1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static struct dso *machine__kernel_dso(struct machine *machine) 47 { 48 return map__dso(machine->vmlinux_map); 49 } 50 51 static int machine__set_mmap_name(struct machine *machine) 52 { 53 if (machine__is_host(machine)) 54 machine->mmap_name = strdup("[kernel.kallsyms]"); 55 else if (machine__is_default_guest(machine)) 56 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 57 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 58 machine->pid) < 0) 59 machine->mmap_name = NULL; 60 61 return machine->mmap_name ? 0 : -ENOMEM; 62 } 63 64 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 65 { 66 char comm[64]; 67 68 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 69 thread__set_comm(thread, comm, 0); 70 } 71 72 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 73 { 74 int err = -ENOMEM; 75 76 memset(machine, 0, sizeof(*machine)); 77 machine->kmaps = maps__new(machine); 78 if (machine->kmaps == NULL) 79 return -ENOMEM; 80 81 RB_CLEAR_NODE(&machine->rb_node); 82 dsos__init(&machine->dsos); 83 84 threads__init(&machine->threads); 85 86 machine->vdso_info = NULL; 87 machine->env = NULL; 88 89 machine->pid = pid; 90 91 machine->id_hdr_size = 0; 92 machine->kptr_restrict_warned = false; 93 machine->comm_exec = false; 94 machine->kernel_start = 0; 95 machine->vmlinux_map = NULL; 96 97 machine->root_dir = strdup(root_dir); 98 if (machine->root_dir == NULL) 99 goto out; 100 101 if (machine__set_mmap_name(machine)) 102 goto out; 103 104 if (pid != HOST_KERNEL_ID) { 105 struct thread *thread = machine__findnew_thread(machine, -1, 106 pid); 107 108 if (thread == NULL) 109 goto out; 110 111 thread__set_guest_comm(thread, pid); 112 thread__put(thread); 113 } 114 115 machine->current_tid = NULL; 116 err = 0; 117 118 out: 119 if (err) { 120 zfree(&machine->kmaps); 121 zfree(&machine->root_dir); 122 zfree(&machine->mmap_name); 123 } 124 return 0; 125 } 126 127 struct machine *machine__new_host(void) 128 { 129 struct machine *machine = malloc(sizeof(*machine)); 130 131 if (machine != NULL) { 132 machine__init(machine, "", HOST_KERNEL_ID); 133 134 if (machine__create_kernel_maps(machine) < 0) 135 goto out_delete; 136 } 137 138 return machine; 139 out_delete: 140 free(machine); 141 return NULL; 142 } 143 144 struct machine *machine__new_kallsyms(void) 145 { 146 struct machine *machine = machine__new_host(); 147 /* 148 * FIXME: 149 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 150 * ask for not using the kcore parsing code, once this one is fixed 151 * to create a map per module. 152 */ 153 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 154 machine__delete(machine); 155 machine = NULL; 156 } 157 158 return machine; 159 } 160 161 void machine__delete_threads(struct machine *machine) 162 { 163 threads__remove_all_threads(&machine->threads); 164 } 165 166 void machine__exit(struct machine *machine) 167 { 168 if (machine == NULL) 169 return; 170 171 machine__destroy_kernel_maps(machine); 172 maps__zput(machine->kmaps); 173 dsos__exit(&machine->dsos); 174 machine__exit_vdso(machine); 175 zfree(&machine->root_dir); 176 zfree(&machine->mmap_name); 177 zfree(&machine->current_tid); 178 zfree(&machine->kallsyms_filename); 179 180 threads__exit(&machine->threads); 181 } 182 183 void machine__delete(struct machine *machine) 184 { 185 if (machine) { 186 machine__exit(machine); 187 free(machine); 188 } 189 } 190 191 void machines__init(struct machines *machines) 192 { 193 machine__init(&machines->host, "", HOST_KERNEL_ID); 194 machines->guests = RB_ROOT_CACHED; 195 } 196 197 void machines__exit(struct machines *machines) 198 { 199 machine__exit(&machines->host); 200 /* XXX exit guest */ 201 } 202 203 struct machine *machines__add(struct machines *machines, pid_t pid, 204 const char *root_dir) 205 { 206 struct rb_node **p = &machines->guests.rb_root.rb_node; 207 struct rb_node *parent = NULL; 208 struct machine *pos, *machine = malloc(sizeof(*machine)); 209 bool leftmost = true; 210 211 if (machine == NULL) 212 return NULL; 213 214 if (machine__init(machine, root_dir, pid) != 0) { 215 free(machine); 216 return NULL; 217 } 218 219 while (*p != NULL) { 220 parent = *p; 221 pos = rb_entry(parent, struct machine, rb_node); 222 if (pid < pos->pid) 223 p = &(*p)->rb_left; 224 else { 225 p = &(*p)->rb_right; 226 leftmost = false; 227 } 228 } 229 230 rb_link_node(&machine->rb_node, parent, p); 231 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 232 233 machine->machines = machines; 234 235 return machine; 236 } 237 238 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 239 { 240 struct rb_node *nd; 241 242 machines->host.comm_exec = comm_exec; 243 244 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 245 struct machine *machine = rb_entry(nd, struct machine, rb_node); 246 247 machine->comm_exec = comm_exec; 248 } 249 } 250 251 struct machine *machines__find(struct machines *machines, pid_t pid) 252 { 253 struct rb_node **p = &machines->guests.rb_root.rb_node; 254 struct rb_node *parent = NULL; 255 struct machine *machine; 256 struct machine *default_machine = NULL; 257 258 if (pid == HOST_KERNEL_ID) 259 return &machines->host; 260 261 while (*p != NULL) { 262 parent = *p; 263 machine = rb_entry(parent, struct machine, rb_node); 264 if (pid < machine->pid) 265 p = &(*p)->rb_left; 266 else if (pid > machine->pid) 267 p = &(*p)->rb_right; 268 else 269 return machine; 270 if (!machine->pid) 271 default_machine = machine; 272 } 273 274 return default_machine; 275 } 276 277 struct machine *machines__findnew(struct machines *machines, pid_t pid) 278 { 279 char path[PATH_MAX]; 280 const char *root_dir = ""; 281 struct machine *machine = machines__find(machines, pid); 282 283 if (machine && (machine->pid == pid)) 284 goto out; 285 286 if ((pid != HOST_KERNEL_ID) && 287 (pid != DEFAULT_GUEST_KERNEL_ID) && 288 (symbol_conf.guestmount)) { 289 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 290 if (access(path, R_OK)) { 291 static struct strlist *seen; 292 293 if (!seen) 294 seen = strlist__new(NULL, NULL); 295 296 if (!strlist__has_entry(seen, path)) { 297 pr_err("Can't access file %s\n", path); 298 strlist__add(seen, path); 299 } 300 machine = NULL; 301 goto out; 302 } 303 root_dir = path; 304 } 305 306 machine = machines__add(machines, pid, root_dir); 307 out: 308 return machine; 309 } 310 311 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 312 { 313 struct machine *machine = machines__find(machines, pid); 314 315 if (!machine) 316 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 317 return machine; 318 } 319 320 /* 321 * A common case for KVM test programs is that the test program acts as the 322 * hypervisor, creating, running and destroying the virtual machine, and 323 * providing the guest object code from its own object code. In this case, 324 * the VM is not running an OS, but only the functions loaded into it by the 325 * hypervisor test program, and conveniently, loaded at the same virtual 326 * addresses. 327 * 328 * Normally to resolve addresses, MMAP events are needed to map addresses 329 * back to the object code and debug symbols for that object code. 330 * 331 * Currently, there is no way to get such mapping information from guests 332 * but, in the scenario described above, the guest has the same mappings 333 * as the hypervisor, so support for that scenario can be achieved. 334 * 335 * To support that, copy the host thread's maps to the guest thread's maps. 336 * Note, we do not discover the guest until we encounter a guest event, 337 * which works well because it is not until then that we know that the host 338 * thread's maps have been set up. 339 * 340 * This function returns the guest thread. Apart from keeping the data 341 * structures sane, using a thread belonging to the guest machine, instead 342 * of the host thread, allows it to have its own comm (refer 343 * thread__set_guest_comm()). 344 */ 345 static struct thread *findnew_guest_code(struct machine *machine, 346 struct machine *host_machine, 347 pid_t pid) 348 { 349 struct thread *host_thread; 350 struct thread *thread; 351 int err; 352 353 if (!machine) 354 return NULL; 355 356 thread = machine__findnew_thread(machine, -1, pid); 357 if (!thread) 358 return NULL; 359 360 /* Assume maps are set up if there are any */ 361 if (!maps__empty(thread__maps(thread))) 362 return thread; 363 364 host_thread = machine__find_thread(host_machine, -1, pid); 365 if (!host_thread) 366 goto out_err; 367 368 thread__set_guest_comm(thread, pid); 369 370 /* 371 * Guest code can be found in hypervisor process at the same address 372 * so copy host maps. 373 */ 374 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread)); 375 thread__put(host_thread); 376 if (err) 377 goto out_err; 378 379 return thread; 380 381 out_err: 382 thread__zput(thread); 383 return NULL; 384 } 385 386 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 387 { 388 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 389 struct machine *machine = machines__findnew(machines, pid); 390 391 return findnew_guest_code(machine, host_machine, pid); 392 } 393 394 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 395 { 396 struct machines *machines = machine->machines; 397 struct machine *host_machine; 398 399 if (!machines) 400 return NULL; 401 402 host_machine = machines__find(machines, HOST_KERNEL_ID); 403 404 return findnew_guest_code(machine, host_machine, pid); 405 } 406 407 void machines__process_guests(struct machines *machines, 408 machine__process_t process, void *data) 409 { 410 struct rb_node *nd; 411 412 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 413 struct machine *pos = rb_entry(nd, struct machine, rb_node); 414 process(pos, data); 415 } 416 } 417 418 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 419 { 420 struct rb_node *node; 421 struct machine *machine; 422 423 machines->host.id_hdr_size = id_hdr_size; 424 425 for (node = rb_first_cached(&machines->guests); node; 426 node = rb_next(node)) { 427 machine = rb_entry(node, struct machine, rb_node); 428 machine->id_hdr_size = id_hdr_size; 429 } 430 431 return; 432 } 433 434 static void machine__update_thread_pid(struct machine *machine, 435 struct thread *th, pid_t pid) 436 { 437 struct thread *leader; 438 439 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1) 440 return; 441 442 thread__set_pid(th, pid); 443 444 if (thread__pid(th) == thread__tid(th)) 445 return; 446 447 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th)); 448 if (!leader) 449 goto out_err; 450 451 if (!thread__maps(leader)) 452 thread__set_maps(leader, maps__new(machine)); 453 454 if (!thread__maps(leader)) 455 goto out_err; 456 457 if (thread__maps(th) == thread__maps(leader)) 458 goto out_put; 459 460 if (thread__maps(th)) { 461 /* 462 * Maps are created from MMAP events which provide the pid and 463 * tid. Consequently there never should be any maps on a thread 464 * with an unknown pid. Just print an error if there are. 465 */ 466 if (!maps__empty(thread__maps(th))) 467 pr_err("Discarding thread maps for %d:%d\n", 468 thread__pid(th), thread__tid(th)); 469 maps__put(thread__maps(th)); 470 } 471 472 thread__set_maps(th, maps__get(thread__maps(leader))); 473 out_put: 474 thread__put(leader); 475 return; 476 out_err: 477 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th)); 478 goto out_put; 479 } 480 481 /* 482 * Caller must eventually drop thread->refcnt returned with a successful 483 * lookup/new thread inserted. 484 */ 485 static struct thread *__machine__findnew_thread(struct machine *machine, 486 pid_t pid, 487 pid_t tid, 488 bool create) 489 { 490 struct thread *th = threads__find(&machine->threads, tid); 491 bool created; 492 493 if (th) { 494 machine__update_thread_pid(machine, th, pid); 495 return th; 496 } 497 if (!create) 498 return NULL; 499 500 th = threads__findnew(&machine->threads, pid, tid, &created); 501 if (created) { 502 /* 503 * We have to initialize maps separately after rb tree is 504 * updated. 505 * 506 * The reason is that we call machine__findnew_thread within 507 * thread__init_maps to find the thread leader and that would 508 * screwed the rb tree. 509 */ 510 if (thread__init_maps(th, machine)) { 511 pr_err("Thread init failed thread %d\n", pid); 512 threads__remove(&machine->threads, th); 513 thread__put(th); 514 return NULL; 515 } 516 } else 517 machine__update_thread_pid(machine, th, pid); 518 519 return th; 520 } 521 522 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 523 { 524 return __machine__findnew_thread(machine, pid, tid, /*create=*/true); 525 } 526 527 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 528 pid_t tid) 529 { 530 return __machine__findnew_thread(machine, pid, tid, /*create=*/false); 531 } 532 533 /* 534 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 535 * So here a single thread is created for that, but actually there is a separate 536 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 537 * is only 1. That causes problems for some tools, requiring workarounds. For 538 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 539 */ 540 struct thread *machine__idle_thread(struct machine *machine) 541 { 542 struct thread *thread = machine__findnew_thread(machine, 0, 0); 543 544 if (!thread || thread__set_comm(thread, "swapper", 0) || 545 thread__set_namespaces(thread, 0, NULL)) 546 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 547 548 return thread; 549 } 550 551 struct comm *machine__thread_exec_comm(struct machine *machine, 552 struct thread *thread) 553 { 554 if (machine->comm_exec) 555 return thread__exec_comm(thread); 556 else 557 return thread__comm(thread); 558 } 559 560 int machine__process_comm_event(struct machine *machine, union perf_event *event, 561 struct perf_sample *sample) 562 { 563 struct thread *thread = machine__findnew_thread(machine, 564 event->comm.pid, 565 event->comm.tid); 566 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 567 int err = 0; 568 569 if (exec) 570 machine->comm_exec = true; 571 572 if (dump_trace) 573 perf_event__fprintf_comm(event, stdout); 574 575 if (thread == NULL || 576 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 577 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 578 err = -1; 579 } 580 581 thread__put(thread); 582 583 return err; 584 } 585 586 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 587 union perf_event *event, 588 struct perf_sample *sample __maybe_unused) 589 { 590 struct thread *thread = machine__findnew_thread(machine, 591 event->namespaces.pid, 592 event->namespaces.tid); 593 int err = 0; 594 595 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 596 "\nWARNING: kernel seems to support more namespaces than perf" 597 " tool.\nTry updating the perf tool..\n\n"); 598 599 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 600 "\nWARNING: perf tool seems to support more namespaces than" 601 " the kernel.\nTry updating the kernel..\n\n"); 602 603 if (dump_trace) 604 perf_event__fprintf_namespaces(event, stdout); 605 606 if (thread == NULL || 607 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 608 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 609 err = -1; 610 } 611 612 thread__put(thread); 613 614 return err; 615 } 616 617 int machine__process_cgroup_event(struct machine *machine, 618 union perf_event *event, 619 struct perf_sample *sample __maybe_unused) 620 { 621 struct cgroup *cgrp; 622 623 if (dump_trace) 624 perf_event__fprintf_cgroup(event, stdout); 625 626 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 627 if (cgrp == NULL) 628 return -ENOMEM; 629 630 return 0; 631 } 632 633 int machine__process_lost_event(struct machine *machine __maybe_unused, 634 union perf_event *event, struct perf_sample *sample __maybe_unused) 635 { 636 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 637 event->lost.id, event->lost.lost); 638 return 0; 639 } 640 641 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 642 union perf_event *event, struct perf_sample *sample) 643 { 644 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 645 sample->id, event->lost_samples.lost); 646 return 0; 647 } 648 649 int machine__process_aux_event(struct machine *machine __maybe_unused, 650 union perf_event *event) 651 { 652 if (dump_trace) 653 perf_event__fprintf_aux(event, stdout); 654 return 0; 655 } 656 657 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 658 union perf_event *event) 659 { 660 if (dump_trace) 661 perf_event__fprintf_itrace_start(event, stdout); 662 return 0; 663 } 664 665 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 666 union perf_event *event) 667 { 668 if (dump_trace) 669 perf_event__fprintf_aux_output_hw_id(event, stdout); 670 return 0; 671 } 672 673 int machine__process_switch_event(struct machine *machine __maybe_unused, 674 union perf_event *event) 675 { 676 if (dump_trace) 677 perf_event__fprintf_switch(event, stdout); 678 return 0; 679 } 680 681 static int machine__process_ksymbol_register(struct machine *machine, 682 union perf_event *event, 683 struct perf_sample *sample __maybe_unused) 684 { 685 struct symbol *sym; 686 struct dso *dso; 687 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 688 int err = 0; 689 690 if (!map) { 691 dso = dso__new(event->ksymbol.name); 692 693 if (!dso) { 694 err = -ENOMEM; 695 goto out; 696 } 697 dso->kernel = DSO_SPACE__KERNEL; 698 map = map__new2(0, dso); 699 dso__put(dso); 700 if (!map) { 701 err = -ENOMEM; 702 goto out; 703 } 704 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 705 dso->binary_type = DSO_BINARY_TYPE__OOL; 706 dso->data.file_size = event->ksymbol.len; 707 dso__set_loaded(dso); 708 } 709 710 map__set_start(map, event->ksymbol.addr); 711 map__set_end(map, map__start(map) + event->ksymbol.len); 712 err = maps__insert(machine__kernel_maps(machine), map); 713 if (err) { 714 err = -ENOMEM; 715 goto out; 716 } 717 718 dso__set_loaded(dso); 719 720 if (is_bpf_image(event->ksymbol.name)) { 721 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 722 dso__set_long_name(dso, "", false); 723 } 724 } else { 725 dso = map__dso(map); 726 } 727 728 sym = symbol__new(map__map_ip(map, map__start(map)), 729 event->ksymbol.len, 730 0, 0, event->ksymbol.name); 731 if (!sym) { 732 err = -ENOMEM; 733 goto out; 734 } 735 dso__insert_symbol(dso, sym); 736 out: 737 map__put(map); 738 return err; 739 } 740 741 static int machine__process_ksymbol_unregister(struct machine *machine, 742 union perf_event *event, 743 struct perf_sample *sample __maybe_unused) 744 { 745 struct symbol *sym; 746 struct map *map; 747 748 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 749 if (!map) 750 return 0; 751 752 if (!RC_CHK_EQUAL(map, machine->vmlinux_map)) 753 maps__remove(machine__kernel_maps(machine), map); 754 else { 755 struct dso *dso = map__dso(map); 756 757 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map))); 758 if (sym) 759 dso__delete_symbol(dso, sym); 760 } 761 map__put(map); 762 return 0; 763 } 764 765 int machine__process_ksymbol(struct machine *machine __maybe_unused, 766 union perf_event *event, 767 struct perf_sample *sample) 768 { 769 if (dump_trace) 770 perf_event__fprintf_ksymbol(event, stdout); 771 772 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 773 return machine__process_ksymbol_unregister(machine, event, 774 sample); 775 return machine__process_ksymbol_register(machine, event, sample); 776 } 777 778 int machine__process_text_poke(struct machine *machine, union perf_event *event, 779 struct perf_sample *sample __maybe_unused) 780 { 781 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 782 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 783 struct dso *dso = map ? map__dso(map) : NULL; 784 785 if (dump_trace) 786 perf_event__fprintf_text_poke(event, machine, stdout); 787 788 if (!event->text_poke.new_len) 789 goto out; 790 791 if (cpumode != PERF_RECORD_MISC_KERNEL) { 792 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 793 goto out; 794 } 795 796 if (dso) { 797 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 798 int ret; 799 800 /* 801 * Kernel maps might be changed when loading symbols so loading 802 * must be done prior to using kernel maps. 803 */ 804 map__load(map); 805 ret = dso__data_write_cache_addr(dso, map, machine, 806 event->text_poke.addr, 807 new_bytes, 808 event->text_poke.new_len); 809 if (ret != event->text_poke.new_len) 810 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 811 event->text_poke.addr); 812 } else { 813 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 814 event->text_poke.addr); 815 } 816 out: 817 map__put(map); 818 return 0; 819 } 820 821 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 822 const char *filename) 823 { 824 struct map *map = NULL; 825 struct kmod_path m; 826 struct dso *dso; 827 int err; 828 829 if (kmod_path__parse_name(&m, filename)) 830 return NULL; 831 832 dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename); 833 if (dso == NULL) 834 goto out; 835 836 map = map__new2(start, dso); 837 if (map == NULL) 838 goto out; 839 840 err = maps__insert(machine__kernel_maps(machine), map); 841 /* If maps__insert failed, return NULL. */ 842 if (err) { 843 map__put(map); 844 map = NULL; 845 } 846 out: 847 /* put the dso here, corresponding to machine__findnew_module_dso */ 848 dso__put(dso); 849 zfree(&m.name); 850 return map; 851 } 852 853 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 854 { 855 struct rb_node *nd; 856 size_t ret = dsos__fprintf(&machines->host.dsos, fp); 857 858 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 859 struct machine *pos = rb_entry(nd, struct machine, rb_node); 860 ret += dsos__fprintf(&pos->dsos, fp); 861 } 862 863 return ret; 864 } 865 866 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 867 bool (skip)(struct dso *dso, int parm), int parm) 868 { 869 return dsos__fprintf_buildid(&m->dsos, fp, skip, parm); 870 } 871 872 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 873 bool (skip)(struct dso *dso, int parm), int parm) 874 { 875 struct rb_node *nd; 876 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 877 878 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 879 struct machine *pos = rb_entry(nd, struct machine, rb_node); 880 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 881 } 882 return ret; 883 } 884 885 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 886 { 887 int i; 888 size_t printed = 0; 889 struct dso *kdso = machine__kernel_dso(machine); 890 891 if (kdso->has_build_id) { 892 char filename[PATH_MAX]; 893 if (dso__build_id_filename(kdso, filename, sizeof(filename), 894 false)) 895 printed += fprintf(fp, "[0] %s\n", filename); 896 } 897 898 for (i = 0; i < vmlinux_path__nr_entries; ++i) 899 printed += fprintf(fp, "[%d] %s\n", 900 i + kdso->has_build_id, vmlinux_path[i]); 901 902 return printed; 903 } 904 905 struct machine_fprintf_cb_args { 906 FILE *fp; 907 size_t printed; 908 }; 909 910 static int machine_fprintf_cb(struct thread *thread, void *data) 911 { 912 struct machine_fprintf_cb_args *args = data; 913 914 /* TODO: handle fprintf errors. */ 915 args->printed += thread__fprintf(thread, args->fp); 916 return 0; 917 } 918 919 size_t machine__fprintf(struct machine *machine, FILE *fp) 920 { 921 struct machine_fprintf_cb_args args = { 922 .fp = fp, 923 .printed = 0, 924 }; 925 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads)); 926 927 machine__for_each_thread(machine, machine_fprintf_cb, &args); 928 return ret + args.printed; 929 } 930 931 static struct dso *machine__get_kernel(struct machine *machine) 932 { 933 const char *vmlinux_name = machine->mmap_name; 934 struct dso *kernel; 935 936 if (machine__is_host(machine)) { 937 if (symbol_conf.vmlinux_name) 938 vmlinux_name = symbol_conf.vmlinux_name; 939 940 kernel = machine__findnew_kernel(machine, vmlinux_name, 941 "[kernel]", DSO_SPACE__KERNEL); 942 } else { 943 if (symbol_conf.default_guest_vmlinux_name) 944 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 945 946 kernel = machine__findnew_kernel(machine, vmlinux_name, 947 "[guest.kernel]", 948 DSO_SPACE__KERNEL_GUEST); 949 } 950 951 if (kernel != NULL && (!kernel->has_build_id)) 952 dso__read_running_kernel_build_id(kernel, machine); 953 954 return kernel; 955 } 956 957 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 958 size_t bufsz) 959 { 960 if (machine__is_default_guest(machine)) 961 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 962 else 963 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 964 } 965 966 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 967 968 /* Figure out the start address of kernel map from /proc/kallsyms. 969 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 970 * symbol_name if it's not that important. 971 */ 972 static int machine__get_running_kernel_start(struct machine *machine, 973 const char **symbol_name, 974 u64 *start, u64 *end) 975 { 976 char filename[PATH_MAX]; 977 int i, err = -1; 978 const char *name; 979 u64 addr = 0; 980 981 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 982 983 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 984 return 0; 985 986 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 987 err = kallsyms__get_function_start(filename, name, &addr); 988 if (!err) 989 break; 990 } 991 992 if (err) 993 return -1; 994 995 if (symbol_name) 996 *symbol_name = name; 997 998 *start = addr; 999 1000 err = kallsyms__get_symbol_start(filename, "_edata", &addr); 1001 if (err) 1002 err = kallsyms__get_function_start(filename, "_etext", &addr); 1003 if (!err) 1004 *end = addr; 1005 1006 return 0; 1007 } 1008 1009 int machine__create_extra_kernel_map(struct machine *machine, 1010 struct dso *kernel, 1011 struct extra_kernel_map *xm) 1012 { 1013 struct kmap *kmap; 1014 struct map *map; 1015 int err; 1016 1017 map = map__new2(xm->start, kernel); 1018 if (!map) 1019 return -ENOMEM; 1020 1021 map__set_end(map, xm->end); 1022 map__set_pgoff(map, xm->pgoff); 1023 1024 kmap = map__kmap(map); 1025 1026 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1027 1028 err = maps__insert(machine__kernel_maps(machine), map); 1029 1030 if (!err) { 1031 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1032 kmap->name, map__start(map), map__end(map)); 1033 } 1034 1035 map__put(map); 1036 1037 return err; 1038 } 1039 1040 static u64 find_entry_trampoline(struct dso *dso) 1041 { 1042 /* Duplicates are removed so lookup all aliases */ 1043 const char *syms[] = { 1044 "_entry_trampoline", 1045 "__entry_trampoline_start", 1046 "entry_SYSCALL_64_trampoline", 1047 }; 1048 struct symbol *sym = dso__first_symbol(dso); 1049 unsigned int i; 1050 1051 for (; sym; sym = dso__next_symbol(sym)) { 1052 if (sym->binding != STB_GLOBAL) 1053 continue; 1054 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1055 if (!strcmp(sym->name, syms[i])) 1056 return sym->start; 1057 } 1058 } 1059 1060 return 0; 1061 } 1062 1063 /* 1064 * These values can be used for kernels that do not have symbols for the entry 1065 * trampolines in kallsyms. 1066 */ 1067 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1068 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1069 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1070 1071 struct machine__map_x86_64_entry_trampolines_args { 1072 struct maps *kmaps; 1073 bool found; 1074 }; 1075 1076 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data) 1077 { 1078 struct machine__map_x86_64_entry_trampolines_args *args = data; 1079 struct map *dest_map; 1080 struct kmap *kmap = __map__kmap(map); 1081 1082 if (!kmap || !is_entry_trampoline(kmap->name)) 1083 return 0; 1084 1085 dest_map = maps__find(args->kmaps, map__pgoff(map)); 1086 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map)) 1087 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map))); 1088 1089 map__put(dest_map); 1090 args->found = true; 1091 return 0; 1092 } 1093 1094 /* Map x86_64 PTI entry trampolines */ 1095 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1096 struct dso *kernel) 1097 { 1098 struct machine__map_x86_64_entry_trampolines_args args = { 1099 .kmaps = machine__kernel_maps(machine), 1100 .found = false, 1101 }; 1102 int nr_cpus_avail, cpu; 1103 u64 pgoff; 1104 1105 /* 1106 * In the vmlinux case, pgoff is a virtual address which must now be 1107 * mapped to a vmlinux offset. 1108 */ 1109 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args); 1110 1111 if (args.found || machine->trampolines_mapped) 1112 return 0; 1113 1114 pgoff = find_entry_trampoline(kernel); 1115 if (!pgoff) 1116 return 0; 1117 1118 nr_cpus_avail = machine__nr_cpus_avail(machine); 1119 1120 /* Add a 1 page map for each CPU's entry trampoline */ 1121 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1122 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1123 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1124 X86_64_ENTRY_TRAMPOLINE; 1125 struct extra_kernel_map xm = { 1126 .start = va, 1127 .end = va + page_size, 1128 .pgoff = pgoff, 1129 }; 1130 1131 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1132 1133 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1134 return -1; 1135 } 1136 1137 machine->trampolines_mapped = nr_cpus_avail; 1138 1139 return 0; 1140 } 1141 1142 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1143 struct dso *kernel __maybe_unused) 1144 { 1145 return 0; 1146 } 1147 1148 static int 1149 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1150 { 1151 /* In case of renewal the kernel map, destroy previous one */ 1152 machine__destroy_kernel_maps(machine); 1153 1154 map__put(machine->vmlinux_map); 1155 machine->vmlinux_map = map__new2(0, kernel); 1156 if (machine->vmlinux_map == NULL) 1157 return -ENOMEM; 1158 1159 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY); 1160 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1161 } 1162 1163 void machine__destroy_kernel_maps(struct machine *machine) 1164 { 1165 struct kmap *kmap; 1166 struct map *map = machine__kernel_map(machine); 1167 1168 if (map == NULL) 1169 return; 1170 1171 kmap = map__kmap(map); 1172 maps__remove(machine__kernel_maps(machine), map); 1173 if (kmap && kmap->ref_reloc_sym) { 1174 zfree((char **)&kmap->ref_reloc_sym->name); 1175 zfree(&kmap->ref_reloc_sym); 1176 } 1177 1178 map__zput(machine->vmlinux_map); 1179 } 1180 1181 int machines__create_guest_kernel_maps(struct machines *machines) 1182 { 1183 int ret = 0; 1184 struct dirent **namelist = NULL; 1185 int i, items = 0; 1186 char path[PATH_MAX]; 1187 pid_t pid; 1188 char *endp; 1189 1190 if (symbol_conf.default_guest_vmlinux_name || 1191 symbol_conf.default_guest_modules || 1192 symbol_conf.default_guest_kallsyms) { 1193 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1194 } 1195 1196 if (symbol_conf.guestmount) { 1197 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1198 if (items <= 0) 1199 return -ENOENT; 1200 for (i = 0; i < items; i++) { 1201 if (!isdigit(namelist[i]->d_name[0])) { 1202 /* Filter out . and .. */ 1203 continue; 1204 } 1205 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1206 if ((*endp != '\0') || 1207 (endp == namelist[i]->d_name) || 1208 (errno == ERANGE)) { 1209 pr_debug("invalid directory (%s). Skipping.\n", 1210 namelist[i]->d_name); 1211 continue; 1212 } 1213 sprintf(path, "%s/%s/proc/kallsyms", 1214 symbol_conf.guestmount, 1215 namelist[i]->d_name); 1216 ret = access(path, R_OK); 1217 if (ret) { 1218 pr_debug("Can't access file %s\n", path); 1219 goto failure; 1220 } 1221 machines__create_kernel_maps(machines, pid); 1222 } 1223 failure: 1224 free(namelist); 1225 } 1226 1227 return ret; 1228 } 1229 1230 void machines__destroy_kernel_maps(struct machines *machines) 1231 { 1232 struct rb_node *next = rb_first_cached(&machines->guests); 1233 1234 machine__destroy_kernel_maps(&machines->host); 1235 1236 while (next) { 1237 struct machine *pos = rb_entry(next, struct machine, rb_node); 1238 1239 next = rb_next(&pos->rb_node); 1240 rb_erase_cached(&pos->rb_node, &machines->guests); 1241 machine__delete(pos); 1242 } 1243 } 1244 1245 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1246 { 1247 struct machine *machine = machines__findnew(machines, pid); 1248 1249 if (machine == NULL) 1250 return -1; 1251 1252 return machine__create_kernel_maps(machine); 1253 } 1254 1255 int machine__load_kallsyms(struct machine *machine, const char *filename) 1256 { 1257 struct map *map = machine__kernel_map(machine); 1258 struct dso *dso = map__dso(map); 1259 int ret = __dso__load_kallsyms(dso, filename, map, true); 1260 1261 if (ret > 0) { 1262 dso__set_loaded(dso); 1263 /* 1264 * Since /proc/kallsyms will have multiple sessions for the 1265 * kernel, with modules between them, fixup the end of all 1266 * sections. 1267 */ 1268 maps__fixup_end(machine__kernel_maps(machine)); 1269 } 1270 1271 return ret; 1272 } 1273 1274 int machine__load_vmlinux_path(struct machine *machine) 1275 { 1276 struct map *map = machine__kernel_map(machine); 1277 struct dso *dso = map__dso(map); 1278 int ret = dso__load_vmlinux_path(dso, map); 1279 1280 if (ret > 0) 1281 dso__set_loaded(dso); 1282 1283 return ret; 1284 } 1285 1286 static char *get_kernel_version(const char *root_dir) 1287 { 1288 char version[PATH_MAX]; 1289 FILE *file; 1290 char *name, *tmp; 1291 const char *prefix = "Linux version "; 1292 1293 sprintf(version, "%s/proc/version", root_dir); 1294 file = fopen(version, "r"); 1295 if (!file) 1296 return NULL; 1297 1298 tmp = fgets(version, sizeof(version), file); 1299 fclose(file); 1300 if (!tmp) 1301 return NULL; 1302 1303 name = strstr(version, prefix); 1304 if (!name) 1305 return NULL; 1306 name += strlen(prefix); 1307 tmp = strchr(name, ' '); 1308 if (tmp) 1309 *tmp = '\0'; 1310 1311 return strdup(name); 1312 } 1313 1314 static bool is_kmod_dso(struct dso *dso) 1315 { 1316 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1317 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1318 } 1319 1320 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1321 { 1322 char *long_name; 1323 struct dso *dso; 1324 struct map *map = maps__find_by_name(maps, m->name); 1325 1326 if (map == NULL) 1327 return 0; 1328 1329 long_name = strdup(path); 1330 if (long_name == NULL) { 1331 map__put(map); 1332 return -ENOMEM; 1333 } 1334 1335 dso = map__dso(map); 1336 dso__set_long_name(dso, long_name, true); 1337 dso__kernel_module_get_build_id(dso, ""); 1338 1339 /* 1340 * Full name could reveal us kmod compression, so 1341 * we need to update the symtab_type if needed. 1342 */ 1343 if (m->comp && is_kmod_dso(dso)) { 1344 dso->symtab_type++; 1345 dso->comp = m->comp; 1346 } 1347 map__put(map); 1348 return 0; 1349 } 1350 1351 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1352 { 1353 struct dirent *dent; 1354 DIR *dir = opendir(dir_name); 1355 int ret = 0; 1356 1357 if (!dir) { 1358 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1359 return -1; 1360 } 1361 1362 while ((dent = readdir(dir)) != NULL) { 1363 char path[PATH_MAX]; 1364 struct stat st; 1365 1366 /*sshfs might return bad dent->d_type, so we have to stat*/ 1367 path__join(path, sizeof(path), dir_name, dent->d_name); 1368 if (stat(path, &st)) 1369 continue; 1370 1371 if (S_ISDIR(st.st_mode)) { 1372 if (!strcmp(dent->d_name, ".") || 1373 !strcmp(dent->d_name, "..")) 1374 continue; 1375 1376 /* Do not follow top-level source and build symlinks */ 1377 if (depth == 0) { 1378 if (!strcmp(dent->d_name, "source") || 1379 !strcmp(dent->d_name, "build")) 1380 continue; 1381 } 1382 1383 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1384 if (ret < 0) 1385 goto out; 1386 } else { 1387 struct kmod_path m; 1388 1389 ret = kmod_path__parse_name(&m, dent->d_name); 1390 if (ret) 1391 goto out; 1392 1393 if (m.kmod) 1394 ret = maps__set_module_path(maps, path, &m); 1395 1396 zfree(&m.name); 1397 1398 if (ret) 1399 goto out; 1400 } 1401 } 1402 1403 out: 1404 closedir(dir); 1405 return ret; 1406 } 1407 1408 static int machine__set_modules_path(struct machine *machine) 1409 { 1410 char *version; 1411 char modules_path[PATH_MAX]; 1412 1413 version = get_kernel_version(machine->root_dir); 1414 if (!version) 1415 return -1; 1416 1417 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1418 machine->root_dir, version); 1419 free(version); 1420 1421 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1422 } 1423 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1424 u64 *size __maybe_unused, 1425 const char *name __maybe_unused) 1426 { 1427 return 0; 1428 } 1429 1430 static int machine__create_module(void *arg, const char *name, u64 start, 1431 u64 size) 1432 { 1433 struct machine *machine = arg; 1434 struct map *map; 1435 1436 if (arch__fix_module_text_start(&start, &size, name) < 0) 1437 return -1; 1438 1439 map = machine__addnew_module_map(machine, start, name); 1440 if (map == NULL) 1441 return -1; 1442 map__set_end(map, start + size); 1443 1444 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); 1445 map__put(map); 1446 return 0; 1447 } 1448 1449 static int machine__create_modules(struct machine *machine) 1450 { 1451 const char *modules; 1452 char path[PATH_MAX]; 1453 1454 if (machine__is_default_guest(machine)) { 1455 modules = symbol_conf.default_guest_modules; 1456 } else { 1457 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1458 modules = path; 1459 } 1460 1461 if (symbol__restricted_filename(modules, "/proc/modules")) 1462 return -1; 1463 1464 if (modules__parse(modules, machine, machine__create_module)) 1465 return -1; 1466 1467 if (!machine__set_modules_path(machine)) 1468 return 0; 1469 1470 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1471 1472 return 0; 1473 } 1474 1475 static void machine__set_kernel_mmap(struct machine *machine, 1476 u64 start, u64 end) 1477 { 1478 map__set_start(machine->vmlinux_map, start); 1479 map__set_end(machine->vmlinux_map, end); 1480 /* 1481 * Be a bit paranoid here, some perf.data file came with 1482 * a zero sized synthesized MMAP event for the kernel. 1483 */ 1484 if (start == 0 && end == 0) 1485 map__set_end(machine->vmlinux_map, ~0ULL); 1486 } 1487 1488 static int machine__update_kernel_mmap(struct machine *machine, 1489 u64 start, u64 end) 1490 { 1491 struct map *orig, *updated; 1492 int err; 1493 1494 orig = machine->vmlinux_map; 1495 updated = map__get(orig); 1496 1497 machine->vmlinux_map = updated; 1498 maps__remove(machine__kernel_maps(machine), orig); 1499 machine__set_kernel_mmap(machine, start, end); 1500 err = maps__insert(machine__kernel_maps(machine), updated); 1501 map__put(orig); 1502 1503 return err; 1504 } 1505 1506 int machine__create_kernel_maps(struct machine *machine) 1507 { 1508 struct dso *kernel = machine__get_kernel(machine); 1509 const char *name = NULL; 1510 u64 start = 0, end = ~0ULL; 1511 int ret; 1512 1513 if (kernel == NULL) 1514 return -1; 1515 1516 ret = __machine__create_kernel_maps(machine, kernel); 1517 if (ret < 0) 1518 goto out_put; 1519 1520 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1521 if (machine__is_host(machine)) 1522 pr_debug("Problems creating module maps, " 1523 "continuing anyway...\n"); 1524 else 1525 pr_debug("Problems creating module maps for guest %d, " 1526 "continuing anyway...\n", machine->pid); 1527 } 1528 1529 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1530 if (name && 1531 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1532 machine__destroy_kernel_maps(machine); 1533 ret = -1; 1534 goto out_put; 1535 } 1536 1537 /* 1538 * we have a real start address now, so re-order the kmaps 1539 * assume it's the last in the kmaps 1540 */ 1541 ret = machine__update_kernel_mmap(machine, start, end); 1542 if (ret < 0) 1543 goto out_put; 1544 } 1545 1546 if (machine__create_extra_kernel_maps(machine, kernel)) 1547 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1548 1549 if (end == ~0ULL) { 1550 /* update end address of the kernel map using adjacent module address */ 1551 struct map *next = maps__find_next_entry(machine__kernel_maps(machine), 1552 machine__kernel_map(machine)); 1553 1554 if (next) { 1555 machine__set_kernel_mmap(machine, start, map__start(next)); 1556 map__put(next); 1557 } 1558 } 1559 1560 out_put: 1561 dso__put(kernel); 1562 return ret; 1563 } 1564 1565 static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused) 1566 { 1567 return dso__is_kcore(dso) ? 1 : 0; 1568 } 1569 1570 static bool machine__uses_kcore(struct machine *machine) 1571 { 1572 return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false; 1573 } 1574 1575 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1576 struct extra_kernel_map *xm) 1577 { 1578 return machine__is(machine, "x86_64") && 1579 is_entry_trampoline(xm->name); 1580 } 1581 1582 static int machine__process_extra_kernel_map(struct machine *machine, 1583 struct extra_kernel_map *xm) 1584 { 1585 struct dso *kernel = machine__kernel_dso(machine); 1586 1587 if (kernel == NULL) 1588 return -1; 1589 1590 return machine__create_extra_kernel_map(machine, kernel, xm); 1591 } 1592 1593 static int machine__process_kernel_mmap_event(struct machine *machine, 1594 struct extra_kernel_map *xm, 1595 struct build_id *bid) 1596 { 1597 enum dso_space_type dso_space; 1598 bool is_kernel_mmap; 1599 const char *mmap_name = machine->mmap_name; 1600 1601 /* If we have maps from kcore then we do not need or want any others */ 1602 if (machine__uses_kcore(machine)) 1603 return 0; 1604 1605 if (machine__is_host(machine)) 1606 dso_space = DSO_SPACE__KERNEL; 1607 else 1608 dso_space = DSO_SPACE__KERNEL_GUEST; 1609 1610 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1611 if (!is_kernel_mmap && !machine__is_host(machine)) { 1612 /* 1613 * If the event was recorded inside the guest and injected into 1614 * the host perf.data file, then it will match a host mmap_name, 1615 * so try that - see machine__set_mmap_name(). 1616 */ 1617 mmap_name = "[kernel.kallsyms]"; 1618 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1619 } 1620 if (xm->name[0] == '/' || 1621 (!is_kernel_mmap && xm->name[0] == '[')) { 1622 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name); 1623 1624 if (map == NULL) 1625 goto out_problem; 1626 1627 map__set_end(map, map__start(map) + xm->end - xm->start); 1628 1629 if (build_id__is_defined(bid)) 1630 dso__set_build_id(map__dso(map), bid); 1631 1632 map__put(map); 1633 } else if (is_kernel_mmap) { 1634 const char *symbol_name = xm->name + strlen(mmap_name); 1635 /* 1636 * Should be there already, from the build-id table in 1637 * the header. 1638 */ 1639 struct dso *kernel = dsos__find_kernel_dso(&machine->dsos); 1640 1641 if (kernel == NULL) 1642 kernel = machine__findnew_dso(machine, machine->mmap_name); 1643 if (kernel == NULL) 1644 goto out_problem; 1645 1646 kernel->kernel = dso_space; 1647 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1648 dso__put(kernel); 1649 goto out_problem; 1650 } 1651 1652 if (strstr(kernel->long_name, "vmlinux")) 1653 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1654 1655 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { 1656 dso__put(kernel); 1657 goto out_problem; 1658 } 1659 1660 if (build_id__is_defined(bid)) 1661 dso__set_build_id(kernel, bid); 1662 1663 /* 1664 * Avoid using a zero address (kptr_restrict) for the ref reloc 1665 * symbol. Effectively having zero here means that at record 1666 * time /proc/sys/kernel/kptr_restrict was non zero. 1667 */ 1668 if (xm->pgoff != 0) { 1669 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1670 symbol_name, 1671 xm->pgoff); 1672 } 1673 1674 if (machine__is_default_guest(machine)) { 1675 /* 1676 * preload dso of guest kernel and modules 1677 */ 1678 dso__load(kernel, machine__kernel_map(machine)); 1679 } 1680 dso__put(kernel); 1681 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1682 return machine__process_extra_kernel_map(machine, xm); 1683 } 1684 return 0; 1685 out_problem: 1686 return -1; 1687 } 1688 1689 int machine__process_mmap2_event(struct machine *machine, 1690 union perf_event *event, 1691 struct perf_sample *sample) 1692 { 1693 struct thread *thread; 1694 struct map *map; 1695 struct dso_id dso_id = { 1696 .maj = event->mmap2.maj, 1697 .min = event->mmap2.min, 1698 .ino = event->mmap2.ino, 1699 .ino_generation = event->mmap2.ino_generation, 1700 }; 1701 struct build_id __bid, *bid = NULL; 1702 int ret = 0; 1703 1704 if (dump_trace) 1705 perf_event__fprintf_mmap2(event, stdout); 1706 1707 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1708 bid = &__bid; 1709 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1710 } 1711 1712 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1713 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1714 struct extra_kernel_map xm = { 1715 .start = event->mmap2.start, 1716 .end = event->mmap2.start + event->mmap2.len, 1717 .pgoff = event->mmap2.pgoff, 1718 }; 1719 1720 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1721 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1722 if (ret < 0) 1723 goto out_problem; 1724 return 0; 1725 } 1726 1727 thread = machine__findnew_thread(machine, event->mmap2.pid, 1728 event->mmap2.tid); 1729 if (thread == NULL) 1730 goto out_problem; 1731 1732 map = map__new(machine, event->mmap2.start, 1733 event->mmap2.len, event->mmap2.pgoff, 1734 &dso_id, event->mmap2.prot, 1735 event->mmap2.flags, bid, 1736 event->mmap2.filename, thread); 1737 1738 if (map == NULL) 1739 goto out_problem_map; 1740 1741 ret = thread__insert_map(thread, map); 1742 if (ret) 1743 goto out_problem_insert; 1744 1745 thread__put(thread); 1746 map__put(map); 1747 return 0; 1748 1749 out_problem_insert: 1750 map__put(map); 1751 out_problem_map: 1752 thread__put(thread); 1753 out_problem: 1754 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1755 return 0; 1756 } 1757 1758 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1759 struct perf_sample *sample) 1760 { 1761 struct thread *thread; 1762 struct map *map; 1763 u32 prot = 0; 1764 int ret = 0; 1765 1766 if (dump_trace) 1767 perf_event__fprintf_mmap(event, stdout); 1768 1769 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1770 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1771 struct extra_kernel_map xm = { 1772 .start = event->mmap.start, 1773 .end = event->mmap.start + event->mmap.len, 1774 .pgoff = event->mmap.pgoff, 1775 }; 1776 1777 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1778 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1779 if (ret < 0) 1780 goto out_problem; 1781 return 0; 1782 } 1783 1784 thread = machine__findnew_thread(machine, event->mmap.pid, 1785 event->mmap.tid); 1786 if (thread == NULL) 1787 goto out_problem; 1788 1789 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1790 prot = PROT_EXEC; 1791 1792 map = map__new(machine, event->mmap.start, 1793 event->mmap.len, event->mmap.pgoff, 1794 NULL, prot, 0, NULL, event->mmap.filename, thread); 1795 1796 if (map == NULL) 1797 goto out_problem_map; 1798 1799 ret = thread__insert_map(thread, map); 1800 if (ret) 1801 goto out_problem_insert; 1802 1803 thread__put(thread); 1804 map__put(map); 1805 return 0; 1806 1807 out_problem_insert: 1808 map__put(map); 1809 out_problem_map: 1810 thread__put(thread); 1811 out_problem: 1812 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1813 return 0; 1814 } 1815 1816 void machine__remove_thread(struct machine *machine, struct thread *th) 1817 { 1818 return threads__remove(&machine->threads, th); 1819 } 1820 1821 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1822 struct perf_sample *sample) 1823 { 1824 struct thread *thread = machine__find_thread(machine, 1825 event->fork.pid, 1826 event->fork.tid); 1827 struct thread *parent = machine__findnew_thread(machine, 1828 event->fork.ppid, 1829 event->fork.ptid); 1830 bool do_maps_clone = true; 1831 int err = 0; 1832 1833 if (dump_trace) 1834 perf_event__fprintf_task(event, stdout); 1835 1836 /* 1837 * There may be an existing thread that is not actually the parent, 1838 * either because we are processing events out of order, or because the 1839 * (fork) event that would have removed the thread was lost. Assume the 1840 * latter case and continue on as best we can. 1841 */ 1842 if (thread__pid(parent) != (pid_t)event->fork.ppid) { 1843 dump_printf("removing erroneous parent thread %d/%d\n", 1844 thread__pid(parent), thread__tid(parent)); 1845 machine__remove_thread(machine, parent); 1846 thread__put(parent); 1847 parent = machine__findnew_thread(machine, event->fork.ppid, 1848 event->fork.ptid); 1849 } 1850 1851 /* if a thread currently exists for the thread id remove it */ 1852 if (thread != NULL) { 1853 machine__remove_thread(machine, thread); 1854 thread__put(thread); 1855 } 1856 1857 thread = machine__findnew_thread(machine, event->fork.pid, 1858 event->fork.tid); 1859 /* 1860 * When synthesizing FORK events, we are trying to create thread 1861 * objects for the already running tasks on the machine. 1862 * 1863 * Normally, for a kernel FORK event, we want to clone the parent's 1864 * maps because that is what the kernel just did. 1865 * 1866 * But when synthesizing, this should not be done. If we do, we end up 1867 * with overlapping maps as we process the synthesized MMAP2 events that 1868 * get delivered shortly thereafter. 1869 * 1870 * Use the FORK event misc flags in an internal way to signal this 1871 * situation, so we can elide the map clone when appropriate. 1872 */ 1873 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1874 do_maps_clone = false; 1875 1876 if (thread == NULL || parent == NULL || 1877 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1878 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1879 err = -1; 1880 } 1881 thread__put(thread); 1882 thread__put(parent); 1883 1884 return err; 1885 } 1886 1887 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1888 struct perf_sample *sample __maybe_unused) 1889 { 1890 struct thread *thread = machine__find_thread(machine, 1891 event->fork.pid, 1892 event->fork.tid); 1893 1894 if (dump_trace) 1895 perf_event__fprintf_task(event, stdout); 1896 1897 if (thread != NULL) { 1898 if (symbol_conf.keep_exited_threads) 1899 thread__set_exited(thread, /*exited=*/true); 1900 else 1901 machine__remove_thread(machine, thread); 1902 } 1903 thread__put(thread); 1904 return 0; 1905 } 1906 1907 int machine__process_event(struct machine *machine, union perf_event *event, 1908 struct perf_sample *sample) 1909 { 1910 int ret; 1911 1912 switch (event->header.type) { 1913 case PERF_RECORD_COMM: 1914 ret = machine__process_comm_event(machine, event, sample); break; 1915 case PERF_RECORD_MMAP: 1916 ret = machine__process_mmap_event(machine, event, sample); break; 1917 case PERF_RECORD_NAMESPACES: 1918 ret = machine__process_namespaces_event(machine, event, sample); break; 1919 case PERF_RECORD_CGROUP: 1920 ret = machine__process_cgroup_event(machine, event, sample); break; 1921 case PERF_RECORD_MMAP2: 1922 ret = machine__process_mmap2_event(machine, event, sample); break; 1923 case PERF_RECORD_FORK: 1924 ret = machine__process_fork_event(machine, event, sample); break; 1925 case PERF_RECORD_EXIT: 1926 ret = machine__process_exit_event(machine, event, sample); break; 1927 case PERF_RECORD_LOST: 1928 ret = machine__process_lost_event(machine, event, sample); break; 1929 case PERF_RECORD_AUX: 1930 ret = machine__process_aux_event(machine, event); break; 1931 case PERF_RECORD_ITRACE_START: 1932 ret = machine__process_itrace_start_event(machine, event); break; 1933 case PERF_RECORD_LOST_SAMPLES: 1934 ret = machine__process_lost_samples_event(machine, event, sample); break; 1935 case PERF_RECORD_SWITCH: 1936 case PERF_RECORD_SWITCH_CPU_WIDE: 1937 ret = machine__process_switch_event(machine, event); break; 1938 case PERF_RECORD_KSYMBOL: 1939 ret = machine__process_ksymbol(machine, event, sample); break; 1940 case PERF_RECORD_BPF_EVENT: 1941 ret = machine__process_bpf(machine, event, sample); break; 1942 case PERF_RECORD_TEXT_POKE: 1943 ret = machine__process_text_poke(machine, event, sample); break; 1944 case PERF_RECORD_AUX_OUTPUT_HW_ID: 1945 ret = machine__process_aux_output_hw_id_event(machine, event); break; 1946 default: 1947 ret = -1; 1948 break; 1949 } 1950 1951 return ret; 1952 } 1953 1954 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1955 { 1956 return regexec(regex, sym->name, 0, NULL, 0) == 0; 1957 } 1958 1959 static void ip__resolve_ams(struct thread *thread, 1960 struct addr_map_symbol *ams, 1961 u64 ip) 1962 { 1963 struct addr_location al; 1964 1965 addr_location__init(&al); 1966 /* 1967 * We cannot use the header.misc hint to determine whether a 1968 * branch stack address is user, kernel, guest, hypervisor. 1969 * Branches may straddle the kernel/user/hypervisor boundaries. 1970 * Thus, we have to try consecutively until we find a match 1971 * or else, the symbol is unknown 1972 */ 1973 thread__find_cpumode_addr_location(thread, ip, &al); 1974 1975 ams->addr = ip; 1976 ams->al_addr = al.addr; 1977 ams->al_level = al.level; 1978 ams->ms.maps = maps__get(al.maps); 1979 ams->ms.sym = al.sym; 1980 ams->ms.map = map__get(al.map); 1981 ams->phys_addr = 0; 1982 ams->data_page_size = 0; 1983 addr_location__exit(&al); 1984 } 1985 1986 static void ip__resolve_data(struct thread *thread, 1987 u8 m, struct addr_map_symbol *ams, 1988 u64 addr, u64 phys_addr, u64 daddr_page_size) 1989 { 1990 struct addr_location al; 1991 1992 addr_location__init(&al); 1993 1994 thread__find_symbol(thread, m, addr, &al); 1995 1996 ams->addr = addr; 1997 ams->al_addr = al.addr; 1998 ams->al_level = al.level; 1999 ams->ms.maps = maps__get(al.maps); 2000 ams->ms.sym = al.sym; 2001 ams->ms.map = map__get(al.map); 2002 ams->phys_addr = phys_addr; 2003 ams->data_page_size = daddr_page_size; 2004 addr_location__exit(&al); 2005 } 2006 2007 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2008 struct addr_location *al) 2009 { 2010 struct mem_info *mi = mem_info__new(); 2011 2012 if (!mi) 2013 return NULL; 2014 2015 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2016 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2017 sample->addr, sample->phys_addr, 2018 sample->data_page_size); 2019 mi->data_src.val = sample->data_src; 2020 2021 return mi; 2022 } 2023 2024 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2025 { 2026 struct map *map = ms->map; 2027 char *srcline = NULL; 2028 struct dso *dso; 2029 2030 if (!map || callchain_param.key == CCKEY_FUNCTION) 2031 return srcline; 2032 2033 dso = map__dso(map); 2034 srcline = srcline__tree_find(&dso->srclines, ip); 2035 if (!srcline) { 2036 bool show_sym = false; 2037 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2038 2039 srcline = get_srcline(dso, map__rip_2objdump(map, ip), 2040 ms->sym, show_sym, show_addr, ip); 2041 srcline__tree_insert(&dso->srclines, ip, srcline); 2042 } 2043 2044 return srcline; 2045 } 2046 2047 struct iterations { 2048 int nr_loop_iter; 2049 u64 cycles; 2050 }; 2051 2052 static int add_callchain_ip(struct thread *thread, 2053 struct callchain_cursor *cursor, 2054 struct symbol **parent, 2055 struct addr_location *root_al, 2056 u8 *cpumode, 2057 u64 ip, 2058 bool branch, 2059 struct branch_flags *flags, 2060 struct iterations *iter, 2061 u64 branch_from) 2062 { 2063 struct map_symbol ms = {}; 2064 struct addr_location al; 2065 int nr_loop_iter = 0, err = 0; 2066 u64 iter_cycles = 0; 2067 const char *srcline = NULL; 2068 2069 addr_location__init(&al); 2070 al.filtered = 0; 2071 al.sym = NULL; 2072 al.srcline = NULL; 2073 if (!cpumode) { 2074 thread__find_cpumode_addr_location(thread, ip, &al); 2075 } else { 2076 if (ip >= PERF_CONTEXT_MAX) { 2077 switch (ip) { 2078 case PERF_CONTEXT_HV: 2079 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2080 break; 2081 case PERF_CONTEXT_KERNEL: 2082 *cpumode = PERF_RECORD_MISC_KERNEL; 2083 break; 2084 case PERF_CONTEXT_USER: 2085 *cpumode = PERF_RECORD_MISC_USER; 2086 break; 2087 default: 2088 pr_debug("invalid callchain context: " 2089 "%"PRId64"\n", (s64) ip); 2090 /* 2091 * It seems the callchain is corrupted. 2092 * Discard all. 2093 */ 2094 callchain_cursor_reset(cursor); 2095 err = 1; 2096 goto out; 2097 } 2098 goto out; 2099 } 2100 thread__find_symbol(thread, *cpumode, ip, &al); 2101 } 2102 2103 if (al.sym != NULL) { 2104 if (perf_hpp_list.parent && !*parent && 2105 symbol__match_regex(al.sym, &parent_regex)) 2106 *parent = al.sym; 2107 else if (have_ignore_callees && root_al && 2108 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2109 /* Treat this symbol as the root, 2110 forgetting its callees. */ 2111 addr_location__copy(root_al, &al); 2112 callchain_cursor_reset(cursor); 2113 } 2114 } 2115 2116 if (symbol_conf.hide_unresolved && al.sym == NULL) 2117 goto out; 2118 2119 if (iter) { 2120 nr_loop_iter = iter->nr_loop_iter; 2121 iter_cycles = iter->cycles; 2122 } 2123 2124 ms.maps = maps__get(al.maps); 2125 ms.map = map__get(al.map); 2126 ms.sym = al.sym; 2127 srcline = callchain_srcline(&ms, al.addr); 2128 err = callchain_cursor_append(cursor, ip, &ms, 2129 branch, flags, nr_loop_iter, 2130 iter_cycles, branch_from, srcline); 2131 out: 2132 addr_location__exit(&al); 2133 map_symbol__exit(&ms); 2134 return err; 2135 } 2136 2137 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2138 struct addr_location *al) 2139 { 2140 unsigned int i; 2141 const struct branch_stack *bs = sample->branch_stack; 2142 struct branch_entry *entries = perf_sample__branch_entries(sample); 2143 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2144 2145 if (!bi) 2146 return NULL; 2147 2148 for (i = 0; i < bs->nr; i++) { 2149 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2150 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2151 bi[i].flags = entries[i].flags; 2152 } 2153 return bi; 2154 } 2155 2156 static void save_iterations(struct iterations *iter, 2157 struct branch_entry *be, int nr) 2158 { 2159 int i; 2160 2161 iter->nr_loop_iter++; 2162 iter->cycles = 0; 2163 2164 for (i = 0; i < nr; i++) 2165 iter->cycles += be[i].flags.cycles; 2166 } 2167 2168 #define CHASHSZ 127 2169 #define CHASHBITS 7 2170 #define NO_ENTRY 0xff 2171 2172 #define PERF_MAX_BRANCH_DEPTH 127 2173 2174 /* Remove loops. */ 2175 static int remove_loops(struct branch_entry *l, int nr, 2176 struct iterations *iter) 2177 { 2178 int i, j, off; 2179 unsigned char chash[CHASHSZ]; 2180 2181 memset(chash, NO_ENTRY, sizeof(chash)); 2182 2183 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2184 2185 for (i = 0; i < nr; i++) { 2186 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2187 2188 /* no collision handling for now */ 2189 if (chash[h] == NO_ENTRY) { 2190 chash[h] = i; 2191 } else if (l[chash[h]].from == l[i].from) { 2192 bool is_loop = true; 2193 /* check if it is a real loop */ 2194 off = 0; 2195 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2196 if (l[j].from != l[i + off].from) { 2197 is_loop = false; 2198 break; 2199 } 2200 if (is_loop) { 2201 j = nr - (i + off); 2202 if (j > 0) { 2203 save_iterations(iter + i + off, 2204 l + i, off); 2205 2206 memmove(iter + i, iter + i + off, 2207 j * sizeof(*iter)); 2208 2209 memmove(l + i, l + i + off, 2210 j * sizeof(*l)); 2211 } 2212 2213 nr -= off; 2214 } 2215 } 2216 } 2217 return nr; 2218 } 2219 2220 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2221 struct callchain_cursor *cursor, 2222 struct perf_sample *sample, 2223 struct symbol **parent, 2224 struct addr_location *root_al, 2225 u64 branch_from, 2226 bool callee, int end) 2227 { 2228 struct ip_callchain *chain = sample->callchain; 2229 u8 cpumode = PERF_RECORD_MISC_USER; 2230 int err, i; 2231 2232 if (callee) { 2233 for (i = 0; i < end + 1; i++) { 2234 err = add_callchain_ip(thread, cursor, parent, 2235 root_al, &cpumode, chain->ips[i], 2236 false, NULL, NULL, branch_from); 2237 if (err) 2238 return err; 2239 } 2240 return 0; 2241 } 2242 2243 for (i = end; i >= 0; i--) { 2244 err = add_callchain_ip(thread, cursor, parent, 2245 root_al, &cpumode, chain->ips[i], 2246 false, NULL, NULL, branch_from); 2247 if (err) 2248 return err; 2249 } 2250 2251 return 0; 2252 } 2253 2254 static void save_lbr_cursor_node(struct thread *thread, 2255 struct callchain_cursor *cursor, 2256 int idx) 2257 { 2258 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2259 2260 if (!lbr_stitch) 2261 return; 2262 2263 if (cursor->pos == cursor->nr) { 2264 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2265 return; 2266 } 2267 2268 if (!cursor->curr) 2269 cursor->curr = cursor->first; 2270 else 2271 cursor->curr = cursor->curr->next; 2272 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2273 sizeof(struct callchain_cursor_node)); 2274 2275 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2276 cursor->pos++; 2277 } 2278 2279 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2280 struct callchain_cursor *cursor, 2281 struct perf_sample *sample, 2282 struct symbol **parent, 2283 struct addr_location *root_al, 2284 u64 *branch_from, 2285 bool callee) 2286 { 2287 struct branch_stack *lbr_stack = sample->branch_stack; 2288 struct branch_entry *entries = perf_sample__branch_entries(sample); 2289 u8 cpumode = PERF_RECORD_MISC_USER; 2290 int lbr_nr = lbr_stack->nr; 2291 struct branch_flags *flags; 2292 int err, i; 2293 u64 ip; 2294 2295 /* 2296 * The curr and pos are not used in writing session. They are cleared 2297 * in callchain_cursor_commit() when the writing session is closed. 2298 * Using curr and pos to track the current cursor node. 2299 */ 2300 if (thread__lbr_stitch(thread)) { 2301 cursor->curr = NULL; 2302 cursor->pos = cursor->nr; 2303 if (cursor->nr) { 2304 cursor->curr = cursor->first; 2305 for (i = 0; i < (int)(cursor->nr - 1); i++) 2306 cursor->curr = cursor->curr->next; 2307 } 2308 } 2309 2310 if (callee) { 2311 /* Add LBR ip from first entries.to */ 2312 ip = entries[0].to; 2313 flags = &entries[0].flags; 2314 *branch_from = entries[0].from; 2315 err = add_callchain_ip(thread, cursor, parent, 2316 root_al, &cpumode, ip, 2317 true, flags, NULL, 2318 *branch_from); 2319 if (err) 2320 return err; 2321 2322 /* 2323 * The number of cursor node increases. 2324 * Move the current cursor node. 2325 * But does not need to save current cursor node for entry 0. 2326 * It's impossible to stitch the whole LBRs of previous sample. 2327 */ 2328 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) { 2329 if (!cursor->curr) 2330 cursor->curr = cursor->first; 2331 else 2332 cursor->curr = cursor->curr->next; 2333 cursor->pos++; 2334 } 2335 2336 /* Add LBR ip from entries.from one by one. */ 2337 for (i = 0; i < lbr_nr; i++) { 2338 ip = entries[i].from; 2339 flags = &entries[i].flags; 2340 err = add_callchain_ip(thread, cursor, parent, 2341 root_al, &cpumode, ip, 2342 true, flags, NULL, 2343 *branch_from); 2344 if (err) 2345 return err; 2346 save_lbr_cursor_node(thread, cursor, i); 2347 } 2348 return 0; 2349 } 2350 2351 /* Add LBR ip from entries.from one by one. */ 2352 for (i = lbr_nr - 1; i >= 0; i--) { 2353 ip = entries[i].from; 2354 flags = &entries[i].flags; 2355 err = add_callchain_ip(thread, cursor, parent, 2356 root_al, &cpumode, ip, 2357 true, flags, NULL, 2358 *branch_from); 2359 if (err) 2360 return err; 2361 save_lbr_cursor_node(thread, cursor, i); 2362 } 2363 2364 if (lbr_nr > 0) { 2365 /* Add LBR ip from first entries.to */ 2366 ip = entries[0].to; 2367 flags = &entries[0].flags; 2368 *branch_from = entries[0].from; 2369 err = add_callchain_ip(thread, cursor, parent, 2370 root_al, &cpumode, ip, 2371 true, flags, NULL, 2372 *branch_from); 2373 if (err) 2374 return err; 2375 } 2376 2377 return 0; 2378 } 2379 2380 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2381 struct callchain_cursor *cursor) 2382 { 2383 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2384 struct callchain_cursor_node *cnode; 2385 struct stitch_list *stitch_node; 2386 int err; 2387 2388 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2389 cnode = &stitch_node->cursor; 2390 2391 err = callchain_cursor_append(cursor, cnode->ip, 2392 &cnode->ms, 2393 cnode->branch, 2394 &cnode->branch_flags, 2395 cnode->nr_loop_iter, 2396 cnode->iter_cycles, 2397 cnode->branch_from, 2398 cnode->srcline); 2399 if (err) 2400 return err; 2401 } 2402 return 0; 2403 } 2404 2405 static struct stitch_list *get_stitch_node(struct thread *thread) 2406 { 2407 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2408 struct stitch_list *stitch_node; 2409 2410 if (!list_empty(&lbr_stitch->free_lists)) { 2411 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2412 struct stitch_list, node); 2413 list_del(&stitch_node->node); 2414 2415 return stitch_node; 2416 } 2417 2418 return malloc(sizeof(struct stitch_list)); 2419 } 2420 2421 static bool has_stitched_lbr(struct thread *thread, 2422 struct perf_sample *cur, 2423 struct perf_sample *prev, 2424 unsigned int max_lbr, 2425 bool callee) 2426 { 2427 struct branch_stack *cur_stack = cur->branch_stack; 2428 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2429 struct branch_stack *prev_stack = prev->branch_stack; 2430 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2431 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2432 int i, j, nr_identical_branches = 0; 2433 struct stitch_list *stitch_node; 2434 u64 cur_base, distance; 2435 2436 if (!cur_stack || !prev_stack) 2437 return false; 2438 2439 /* Find the physical index of the base-of-stack for current sample. */ 2440 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2441 2442 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2443 (max_lbr + prev_stack->hw_idx - cur_base); 2444 /* Previous sample has shorter stack. Nothing can be stitched. */ 2445 if (distance + 1 > prev_stack->nr) 2446 return false; 2447 2448 /* 2449 * Check if there are identical LBRs between two samples. 2450 * Identical LBRs must have same from, to and flags values. Also, 2451 * they have to be saved in the same LBR registers (same physical 2452 * index). 2453 * 2454 * Starts from the base-of-stack of current sample. 2455 */ 2456 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2457 if ((prev_entries[i].from != cur_entries[j].from) || 2458 (prev_entries[i].to != cur_entries[j].to) || 2459 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2460 break; 2461 nr_identical_branches++; 2462 } 2463 2464 if (!nr_identical_branches) 2465 return false; 2466 2467 /* 2468 * Save the LBRs between the base-of-stack of previous sample 2469 * and the base-of-stack of current sample into lbr_stitch->lists. 2470 * These LBRs will be stitched later. 2471 */ 2472 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2473 2474 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2475 continue; 2476 2477 stitch_node = get_stitch_node(thread); 2478 if (!stitch_node) 2479 return false; 2480 2481 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2482 sizeof(struct callchain_cursor_node)); 2483 2484 if (callee) 2485 list_add(&stitch_node->node, &lbr_stitch->lists); 2486 else 2487 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2488 } 2489 2490 return true; 2491 } 2492 2493 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2494 { 2495 if (thread__lbr_stitch(thread)) 2496 return true; 2497 2498 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch))); 2499 if (!thread__lbr_stitch(thread)) 2500 goto err; 2501 2502 thread__lbr_stitch(thread)->prev_lbr_cursor = 2503 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2504 if (!thread__lbr_stitch(thread)->prev_lbr_cursor) 2505 goto free_lbr_stitch; 2506 2507 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists); 2508 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists); 2509 2510 return true; 2511 2512 free_lbr_stitch: 2513 free(thread__lbr_stitch(thread)); 2514 thread__set_lbr_stitch(thread, NULL); 2515 err: 2516 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2517 thread__set_lbr_stitch_enable(thread, false); 2518 return false; 2519 } 2520 2521 /* 2522 * Resolve LBR callstack chain sample 2523 * Return: 2524 * 1 on success get LBR callchain information 2525 * 0 no available LBR callchain information, should try fp 2526 * negative error code on other errors. 2527 */ 2528 static int resolve_lbr_callchain_sample(struct thread *thread, 2529 struct callchain_cursor *cursor, 2530 struct perf_sample *sample, 2531 struct symbol **parent, 2532 struct addr_location *root_al, 2533 int max_stack, 2534 unsigned int max_lbr) 2535 { 2536 bool callee = (callchain_param.order == ORDER_CALLEE); 2537 struct ip_callchain *chain = sample->callchain; 2538 int chain_nr = min(max_stack, (int)chain->nr), i; 2539 struct lbr_stitch *lbr_stitch; 2540 bool stitched_lbr = false; 2541 u64 branch_from = 0; 2542 int err; 2543 2544 for (i = 0; i < chain_nr; i++) { 2545 if (chain->ips[i] == PERF_CONTEXT_USER) 2546 break; 2547 } 2548 2549 /* LBR only affects the user callchain */ 2550 if (i == chain_nr) 2551 return 0; 2552 2553 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx && 2554 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2555 lbr_stitch = thread__lbr_stitch(thread); 2556 2557 stitched_lbr = has_stitched_lbr(thread, sample, 2558 &lbr_stitch->prev_sample, 2559 max_lbr, callee); 2560 2561 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2562 list_replace_init(&lbr_stitch->lists, 2563 &lbr_stitch->free_lists); 2564 } 2565 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2566 } 2567 2568 if (callee) { 2569 /* Add kernel ip */ 2570 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2571 parent, root_al, branch_from, 2572 true, i); 2573 if (err) 2574 goto error; 2575 2576 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2577 root_al, &branch_from, true); 2578 if (err) 2579 goto error; 2580 2581 if (stitched_lbr) { 2582 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2583 if (err) 2584 goto error; 2585 } 2586 2587 } else { 2588 if (stitched_lbr) { 2589 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2590 if (err) 2591 goto error; 2592 } 2593 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2594 root_al, &branch_from, false); 2595 if (err) 2596 goto error; 2597 2598 /* Add kernel ip */ 2599 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2600 parent, root_al, branch_from, 2601 false, i); 2602 if (err) 2603 goto error; 2604 } 2605 return 1; 2606 2607 error: 2608 return (err < 0) ? err : 0; 2609 } 2610 2611 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2612 struct callchain_cursor *cursor, 2613 struct symbol **parent, 2614 struct addr_location *root_al, 2615 u8 *cpumode, int ent) 2616 { 2617 int err = 0; 2618 2619 while (--ent >= 0) { 2620 u64 ip = chain->ips[ent]; 2621 2622 if (ip >= PERF_CONTEXT_MAX) { 2623 err = add_callchain_ip(thread, cursor, parent, 2624 root_al, cpumode, ip, 2625 false, NULL, NULL, 0); 2626 break; 2627 } 2628 } 2629 return err; 2630 } 2631 2632 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2633 struct thread *thread, int usr_idx) 2634 { 2635 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64")) 2636 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2637 else 2638 return 0; 2639 } 2640 2641 static int thread__resolve_callchain_sample(struct thread *thread, 2642 struct callchain_cursor *cursor, 2643 struct evsel *evsel, 2644 struct perf_sample *sample, 2645 struct symbol **parent, 2646 struct addr_location *root_al, 2647 int max_stack) 2648 { 2649 struct branch_stack *branch = sample->branch_stack; 2650 struct branch_entry *entries = perf_sample__branch_entries(sample); 2651 struct ip_callchain *chain = sample->callchain; 2652 int chain_nr = 0; 2653 u8 cpumode = PERF_RECORD_MISC_USER; 2654 int i, j, err, nr_entries, usr_idx; 2655 int skip_idx = -1; 2656 int first_call = 0; 2657 u64 leaf_frame_caller; 2658 2659 if (chain) 2660 chain_nr = chain->nr; 2661 2662 if (evsel__has_branch_callstack(evsel)) { 2663 struct perf_env *env = evsel__env(evsel); 2664 2665 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2666 root_al, max_stack, 2667 !env ? 0 : env->max_branches); 2668 if (err) 2669 return (err < 0) ? err : 0; 2670 } 2671 2672 /* 2673 * Based on DWARF debug information, some architectures skip 2674 * a callchain entry saved by the kernel. 2675 */ 2676 skip_idx = arch_skip_callchain_idx(thread, chain); 2677 2678 /* 2679 * Add branches to call stack for easier browsing. This gives 2680 * more context for a sample than just the callers. 2681 * 2682 * This uses individual histograms of paths compared to the 2683 * aggregated histograms the normal LBR mode uses. 2684 * 2685 * Limitations for now: 2686 * - No extra filters 2687 * - No annotations (should annotate somehow) 2688 */ 2689 2690 if (branch && callchain_param.branch_callstack) { 2691 int nr = min(max_stack, (int)branch->nr); 2692 struct branch_entry be[nr]; 2693 struct iterations iter[nr]; 2694 2695 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2696 pr_warning("corrupted branch chain. skipping...\n"); 2697 goto check_calls; 2698 } 2699 2700 for (i = 0; i < nr; i++) { 2701 if (callchain_param.order == ORDER_CALLEE) { 2702 be[i] = entries[i]; 2703 2704 if (chain == NULL) 2705 continue; 2706 2707 /* 2708 * Check for overlap into the callchain. 2709 * The return address is one off compared to 2710 * the branch entry. To adjust for this 2711 * assume the calling instruction is not longer 2712 * than 8 bytes. 2713 */ 2714 if (i == skip_idx || 2715 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2716 first_call++; 2717 else if (be[i].from < chain->ips[first_call] && 2718 be[i].from >= chain->ips[first_call] - 8) 2719 first_call++; 2720 } else 2721 be[i] = entries[branch->nr - i - 1]; 2722 } 2723 2724 memset(iter, 0, sizeof(struct iterations) * nr); 2725 nr = remove_loops(be, nr, iter); 2726 2727 for (i = 0; i < nr; i++) { 2728 err = add_callchain_ip(thread, cursor, parent, 2729 root_al, 2730 NULL, be[i].to, 2731 true, &be[i].flags, 2732 NULL, be[i].from); 2733 2734 if (!err) 2735 err = add_callchain_ip(thread, cursor, parent, root_al, 2736 NULL, be[i].from, 2737 true, &be[i].flags, 2738 &iter[i], 0); 2739 if (err == -EINVAL) 2740 break; 2741 if (err) 2742 return err; 2743 } 2744 2745 if (chain_nr == 0) 2746 return 0; 2747 2748 chain_nr -= nr; 2749 } 2750 2751 check_calls: 2752 if (chain && callchain_param.order != ORDER_CALLEE) { 2753 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2754 &cpumode, chain->nr - first_call); 2755 if (err) 2756 return (err < 0) ? err : 0; 2757 } 2758 for (i = first_call, nr_entries = 0; 2759 i < chain_nr && nr_entries < max_stack; i++) { 2760 u64 ip; 2761 2762 if (callchain_param.order == ORDER_CALLEE) 2763 j = i; 2764 else 2765 j = chain->nr - i - 1; 2766 2767 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2768 if (j == skip_idx) 2769 continue; 2770 #endif 2771 ip = chain->ips[j]; 2772 if (ip < PERF_CONTEXT_MAX) 2773 ++nr_entries; 2774 else if (callchain_param.order != ORDER_CALLEE) { 2775 err = find_prev_cpumode(chain, thread, cursor, parent, 2776 root_al, &cpumode, j); 2777 if (err) 2778 return (err < 0) ? err : 0; 2779 continue; 2780 } 2781 2782 /* 2783 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 2784 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 2785 * the index will be different in order to add the missing frame 2786 * at the right place. 2787 */ 2788 2789 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 2790 2791 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 2792 2793 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 2794 2795 /* 2796 * check if leaf_frame_Caller != ip to not add the same 2797 * value twice. 2798 */ 2799 2800 if (leaf_frame_caller && leaf_frame_caller != ip) { 2801 2802 err = add_callchain_ip(thread, cursor, parent, 2803 root_al, &cpumode, leaf_frame_caller, 2804 false, NULL, NULL, 0); 2805 if (err) 2806 return (err < 0) ? err : 0; 2807 } 2808 } 2809 2810 err = add_callchain_ip(thread, cursor, parent, 2811 root_al, &cpumode, ip, 2812 false, NULL, NULL, 0); 2813 2814 if (err) 2815 return (err < 0) ? err : 0; 2816 } 2817 2818 return 0; 2819 } 2820 2821 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2822 { 2823 struct symbol *sym = ms->sym; 2824 struct map *map = ms->map; 2825 struct inline_node *inline_node; 2826 struct inline_list *ilist; 2827 struct dso *dso; 2828 u64 addr; 2829 int ret = 1; 2830 struct map_symbol ilist_ms; 2831 2832 if (!symbol_conf.inline_name || !map || !sym) 2833 return ret; 2834 2835 addr = map__dso_map_ip(map, ip); 2836 addr = map__rip_2objdump(map, addr); 2837 dso = map__dso(map); 2838 2839 inline_node = inlines__tree_find(&dso->inlined_nodes, addr); 2840 if (!inline_node) { 2841 inline_node = dso__parse_addr_inlines(dso, addr, sym); 2842 if (!inline_node) 2843 return ret; 2844 inlines__tree_insert(&dso->inlined_nodes, inline_node); 2845 } 2846 2847 ilist_ms = (struct map_symbol) { 2848 .maps = maps__get(ms->maps), 2849 .map = map__get(map), 2850 }; 2851 list_for_each_entry(ilist, &inline_node->val, list) { 2852 ilist_ms.sym = ilist->symbol; 2853 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2854 NULL, 0, 0, 0, ilist->srcline); 2855 2856 if (ret != 0) 2857 return ret; 2858 } 2859 map_symbol__exit(&ilist_ms); 2860 2861 return ret; 2862 } 2863 2864 static int unwind_entry(struct unwind_entry *entry, void *arg) 2865 { 2866 struct callchain_cursor *cursor = arg; 2867 const char *srcline = NULL; 2868 u64 addr = entry->ip; 2869 2870 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2871 return 0; 2872 2873 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2874 return 0; 2875 2876 /* 2877 * Convert entry->ip from a virtual address to an offset in 2878 * its corresponding binary. 2879 */ 2880 if (entry->ms.map) 2881 addr = map__dso_map_ip(entry->ms.map, entry->ip); 2882 2883 srcline = callchain_srcline(&entry->ms, addr); 2884 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2885 false, NULL, 0, 0, 0, srcline); 2886 } 2887 2888 static int thread__resolve_callchain_unwind(struct thread *thread, 2889 struct callchain_cursor *cursor, 2890 struct evsel *evsel, 2891 struct perf_sample *sample, 2892 int max_stack) 2893 { 2894 /* Can we do dwarf post unwind? */ 2895 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2896 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2897 return 0; 2898 2899 /* Bail out if nothing was captured. */ 2900 if ((!sample->user_regs.regs) || 2901 (!sample->user_stack.size)) 2902 return 0; 2903 2904 return unwind__get_entries(unwind_entry, cursor, 2905 thread, sample, max_stack, false); 2906 } 2907 2908 int thread__resolve_callchain(struct thread *thread, 2909 struct callchain_cursor *cursor, 2910 struct evsel *evsel, 2911 struct perf_sample *sample, 2912 struct symbol **parent, 2913 struct addr_location *root_al, 2914 int max_stack) 2915 { 2916 int ret = 0; 2917 2918 if (cursor == NULL) 2919 return -ENOMEM; 2920 2921 callchain_cursor_reset(cursor); 2922 2923 if (callchain_param.order == ORDER_CALLEE) { 2924 ret = thread__resolve_callchain_sample(thread, cursor, 2925 evsel, sample, 2926 parent, root_al, 2927 max_stack); 2928 if (ret) 2929 return ret; 2930 ret = thread__resolve_callchain_unwind(thread, cursor, 2931 evsel, sample, 2932 max_stack); 2933 } else { 2934 ret = thread__resolve_callchain_unwind(thread, cursor, 2935 evsel, sample, 2936 max_stack); 2937 if (ret) 2938 return ret; 2939 ret = thread__resolve_callchain_sample(thread, cursor, 2940 evsel, sample, 2941 parent, root_al, 2942 max_stack); 2943 } 2944 2945 return ret; 2946 } 2947 2948 int machine__for_each_thread(struct machine *machine, 2949 int (*fn)(struct thread *thread, void *p), 2950 void *priv) 2951 { 2952 return threads__for_each_thread(&machine->threads, fn, priv); 2953 } 2954 2955 int machines__for_each_thread(struct machines *machines, 2956 int (*fn)(struct thread *thread, void *p), 2957 void *priv) 2958 { 2959 struct rb_node *nd; 2960 int rc = 0; 2961 2962 rc = machine__for_each_thread(&machines->host, fn, priv); 2963 if (rc != 0) 2964 return rc; 2965 2966 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2967 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2968 2969 rc = machine__for_each_thread(machine, fn, priv); 2970 if (rc != 0) 2971 return rc; 2972 } 2973 return rc; 2974 } 2975 2976 2977 static int thread_list_cb(struct thread *thread, void *data) 2978 { 2979 struct list_head *list = data; 2980 struct thread_list *entry = malloc(sizeof(*entry)); 2981 2982 if (!entry) 2983 return -ENOMEM; 2984 2985 entry->thread = thread__get(thread); 2986 list_add_tail(&entry->list, list); 2987 return 0; 2988 } 2989 2990 int machine__thread_list(struct machine *machine, struct list_head *list) 2991 { 2992 return machine__for_each_thread(machine, thread_list_cb, list); 2993 } 2994 2995 void thread_list__delete(struct list_head *list) 2996 { 2997 struct thread_list *pos, *next; 2998 2999 list_for_each_entry_safe(pos, next, list, list) { 3000 thread__zput(pos->thread); 3001 list_del(&pos->list); 3002 free(pos); 3003 } 3004 } 3005 3006 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3007 { 3008 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3009 return -1; 3010 3011 return machine->current_tid[cpu]; 3012 } 3013 3014 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3015 pid_t tid) 3016 { 3017 struct thread *thread; 3018 const pid_t init_val = -1; 3019 3020 if (cpu < 0) 3021 return -EINVAL; 3022 3023 if (realloc_array_as_needed(machine->current_tid, 3024 machine->current_tid_sz, 3025 (unsigned int)cpu, 3026 &init_val)) 3027 return -ENOMEM; 3028 3029 machine->current_tid[cpu] = tid; 3030 3031 thread = machine__findnew_thread(machine, pid, tid); 3032 if (!thread) 3033 return -ENOMEM; 3034 3035 thread__set_cpu(thread, cpu); 3036 thread__put(thread); 3037 3038 return 0; 3039 } 3040 3041 /* 3042 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3043 * machine__normalized_is() if a normalized arch is needed. 3044 */ 3045 bool machine__is(struct machine *machine, const char *arch) 3046 { 3047 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3048 } 3049 3050 bool machine__normalized_is(struct machine *machine, const char *arch) 3051 { 3052 return machine && !strcmp(perf_env__arch(machine->env), arch); 3053 } 3054 3055 int machine__nr_cpus_avail(struct machine *machine) 3056 { 3057 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3058 } 3059 3060 int machine__get_kernel_start(struct machine *machine) 3061 { 3062 struct map *map = machine__kernel_map(machine); 3063 int err = 0; 3064 3065 /* 3066 * The only addresses above 2^63 are kernel addresses of a 64-bit 3067 * kernel. Note that addresses are unsigned so that on a 32-bit system 3068 * all addresses including kernel addresses are less than 2^32. In 3069 * that case (32-bit system), if the kernel mapping is unknown, all 3070 * addresses will be assumed to be in user space - see 3071 * machine__kernel_ip(). 3072 */ 3073 machine->kernel_start = 1ULL << 63; 3074 if (map) { 3075 err = map__load(map); 3076 /* 3077 * On x86_64, PTI entry trampolines are less than the 3078 * start of kernel text, but still above 2^63. So leave 3079 * kernel_start = 1ULL << 63 for x86_64. 3080 */ 3081 if (!err && !machine__is(machine, "x86_64")) 3082 machine->kernel_start = map__start(map); 3083 } 3084 return err; 3085 } 3086 3087 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3088 { 3089 u8 addr_cpumode = cpumode; 3090 bool kernel_ip; 3091 3092 if (!machine->single_address_space) 3093 goto out; 3094 3095 kernel_ip = machine__kernel_ip(machine, addr); 3096 switch (cpumode) { 3097 case PERF_RECORD_MISC_KERNEL: 3098 case PERF_RECORD_MISC_USER: 3099 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3100 PERF_RECORD_MISC_USER; 3101 break; 3102 case PERF_RECORD_MISC_GUEST_KERNEL: 3103 case PERF_RECORD_MISC_GUEST_USER: 3104 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3105 PERF_RECORD_MISC_GUEST_USER; 3106 break; 3107 default: 3108 break; 3109 } 3110 out: 3111 return addr_cpumode; 3112 } 3113 3114 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3115 { 3116 return dsos__findnew_id(&machine->dsos, filename, id); 3117 } 3118 3119 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3120 { 3121 return machine__findnew_dso_id(machine, filename, NULL); 3122 } 3123 3124 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3125 { 3126 struct machine *machine = vmachine; 3127 struct map *map; 3128 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3129 3130 if (sym == NULL) 3131 return NULL; 3132 3133 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL; 3134 *addrp = map__unmap_ip(map, sym->start); 3135 return sym->name; 3136 } 3137 3138 struct machine__for_each_dso_cb_args { 3139 struct machine *machine; 3140 machine__dso_t fn; 3141 void *priv; 3142 }; 3143 3144 static int machine__for_each_dso_cb(struct dso *dso, void *data) 3145 { 3146 struct machine__for_each_dso_cb_args *args = data; 3147 3148 return args->fn(dso, args->machine, args->priv); 3149 } 3150 3151 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3152 { 3153 struct machine__for_each_dso_cb_args args = { 3154 .machine = machine, 3155 .fn = fn, 3156 .priv = priv, 3157 }; 3158 3159 return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args); 3160 } 3161 3162 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3163 { 3164 struct maps *maps = machine__kernel_maps(machine); 3165 3166 return maps__for_each_map(maps, fn, priv); 3167 } 3168 3169 bool machine__is_lock_function(struct machine *machine, u64 addr) 3170 { 3171 if (!machine->sched.text_start) { 3172 struct map *kmap; 3173 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3174 3175 if (!sym) { 3176 /* to avoid retry */ 3177 machine->sched.text_start = 1; 3178 return false; 3179 } 3180 3181 machine->sched.text_start = map__unmap_ip(kmap, sym->start); 3182 3183 /* should not fail from here */ 3184 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3185 machine->sched.text_end = map__unmap_ip(kmap, sym->start); 3186 3187 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3188 machine->lock.text_start = map__unmap_ip(kmap, sym->start); 3189 3190 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3191 machine->lock.text_end = map__unmap_ip(kmap, sym->start); 3192 3193 sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap); 3194 if (sym) { 3195 machine->traceiter.text_start = map__unmap_ip(kmap, sym->start); 3196 machine->traceiter.text_end = map__unmap_ip(kmap, sym->end); 3197 } 3198 sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap); 3199 if (sym) { 3200 machine->trace.text_start = map__unmap_ip(kmap, sym->start); 3201 machine->trace.text_end = map__unmap_ip(kmap, sym->end); 3202 } 3203 } 3204 3205 /* failed to get kernel symbols */ 3206 if (machine->sched.text_start == 1) 3207 return false; 3208 3209 /* mutex and rwsem functions are in sched text section */ 3210 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3211 return true; 3212 3213 /* spinlock functions are in lock text section */ 3214 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3215 return true; 3216 3217 /* traceiter functions currently don't have their own section 3218 * but we consider them lock functions 3219 */ 3220 if (machine->traceiter.text_start != 0) { 3221 if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end) 3222 return true; 3223 } 3224 3225 if (machine->trace.text_start != 0) { 3226 if (machine->trace.text_start <= addr && addr < machine->trace.text_end) 3227 return true; 3228 } 3229 3230 return false; 3231 } 3232 3233 int machine__hit_all_dsos(struct machine *machine) 3234 { 3235 return dsos__hit_all(&machine->dsos); 3236 } 3237