1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd, 47 struct thread *th, bool lock); 48 49 static struct dso *machine__kernel_dso(struct machine *machine) 50 { 51 return map__dso(machine->vmlinux_map); 52 } 53 54 static void dsos__init(struct dsos *dsos) 55 { 56 INIT_LIST_HEAD(&dsos->head); 57 dsos->root = RB_ROOT; 58 init_rwsem(&dsos->lock); 59 } 60 61 static void machine__threads_init(struct machine *machine) 62 { 63 int i; 64 65 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 66 struct threads *threads = &machine->threads[i]; 67 threads->entries = RB_ROOT_CACHED; 68 init_rwsem(&threads->lock); 69 threads->nr = 0; 70 threads->last_match = NULL; 71 } 72 } 73 74 static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd) 75 { 76 int to_find = (int) *((pid_t *)key); 77 78 return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread); 79 } 80 81 static struct thread_rb_node *thread_rb_node__find(const struct thread *th, 82 struct rb_root *tree) 83 { 84 pid_t to_find = thread__tid(th); 85 struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid); 86 87 return rb_entry(nd, struct thread_rb_node, rb_node); 88 } 89 90 static int machine__set_mmap_name(struct machine *machine) 91 { 92 if (machine__is_host(machine)) 93 machine->mmap_name = strdup("[kernel.kallsyms]"); 94 else if (machine__is_default_guest(machine)) 95 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 96 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 97 machine->pid) < 0) 98 machine->mmap_name = NULL; 99 100 return machine->mmap_name ? 0 : -ENOMEM; 101 } 102 103 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 104 { 105 char comm[64]; 106 107 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 108 thread__set_comm(thread, comm, 0); 109 } 110 111 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 112 { 113 int err = -ENOMEM; 114 115 memset(machine, 0, sizeof(*machine)); 116 machine->kmaps = maps__new(machine); 117 if (machine->kmaps == NULL) 118 return -ENOMEM; 119 120 RB_CLEAR_NODE(&machine->rb_node); 121 dsos__init(&machine->dsos); 122 123 machine__threads_init(machine); 124 125 machine->vdso_info = NULL; 126 machine->env = NULL; 127 128 machine->pid = pid; 129 130 machine->id_hdr_size = 0; 131 machine->kptr_restrict_warned = false; 132 machine->comm_exec = false; 133 machine->kernel_start = 0; 134 machine->vmlinux_map = NULL; 135 136 machine->root_dir = strdup(root_dir); 137 if (machine->root_dir == NULL) 138 goto out; 139 140 if (machine__set_mmap_name(machine)) 141 goto out; 142 143 if (pid != HOST_KERNEL_ID) { 144 struct thread *thread = machine__findnew_thread(machine, -1, 145 pid); 146 147 if (thread == NULL) 148 goto out; 149 150 thread__set_guest_comm(thread, pid); 151 thread__put(thread); 152 } 153 154 machine->current_tid = NULL; 155 err = 0; 156 157 out: 158 if (err) { 159 zfree(&machine->kmaps); 160 zfree(&machine->root_dir); 161 zfree(&machine->mmap_name); 162 } 163 return 0; 164 } 165 166 struct machine *machine__new_host(void) 167 { 168 struct machine *machine = malloc(sizeof(*machine)); 169 170 if (machine != NULL) { 171 machine__init(machine, "", HOST_KERNEL_ID); 172 173 if (machine__create_kernel_maps(machine) < 0) 174 goto out_delete; 175 } 176 177 return machine; 178 out_delete: 179 free(machine); 180 return NULL; 181 } 182 183 struct machine *machine__new_kallsyms(void) 184 { 185 struct machine *machine = machine__new_host(); 186 /* 187 * FIXME: 188 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 189 * ask for not using the kcore parsing code, once this one is fixed 190 * to create a map per module. 191 */ 192 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 193 machine__delete(machine); 194 machine = NULL; 195 } 196 197 return machine; 198 } 199 200 static void dsos__purge(struct dsos *dsos) 201 { 202 struct dso *pos, *n; 203 204 down_write(&dsos->lock); 205 206 list_for_each_entry_safe(pos, n, &dsos->head, node) { 207 RB_CLEAR_NODE(&pos->rb_node); 208 pos->root = NULL; 209 list_del_init(&pos->node); 210 dso__put(pos); 211 } 212 213 up_write(&dsos->lock); 214 } 215 216 static void dsos__exit(struct dsos *dsos) 217 { 218 dsos__purge(dsos); 219 exit_rwsem(&dsos->lock); 220 } 221 222 void machine__delete_threads(struct machine *machine) 223 { 224 struct rb_node *nd; 225 int i; 226 227 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 228 struct threads *threads = &machine->threads[i]; 229 down_write(&threads->lock); 230 nd = rb_first_cached(&threads->entries); 231 while (nd) { 232 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node); 233 234 nd = rb_next(nd); 235 __machine__remove_thread(machine, trb, trb->thread, false); 236 } 237 up_write(&threads->lock); 238 } 239 } 240 241 void machine__exit(struct machine *machine) 242 { 243 int i; 244 245 if (machine == NULL) 246 return; 247 248 machine__destroy_kernel_maps(machine); 249 maps__zput(machine->kmaps); 250 dsos__exit(&machine->dsos); 251 machine__exit_vdso(machine); 252 zfree(&machine->root_dir); 253 zfree(&machine->mmap_name); 254 zfree(&machine->current_tid); 255 zfree(&machine->kallsyms_filename); 256 257 machine__delete_threads(machine); 258 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 259 struct threads *threads = &machine->threads[i]; 260 261 exit_rwsem(&threads->lock); 262 } 263 } 264 265 void machine__delete(struct machine *machine) 266 { 267 if (machine) { 268 machine__exit(machine); 269 free(machine); 270 } 271 } 272 273 void machines__init(struct machines *machines) 274 { 275 machine__init(&machines->host, "", HOST_KERNEL_ID); 276 machines->guests = RB_ROOT_CACHED; 277 } 278 279 void machines__exit(struct machines *machines) 280 { 281 machine__exit(&machines->host); 282 /* XXX exit guest */ 283 } 284 285 struct machine *machines__add(struct machines *machines, pid_t pid, 286 const char *root_dir) 287 { 288 struct rb_node **p = &machines->guests.rb_root.rb_node; 289 struct rb_node *parent = NULL; 290 struct machine *pos, *machine = malloc(sizeof(*machine)); 291 bool leftmost = true; 292 293 if (machine == NULL) 294 return NULL; 295 296 if (machine__init(machine, root_dir, pid) != 0) { 297 free(machine); 298 return NULL; 299 } 300 301 while (*p != NULL) { 302 parent = *p; 303 pos = rb_entry(parent, struct machine, rb_node); 304 if (pid < pos->pid) 305 p = &(*p)->rb_left; 306 else { 307 p = &(*p)->rb_right; 308 leftmost = false; 309 } 310 } 311 312 rb_link_node(&machine->rb_node, parent, p); 313 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 314 315 machine->machines = machines; 316 317 return machine; 318 } 319 320 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 321 { 322 struct rb_node *nd; 323 324 machines->host.comm_exec = comm_exec; 325 326 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 327 struct machine *machine = rb_entry(nd, struct machine, rb_node); 328 329 machine->comm_exec = comm_exec; 330 } 331 } 332 333 struct machine *machines__find(struct machines *machines, pid_t pid) 334 { 335 struct rb_node **p = &machines->guests.rb_root.rb_node; 336 struct rb_node *parent = NULL; 337 struct machine *machine; 338 struct machine *default_machine = NULL; 339 340 if (pid == HOST_KERNEL_ID) 341 return &machines->host; 342 343 while (*p != NULL) { 344 parent = *p; 345 machine = rb_entry(parent, struct machine, rb_node); 346 if (pid < machine->pid) 347 p = &(*p)->rb_left; 348 else if (pid > machine->pid) 349 p = &(*p)->rb_right; 350 else 351 return machine; 352 if (!machine->pid) 353 default_machine = machine; 354 } 355 356 return default_machine; 357 } 358 359 struct machine *machines__findnew(struct machines *machines, pid_t pid) 360 { 361 char path[PATH_MAX]; 362 const char *root_dir = ""; 363 struct machine *machine = machines__find(machines, pid); 364 365 if (machine && (machine->pid == pid)) 366 goto out; 367 368 if ((pid != HOST_KERNEL_ID) && 369 (pid != DEFAULT_GUEST_KERNEL_ID) && 370 (symbol_conf.guestmount)) { 371 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 372 if (access(path, R_OK)) { 373 static struct strlist *seen; 374 375 if (!seen) 376 seen = strlist__new(NULL, NULL); 377 378 if (!strlist__has_entry(seen, path)) { 379 pr_err("Can't access file %s\n", path); 380 strlist__add(seen, path); 381 } 382 machine = NULL; 383 goto out; 384 } 385 root_dir = path; 386 } 387 388 machine = machines__add(machines, pid, root_dir); 389 out: 390 return machine; 391 } 392 393 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 394 { 395 struct machine *machine = machines__find(machines, pid); 396 397 if (!machine) 398 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 399 return machine; 400 } 401 402 /* 403 * A common case for KVM test programs is that the test program acts as the 404 * hypervisor, creating, running and destroying the virtual machine, and 405 * providing the guest object code from its own object code. In this case, 406 * the VM is not running an OS, but only the functions loaded into it by the 407 * hypervisor test program, and conveniently, loaded at the same virtual 408 * addresses. 409 * 410 * Normally to resolve addresses, MMAP events are needed to map addresses 411 * back to the object code and debug symbols for that object code. 412 * 413 * Currently, there is no way to get such mapping information from guests 414 * but, in the scenario described above, the guest has the same mappings 415 * as the hypervisor, so support for that scenario can be achieved. 416 * 417 * To support that, copy the host thread's maps to the guest thread's maps. 418 * Note, we do not discover the guest until we encounter a guest event, 419 * which works well because it is not until then that we know that the host 420 * thread's maps have been set up. 421 * 422 * This function returns the guest thread. Apart from keeping the data 423 * structures sane, using a thread belonging to the guest machine, instead 424 * of the host thread, allows it to have its own comm (refer 425 * thread__set_guest_comm()). 426 */ 427 static struct thread *findnew_guest_code(struct machine *machine, 428 struct machine *host_machine, 429 pid_t pid) 430 { 431 struct thread *host_thread; 432 struct thread *thread; 433 int err; 434 435 if (!machine) 436 return NULL; 437 438 thread = machine__findnew_thread(machine, -1, pid); 439 if (!thread) 440 return NULL; 441 442 /* Assume maps are set up if there are any */ 443 if (maps__nr_maps(thread__maps(thread))) 444 return thread; 445 446 host_thread = machine__find_thread(host_machine, -1, pid); 447 if (!host_thread) 448 goto out_err; 449 450 thread__set_guest_comm(thread, pid); 451 452 /* 453 * Guest code can be found in hypervisor process at the same address 454 * so copy host maps. 455 */ 456 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread)); 457 thread__put(host_thread); 458 if (err) 459 goto out_err; 460 461 return thread; 462 463 out_err: 464 thread__zput(thread); 465 return NULL; 466 } 467 468 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 469 { 470 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 471 struct machine *machine = machines__findnew(machines, pid); 472 473 return findnew_guest_code(machine, host_machine, pid); 474 } 475 476 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 477 { 478 struct machines *machines = machine->machines; 479 struct machine *host_machine; 480 481 if (!machines) 482 return NULL; 483 484 host_machine = machines__find(machines, HOST_KERNEL_ID); 485 486 return findnew_guest_code(machine, host_machine, pid); 487 } 488 489 void machines__process_guests(struct machines *machines, 490 machine__process_t process, void *data) 491 { 492 struct rb_node *nd; 493 494 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 495 struct machine *pos = rb_entry(nd, struct machine, rb_node); 496 process(pos, data); 497 } 498 } 499 500 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 501 { 502 struct rb_node *node; 503 struct machine *machine; 504 505 machines->host.id_hdr_size = id_hdr_size; 506 507 for (node = rb_first_cached(&machines->guests); node; 508 node = rb_next(node)) { 509 machine = rb_entry(node, struct machine, rb_node); 510 machine->id_hdr_size = id_hdr_size; 511 } 512 513 return; 514 } 515 516 static void machine__update_thread_pid(struct machine *machine, 517 struct thread *th, pid_t pid) 518 { 519 struct thread *leader; 520 521 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1) 522 return; 523 524 thread__set_pid(th, pid); 525 526 if (thread__pid(th) == thread__tid(th)) 527 return; 528 529 leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th)); 530 if (!leader) 531 goto out_err; 532 533 if (!thread__maps(leader)) 534 thread__set_maps(leader, maps__new(machine)); 535 536 if (!thread__maps(leader)) 537 goto out_err; 538 539 if (thread__maps(th) == thread__maps(leader)) 540 goto out_put; 541 542 if (thread__maps(th)) { 543 /* 544 * Maps are created from MMAP events which provide the pid and 545 * tid. Consequently there never should be any maps on a thread 546 * with an unknown pid. Just print an error if there are. 547 */ 548 if (!maps__empty(thread__maps(th))) 549 pr_err("Discarding thread maps for %d:%d\n", 550 thread__pid(th), thread__tid(th)); 551 maps__put(thread__maps(th)); 552 } 553 554 thread__set_maps(th, maps__get(thread__maps(leader))); 555 out_put: 556 thread__put(leader); 557 return; 558 out_err: 559 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th)); 560 goto out_put; 561 } 562 563 /* 564 * Front-end cache - TID lookups come in blocks, 565 * so most of the time we dont have to look up 566 * the full rbtree: 567 */ 568 static struct thread* 569 __threads__get_last_match(struct threads *threads, struct machine *machine, 570 int pid, int tid) 571 { 572 struct thread *th; 573 574 th = threads->last_match; 575 if (th != NULL) { 576 if (thread__tid(th) == tid) { 577 machine__update_thread_pid(machine, th, pid); 578 return thread__get(th); 579 } 580 thread__put(threads->last_match); 581 threads->last_match = NULL; 582 } 583 584 return NULL; 585 } 586 587 static struct thread* 588 threads__get_last_match(struct threads *threads, struct machine *machine, 589 int pid, int tid) 590 { 591 struct thread *th = NULL; 592 593 if (perf_singlethreaded) 594 th = __threads__get_last_match(threads, machine, pid, tid); 595 596 return th; 597 } 598 599 static void 600 __threads__set_last_match(struct threads *threads, struct thread *th) 601 { 602 thread__put(threads->last_match); 603 threads->last_match = thread__get(th); 604 } 605 606 static void 607 threads__set_last_match(struct threads *threads, struct thread *th) 608 { 609 if (perf_singlethreaded) 610 __threads__set_last_match(threads, th); 611 } 612 613 /* 614 * Caller must eventually drop thread->refcnt returned with a successful 615 * lookup/new thread inserted. 616 */ 617 static struct thread *____machine__findnew_thread(struct machine *machine, 618 struct threads *threads, 619 pid_t pid, pid_t tid, 620 bool create) 621 { 622 struct rb_node **p = &threads->entries.rb_root.rb_node; 623 struct rb_node *parent = NULL; 624 struct thread *th; 625 struct thread_rb_node *nd; 626 bool leftmost = true; 627 628 th = threads__get_last_match(threads, machine, pid, tid); 629 if (th) 630 return th; 631 632 while (*p != NULL) { 633 parent = *p; 634 th = rb_entry(parent, struct thread_rb_node, rb_node)->thread; 635 636 if (thread__tid(th) == tid) { 637 threads__set_last_match(threads, th); 638 machine__update_thread_pid(machine, th, pid); 639 return thread__get(th); 640 } 641 642 if (tid < thread__tid(th)) 643 p = &(*p)->rb_left; 644 else { 645 p = &(*p)->rb_right; 646 leftmost = false; 647 } 648 } 649 650 if (!create) 651 return NULL; 652 653 th = thread__new(pid, tid); 654 if (th == NULL) 655 return NULL; 656 657 nd = malloc(sizeof(*nd)); 658 if (nd == NULL) { 659 thread__put(th); 660 return NULL; 661 } 662 nd->thread = th; 663 664 rb_link_node(&nd->rb_node, parent, p); 665 rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost); 666 /* 667 * We have to initialize maps separately after rb tree is updated. 668 * 669 * The reason is that we call machine__findnew_thread within 670 * thread__init_maps to find the thread leader and that would screwed 671 * the rb tree. 672 */ 673 if (thread__init_maps(th, machine)) { 674 pr_err("Thread init failed thread %d\n", pid); 675 rb_erase_cached(&nd->rb_node, &threads->entries); 676 RB_CLEAR_NODE(&nd->rb_node); 677 free(nd); 678 thread__put(th); 679 return NULL; 680 } 681 /* 682 * It is now in the rbtree, get a ref 683 */ 684 threads__set_last_match(threads, th); 685 ++threads->nr; 686 687 return thread__get(th); 688 } 689 690 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 691 { 692 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 693 } 694 695 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 696 pid_t tid) 697 { 698 struct threads *threads = machine__threads(machine, tid); 699 struct thread *th; 700 701 down_write(&threads->lock); 702 th = __machine__findnew_thread(machine, pid, tid); 703 up_write(&threads->lock); 704 return th; 705 } 706 707 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 708 pid_t tid) 709 { 710 struct threads *threads = machine__threads(machine, tid); 711 struct thread *th; 712 713 down_read(&threads->lock); 714 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 715 up_read(&threads->lock); 716 return th; 717 } 718 719 /* 720 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 721 * So here a single thread is created for that, but actually there is a separate 722 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 723 * is only 1. That causes problems for some tools, requiring workarounds. For 724 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 725 */ 726 struct thread *machine__idle_thread(struct machine *machine) 727 { 728 struct thread *thread = machine__findnew_thread(machine, 0, 0); 729 730 if (!thread || thread__set_comm(thread, "swapper", 0) || 731 thread__set_namespaces(thread, 0, NULL)) 732 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 733 734 return thread; 735 } 736 737 struct comm *machine__thread_exec_comm(struct machine *machine, 738 struct thread *thread) 739 { 740 if (machine->comm_exec) 741 return thread__exec_comm(thread); 742 else 743 return thread__comm(thread); 744 } 745 746 int machine__process_comm_event(struct machine *machine, union perf_event *event, 747 struct perf_sample *sample) 748 { 749 struct thread *thread = machine__findnew_thread(machine, 750 event->comm.pid, 751 event->comm.tid); 752 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 753 int err = 0; 754 755 if (exec) 756 machine->comm_exec = true; 757 758 if (dump_trace) 759 perf_event__fprintf_comm(event, stdout); 760 761 if (thread == NULL || 762 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 763 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 764 err = -1; 765 } 766 767 thread__put(thread); 768 769 return err; 770 } 771 772 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 773 union perf_event *event, 774 struct perf_sample *sample __maybe_unused) 775 { 776 struct thread *thread = machine__findnew_thread(machine, 777 event->namespaces.pid, 778 event->namespaces.tid); 779 int err = 0; 780 781 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 782 "\nWARNING: kernel seems to support more namespaces than perf" 783 " tool.\nTry updating the perf tool..\n\n"); 784 785 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 786 "\nWARNING: perf tool seems to support more namespaces than" 787 " the kernel.\nTry updating the kernel..\n\n"); 788 789 if (dump_trace) 790 perf_event__fprintf_namespaces(event, stdout); 791 792 if (thread == NULL || 793 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 794 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 795 err = -1; 796 } 797 798 thread__put(thread); 799 800 return err; 801 } 802 803 int machine__process_cgroup_event(struct machine *machine, 804 union perf_event *event, 805 struct perf_sample *sample __maybe_unused) 806 { 807 struct cgroup *cgrp; 808 809 if (dump_trace) 810 perf_event__fprintf_cgroup(event, stdout); 811 812 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 813 if (cgrp == NULL) 814 return -ENOMEM; 815 816 return 0; 817 } 818 819 int machine__process_lost_event(struct machine *machine __maybe_unused, 820 union perf_event *event, struct perf_sample *sample __maybe_unused) 821 { 822 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 823 event->lost.id, event->lost.lost); 824 return 0; 825 } 826 827 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 828 union perf_event *event, struct perf_sample *sample) 829 { 830 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 831 sample->id, event->lost_samples.lost); 832 return 0; 833 } 834 835 static struct dso *machine__findnew_module_dso(struct machine *machine, 836 struct kmod_path *m, 837 const char *filename) 838 { 839 struct dso *dso; 840 841 down_write(&machine->dsos.lock); 842 843 dso = __dsos__find(&machine->dsos, m->name, true); 844 if (!dso) { 845 dso = __dsos__addnew(&machine->dsos, m->name); 846 if (dso == NULL) 847 goto out_unlock; 848 849 dso__set_module_info(dso, m, machine); 850 dso__set_long_name(dso, strdup(filename), true); 851 dso->kernel = DSO_SPACE__KERNEL; 852 } 853 854 dso__get(dso); 855 out_unlock: 856 up_write(&machine->dsos.lock); 857 return dso; 858 } 859 860 int machine__process_aux_event(struct machine *machine __maybe_unused, 861 union perf_event *event) 862 { 863 if (dump_trace) 864 perf_event__fprintf_aux(event, stdout); 865 return 0; 866 } 867 868 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 869 union perf_event *event) 870 { 871 if (dump_trace) 872 perf_event__fprintf_itrace_start(event, stdout); 873 return 0; 874 } 875 876 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 877 union perf_event *event) 878 { 879 if (dump_trace) 880 perf_event__fprintf_aux_output_hw_id(event, stdout); 881 return 0; 882 } 883 884 int machine__process_switch_event(struct machine *machine __maybe_unused, 885 union perf_event *event) 886 { 887 if (dump_trace) 888 perf_event__fprintf_switch(event, stdout); 889 return 0; 890 } 891 892 static int machine__process_ksymbol_register(struct machine *machine, 893 union perf_event *event, 894 struct perf_sample *sample __maybe_unused) 895 { 896 struct symbol *sym; 897 struct dso *dso; 898 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 899 bool put_map = false; 900 int err = 0; 901 902 if (!map) { 903 dso = dso__new(event->ksymbol.name); 904 905 if (!dso) { 906 err = -ENOMEM; 907 goto out; 908 } 909 dso->kernel = DSO_SPACE__KERNEL; 910 map = map__new2(0, dso); 911 dso__put(dso); 912 if (!map) { 913 err = -ENOMEM; 914 goto out; 915 } 916 /* 917 * The inserted map has a get on it, we need to put to release 918 * the reference count here, but do it after all accesses are 919 * done. 920 */ 921 put_map = true; 922 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 923 dso->binary_type = DSO_BINARY_TYPE__OOL; 924 dso->data.file_size = event->ksymbol.len; 925 dso__set_loaded(dso); 926 } 927 928 map__set_start(map, event->ksymbol.addr); 929 map__set_end(map, map__start(map) + event->ksymbol.len); 930 err = maps__insert(machine__kernel_maps(machine), map); 931 if (err) { 932 err = -ENOMEM; 933 goto out; 934 } 935 936 dso__set_loaded(dso); 937 938 if (is_bpf_image(event->ksymbol.name)) { 939 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 940 dso__set_long_name(dso, "", false); 941 } 942 } else { 943 dso = map__dso(map); 944 } 945 946 sym = symbol__new(map__map_ip(map, map__start(map)), 947 event->ksymbol.len, 948 0, 0, event->ksymbol.name); 949 if (!sym) { 950 err = -ENOMEM; 951 goto out; 952 } 953 dso__insert_symbol(dso, sym); 954 out: 955 if (put_map) 956 map__put(map); 957 return err; 958 } 959 960 static int machine__process_ksymbol_unregister(struct machine *machine, 961 union perf_event *event, 962 struct perf_sample *sample __maybe_unused) 963 { 964 struct symbol *sym; 965 struct map *map; 966 967 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 968 if (!map) 969 return 0; 970 971 if (!RC_CHK_EQUAL(map, machine->vmlinux_map)) 972 maps__remove(machine__kernel_maps(machine), map); 973 else { 974 struct dso *dso = map__dso(map); 975 976 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map))); 977 if (sym) 978 dso__delete_symbol(dso, sym); 979 } 980 981 return 0; 982 } 983 984 int machine__process_ksymbol(struct machine *machine __maybe_unused, 985 union perf_event *event, 986 struct perf_sample *sample) 987 { 988 if (dump_trace) 989 perf_event__fprintf_ksymbol(event, stdout); 990 991 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 992 return machine__process_ksymbol_unregister(machine, event, 993 sample); 994 return machine__process_ksymbol_register(machine, event, sample); 995 } 996 997 int machine__process_text_poke(struct machine *machine, union perf_event *event, 998 struct perf_sample *sample __maybe_unused) 999 { 1000 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 1001 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1002 struct dso *dso = map ? map__dso(map) : NULL; 1003 1004 if (dump_trace) 1005 perf_event__fprintf_text_poke(event, machine, stdout); 1006 1007 if (!event->text_poke.new_len) 1008 return 0; 1009 1010 if (cpumode != PERF_RECORD_MISC_KERNEL) { 1011 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 1012 return 0; 1013 } 1014 1015 if (dso) { 1016 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 1017 int ret; 1018 1019 /* 1020 * Kernel maps might be changed when loading symbols so loading 1021 * must be done prior to using kernel maps. 1022 */ 1023 map__load(map); 1024 ret = dso__data_write_cache_addr(dso, map, machine, 1025 event->text_poke.addr, 1026 new_bytes, 1027 event->text_poke.new_len); 1028 if (ret != event->text_poke.new_len) 1029 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 1030 event->text_poke.addr); 1031 } else { 1032 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 1033 event->text_poke.addr); 1034 } 1035 1036 return 0; 1037 } 1038 1039 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 1040 const char *filename) 1041 { 1042 struct map *map = NULL; 1043 struct kmod_path m; 1044 struct dso *dso; 1045 int err; 1046 1047 if (kmod_path__parse_name(&m, filename)) 1048 return NULL; 1049 1050 dso = machine__findnew_module_dso(machine, &m, filename); 1051 if (dso == NULL) 1052 goto out; 1053 1054 map = map__new2(start, dso); 1055 if (map == NULL) 1056 goto out; 1057 1058 err = maps__insert(machine__kernel_maps(machine), map); 1059 /* If maps__insert failed, return NULL. */ 1060 if (err) { 1061 map__put(map); 1062 map = NULL; 1063 } 1064 out: 1065 /* put the dso here, corresponding to machine__findnew_module_dso */ 1066 dso__put(dso); 1067 zfree(&m.name); 1068 return map; 1069 } 1070 1071 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 1072 { 1073 struct rb_node *nd; 1074 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 1075 1076 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1077 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1078 ret += __dsos__fprintf(&pos->dsos.head, fp); 1079 } 1080 1081 return ret; 1082 } 1083 1084 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 1085 bool (skip)(struct dso *dso, int parm), int parm) 1086 { 1087 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 1088 } 1089 1090 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 1091 bool (skip)(struct dso *dso, int parm), int parm) 1092 { 1093 struct rb_node *nd; 1094 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 1095 1096 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1097 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1098 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 1099 } 1100 return ret; 1101 } 1102 1103 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 1104 { 1105 int i; 1106 size_t printed = 0; 1107 struct dso *kdso = machine__kernel_dso(machine); 1108 1109 if (kdso->has_build_id) { 1110 char filename[PATH_MAX]; 1111 if (dso__build_id_filename(kdso, filename, sizeof(filename), 1112 false)) 1113 printed += fprintf(fp, "[0] %s\n", filename); 1114 } 1115 1116 for (i = 0; i < vmlinux_path__nr_entries; ++i) 1117 printed += fprintf(fp, "[%d] %s\n", 1118 i + kdso->has_build_id, vmlinux_path[i]); 1119 1120 return printed; 1121 } 1122 1123 size_t machine__fprintf(struct machine *machine, FILE *fp) 1124 { 1125 struct rb_node *nd; 1126 size_t ret; 1127 int i; 1128 1129 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 1130 struct threads *threads = &machine->threads[i]; 1131 1132 down_read(&threads->lock); 1133 1134 ret = fprintf(fp, "Threads: %u\n", threads->nr); 1135 1136 for (nd = rb_first_cached(&threads->entries); nd; 1137 nd = rb_next(nd)) { 1138 struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread; 1139 1140 ret += thread__fprintf(pos, fp); 1141 } 1142 1143 up_read(&threads->lock); 1144 } 1145 return ret; 1146 } 1147 1148 static struct dso *machine__get_kernel(struct machine *machine) 1149 { 1150 const char *vmlinux_name = machine->mmap_name; 1151 struct dso *kernel; 1152 1153 if (machine__is_host(machine)) { 1154 if (symbol_conf.vmlinux_name) 1155 vmlinux_name = symbol_conf.vmlinux_name; 1156 1157 kernel = machine__findnew_kernel(machine, vmlinux_name, 1158 "[kernel]", DSO_SPACE__KERNEL); 1159 } else { 1160 if (symbol_conf.default_guest_vmlinux_name) 1161 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1162 1163 kernel = machine__findnew_kernel(machine, vmlinux_name, 1164 "[guest.kernel]", 1165 DSO_SPACE__KERNEL_GUEST); 1166 } 1167 1168 if (kernel != NULL && (!kernel->has_build_id)) 1169 dso__read_running_kernel_build_id(kernel, machine); 1170 1171 return kernel; 1172 } 1173 1174 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1175 size_t bufsz) 1176 { 1177 if (machine__is_default_guest(machine)) 1178 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1179 else 1180 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1181 } 1182 1183 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1184 1185 /* Figure out the start address of kernel map from /proc/kallsyms. 1186 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1187 * symbol_name if it's not that important. 1188 */ 1189 static int machine__get_running_kernel_start(struct machine *machine, 1190 const char **symbol_name, 1191 u64 *start, u64 *end) 1192 { 1193 char filename[PATH_MAX]; 1194 int i, err = -1; 1195 const char *name; 1196 u64 addr = 0; 1197 1198 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1199 1200 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1201 return 0; 1202 1203 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1204 err = kallsyms__get_function_start(filename, name, &addr); 1205 if (!err) 1206 break; 1207 } 1208 1209 if (err) 1210 return -1; 1211 1212 if (symbol_name) 1213 *symbol_name = name; 1214 1215 *start = addr; 1216 1217 err = kallsyms__get_symbol_start(filename, "_edata", &addr); 1218 if (err) 1219 err = kallsyms__get_function_start(filename, "_etext", &addr); 1220 if (!err) 1221 *end = addr; 1222 1223 return 0; 1224 } 1225 1226 int machine__create_extra_kernel_map(struct machine *machine, 1227 struct dso *kernel, 1228 struct extra_kernel_map *xm) 1229 { 1230 struct kmap *kmap; 1231 struct map *map; 1232 int err; 1233 1234 map = map__new2(xm->start, kernel); 1235 if (!map) 1236 return -ENOMEM; 1237 1238 map__set_end(map, xm->end); 1239 map__set_pgoff(map, xm->pgoff); 1240 1241 kmap = map__kmap(map); 1242 1243 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1244 1245 err = maps__insert(machine__kernel_maps(machine), map); 1246 1247 if (!err) { 1248 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1249 kmap->name, map__start(map), map__end(map)); 1250 } 1251 1252 map__put(map); 1253 1254 return err; 1255 } 1256 1257 static u64 find_entry_trampoline(struct dso *dso) 1258 { 1259 /* Duplicates are removed so lookup all aliases */ 1260 const char *syms[] = { 1261 "_entry_trampoline", 1262 "__entry_trampoline_start", 1263 "entry_SYSCALL_64_trampoline", 1264 }; 1265 struct symbol *sym = dso__first_symbol(dso); 1266 unsigned int i; 1267 1268 for (; sym; sym = dso__next_symbol(sym)) { 1269 if (sym->binding != STB_GLOBAL) 1270 continue; 1271 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1272 if (!strcmp(sym->name, syms[i])) 1273 return sym->start; 1274 } 1275 } 1276 1277 return 0; 1278 } 1279 1280 /* 1281 * These values can be used for kernels that do not have symbols for the entry 1282 * trampolines in kallsyms. 1283 */ 1284 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1285 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1286 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1287 1288 struct machine__map_x86_64_entry_trampolines_args { 1289 struct maps *kmaps; 1290 bool found; 1291 }; 1292 1293 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data) 1294 { 1295 struct machine__map_x86_64_entry_trampolines_args *args = data; 1296 struct map *dest_map; 1297 struct kmap *kmap = __map__kmap(map); 1298 1299 if (!kmap || !is_entry_trampoline(kmap->name)) 1300 return 0; 1301 1302 dest_map = maps__find(args->kmaps, map__pgoff(map)); 1303 if (dest_map != map) 1304 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map))); 1305 1306 args->found = true; 1307 return 0; 1308 } 1309 1310 /* Map x86_64 PTI entry trampolines */ 1311 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1312 struct dso *kernel) 1313 { 1314 struct machine__map_x86_64_entry_trampolines_args args = { 1315 .kmaps = machine__kernel_maps(machine), 1316 .found = false, 1317 }; 1318 int nr_cpus_avail, cpu; 1319 u64 pgoff; 1320 1321 /* 1322 * In the vmlinux case, pgoff is a virtual address which must now be 1323 * mapped to a vmlinux offset. 1324 */ 1325 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args); 1326 1327 if (args.found || machine->trampolines_mapped) 1328 return 0; 1329 1330 pgoff = find_entry_trampoline(kernel); 1331 if (!pgoff) 1332 return 0; 1333 1334 nr_cpus_avail = machine__nr_cpus_avail(machine); 1335 1336 /* Add a 1 page map for each CPU's entry trampoline */ 1337 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1338 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1339 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1340 X86_64_ENTRY_TRAMPOLINE; 1341 struct extra_kernel_map xm = { 1342 .start = va, 1343 .end = va + page_size, 1344 .pgoff = pgoff, 1345 }; 1346 1347 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1348 1349 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1350 return -1; 1351 } 1352 1353 machine->trampolines_mapped = nr_cpus_avail; 1354 1355 return 0; 1356 } 1357 1358 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1359 struct dso *kernel __maybe_unused) 1360 { 1361 return 0; 1362 } 1363 1364 static int 1365 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1366 { 1367 /* In case of renewal the kernel map, destroy previous one */ 1368 machine__destroy_kernel_maps(machine); 1369 1370 map__put(machine->vmlinux_map); 1371 machine->vmlinux_map = map__new2(0, kernel); 1372 if (machine->vmlinux_map == NULL) 1373 return -ENOMEM; 1374 1375 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY); 1376 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1377 } 1378 1379 void machine__destroy_kernel_maps(struct machine *machine) 1380 { 1381 struct kmap *kmap; 1382 struct map *map = machine__kernel_map(machine); 1383 1384 if (map == NULL) 1385 return; 1386 1387 kmap = map__kmap(map); 1388 maps__remove(machine__kernel_maps(machine), map); 1389 if (kmap && kmap->ref_reloc_sym) { 1390 zfree((char **)&kmap->ref_reloc_sym->name); 1391 zfree(&kmap->ref_reloc_sym); 1392 } 1393 1394 map__zput(machine->vmlinux_map); 1395 } 1396 1397 int machines__create_guest_kernel_maps(struct machines *machines) 1398 { 1399 int ret = 0; 1400 struct dirent **namelist = NULL; 1401 int i, items = 0; 1402 char path[PATH_MAX]; 1403 pid_t pid; 1404 char *endp; 1405 1406 if (symbol_conf.default_guest_vmlinux_name || 1407 symbol_conf.default_guest_modules || 1408 symbol_conf.default_guest_kallsyms) { 1409 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1410 } 1411 1412 if (symbol_conf.guestmount) { 1413 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1414 if (items <= 0) 1415 return -ENOENT; 1416 for (i = 0; i < items; i++) { 1417 if (!isdigit(namelist[i]->d_name[0])) { 1418 /* Filter out . and .. */ 1419 continue; 1420 } 1421 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1422 if ((*endp != '\0') || 1423 (endp == namelist[i]->d_name) || 1424 (errno == ERANGE)) { 1425 pr_debug("invalid directory (%s). Skipping.\n", 1426 namelist[i]->d_name); 1427 continue; 1428 } 1429 sprintf(path, "%s/%s/proc/kallsyms", 1430 symbol_conf.guestmount, 1431 namelist[i]->d_name); 1432 ret = access(path, R_OK); 1433 if (ret) { 1434 pr_debug("Can't access file %s\n", path); 1435 goto failure; 1436 } 1437 machines__create_kernel_maps(machines, pid); 1438 } 1439 failure: 1440 free(namelist); 1441 } 1442 1443 return ret; 1444 } 1445 1446 void machines__destroy_kernel_maps(struct machines *machines) 1447 { 1448 struct rb_node *next = rb_first_cached(&machines->guests); 1449 1450 machine__destroy_kernel_maps(&machines->host); 1451 1452 while (next) { 1453 struct machine *pos = rb_entry(next, struct machine, rb_node); 1454 1455 next = rb_next(&pos->rb_node); 1456 rb_erase_cached(&pos->rb_node, &machines->guests); 1457 machine__delete(pos); 1458 } 1459 } 1460 1461 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1462 { 1463 struct machine *machine = machines__findnew(machines, pid); 1464 1465 if (machine == NULL) 1466 return -1; 1467 1468 return machine__create_kernel_maps(machine); 1469 } 1470 1471 int machine__load_kallsyms(struct machine *machine, const char *filename) 1472 { 1473 struct map *map = machine__kernel_map(machine); 1474 struct dso *dso = map__dso(map); 1475 int ret = __dso__load_kallsyms(dso, filename, map, true); 1476 1477 if (ret > 0) { 1478 dso__set_loaded(dso); 1479 /* 1480 * Since /proc/kallsyms will have multiple sessions for the 1481 * kernel, with modules between them, fixup the end of all 1482 * sections. 1483 */ 1484 maps__fixup_end(machine__kernel_maps(machine)); 1485 } 1486 1487 return ret; 1488 } 1489 1490 int machine__load_vmlinux_path(struct machine *machine) 1491 { 1492 struct map *map = machine__kernel_map(machine); 1493 struct dso *dso = map__dso(map); 1494 int ret = dso__load_vmlinux_path(dso, map); 1495 1496 if (ret > 0) 1497 dso__set_loaded(dso); 1498 1499 return ret; 1500 } 1501 1502 static char *get_kernel_version(const char *root_dir) 1503 { 1504 char version[PATH_MAX]; 1505 FILE *file; 1506 char *name, *tmp; 1507 const char *prefix = "Linux version "; 1508 1509 sprintf(version, "%s/proc/version", root_dir); 1510 file = fopen(version, "r"); 1511 if (!file) 1512 return NULL; 1513 1514 tmp = fgets(version, sizeof(version), file); 1515 fclose(file); 1516 if (!tmp) 1517 return NULL; 1518 1519 name = strstr(version, prefix); 1520 if (!name) 1521 return NULL; 1522 name += strlen(prefix); 1523 tmp = strchr(name, ' '); 1524 if (tmp) 1525 *tmp = '\0'; 1526 1527 return strdup(name); 1528 } 1529 1530 static bool is_kmod_dso(struct dso *dso) 1531 { 1532 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1533 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1534 } 1535 1536 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1537 { 1538 char *long_name; 1539 struct dso *dso; 1540 struct map *map = maps__find_by_name(maps, m->name); 1541 1542 if (map == NULL) 1543 return 0; 1544 1545 long_name = strdup(path); 1546 if (long_name == NULL) 1547 return -ENOMEM; 1548 1549 dso = map__dso(map); 1550 dso__set_long_name(dso, long_name, true); 1551 dso__kernel_module_get_build_id(dso, ""); 1552 1553 /* 1554 * Full name could reveal us kmod compression, so 1555 * we need to update the symtab_type if needed. 1556 */ 1557 if (m->comp && is_kmod_dso(dso)) { 1558 dso->symtab_type++; 1559 dso->comp = m->comp; 1560 } 1561 1562 return 0; 1563 } 1564 1565 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1566 { 1567 struct dirent *dent; 1568 DIR *dir = opendir(dir_name); 1569 int ret = 0; 1570 1571 if (!dir) { 1572 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1573 return -1; 1574 } 1575 1576 while ((dent = readdir(dir)) != NULL) { 1577 char path[PATH_MAX]; 1578 struct stat st; 1579 1580 /*sshfs might return bad dent->d_type, so we have to stat*/ 1581 path__join(path, sizeof(path), dir_name, dent->d_name); 1582 if (stat(path, &st)) 1583 continue; 1584 1585 if (S_ISDIR(st.st_mode)) { 1586 if (!strcmp(dent->d_name, ".") || 1587 !strcmp(dent->d_name, "..")) 1588 continue; 1589 1590 /* Do not follow top-level source and build symlinks */ 1591 if (depth == 0) { 1592 if (!strcmp(dent->d_name, "source") || 1593 !strcmp(dent->d_name, "build")) 1594 continue; 1595 } 1596 1597 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1598 if (ret < 0) 1599 goto out; 1600 } else { 1601 struct kmod_path m; 1602 1603 ret = kmod_path__parse_name(&m, dent->d_name); 1604 if (ret) 1605 goto out; 1606 1607 if (m.kmod) 1608 ret = maps__set_module_path(maps, path, &m); 1609 1610 zfree(&m.name); 1611 1612 if (ret) 1613 goto out; 1614 } 1615 } 1616 1617 out: 1618 closedir(dir); 1619 return ret; 1620 } 1621 1622 static int machine__set_modules_path(struct machine *machine) 1623 { 1624 char *version; 1625 char modules_path[PATH_MAX]; 1626 1627 version = get_kernel_version(machine->root_dir); 1628 if (!version) 1629 return -1; 1630 1631 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1632 machine->root_dir, version); 1633 free(version); 1634 1635 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1636 } 1637 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1638 u64 *size __maybe_unused, 1639 const char *name __maybe_unused) 1640 { 1641 return 0; 1642 } 1643 1644 static int machine__create_module(void *arg, const char *name, u64 start, 1645 u64 size) 1646 { 1647 struct machine *machine = arg; 1648 struct map *map; 1649 1650 if (arch__fix_module_text_start(&start, &size, name) < 0) 1651 return -1; 1652 1653 map = machine__addnew_module_map(machine, start, name); 1654 if (map == NULL) 1655 return -1; 1656 map__set_end(map, start + size); 1657 1658 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); 1659 map__put(map); 1660 return 0; 1661 } 1662 1663 static int machine__create_modules(struct machine *machine) 1664 { 1665 const char *modules; 1666 char path[PATH_MAX]; 1667 1668 if (machine__is_default_guest(machine)) { 1669 modules = symbol_conf.default_guest_modules; 1670 } else { 1671 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1672 modules = path; 1673 } 1674 1675 if (symbol__restricted_filename(modules, "/proc/modules")) 1676 return -1; 1677 1678 if (modules__parse(modules, machine, machine__create_module)) 1679 return -1; 1680 1681 if (!machine__set_modules_path(machine)) 1682 return 0; 1683 1684 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1685 1686 return 0; 1687 } 1688 1689 static void machine__set_kernel_mmap(struct machine *machine, 1690 u64 start, u64 end) 1691 { 1692 map__set_start(machine->vmlinux_map, start); 1693 map__set_end(machine->vmlinux_map, end); 1694 /* 1695 * Be a bit paranoid here, some perf.data file came with 1696 * a zero sized synthesized MMAP event for the kernel. 1697 */ 1698 if (start == 0 && end == 0) 1699 map__set_end(machine->vmlinux_map, ~0ULL); 1700 } 1701 1702 static int machine__update_kernel_mmap(struct machine *machine, 1703 u64 start, u64 end) 1704 { 1705 struct map *orig, *updated; 1706 int err; 1707 1708 orig = machine->vmlinux_map; 1709 updated = map__get(orig); 1710 1711 machine->vmlinux_map = updated; 1712 machine__set_kernel_mmap(machine, start, end); 1713 maps__remove(machine__kernel_maps(machine), orig); 1714 err = maps__insert(machine__kernel_maps(machine), updated); 1715 map__put(orig); 1716 1717 return err; 1718 } 1719 1720 int machine__create_kernel_maps(struct machine *machine) 1721 { 1722 struct dso *kernel = machine__get_kernel(machine); 1723 const char *name = NULL; 1724 u64 start = 0, end = ~0ULL; 1725 int ret; 1726 1727 if (kernel == NULL) 1728 return -1; 1729 1730 ret = __machine__create_kernel_maps(machine, kernel); 1731 if (ret < 0) 1732 goto out_put; 1733 1734 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1735 if (machine__is_host(machine)) 1736 pr_debug("Problems creating module maps, " 1737 "continuing anyway...\n"); 1738 else 1739 pr_debug("Problems creating module maps for guest %d, " 1740 "continuing anyway...\n", machine->pid); 1741 } 1742 1743 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1744 if (name && 1745 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1746 machine__destroy_kernel_maps(machine); 1747 ret = -1; 1748 goto out_put; 1749 } 1750 1751 /* 1752 * we have a real start address now, so re-order the kmaps 1753 * assume it's the last in the kmaps 1754 */ 1755 ret = machine__update_kernel_mmap(machine, start, end); 1756 if (ret < 0) 1757 goto out_put; 1758 } 1759 1760 if (machine__create_extra_kernel_maps(machine, kernel)) 1761 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1762 1763 if (end == ~0ULL) { 1764 /* update end address of the kernel map using adjacent module address */ 1765 struct map *next = maps__find_next_entry(machine__kernel_maps(machine), 1766 machine__kernel_map(machine)); 1767 1768 if (next) 1769 machine__set_kernel_mmap(machine, start, map__start(next)); 1770 } 1771 1772 out_put: 1773 dso__put(kernel); 1774 return ret; 1775 } 1776 1777 static bool machine__uses_kcore(struct machine *machine) 1778 { 1779 struct dso *dso; 1780 1781 list_for_each_entry(dso, &machine->dsos.head, node) { 1782 if (dso__is_kcore(dso)) 1783 return true; 1784 } 1785 1786 return false; 1787 } 1788 1789 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1790 struct extra_kernel_map *xm) 1791 { 1792 return machine__is(machine, "x86_64") && 1793 is_entry_trampoline(xm->name); 1794 } 1795 1796 static int machine__process_extra_kernel_map(struct machine *machine, 1797 struct extra_kernel_map *xm) 1798 { 1799 struct dso *kernel = machine__kernel_dso(machine); 1800 1801 if (kernel == NULL) 1802 return -1; 1803 1804 return machine__create_extra_kernel_map(machine, kernel, xm); 1805 } 1806 1807 static int machine__process_kernel_mmap_event(struct machine *machine, 1808 struct extra_kernel_map *xm, 1809 struct build_id *bid) 1810 { 1811 enum dso_space_type dso_space; 1812 bool is_kernel_mmap; 1813 const char *mmap_name = machine->mmap_name; 1814 1815 /* If we have maps from kcore then we do not need or want any others */ 1816 if (machine__uses_kcore(machine)) 1817 return 0; 1818 1819 if (machine__is_host(machine)) 1820 dso_space = DSO_SPACE__KERNEL; 1821 else 1822 dso_space = DSO_SPACE__KERNEL_GUEST; 1823 1824 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1825 if (!is_kernel_mmap && !machine__is_host(machine)) { 1826 /* 1827 * If the event was recorded inside the guest and injected into 1828 * the host perf.data file, then it will match a host mmap_name, 1829 * so try that - see machine__set_mmap_name(). 1830 */ 1831 mmap_name = "[kernel.kallsyms]"; 1832 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1833 } 1834 if (xm->name[0] == '/' || 1835 (!is_kernel_mmap && xm->name[0] == '[')) { 1836 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name); 1837 1838 if (map == NULL) 1839 goto out_problem; 1840 1841 map__set_end(map, map__start(map) + xm->end - xm->start); 1842 1843 if (build_id__is_defined(bid)) 1844 dso__set_build_id(map__dso(map), bid); 1845 1846 map__put(map); 1847 } else if (is_kernel_mmap) { 1848 const char *symbol_name = xm->name + strlen(mmap_name); 1849 /* 1850 * Should be there already, from the build-id table in 1851 * the header. 1852 */ 1853 struct dso *kernel = NULL; 1854 struct dso *dso; 1855 1856 down_read(&machine->dsos.lock); 1857 1858 list_for_each_entry(dso, &machine->dsos.head, node) { 1859 1860 /* 1861 * The cpumode passed to is_kernel_module is not the 1862 * cpumode of *this* event. If we insist on passing 1863 * correct cpumode to is_kernel_module, we should 1864 * record the cpumode when we adding this dso to the 1865 * linked list. 1866 * 1867 * However we don't really need passing correct 1868 * cpumode. We know the correct cpumode must be kernel 1869 * mode (if not, we should not link it onto kernel_dsos 1870 * list). 1871 * 1872 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1873 * is_kernel_module() treats it as a kernel cpumode. 1874 */ 1875 1876 if (!dso->kernel || 1877 is_kernel_module(dso->long_name, 1878 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1879 continue; 1880 1881 1882 kernel = dso__get(dso); 1883 break; 1884 } 1885 1886 up_read(&machine->dsos.lock); 1887 1888 if (kernel == NULL) 1889 kernel = machine__findnew_dso(machine, machine->mmap_name); 1890 if (kernel == NULL) 1891 goto out_problem; 1892 1893 kernel->kernel = dso_space; 1894 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1895 dso__put(kernel); 1896 goto out_problem; 1897 } 1898 1899 if (strstr(kernel->long_name, "vmlinux")) 1900 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1901 1902 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { 1903 dso__put(kernel); 1904 goto out_problem; 1905 } 1906 1907 if (build_id__is_defined(bid)) 1908 dso__set_build_id(kernel, bid); 1909 1910 /* 1911 * Avoid using a zero address (kptr_restrict) for the ref reloc 1912 * symbol. Effectively having zero here means that at record 1913 * time /proc/sys/kernel/kptr_restrict was non zero. 1914 */ 1915 if (xm->pgoff != 0) { 1916 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1917 symbol_name, 1918 xm->pgoff); 1919 } 1920 1921 if (machine__is_default_guest(machine)) { 1922 /* 1923 * preload dso of guest kernel and modules 1924 */ 1925 dso__load(kernel, machine__kernel_map(machine)); 1926 } 1927 dso__put(kernel); 1928 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1929 return machine__process_extra_kernel_map(machine, xm); 1930 } 1931 return 0; 1932 out_problem: 1933 return -1; 1934 } 1935 1936 int machine__process_mmap2_event(struct machine *machine, 1937 union perf_event *event, 1938 struct perf_sample *sample) 1939 { 1940 struct thread *thread; 1941 struct map *map; 1942 struct dso_id dso_id = { 1943 .maj = event->mmap2.maj, 1944 .min = event->mmap2.min, 1945 .ino = event->mmap2.ino, 1946 .ino_generation = event->mmap2.ino_generation, 1947 }; 1948 struct build_id __bid, *bid = NULL; 1949 int ret = 0; 1950 1951 if (dump_trace) 1952 perf_event__fprintf_mmap2(event, stdout); 1953 1954 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1955 bid = &__bid; 1956 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1957 } 1958 1959 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1960 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1961 struct extra_kernel_map xm = { 1962 .start = event->mmap2.start, 1963 .end = event->mmap2.start + event->mmap2.len, 1964 .pgoff = event->mmap2.pgoff, 1965 }; 1966 1967 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1968 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1969 if (ret < 0) 1970 goto out_problem; 1971 return 0; 1972 } 1973 1974 thread = machine__findnew_thread(machine, event->mmap2.pid, 1975 event->mmap2.tid); 1976 if (thread == NULL) 1977 goto out_problem; 1978 1979 map = map__new(machine, event->mmap2.start, 1980 event->mmap2.len, event->mmap2.pgoff, 1981 &dso_id, event->mmap2.prot, 1982 event->mmap2.flags, bid, 1983 event->mmap2.filename, thread); 1984 1985 if (map == NULL) 1986 goto out_problem_map; 1987 1988 ret = thread__insert_map(thread, map); 1989 if (ret) 1990 goto out_problem_insert; 1991 1992 thread__put(thread); 1993 map__put(map); 1994 return 0; 1995 1996 out_problem_insert: 1997 map__put(map); 1998 out_problem_map: 1999 thread__put(thread); 2000 out_problem: 2001 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 2002 return 0; 2003 } 2004 2005 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 2006 struct perf_sample *sample) 2007 { 2008 struct thread *thread; 2009 struct map *map; 2010 u32 prot = 0; 2011 int ret = 0; 2012 2013 if (dump_trace) 2014 perf_event__fprintf_mmap(event, stdout); 2015 2016 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 2017 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 2018 struct extra_kernel_map xm = { 2019 .start = event->mmap.start, 2020 .end = event->mmap.start + event->mmap.len, 2021 .pgoff = event->mmap.pgoff, 2022 }; 2023 2024 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 2025 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 2026 if (ret < 0) 2027 goto out_problem; 2028 return 0; 2029 } 2030 2031 thread = machine__findnew_thread(machine, event->mmap.pid, 2032 event->mmap.tid); 2033 if (thread == NULL) 2034 goto out_problem; 2035 2036 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 2037 prot = PROT_EXEC; 2038 2039 map = map__new(machine, event->mmap.start, 2040 event->mmap.len, event->mmap.pgoff, 2041 NULL, prot, 0, NULL, event->mmap.filename, thread); 2042 2043 if (map == NULL) 2044 goto out_problem_map; 2045 2046 ret = thread__insert_map(thread, map); 2047 if (ret) 2048 goto out_problem_insert; 2049 2050 thread__put(thread); 2051 map__put(map); 2052 return 0; 2053 2054 out_problem_insert: 2055 map__put(map); 2056 out_problem_map: 2057 thread__put(thread); 2058 out_problem: 2059 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 2060 return 0; 2061 } 2062 2063 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd, 2064 struct thread *th, bool lock) 2065 { 2066 struct threads *threads = machine__threads(machine, thread__tid(th)); 2067 2068 if (!nd) 2069 nd = thread_rb_node__find(th, &threads->entries.rb_root); 2070 2071 if (threads->last_match && RC_CHK_EQUAL(threads->last_match, th)) 2072 threads__set_last_match(threads, NULL); 2073 2074 if (lock) 2075 down_write(&threads->lock); 2076 2077 BUG_ON(refcount_read(thread__refcnt(th)) == 0); 2078 2079 thread__put(nd->thread); 2080 rb_erase_cached(&nd->rb_node, &threads->entries); 2081 RB_CLEAR_NODE(&nd->rb_node); 2082 --threads->nr; 2083 2084 free(nd); 2085 2086 if (lock) 2087 up_write(&threads->lock); 2088 } 2089 2090 void machine__remove_thread(struct machine *machine, struct thread *th) 2091 { 2092 return __machine__remove_thread(machine, NULL, th, true); 2093 } 2094 2095 int machine__process_fork_event(struct machine *machine, union perf_event *event, 2096 struct perf_sample *sample) 2097 { 2098 struct thread *thread = machine__find_thread(machine, 2099 event->fork.pid, 2100 event->fork.tid); 2101 struct thread *parent = machine__findnew_thread(machine, 2102 event->fork.ppid, 2103 event->fork.ptid); 2104 bool do_maps_clone = true; 2105 int err = 0; 2106 2107 if (dump_trace) 2108 perf_event__fprintf_task(event, stdout); 2109 2110 /* 2111 * There may be an existing thread that is not actually the parent, 2112 * either because we are processing events out of order, or because the 2113 * (fork) event that would have removed the thread was lost. Assume the 2114 * latter case and continue on as best we can. 2115 */ 2116 if (thread__pid(parent) != (pid_t)event->fork.ppid) { 2117 dump_printf("removing erroneous parent thread %d/%d\n", 2118 thread__pid(parent), thread__tid(parent)); 2119 machine__remove_thread(machine, parent); 2120 thread__put(parent); 2121 parent = machine__findnew_thread(machine, event->fork.ppid, 2122 event->fork.ptid); 2123 } 2124 2125 /* if a thread currently exists for the thread id remove it */ 2126 if (thread != NULL) { 2127 machine__remove_thread(machine, thread); 2128 thread__put(thread); 2129 } 2130 2131 thread = machine__findnew_thread(machine, event->fork.pid, 2132 event->fork.tid); 2133 /* 2134 * When synthesizing FORK events, we are trying to create thread 2135 * objects for the already running tasks on the machine. 2136 * 2137 * Normally, for a kernel FORK event, we want to clone the parent's 2138 * maps because that is what the kernel just did. 2139 * 2140 * But when synthesizing, this should not be done. If we do, we end up 2141 * with overlapping maps as we process the synthesized MMAP2 events that 2142 * get delivered shortly thereafter. 2143 * 2144 * Use the FORK event misc flags in an internal way to signal this 2145 * situation, so we can elide the map clone when appropriate. 2146 */ 2147 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 2148 do_maps_clone = false; 2149 2150 if (thread == NULL || parent == NULL || 2151 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 2152 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 2153 err = -1; 2154 } 2155 thread__put(thread); 2156 thread__put(parent); 2157 2158 return err; 2159 } 2160 2161 int machine__process_exit_event(struct machine *machine, union perf_event *event, 2162 struct perf_sample *sample __maybe_unused) 2163 { 2164 struct thread *thread = machine__find_thread(machine, 2165 event->fork.pid, 2166 event->fork.tid); 2167 2168 if (dump_trace) 2169 perf_event__fprintf_task(event, stdout); 2170 2171 if (thread != NULL) { 2172 if (symbol_conf.keep_exited_threads) 2173 thread__set_exited(thread, /*exited=*/true); 2174 else 2175 machine__remove_thread(machine, thread); 2176 } 2177 thread__put(thread); 2178 return 0; 2179 } 2180 2181 int machine__process_event(struct machine *machine, union perf_event *event, 2182 struct perf_sample *sample) 2183 { 2184 int ret; 2185 2186 switch (event->header.type) { 2187 case PERF_RECORD_COMM: 2188 ret = machine__process_comm_event(machine, event, sample); break; 2189 case PERF_RECORD_MMAP: 2190 ret = machine__process_mmap_event(machine, event, sample); break; 2191 case PERF_RECORD_NAMESPACES: 2192 ret = machine__process_namespaces_event(machine, event, sample); break; 2193 case PERF_RECORD_CGROUP: 2194 ret = machine__process_cgroup_event(machine, event, sample); break; 2195 case PERF_RECORD_MMAP2: 2196 ret = machine__process_mmap2_event(machine, event, sample); break; 2197 case PERF_RECORD_FORK: 2198 ret = machine__process_fork_event(machine, event, sample); break; 2199 case PERF_RECORD_EXIT: 2200 ret = machine__process_exit_event(machine, event, sample); break; 2201 case PERF_RECORD_LOST: 2202 ret = machine__process_lost_event(machine, event, sample); break; 2203 case PERF_RECORD_AUX: 2204 ret = machine__process_aux_event(machine, event); break; 2205 case PERF_RECORD_ITRACE_START: 2206 ret = machine__process_itrace_start_event(machine, event); break; 2207 case PERF_RECORD_LOST_SAMPLES: 2208 ret = machine__process_lost_samples_event(machine, event, sample); break; 2209 case PERF_RECORD_SWITCH: 2210 case PERF_RECORD_SWITCH_CPU_WIDE: 2211 ret = machine__process_switch_event(machine, event); break; 2212 case PERF_RECORD_KSYMBOL: 2213 ret = machine__process_ksymbol(machine, event, sample); break; 2214 case PERF_RECORD_BPF_EVENT: 2215 ret = machine__process_bpf(machine, event, sample); break; 2216 case PERF_RECORD_TEXT_POKE: 2217 ret = machine__process_text_poke(machine, event, sample); break; 2218 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2219 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2220 default: 2221 ret = -1; 2222 break; 2223 } 2224 2225 return ret; 2226 } 2227 2228 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2229 { 2230 return regexec(regex, sym->name, 0, NULL, 0) == 0; 2231 } 2232 2233 static void ip__resolve_ams(struct thread *thread, 2234 struct addr_map_symbol *ams, 2235 u64 ip) 2236 { 2237 struct addr_location al; 2238 2239 addr_location__init(&al); 2240 /* 2241 * We cannot use the header.misc hint to determine whether a 2242 * branch stack address is user, kernel, guest, hypervisor. 2243 * Branches may straddle the kernel/user/hypervisor boundaries. 2244 * Thus, we have to try consecutively until we find a match 2245 * or else, the symbol is unknown 2246 */ 2247 thread__find_cpumode_addr_location(thread, ip, &al); 2248 2249 ams->addr = ip; 2250 ams->al_addr = al.addr; 2251 ams->al_level = al.level; 2252 ams->ms.maps = maps__get(al.maps); 2253 ams->ms.sym = al.sym; 2254 ams->ms.map = map__get(al.map); 2255 ams->phys_addr = 0; 2256 ams->data_page_size = 0; 2257 addr_location__exit(&al); 2258 } 2259 2260 static void ip__resolve_data(struct thread *thread, 2261 u8 m, struct addr_map_symbol *ams, 2262 u64 addr, u64 phys_addr, u64 daddr_page_size) 2263 { 2264 struct addr_location al; 2265 2266 addr_location__init(&al); 2267 2268 thread__find_symbol(thread, m, addr, &al); 2269 2270 ams->addr = addr; 2271 ams->al_addr = al.addr; 2272 ams->al_level = al.level; 2273 ams->ms.maps = maps__get(al.maps); 2274 ams->ms.sym = al.sym; 2275 ams->ms.map = map__get(al.map); 2276 ams->phys_addr = phys_addr; 2277 ams->data_page_size = daddr_page_size; 2278 addr_location__exit(&al); 2279 } 2280 2281 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2282 struct addr_location *al) 2283 { 2284 struct mem_info *mi = mem_info__new(); 2285 2286 if (!mi) 2287 return NULL; 2288 2289 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2290 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2291 sample->addr, sample->phys_addr, 2292 sample->data_page_size); 2293 mi->data_src.val = sample->data_src; 2294 2295 return mi; 2296 } 2297 2298 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2299 { 2300 struct map *map = ms->map; 2301 char *srcline = NULL; 2302 struct dso *dso; 2303 2304 if (!map || callchain_param.key == CCKEY_FUNCTION) 2305 return srcline; 2306 2307 dso = map__dso(map); 2308 srcline = srcline__tree_find(&dso->srclines, ip); 2309 if (!srcline) { 2310 bool show_sym = false; 2311 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2312 2313 srcline = get_srcline(dso, map__rip_2objdump(map, ip), 2314 ms->sym, show_sym, show_addr, ip); 2315 srcline__tree_insert(&dso->srclines, ip, srcline); 2316 } 2317 2318 return srcline; 2319 } 2320 2321 struct iterations { 2322 int nr_loop_iter; 2323 u64 cycles; 2324 }; 2325 2326 static int add_callchain_ip(struct thread *thread, 2327 struct callchain_cursor *cursor, 2328 struct symbol **parent, 2329 struct addr_location *root_al, 2330 u8 *cpumode, 2331 u64 ip, 2332 bool branch, 2333 struct branch_flags *flags, 2334 struct iterations *iter, 2335 u64 branch_from) 2336 { 2337 struct map_symbol ms = {}; 2338 struct addr_location al; 2339 int nr_loop_iter = 0, err = 0; 2340 u64 iter_cycles = 0; 2341 const char *srcline = NULL; 2342 2343 addr_location__init(&al); 2344 al.filtered = 0; 2345 al.sym = NULL; 2346 al.srcline = NULL; 2347 if (!cpumode) { 2348 thread__find_cpumode_addr_location(thread, ip, &al); 2349 } else { 2350 if (ip >= PERF_CONTEXT_MAX) { 2351 switch (ip) { 2352 case PERF_CONTEXT_HV: 2353 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2354 break; 2355 case PERF_CONTEXT_KERNEL: 2356 *cpumode = PERF_RECORD_MISC_KERNEL; 2357 break; 2358 case PERF_CONTEXT_USER: 2359 *cpumode = PERF_RECORD_MISC_USER; 2360 break; 2361 default: 2362 pr_debug("invalid callchain context: " 2363 "%"PRId64"\n", (s64) ip); 2364 /* 2365 * It seems the callchain is corrupted. 2366 * Discard all. 2367 */ 2368 callchain_cursor_reset(cursor); 2369 err = 1; 2370 goto out; 2371 } 2372 goto out; 2373 } 2374 thread__find_symbol(thread, *cpumode, ip, &al); 2375 } 2376 2377 if (al.sym != NULL) { 2378 if (perf_hpp_list.parent && !*parent && 2379 symbol__match_regex(al.sym, &parent_regex)) 2380 *parent = al.sym; 2381 else if (have_ignore_callees && root_al && 2382 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2383 /* Treat this symbol as the root, 2384 forgetting its callees. */ 2385 addr_location__copy(root_al, &al); 2386 callchain_cursor_reset(cursor); 2387 } 2388 } 2389 2390 if (symbol_conf.hide_unresolved && al.sym == NULL) 2391 goto out; 2392 2393 if (iter) { 2394 nr_loop_iter = iter->nr_loop_iter; 2395 iter_cycles = iter->cycles; 2396 } 2397 2398 ms.maps = maps__get(al.maps); 2399 ms.map = map__get(al.map); 2400 ms.sym = al.sym; 2401 srcline = callchain_srcline(&ms, al.addr); 2402 err = callchain_cursor_append(cursor, ip, &ms, 2403 branch, flags, nr_loop_iter, 2404 iter_cycles, branch_from, srcline); 2405 out: 2406 addr_location__exit(&al); 2407 map_symbol__exit(&ms); 2408 return err; 2409 } 2410 2411 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2412 struct addr_location *al) 2413 { 2414 unsigned int i; 2415 const struct branch_stack *bs = sample->branch_stack; 2416 struct branch_entry *entries = perf_sample__branch_entries(sample); 2417 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2418 2419 if (!bi) 2420 return NULL; 2421 2422 for (i = 0; i < bs->nr; i++) { 2423 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2424 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2425 bi[i].flags = entries[i].flags; 2426 } 2427 return bi; 2428 } 2429 2430 static void save_iterations(struct iterations *iter, 2431 struct branch_entry *be, int nr) 2432 { 2433 int i; 2434 2435 iter->nr_loop_iter++; 2436 iter->cycles = 0; 2437 2438 for (i = 0; i < nr; i++) 2439 iter->cycles += be[i].flags.cycles; 2440 } 2441 2442 #define CHASHSZ 127 2443 #define CHASHBITS 7 2444 #define NO_ENTRY 0xff 2445 2446 #define PERF_MAX_BRANCH_DEPTH 127 2447 2448 /* Remove loops. */ 2449 static int remove_loops(struct branch_entry *l, int nr, 2450 struct iterations *iter) 2451 { 2452 int i, j, off; 2453 unsigned char chash[CHASHSZ]; 2454 2455 memset(chash, NO_ENTRY, sizeof(chash)); 2456 2457 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2458 2459 for (i = 0; i < nr; i++) { 2460 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2461 2462 /* no collision handling for now */ 2463 if (chash[h] == NO_ENTRY) { 2464 chash[h] = i; 2465 } else if (l[chash[h]].from == l[i].from) { 2466 bool is_loop = true; 2467 /* check if it is a real loop */ 2468 off = 0; 2469 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2470 if (l[j].from != l[i + off].from) { 2471 is_loop = false; 2472 break; 2473 } 2474 if (is_loop) { 2475 j = nr - (i + off); 2476 if (j > 0) { 2477 save_iterations(iter + i + off, 2478 l + i, off); 2479 2480 memmove(iter + i, iter + i + off, 2481 j * sizeof(*iter)); 2482 2483 memmove(l + i, l + i + off, 2484 j * sizeof(*l)); 2485 } 2486 2487 nr -= off; 2488 } 2489 } 2490 } 2491 return nr; 2492 } 2493 2494 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2495 struct callchain_cursor *cursor, 2496 struct perf_sample *sample, 2497 struct symbol **parent, 2498 struct addr_location *root_al, 2499 u64 branch_from, 2500 bool callee, int end) 2501 { 2502 struct ip_callchain *chain = sample->callchain; 2503 u8 cpumode = PERF_RECORD_MISC_USER; 2504 int err, i; 2505 2506 if (callee) { 2507 for (i = 0; i < end + 1; i++) { 2508 err = add_callchain_ip(thread, cursor, parent, 2509 root_al, &cpumode, chain->ips[i], 2510 false, NULL, NULL, branch_from); 2511 if (err) 2512 return err; 2513 } 2514 return 0; 2515 } 2516 2517 for (i = end; i >= 0; i--) { 2518 err = add_callchain_ip(thread, cursor, parent, 2519 root_al, &cpumode, chain->ips[i], 2520 false, NULL, NULL, branch_from); 2521 if (err) 2522 return err; 2523 } 2524 2525 return 0; 2526 } 2527 2528 static void save_lbr_cursor_node(struct thread *thread, 2529 struct callchain_cursor *cursor, 2530 int idx) 2531 { 2532 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2533 2534 if (!lbr_stitch) 2535 return; 2536 2537 if (cursor->pos == cursor->nr) { 2538 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2539 return; 2540 } 2541 2542 if (!cursor->curr) 2543 cursor->curr = cursor->first; 2544 else 2545 cursor->curr = cursor->curr->next; 2546 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2547 sizeof(struct callchain_cursor_node)); 2548 2549 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2550 cursor->pos++; 2551 } 2552 2553 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2554 struct callchain_cursor *cursor, 2555 struct perf_sample *sample, 2556 struct symbol **parent, 2557 struct addr_location *root_al, 2558 u64 *branch_from, 2559 bool callee) 2560 { 2561 struct branch_stack *lbr_stack = sample->branch_stack; 2562 struct branch_entry *entries = perf_sample__branch_entries(sample); 2563 u8 cpumode = PERF_RECORD_MISC_USER; 2564 int lbr_nr = lbr_stack->nr; 2565 struct branch_flags *flags; 2566 int err, i; 2567 u64 ip; 2568 2569 /* 2570 * The curr and pos are not used in writing session. They are cleared 2571 * in callchain_cursor_commit() when the writing session is closed. 2572 * Using curr and pos to track the current cursor node. 2573 */ 2574 if (thread__lbr_stitch(thread)) { 2575 cursor->curr = NULL; 2576 cursor->pos = cursor->nr; 2577 if (cursor->nr) { 2578 cursor->curr = cursor->first; 2579 for (i = 0; i < (int)(cursor->nr - 1); i++) 2580 cursor->curr = cursor->curr->next; 2581 } 2582 } 2583 2584 if (callee) { 2585 /* Add LBR ip from first entries.to */ 2586 ip = entries[0].to; 2587 flags = &entries[0].flags; 2588 *branch_from = entries[0].from; 2589 err = add_callchain_ip(thread, cursor, parent, 2590 root_al, &cpumode, ip, 2591 true, flags, NULL, 2592 *branch_from); 2593 if (err) 2594 return err; 2595 2596 /* 2597 * The number of cursor node increases. 2598 * Move the current cursor node. 2599 * But does not need to save current cursor node for entry 0. 2600 * It's impossible to stitch the whole LBRs of previous sample. 2601 */ 2602 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) { 2603 if (!cursor->curr) 2604 cursor->curr = cursor->first; 2605 else 2606 cursor->curr = cursor->curr->next; 2607 cursor->pos++; 2608 } 2609 2610 /* Add LBR ip from entries.from one by one. */ 2611 for (i = 0; i < lbr_nr; i++) { 2612 ip = entries[i].from; 2613 flags = &entries[i].flags; 2614 err = add_callchain_ip(thread, cursor, parent, 2615 root_al, &cpumode, ip, 2616 true, flags, NULL, 2617 *branch_from); 2618 if (err) 2619 return err; 2620 save_lbr_cursor_node(thread, cursor, i); 2621 } 2622 return 0; 2623 } 2624 2625 /* Add LBR ip from entries.from one by one. */ 2626 for (i = lbr_nr - 1; i >= 0; i--) { 2627 ip = entries[i].from; 2628 flags = &entries[i].flags; 2629 err = add_callchain_ip(thread, cursor, parent, 2630 root_al, &cpumode, ip, 2631 true, flags, NULL, 2632 *branch_from); 2633 if (err) 2634 return err; 2635 save_lbr_cursor_node(thread, cursor, i); 2636 } 2637 2638 if (lbr_nr > 0) { 2639 /* Add LBR ip from first entries.to */ 2640 ip = entries[0].to; 2641 flags = &entries[0].flags; 2642 *branch_from = entries[0].from; 2643 err = add_callchain_ip(thread, cursor, parent, 2644 root_al, &cpumode, ip, 2645 true, flags, NULL, 2646 *branch_from); 2647 if (err) 2648 return err; 2649 } 2650 2651 return 0; 2652 } 2653 2654 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2655 struct callchain_cursor *cursor) 2656 { 2657 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2658 struct callchain_cursor_node *cnode; 2659 struct stitch_list *stitch_node; 2660 int err; 2661 2662 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2663 cnode = &stitch_node->cursor; 2664 2665 err = callchain_cursor_append(cursor, cnode->ip, 2666 &cnode->ms, 2667 cnode->branch, 2668 &cnode->branch_flags, 2669 cnode->nr_loop_iter, 2670 cnode->iter_cycles, 2671 cnode->branch_from, 2672 cnode->srcline); 2673 if (err) 2674 return err; 2675 } 2676 return 0; 2677 } 2678 2679 static struct stitch_list *get_stitch_node(struct thread *thread) 2680 { 2681 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2682 struct stitch_list *stitch_node; 2683 2684 if (!list_empty(&lbr_stitch->free_lists)) { 2685 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2686 struct stitch_list, node); 2687 list_del(&stitch_node->node); 2688 2689 return stitch_node; 2690 } 2691 2692 return malloc(sizeof(struct stitch_list)); 2693 } 2694 2695 static bool has_stitched_lbr(struct thread *thread, 2696 struct perf_sample *cur, 2697 struct perf_sample *prev, 2698 unsigned int max_lbr, 2699 bool callee) 2700 { 2701 struct branch_stack *cur_stack = cur->branch_stack; 2702 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2703 struct branch_stack *prev_stack = prev->branch_stack; 2704 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2705 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2706 int i, j, nr_identical_branches = 0; 2707 struct stitch_list *stitch_node; 2708 u64 cur_base, distance; 2709 2710 if (!cur_stack || !prev_stack) 2711 return false; 2712 2713 /* Find the physical index of the base-of-stack for current sample. */ 2714 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2715 2716 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2717 (max_lbr + prev_stack->hw_idx - cur_base); 2718 /* Previous sample has shorter stack. Nothing can be stitched. */ 2719 if (distance + 1 > prev_stack->nr) 2720 return false; 2721 2722 /* 2723 * Check if there are identical LBRs between two samples. 2724 * Identical LBRs must have same from, to and flags values. Also, 2725 * they have to be saved in the same LBR registers (same physical 2726 * index). 2727 * 2728 * Starts from the base-of-stack of current sample. 2729 */ 2730 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2731 if ((prev_entries[i].from != cur_entries[j].from) || 2732 (prev_entries[i].to != cur_entries[j].to) || 2733 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2734 break; 2735 nr_identical_branches++; 2736 } 2737 2738 if (!nr_identical_branches) 2739 return false; 2740 2741 /* 2742 * Save the LBRs between the base-of-stack of previous sample 2743 * and the base-of-stack of current sample into lbr_stitch->lists. 2744 * These LBRs will be stitched later. 2745 */ 2746 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2747 2748 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2749 continue; 2750 2751 stitch_node = get_stitch_node(thread); 2752 if (!stitch_node) 2753 return false; 2754 2755 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2756 sizeof(struct callchain_cursor_node)); 2757 2758 if (callee) 2759 list_add(&stitch_node->node, &lbr_stitch->lists); 2760 else 2761 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2762 } 2763 2764 return true; 2765 } 2766 2767 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2768 { 2769 if (thread__lbr_stitch(thread)) 2770 return true; 2771 2772 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch))); 2773 if (!thread__lbr_stitch(thread)) 2774 goto err; 2775 2776 thread__lbr_stitch(thread)->prev_lbr_cursor = 2777 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2778 if (!thread__lbr_stitch(thread)->prev_lbr_cursor) 2779 goto free_lbr_stitch; 2780 2781 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists); 2782 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists); 2783 2784 return true; 2785 2786 free_lbr_stitch: 2787 free(thread__lbr_stitch(thread)); 2788 thread__set_lbr_stitch(thread, NULL); 2789 err: 2790 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2791 thread__set_lbr_stitch_enable(thread, false); 2792 return false; 2793 } 2794 2795 /* 2796 * Resolve LBR callstack chain sample 2797 * Return: 2798 * 1 on success get LBR callchain information 2799 * 0 no available LBR callchain information, should try fp 2800 * negative error code on other errors. 2801 */ 2802 static int resolve_lbr_callchain_sample(struct thread *thread, 2803 struct callchain_cursor *cursor, 2804 struct perf_sample *sample, 2805 struct symbol **parent, 2806 struct addr_location *root_al, 2807 int max_stack, 2808 unsigned int max_lbr) 2809 { 2810 bool callee = (callchain_param.order == ORDER_CALLEE); 2811 struct ip_callchain *chain = sample->callchain; 2812 int chain_nr = min(max_stack, (int)chain->nr), i; 2813 struct lbr_stitch *lbr_stitch; 2814 bool stitched_lbr = false; 2815 u64 branch_from = 0; 2816 int err; 2817 2818 for (i = 0; i < chain_nr; i++) { 2819 if (chain->ips[i] == PERF_CONTEXT_USER) 2820 break; 2821 } 2822 2823 /* LBR only affects the user callchain */ 2824 if (i == chain_nr) 2825 return 0; 2826 2827 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx && 2828 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2829 lbr_stitch = thread__lbr_stitch(thread); 2830 2831 stitched_lbr = has_stitched_lbr(thread, sample, 2832 &lbr_stitch->prev_sample, 2833 max_lbr, callee); 2834 2835 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2836 list_replace_init(&lbr_stitch->lists, 2837 &lbr_stitch->free_lists); 2838 } 2839 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2840 } 2841 2842 if (callee) { 2843 /* Add kernel ip */ 2844 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2845 parent, root_al, branch_from, 2846 true, i); 2847 if (err) 2848 goto error; 2849 2850 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2851 root_al, &branch_from, true); 2852 if (err) 2853 goto error; 2854 2855 if (stitched_lbr) { 2856 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2857 if (err) 2858 goto error; 2859 } 2860 2861 } else { 2862 if (stitched_lbr) { 2863 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2864 if (err) 2865 goto error; 2866 } 2867 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2868 root_al, &branch_from, false); 2869 if (err) 2870 goto error; 2871 2872 /* Add kernel ip */ 2873 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2874 parent, root_al, branch_from, 2875 false, i); 2876 if (err) 2877 goto error; 2878 } 2879 return 1; 2880 2881 error: 2882 return (err < 0) ? err : 0; 2883 } 2884 2885 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2886 struct callchain_cursor *cursor, 2887 struct symbol **parent, 2888 struct addr_location *root_al, 2889 u8 *cpumode, int ent) 2890 { 2891 int err = 0; 2892 2893 while (--ent >= 0) { 2894 u64 ip = chain->ips[ent]; 2895 2896 if (ip >= PERF_CONTEXT_MAX) { 2897 err = add_callchain_ip(thread, cursor, parent, 2898 root_al, cpumode, ip, 2899 false, NULL, NULL, 0); 2900 break; 2901 } 2902 } 2903 return err; 2904 } 2905 2906 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2907 struct thread *thread, int usr_idx) 2908 { 2909 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64")) 2910 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2911 else 2912 return 0; 2913 } 2914 2915 static int thread__resolve_callchain_sample(struct thread *thread, 2916 struct callchain_cursor *cursor, 2917 struct evsel *evsel, 2918 struct perf_sample *sample, 2919 struct symbol **parent, 2920 struct addr_location *root_al, 2921 int max_stack) 2922 { 2923 struct branch_stack *branch = sample->branch_stack; 2924 struct branch_entry *entries = perf_sample__branch_entries(sample); 2925 struct ip_callchain *chain = sample->callchain; 2926 int chain_nr = 0; 2927 u8 cpumode = PERF_RECORD_MISC_USER; 2928 int i, j, err, nr_entries, usr_idx; 2929 int skip_idx = -1; 2930 int first_call = 0; 2931 u64 leaf_frame_caller; 2932 2933 if (chain) 2934 chain_nr = chain->nr; 2935 2936 if (evsel__has_branch_callstack(evsel)) { 2937 struct perf_env *env = evsel__env(evsel); 2938 2939 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2940 root_al, max_stack, 2941 !env ? 0 : env->max_branches); 2942 if (err) 2943 return (err < 0) ? err : 0; 2944 } 2945 2946 /* 2947 * Based on DWARF debug information, some architectures skip 2948 * a callchain entry saved by the kernel. 2949 */ 2950 skip_idx = arch_skip_callchain_idx(thread, chain); 2951 2952 /* 2953 * Add branches to call stack for easier browsing. This gives 2954 * more context for a sample than just the callers. 2955 * 2956 * This uses individual histograms of paths compared to the 2957 * aggregated histograms the normal LBR mode uses. 2958 * 2959 * Limitations for now: 2960 * - No extra filters 2961 * - No annotations (should annotate somehow) 2962 */ 2963 2964 if (branch && callchain_param.branch_callstack) { 2965 int nr = min(max_stack, (int)branch->nr); 2966 struct branch_entry be[nr]; 2967 struct iterations iter[nr]; 2968 2969 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2970 pr_warning("corrupted branch chain. skipping...\n"); 2971 goto check_calls; 2972 } 2973 2974 for (i = 0; i < nr; i++) { 2975 if (callchain_param.order == ORDER_CALLEE) { 2976 be[i] = entries[i]; 2977 2978 if (chain == NULL) 2979 continue; 2980 2981 /* 2982 * Check for overlap into the callchain. 2983 * The return address is one off compared to 2984 * the branch entry. To adjust for this 2985 * assume the calling instruction is not longer 2986 * than 8 bytes. 2987 */ 2988 if (i == skip_idx || 2989 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2990 first_call++; 2991 else if (be[i].from < chain->ips[first_call] && 2992 be[i].from >= chain->ips[first_call] - 8) 2993 first_call++; 2994 } else 2995 be[i] = entries[branch->nr - i - 1]; 2996 } 2997 2998 memset(iter, 0, sizeof(struct iterations) * nr); 2999 nr = remove_loops(be, nr, iter); 3000 3001 for (i = 0; i < nr; i++) { 3002 err = add_callchain_ip(thread, cursor, parent, 3003 root_al, 3004 NULL, be[i].to, 3005 true, &be[i].flags, 3006 NULL, be[i].from); 3007 3008 if (!err) 3009 err = add_callchain_ip(thread, cursor, parent, root_al, 3010 NULL, be[i].from, 3011 true, &be[i].flags, 3012 &iter[i], 0); 3013 if (err == -EINVAL) 3014 break; 3015 if (err) 3016 return err; 3017 } 3018 3019 if (chain_nr == 0) 3020 return 0; 3021 3022 chain_nr -= nr; 3023 } 3024 3025 check_calls: 3026 if (chain && callchain_param.order != ORDER_CALLEE) { 3027 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 3028 &cpumode, chain->nr - first_call); 3029 if (err) 3030 return (err < 0) ? err : 0; 3031 } 3032 for (i = first_call, nr_entries = 0; 3033 i < chain_nr && nr_entries < max_stack; i++) { 3034 u64 ip; 3035 3036 if (callchain_param.order == ORDER_CALLEE) 3037 j = i; 3038 else 3039 j = chain->nr - i - 1; 3040 3041 #ifdef HAVE_SKIP_CALLCHAIN_IDX 3042 if (j == skip_idx) 3043 continue; 3044 #endif 3045 ip = chain->ips[j]; 3046 if (ip < PERF_CONTEXT_MAX) 3047 ++nr_entries; 3048 else if (callchain_param.order != ORDER_CALLEE) { 3049 err = find_prev_cpumode(chain, thread, cursor, parent, 3050 root_al, &cpumode, j); 3051 if (err) 3052 return (err < 0) ? err : 0; 3053 continue; 3054 } 3055 3056 /* 3057 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 3058 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 3059 * the index will be different in order to add the missing frame 3060 * at the right place. 3061 */ 3062 3063 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 3064 3065 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 3066 3067 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 3068 3069 /* 3070 * check if leaf_frame_Caller != ip to not add the same 3071 * value twice. 3072 */ 3073 3074 if (leaf_frame_caller && leaf_frame_caller != ip) { 3075 3076 err = add_callchain_ip(thread, cursor, parent, 3077 root_al, &cpumode, leaf_frame_caller, 3078 false, NULL, NULL, 0); 3079 if (err) 3080 return (err < 0) ? err : 0; 3081 } 3082 } 3083 3084 err = add_callchain_ip(thread, cursor, parent, 3085 root_al, &cpumode, ip, 3086 false, NULL, NULL, 0); 3087 3088 if (err) 3089 return (err < 0) ? err : 0; 3090 } 3091 3092 return 0; 3093 } 3094 3095 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 3096 { 3097 struct symbol *sym = ms->sym; 3098 struct map *map = ms->map; 3099 struct inline_node *inline_node; 3100 struct inline_list *ilist; 3101 struct dso *dso; 3102 u64 addr; 3103 int ret = 1; 3104 struct map_symbol ilist_ms; 3105 3106 if (!symbol_conf.inline_name || !map || !sym) 3107 return ret; 3108 3109 addr = map__dso_map_ip(map, ip); 3110 addr = map__rip_2objdump(map, addr); 3111 dso = map__dso(map); 3112 3113 inline_node = inlines__tree_find(&dso->inlined_nodes, addr); 3114 if (!inline_node) { 3115 inline_node = dso__parse_addr_inlines(dso, addr, sym); 3116 if (!inline_node) 3117 return ret; 3118 inlines__tree_insert(&dso->inlined_nodes, inline_node); 3119 } 3120 3121 ilist_ms = (struct map_symbol) { 3122 .maps = maps__get(ms->maps), 3123 .map = map__get(map), 3124 }; 3125 list_for_each_entry(ilist, &inline_node->val, list) { 3126 ilist_ms.sym = ilist->symbol; 3127 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 3128 NULL, 0, 0, 0, ilist->srcline); 3129 3130 if (ret != 0) 3131 return ret; 3132 } 3133 map_symbol__exit(&ilist_ms); 3134 3135 return ret; 3136 } 3137 3138 static int unwind_entry(struct unwind_entry *entry, void *arg) 3139 { 3140 struct callchain_cursor *cursor = arg; 3141 const char *srcline = NULL; 3142 u64 addr = entry->ip; 3143 3144 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 3145 return 0; 3146 3147 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 3148 return 0; 3149 3150 /* 3151 * Convert entry->ip from a virtual address to an offset in 3152 * its corresponding binary. 3153 */ 3154 if (entry->ms.map) 3155 addr = map__dso_map_ip(entry->ms.map, entry->ip); 3156 3157 srcline = callchain_srcline(&entry->ms, addr); 3158 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 3159 false, NULL, 0, 0, 0, srcline); 3160 } 3161 3162 static int thread__resolve_callchain_unwind(struct thread *thread, 3163 struct callchain_cursor *cursor, 3164 struct evsel *evsel, 3165 struct perf_sample *sample, 3166 int max_stack) 3167 { 3168 /* Can we do dwarf post unwind? */ 3169 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 3170 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 3171 return 0; 3172 3173 /* Bail out if nothing was captured. */ 3174 if ((!sample->user_regs.regs) || 3175 (!sample->user_stack.size)) 3176 return 0; 3177 3178 return unwind__get_entries(unwind_entry, cursor, 3179 thread, sample, max_stack, false); 3180 } 3181 3182 int thread__resolve_callchain(struct thread *thread, 3183 struct callchain_cursor *cursor, 3184 struct evsel *evsel, 3185 struct perf_sample *sample, 3186 struct symbol **parent, 3187 struct addr_location *root_al, 3188 int max_stack) 3189 { 3190 int ret = 0; 3191 3192 if (cursor == NULL) 3193 return -ENOMEM; 3194 3195 callchain_cursor_reset(cursor); 3196 3197 if (callchain_param.order == ORDER_CALLEE) { 3198 ret = thread__resolve_callchain_sample(thread, cursor, 3199 evsel, sample, 3200 parent, root_al, 3201 max_stack); 3202 if (ret) 3203 return ret; 3204 ret = thread__resolve_callchain_unwind(thread, cursor, 3205 evsel, sample, 3206 max_stack); 3207 } else { 3208 ret = thread__resolve_callchain_unwind(thread, cursor, 3209 evsel, sample, 3210 max_stack); 3211 if (ret) 3212 return ret; 3213 ret = thread__resolve_callchain_sample(thread, cursor, 3214 evsel, sample, 3215 parent, root_al, 3216 max_stack); 3217 } 3218 3219 return ret; 3220 } 3221 3222 int machine__for_each_thread(struct machine *machine, 3223 int (*fn)(struct thread *thread, void *p), 3224 void *priv) 3225 { 3226 struct threads *threads; 3227 struct rb_node *nd; 3228 int rc = 0; 3229 int i; 3230 3231 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 3232 threads = &machine->threads[i]; 3233 for (nd = rb_first_cached(&threads->entries); nd; 3234 nd = rb_next(nd)) { 3235 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node); 3236 3237 rc = fn(trb->thread, priv); 3238 if (rc != 0) 3239 return rc; 3240 } 3241 } 3242 return rc; 3243 } 3244 3245 int machines__for_each_thread(struct machines *machines, 3246 int (*fn)(struct thread *thread, void *p), 3247 void *priv) 3248 { 3249 struct rb_node *nd; 3250 int rc = 0; 3251 3252 rc = machine__for_each_thread(&machines->host, fn, priv); 3253 if (rc != 0) 3254 return rc; 3255 3256 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3257 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3258 3259 rc = machine__for_each_thread(machine, fn, priv); 3260 if (rc != 0) 3261 return rc; 3262 } 3263 return rc; 3264 } 3265 3266 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3267 { 3268 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3269 return -1; 3270 3271 return machine->current_tid[cpu]; 3272 } 3273 3274 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3275 pid_t tid) 3276 { 3277 struct thread *thread; 3278 const pid_t init_val = -1; 3279 3280 if (cpu < 0) 3281 return -EINVAL; 3282 3283 if (realloc_array_as_needed(machine->current_tid, 3284 machine->current_tid_sz, 3285 (unsigned int)cpu, 3286 &init_val)) 3287 return -ENOMEM; 3288 3289 machine->current_tid[cpu] = tid; 3290 3291 thread = machine__findnew_thread(machine, pid, tid); 3292 if (!thread) 3293 return -ENOMEM; 3294 3295 thread__set_cpu(thread, cpu); 3296 thread__put(thread); 3297 3298 return 0; 3299 } 3300 3301 /* 3302 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3303 * machine__normalized_is() if a normalized arch is needed. 3304 */ 3305 bool machine__is(struct machine *machine, const char *arch) 3306 { 3307 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3308 } 3309 3310 bool machine__normalized_is(struct machine *machine, const char *arch) 3311 { 3312 return machine && !strcmp(perf_env__arch(machine->env), arch); 3313 } 3314 3315 int machine__nr_cpus_avail(struct machine *machine) 3316 { 3317 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3318 } 3319 3320 int machine__get_kernel_start(struct machine *machine) 3321 { 3322 struct map *map = machine__kernel_map(machine); 3323 int err = 0; 3324 3325 /* 3326 * The only addresses above 2^63 are kernel addresses of a 64-bit 3327 * kernel. Note that addresses are unsigned so that on a 32-bit system 3328 * all addresses including kernel addresses are less than 2^32. In 3329 * that case (32-bit system), if the kernel mapping is unknown, all 3330 * addresses will be assumed to be in user space - see 3331 * machine__kernel_ip(). 3332 */ 3333 machine->kernel_start = 1ULL << 63; 3334 if (map) { 3335 err = map__load(map); 3336 /* 3337 * On x86_64, PTI entry trampolines are less than the 3338 * start of kernel text, but still above 2^63. So leave 3339 * kernel_start = 1ULL << 63 for x86_64. 3340 */ 3341 if (!err && !machine__is(machine, "x86_64")) 3342 machine->kernel_start = map__start(map); 3343 } 3344 return err; 3345 } 3346 3347 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3348 { 3349 u8 addr_cpumode = cpumode; 3350 bool kernel_ip; 3351 3352 if (!machine->single_address_space) 3353 goto out; 3354 3355 kernel_ip = machine__kernel_ip(machine, addr); 3356 switch (cpumode) { 3357 case PERF_RECORD_MISC_KERNEL: 3358 case PERF_RECORD_MISC_USER: 3359 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3360 PERF_RECORD_MISC_USER; 3361 break; 3362 case PERF_RECORD_MISC_GUEST_KERNEL: 3363 case PERF_RECORD_MISC_GUEST_USER: 3364 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3365 PERF_RECORD_MISC_GUEST_USER; 3366 break; 3367 default: 3368 break; 3369 } 3370 out: 3371 return addr_cpumode; 3372 } 3373 3374 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3375 { 3376 return dsos__findnew_id(&machine->dsos, filename, id); 3377 } 3378 3379 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3380 { 3381 return machine__findnew_dso_id(machine, filename, NULL); 3382 } 3383 3384 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3385 { 3386 struct machine *machine = vmachine; 3387 struct map *map; 3388 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3389 3390 if (sym == NULL) 3391 return NULL; 3392 3393 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL; 3394 *addrp = map__unmap_ip(map, sym->start); 3395 return sym->name; 3396 } 3397 3398 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3399 { 3400 struct dso *pos; 3401 int err = 0; 3402 3403 list_for_each_entry(pos, &machine->dsos.head, node) { 3404 if (fn(pos, machine, priv)) 3405 err = -1; 3406 } 3407 return err; 3408 } 3409 3410 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3411 { 3412 struct maps *maps = machine__kernel_maps(machine); 3413 3414 return maps__for_each_map(maps, fn, priv); 3415 } 3416 3417 bool machine__is_lock_function(struct machine *machine, u64 addr) 3418 { 3419 if (!machine->sched.text_start) { 3420 struct map *kmap; 3421 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3422 3423 if (!sym) { 3424 /* to avoid retry */ 3425 machine->sched.text_start = 1; 3426 return false; 3427 } 3428 3429 machine->sched.text_start = map__unmap_ip(kmap, sym->start); 3430 3431 /* should not fail from here */ 3432 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3433 machine->sched.text_end = map__unmap_ip(kmap, sym->start); 3434 3435 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3436 machine->lock.text_start = map__unmap_ip(kmap, sym->start); 3437 3438 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3439 machine->lock.text_end = map__unmap_ip(kmap, sym->start); 3440 } 3441 3442 /* failed to get kernel symbols */ 3443 if (machine->sched.text_start == 1) 3444 return false; 3445 3446 /* mutex and rwsem functions are in sched text section */ 3447 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3448 return true; 3449 3450 /* spinlock functions are in lock text section */ 3451 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3452 return true; 3453 3454 return false; 3455 } 3456