernel_ip(). 2695 */ 2696 machine->kernel_start = 1ULL << 63; 2697 if (map) { 2698 err = map__load(map); 2699 /* 2700 * On x86_64, PTI entry trampolines are less than the 2701 * start of kernel text, but still above 2^63. So leave 2702 * kernel_start = 1ULL << 63 for x86_64. 2703 */ 2704 if (!err && !machine__is(machine, "x86_64")) 2705 machine->kernel_start = map->start; 2706 } 2707 return err; 2708 } 2709 2710 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 2711 { 2712 u8 addr_cpumode = cpumode; 2713 bool kernel_ip; 2714 2715 if (!machine->single_address_space) 2716 goto out; 2717 2718 kernel_ip = machine__kernel_ip(machine, addr); 2719 switch (cpumode) { 2720 case PERF_RECORD_MISC_KERNEL: 2721 case PERF_RECORD_MISC_USER: 2722 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 2723 PERF_RECORD_MISC_USER; 2724 break; 2725 case PERF_RECORD_MISC_GUEST_KERNEL: 2726 case PERF_RECORD_MISC_GUEST_USER: 2727 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 2728 PERF_RECORD_MISC_GUEST_USER; 2729 break; 2730 default: 2731 break; 2732 } 2733 out: 2734 return addr_cpumode; 2735 } 2736 2737 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2738 { 2739 return dsos__findnew(&machine->dsos, filename); 2740 } 2741 2742 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2743 { 2744 struct machine *machine = vmachine; 2745 struct map *map; 2746 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2747 2748 if (sym == NULL) 2749 return NULL; 2750 2751 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2752 *addrp = map->unmap_ip(map, sym->start); 2753 return sym->name; 2754 } 2755