1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd, 47 struct thread *th, bool lock); 48 49 static struct dso *machine__kernel_dso(struct machine *machine) 50 { 51 return map__dso(machine->vmlinux_map); 52 } 53 54 static void dsos__init(struct dsos *dsos) 55 { 56 INIT_LIST_HEAD(&dsos->head); 57 dsos->root = RB_ROOT; 58 init_rwsem(&dsos->lock); 59 } 60 61 static void machine__threads_init(struct machine *machine) 62 { 63 int i; 64 65 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 66 struct threads *threads = &machine->threads[i]; 67 threads->entries = RB_ROOT_CACHED; 68 init_rwsem(&threads->lock); 69 threads->nr = 0; 70 threads->last_match = NULL; 71 } 72 } 73 74 static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd) 75 { 76 int to_find = (int) *((pid_t *)key); 77 78 return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread); 79 } 80 81 static struct thread_rb_node *thread_rb_node__find(const struct thread *th, 82 struct rb_root *tree) 83 { 84 pid_t to_find = thread__tid(th); 85 struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid); 86 87 return rb_entry(nd, struct thread_rb_node, rb_node); 88 } 89 90 static int machine__set_mmap_name(struct machine *machine) 91 { 92 if (machine__is_host(machine)) 93 machine->mmap_name = strdup("[kernel.kallsyms]"); 94 else if (machine__is_default_guest(machine)) 95 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 96 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 97 machine->pid) < 0) 98 machine->mmap_name = NULL; 99 100 return machine->mmap_name ? 0 : -ENOMEM; 101 } 102 103 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 104 { 105 char comm[64]; 106 107 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 108 thread__set_comm(thread, comm, 0); 109 } 110 111 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 112 { 113 int err = -ENOMEM; 114 115 memset(machine, 0, sizeof(*machine)); 116 machine->kmaps = maps__new(machine); 117 if (machine->kmaps == NULL) 118 return -ENOMEM; 119 120 RB_CLEAR_NODE(&machine->rb_node); 121 dsos__init(&machine->dsos); 122 123 machine__threads_init(machine); 124 125 machine->vdso_info = NULL; 126 machine->env = NULL; 127 128 machine->pid = pid; 129 130 machine->id_hdr_size = 0; 131 machine->kptr_restrict_warned = false; 132 machine->comm_exec = false; 133 machine->kernel_start = 0; 134 machine->vmlinux_map = NULL; 135 136 machine->root_dir = strdup(root_dir); 137 if (machine->root_dir == NULL) 138 goto out; 139 140 if (machine__set_mmap_name(machine)) 141 goto out; 142 143 if (pid != HOST_KERNEL_ID) { 144 struct thread *thread = machine__findnew_thread(machine, -1, 145 pid); 146 147 if (thread == NULL) 148 goto out; 149 150 thread__set_guest_comm(thread, pid); 151 thread__put(thread); 152 } 153 154 machine->current_tid = NULL; 155 err = 0; 156 157 out: 158 if (err) { 159 zfree(&machine->kmaps); 160 zfree(&machine->root_dir); 161 zfree(&machine->mmap_name); 162 } 163 return 0; 164 } 165 166 struct machine *machine__new_host(void) 167 { 168 struct machine *machine = malloc(sizeof(*machine)); 169 170 if (machine != NULL) { 171 machine__init(machine, "", HOST_KERNEL_ID); 172 173 if (machine__create_kernel_maps(machine) < 0) 174 goto out_delete; 175 } 176 177 return machine; 178 out_delete: 179 free(machine); 180 return NULL; 181 } 182 183 struct machine *machine__new_kallsyms(void) 184 { 185 struct machine *machine = machine__new_host(); 186 /* 187 * FIXME: 188 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 189 * ask for not using the kcore parsing code, once this one is fixed 190 * to create a map per module. 191 */ 192 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 193 machine__delete(machine); 194 machine = NULL; 195 } 196 197 return machine; 198 } 199 200 static void dsos__purge(struct dsos *dsos) 201 { 202 struct dso *pos, *n; 203 204 down_write(&dsos->lock); 205 206 list_for_each_entry_safe(pos, n, &dsos->head, node) { 207 RB_CLEAR_NODE(&pos->rb_node); 208 pos->root = NULL; 209 list_del_init(&pos->node); 210 dso__put(pos); 211 } 212 213 up_write(&dsos->lock); 214 } 215 216 static void dsos__exit(struct dsos *dsos) 217 { 218 dsos__purge(dsos); 219 exit_rwsem(&dsos->lock); 220 } 221 222 void machine__delete_threads(struct machine *machine) 223 { 224 struct rb_node *nd; 225 int i; 226 227 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 228 struct threads *threads = &machine->threads[i]; 229 down_write(&threads->lock); 230 nd = rb_first_cached(&threads->entries); 231 while (nd) { 232 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node); 233 234 nd = rb_next(nd); 235 __machine__remove_thread(machine, trb, trb->thread, false); 236 } 237 up_write(&threads->lock); 238 } 239 } 240 241 void machine__exit(struct machine *machine) 242 { 243 int i; 244 245 if (machine == NULL) 246 return; 247 248 machine__destroy_kernel_maps(machine); 249 maps__zput(machine->kmaps); 250 dsos__exit(&machine->dsos); 251 machine__exit_vdso(machine); 252 zfree(&machine->root_dir); 253 zfree(&machine->mmap_name); 254 zfree(&machine->current_tid); 255 zfree(&machine->kallsyms_filename); 256 257 machine__delete_threads(machine); 258 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 259 struct threads *threads = &machine->threads[i]; 260 261 exit_rwsem(&threads->lock); 262 } 263 } 264 265 void machine__delete(struct machine *machine) 266 { 267 if (machine) { 268 machine__exit(machine); 269 free(machine); 270 } 271 } 272 273 void machines__init(struct machines *machines) 274 { 275 machine__init(&machines->host, "", HOST_KERNEL_ID); 276 machines->guests = RB_ROOT_CACHED; 277 } 278 279 void machines__exit(struct machines *machines) 280 { 281 machine__exit(&machines->host); 282 /* XXX exit guest */ 283 } 284 285 struct machine *machines__add(struct machines *machines, pid_t pid, 286 const char *root_dir) 287 { 288 struct rb_node **p = &machines->guests.rb_root.rb_node; 289 struct rb_node *parent = NULL; 290 struct machine *pos, *machine = malloc(sizeof(*machine)); 291 bool leftmost = true; 292 293 if (machine == NULL) 294 return NULL; 295 296 if (machine__init(machine, root_dir, pid) != 0) { 297 free(machine); 298 return NULL; 299 } 300 301 while (*p != NULL) { 302 parent = *p; 303 pos = rb_entry(parent, struct machine, rb_node); 304 if (pid < pos->pid) 305 p = &(*p)->rb_left; 306 else { 307 p = &(*p)->rb_right; 308 leftmost = false; 309 } 310 } 311 312 rb_link_node(&machine->rb_node, parent, p); 313 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 314 315 machine->machines = machines; 316 317 return machine; 318 } 319 320 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 321 { 322 struct rb_node *nd; 323 324 machines->host.comm_exec = comm_exec; 325 326 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 327 struct machine *machine = rb_entry(nd, struct machine, rb_node); 328 329 machine->comm_exec = comm_exec; 330 } 331 } 332 333 struct machine *machines__find(struct machines *machines, pid_t pid) 334 { 335 struct rb_node **p = &machines->guests.rb_root.rb_node; 336 struct rb_node *parent = NULL; 337 struct machine *machine; 338 struct machine *default_machine = NULL; 339 340 if (pid == HOST_KERNEL_ID) 341 return &machines->host; 342 343 while (*p != NULL) { 344 parent = *p; 345 machine = rb_entry(parent, struct machine, rb_node); 346 if (pid < machine->pid) 347 p = &(*p)->rb_left; 348 else if (pid > machine->pid) 349 p = &(*p)->rb_right; 350 else 351 return machine; 352 if (!machine->pid) 353 default_machine = machine; 354 } 355 356 return default_machine; 357 } 358 359 struct machine *machines__findnew(struct machines *machines, pid_t pid) 360 { 361 char path[PATH_MAX]; 362 const char *root_dir = ""; 363 struct machine *machine = machines__find(machines, pid); 364 365 if (machine && (machine->pid == pid)) 366 goto out; 367 368 if ((pid != HOST_KERNEL_ID) && 369 (pid != DEFAULT_GUEST_KERNEL_ID) && 370 (symbol_conf.guestmount)) { 371 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 372 if (access(path, R_OK)) { 373 static struct strlist *seen; 374 375 if (!seen) 376 seen = strlist__new(NULL, NULL); 377 378 if (!strlist__has_entry(seen, path)) { 379 pr_err("Can't access file %s\n", path); 380 strlist__add(seen, path); 381 } 382 machine = NULL; 383 goto out; 384 } 385 root_dir = path; 386 } 387 388 machine = machines__add(machines, pid, root_dir); 389 out: 390 return machine; 391 } 392 393 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 394 { 395 struct machine *machine = machines__find(machines, pid); 396 397 if (!machine) 398 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 399 return machine; 400 } 401 402 /* 403 * A common case for KVM test programs is that the test program acts as the 404 * hypervisor, creating, running and destroying the virtual machine, and 405 * providing the guest object code from its own object code. In this case, 406 * the VM is not running an OS, but only the functions loaded into it by the 407 * hypervisor test program, and conveniently, loaded at the same virtual 408 * addresses. 409 * 410 * Normally to resolve addresses, MMAP events are needed to map addresses 411 * back to the object code and debug symbols for that object code. 412 * 413 * Currently, there is no way to get such mapping information from guests 414 * but, in the scenario described above, the guest has the same mappings 415 * as the hypervisor, so support for that scenario can be achieved. 416 * 417 * To support that, copy the host thread's maps to the guest thread's maps. 418 * Note, we do not discover the guest until we encounter a guest event, 419 * which works well because it is not until then that we know that the host 420 * thread's maps have been set up. 421 * 422 * This function returns the guest thread. Apart from keeping the data 423 * structures sane, using a thread belonging to the guest machine, instead 424 * of the host thread, allows it to have its own comm (refer 425 * thread__set_guest_comm()). 426 */ 427 static struct thread *findnew_guest_code(struct machine *machine, 428 struct machine *host_machine, 429 pid_t pid) 430 { 431 struct thread *host_thread; 432 struct thread *thread; 433 int err; 434 435 if (!machine) 436 return NULL; 437 438 thread = machine__findnew_thread(machine, -1, pid); 439 if (!thread) 440 return NULL; 441 442 /* Assume maps are set up if there are any */ 443 if (maps__nr_maps(thread__maps(thread))) 444 return thread; 445 446 host_thread = machine__find_thread(host_machine, -1, pid); 447 if (!host_thread) 448 goto out_err; 449 450 thread__set_guest_comm(thread, pid); 451 452 /* 453 * Guest code can be found in hypervisor process at the same address 454 * so copy host maps. 455 */ 456 err = maps__clone(thread, thread__maps(host_thread)); 457 thread__put(host_thread); 458 if (err) 459 goto out_err; 460 461 return thread; 462 463 out_err: 464 thread__zput(thread); 465 return NULL; 466 } 467 468 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 469 { 470 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 471 struct machine *machine = machines__findnew(machines, pid); 472 473 return findnew_guest_code(machine, host_machine, pid); 474 } 475 476 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 477 { 478 struct machines *machines = machine->machines; 479 struct machine *host_machine; 480 481 if (!machines) 482 return NULL; 483 484 host_machine = machines__find(machines, HOST_KERNEL_ID); 485 486 return findnew_guest_code(machine, host_machine, pid); 487 } 488 489 void machines__process_guests(struct machines *machines, 490 machine__process_t process, void *data) 491 { 492 struct rb_node *nd; 493 494 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 495 struct machine *pos = rb_entry(nd, struct machine, rb_node); 496 process(pos, data); 497 } 498 } 499 500 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 501 { 502 struct rb_node *node; 503 struct machine *machine; 504 505 machines->host.id_hdr_size = id_hdr_size; 506 507 for (node = rb_first_cached(&machines->guests); node; 508 node = rb_next(node)) { 509 machine = rb_entry(node, struct machine, rb_node); 510 machine->id_hdr_size = id_hdr_size; 511 } 512 513 return; 514 } 515 516 static void machine__update_thread_pid(struct machine *machine, 517 struct thread *th, pid_t pid) 518 { 519 struct thread *leader; 520 521 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1) 522 return; 523 524 thread__set_pid(th, pid); 525 526 if (thread__pid(th) == thread__tid(th)) 527 return; 528 529 leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th)); 530 if (!leader) 531 goto out_err; 532 533 if (!thread__maps(leader)) 534 thread__set_maps(leader, maps__new(machine)); 535 536 if (!thread__maps(leader)) 537 goto out_err; 538 539 if (thread__maps(th) == thread__maps(leader)) 540 goto out_put; 541 542 if (thread__maps(th)) { 543 /* 544 * Maps are created from MMAP events which provide the pid and 545 * tid. Consequently there never should be any maps on a thread 546 * with an unknown pid. Just print an error if there are. 547 */ 548 if (!maps__empty(thread__maps(th))) 549 pr_err("Discarding thread maps for %d:%d\n", 550 thread__pid(th), thread__tid(th)); 551 maps__put(thread__maps(th)); 552 } 553 554 thread__set_maps(th, maps__get(thread__maps(leader))); 555 out_put: 556 thread__put(leader); 557 return; 558 out_err: 559 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th)); 560 goto out_put; 561 } 562 563 /* 564 * Front-end cache - TID lookups come in blocks, 565 * so most of the time we dont have to look up 566 * the full rbtree: 567 */ 568 static struct thread* 569 __threads__get_last_match(struct threads *threads, struct machine *machine, 570 int pid, int tid) 571 { 572 struct thread *th; 573 574 th = threads->last_match; 575 if (th != NULL) { 576 if (thread__tid(th) == tid) { 577 machine__update_thread_pid(machine, th, pid); 578 return thread__get(th); 579 } 580 thread__put(threads->last_match); 581 threads->last_match = NULL; 582 } 583 584 return NULL; 585 } 586 587 static struct thread* 588 threads__get_last_match(struct threads *threads, struct machine *machine, 589 int pid, int tid) 590 { 591 struct thread *th = NULL; 592 593 if (perf_singlethreaded) 594 th = __threads__get_last_match(threads, machine, pid, tid); 595 596 return th; 597 } 598 599 static void 600 __threads__set_last_match(struct threads *threads, struct thread *th) 601 { 602 thread__put(threads->last_match); 603 threads->last_match = thread__get(th); 604 } 605 606 static void 607 threads__set_last_match(struct threads *threads, struct thread *th) 608 { 609 if (perf_singlethreaded) 610 __threads__set_last_match(threads, th); 611 } 612 613 /* 614 * Caller must eventually drop thread->refcnt returned with a successful 615 * lookup/new thread inserted. 616 */ 617 static struct thread *____machine__findnew_thread(struct machine *machine, 618 struct threads *threads, 619 pid_t pid, pid_t tid, 620 bool create) 621 { 622 struct rb_node **p = &threads->entries.rb_root.rb_node; 623 struct rb_node *parent = NULL; 624 struct thread *th; 625 struct thread_rb_node *nd; 626 bool leftmost = true; 627 628 th = threads__get_last_match(threads, machine, pid, tid); 629 if (th) 630 return th; 631 632 while (*p != NULL) { 633 parent = *p; 634 th = rb_entry(parent, struct thread_rb_node, rb_node)->thread; 635 636 if (thread__tid(th) == tid) { 637 threads__set_last_match(threads, th); 638 machine__update_thread_pid(machine, th, pid); 639 return thread__get(th); 640 } 641 642 if (tid < thread__tid(th)) 643 p = &(*p)->rb_left; 644 else { 645 p = &(*p)->rb_right; 646 leftmost = false; 647 } 648 } 649 650 if (!create) 651 return NULL; 652 653 th = thread__new(pid, tid); 654 if (th == NULL) 655 return NULL; 656 657 nd = malloc(sizeof(*nd)); 658 if (nd == NULL) { 659 thread__put(th); 660 return NULL; 661 } 662 nd->thread = th; 663 664 rb_link_node(&nd->rb_node, parent, p); 665 rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost); 666 /* 667 * We have to initialize maps separately after rb tree is updated. 668 * 669 * The reason is that we call machine__findnew_thread within 670 * thread__init_maps to find the thread leader and that would screwed 671 * the rb tree. 672 */ 673 if (thread__init_maps(th, machine)) { 674 pr_err("Thread init failed thread %d\n", pid); 675 rb_erase_cached(&nd->rb_node, &threads->entries); 676 RB_CLEAR_NODE(&nd->rb_node); 677 free(nd); 678 thread__put(th); 679 return NULL; 680 } 681 /* 682 * It is now in the rbtree, get a ref 683 */ 684 threads__set_last_match(threads, th); 685 ++threads->nr; 686 687 return thread__get(th); 688 } 689 690 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 691 { 692 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 693 } 694 695 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 696 pid_t tid) 697 { 698 struct threads *threads = machine__threads(machine, tid); 699 struct thread *th; 700 701 down_write(&threads->lock); 702 th = __machine__findnew_thread(machine, pid, tid); 703 up_write(&threads->lock); 704 return th; 705 } 706 707 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 708 pid_t tid) 709 { 710 struct threads *threads = machine__threads(machine, tid); 711 struct thread *th; 712 713 down_read(&threads->lock); 714 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 715 up_read(&threads->lock); 716 return th; 717 } 718 719 /* 720 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 721 * So here a single thread is created for that, but actually there is a separate 722 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 723 * is only 1. That causes problems for some tools, requiring workarounds. For 724 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 725 */ 726 struct thread *machine__idle_thread(struct machine *machine) 727 { 728 struct thread *thread = machine__findnew_thread(machine, 0, 0); 729 730 if (!thread || thread__set_comm(thread, "swapper", 0) || 731 thread__set_namespaces(thread, 0, NULL)) 732 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 733 734 return thread; 735 } 736 737 struct comm *machine__thread_exec_comm(struct machine *machine, 738 struct thread *thread) 739 { 740 if (machine->comm_exec) 741 return thread__exec_comm(thread); 742 else 743 return thread__comm(thread); 744 } 745 746 int machine__process_comm_event(struct machine *machine, union perf_event *event, 747 struct perf_sample *sample) 748 { 749 struct thread *thread = machine__findnew_thread(machine, 750 event->comm.pid, 751 event->comm.tid); 752 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 753 int err = 0; 754 755 if (exec) 756 machine->comm_exec = true; 757 758 if (dump_trace) 759 perf_event__fprintf_comm(event, stdout); 760 761 if (thread == NULL || 762 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 763 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 764 err = -1; 765 } 766 767 thread__put(thread); 768 769 return err; 770 } 771 772 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 773 union perf_event *event, 774 struct perf_sample *sample __maybe_unused) 775 { 776 struct thread *thread = machine__findnew_thread(machine, 777 event->namespaces.pid, 778 event->namespaces.tid); 779 int err = 0; 780 781 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 782 "\nWARNING: kernel seems to support more namespaces than perf" 783 " tool.\nTry updating the perf tool..\n\n"); 784 785 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 786 "\nWARNING: perf tool seems to support more namespaces than" 787 " the kernel.\nTry updating the kernel..\n\n"); 788 789 if (dump_trace) 790 perf_event__fprintf_namespaces(event, stdout); 791 792 if (thread == NULL || 793 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 794 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 795 err = -1; 796 } 797 798 thread__put(thread); 799 800 return err; 801 } 802 803 int machine__process_cgroup_event(struct machine *machine, 804 union perf_event *event, 805 struct perf_sample *sample __maybe_unused) 806 { 807 struct cgroup *cgrp; 808 809 if (dump_trace) 810 perf_event__fprintf_cgroup(event, stdout); 811 812 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 813 if (cgrp == NULL) 814 return -ENOMEM; 815 816 return 0; 817 } 818 819 int machine__process_lost_event(struct machine *machine __maybe_unused, 820 union perf_event *event, struct perf_sample *sample __maybe_unused) 821 { 822 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 823 event->lost.id, event->lost.lost); 824 return 0; 825 } 826 827 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 828 union perf_event *event, struct perf_sample *sample) 829 { 830 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 831 sample->id, event->lost_samples.lost); 832 return 0; 833 } 834 835 static struct dso *machine__findnew_module_dso(struct machine *machine, 836 struct kmod_path *m, 837 const char *filename) 838 { 839 struct dso *dso; 840 841 down_write(&machine->dsos.lock); 842 843 dso = __dsos__find(&machine->dsos, m->name, true); 844 if (!dso) { 845 dso = __dsos__addnew(&machine->dsos, m->name); 846 if (dso == NULL) 847 goto out_unlock; 848 849 dso__set_module_info(dso, m, machine); 850 dso__set_long_name(dso, strdup(filename), true); 851 dso->kernel = DSO_SPACE__KERNEL; 852 } 853 854 dso__get(dso); 855 out_unlock: 856 up_write(&machine->dsos.lock); 857 return dso; 858 } 859 860 int machine__process_aux_event(struct machine *machine __maybe_unused, 861 union perf_event *event) 862 { 863 if (dump_trace) 864 perf_event__fprintf_aux(event, stdout); 865 return 0; 866 } 867 868 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 869 union perf_event *event) 870 { 871 if (dump_trace) 872 perf_event__fprintf_itrace_start(event, stdout); 873 return 0; 874 } 875 876 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 877 union perf_event *event) 878 { 879 if (dump_trace) 880 perf_event__fprintf_aux_output_hw_id(event, stdout); 881 return 0; 882 } 883 884 int machine__process_switch_event(struct machine *machine __maybe_unused, 885 union perf_event *event) 886 { 887 if (dump_trace) 888 perf_event__fprintf_switch(event, stdout); 889 return 0; 890 } 891 892 static int machine__process_ksymbol_register(struct machine *machine, 893 union perf_event *event, 894 struct perf_sample *sample __maybe_unused) 895 { 896 struct symbol *sym; 897 struct dso *dso; 898 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 899 bool put_map = false; 900 int err = 0; 901 902 if (!map) { 903 dso = dso__new(event->ksymbol.name); 904 905 if (!dso) { 906 err = -ENOMEM; 907 goto out; 908 } 909 dso->kernel = DSO_SPACE__KERNEL; 910 map = map__new2(0, dso); 911 dso__put(dso); 912 if (!map) { 913 err = -ENOMEM; 914 goto out; 915 } 916 /* 917 * The inserted map has a get on it, we need to put to release 918 * the reference count here, but do it after all accesses are 919 * done. 920 */ 921 put_map = true; 922 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 923 dso->binary_type = DSO_BINARY_TYPE__OOL; 924 dso->data.file_size = event->ksymbol.len; 925 dso__set_loaded(dso); 926 } 927 928 map__set_start(map, event->ksymbol.addr); 929 map__set_end(map, map__start(map) + event->ksymbol.len); 930 err = maps__insert(machine__kernel_maps(machine), map); 931 if (err) { 932 err = -ENOMEM; 933 goto out; 934 } 935 936 dso__set_loaded(dso); 937 938 if (is_bpf_image(event->ksymbol.name)) { 939 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 940 dso__set_long_name(dso, "", false); 941 } 942 } else { 943 dso = map__dso(map); 944 } 945 946 sym = symbol__new(map__map_ip(map, map__start(map)), 947 event->ksymbol.len, 948 0, 0, event->ksymbol.name); 949 if (!sym) { 950 err = -ENOMEM; 951 goto out; 952 } 953 dso__insert_symbol(dso, sym); 954 out: 955 if (put_map) 956 map__put(map); 957 return err; 958 } 959 960 static int machine__process_ksymbol_unregister(struct machine *machine, 961 union perf_event *event, 962 struct perf_sample *sample __maybe_unused) 963 { 964 struct symbol *sym; 965 struct map *map; 966 967 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 968 if (!map) 969 return 0; 970 971 if (!RC_CHK_EQUAL(map, machine->vmlinux_map)) 972 maps__remove(machine__kernel_maps(machine), map); 973 else { 974 struct dso *dso = map__dso(map); 975 976 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map))); 977 if (sym) 978 dso__delete_symbol(dso, sym); 979 } 980 981 return 0; 982 } 983 984 int machine__process_ksymbol(struct machine *machine __maybe_unused, 985 union perf_event *event, 986 struct perf_sample *sample) 987 { 988 if (dump_trace) 989 perf_event__fprintf_ksymbol(event, stdout); 990 991 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 992 return machine__process_ksymbol_unregister(machine, event, 993 sample); 994 return machine__process_ksymbol_register(machine, event, sample); 995 } 996 997 int machine__process_text_poke(struct machine *machine, union perf_event *event, 998 struct perf_sample *sample __maybe_unused) 999 { 1000 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 1001 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1002 struct dso *dso = map ? map__dso(map) : NULL; 1003 1004 if (dump_trace) 1005 perf_event__fprintf_text_poke(event, machine, stdout); 1006 1007 if (!event->text_poke.new_len) 1008 return 0; 1009 1010 if (cpumode != PERF_RECORD_MISC_KERNEL) { 1011 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 1012 return 0; 1013 } 1014 1015 if (dso) { 1016 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 1017 int ret; 1018 1019 /* 1020 * Kernel maps might be changed when loading symbols so loading 1021 * must be done prior to using kernel maps. 1022 */ 1023 map__load(map); 1024 ret = dso__data_write_cache_addr(dso, map, machine, 1025 event->text_poke.addr, 1026 new_bytes, 1027 event->text_poke.new_len); 1028 if (ret != event->text_poke.new_len) 1029 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 1030 event->text_poke.addr); 1031 } else { 1032 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 1033 event->text_poke.addr); 1034 } 1035 1036 return 0; 1037 } 1038 1039 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 1040 const char *filename) 1041 { 1042 struct map *map = NULL; 1043 struct kmod_path m; 1044 struct dso *dso; 1045 int err; 1046 1047 if (kmod_path__parse_name(&m, filename)) 1048 return NULL; 1049 1050 dso = machine__findnew_module_dso(machine, &m, filename); 1051 if (dso == NULL) 1052 goto out; 1053 1054 map = map__new2(start, dso); 1055 if (map == NULL) 1056 goto out; 1057 1058 err = maps__insert(machine__kernel_maps(machine), map); 1059 /* If maps__insert failed, return NULL. */ 1060 if (err) { 1061 map__put(map); 1062 map = NULL; 1063 } 1064 out: 1065 /* put the dso here, corresponding to machine__findnew_module_dso */ 1066 dso__put(dso); 1067 zfree(&m.name); 1068 return map; 1069 } 1070 1071 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 1072 { 1073 struct rb_node *nd; 1074 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 1075 1076 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1077 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1078 ret += __dsos__fprintf(&pos->dsos.head, fp); 1079 } 1080 1081 return ret; 1082 } 1083 1084 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 1085 bool (skip)(struct dso *dso, int parm), int parm) 1086 { 1087 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 1088 } 1089 1090 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 1091 bool (skip)(struct dso *dso, int parm), int parm) 1092 { 1093 struct rb_node *nd; 1094 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 1095 1096 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1097 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1098 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 1099 } 1100 return ret; 1101 } 1102 1103 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 1104 { 1105 int i; 1106 size_t printed = 0; 1107 struct dso *kdso = machine__kernel_dso(machine); 1108 1109 if (kdso->has_build_id) { 1110 char filename[PATH_MAX]; 1111 if (dso__build_id_filename(kdso, filename, sizeof(filename), 1112 false)) 1113 printed += fprintf(fp, "[0] %s\n", filename); 1114 } 1115 1116 for (i = 0; i < vmlinux_path__nr_entries; ++i) 1117 printed += fprintf(fp, "[%d] %s\n", 1118 i + kdso->has_build_id, vmlinux_path[i]); 1119 1120 return printed; 1121 } 1122 1123 size_t machine__fprintf(struct machine *machine, FILE *fp) 1124 { 1125 struct rb_node *nd; 1126 size_t ret; 1127 int i; 1128 1129 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 1130 struct threads *threads = &machine->threads[i]; 1131 1132 down_read(&threads->lock); 1133 1134 ret = fprintf(fp, "Threads: %u\n", threads->nr); 1135 1136 for (nd = rb_first_cached(&threads->entries); nd; 1137 nd = rb_next(nd)) { 1138 struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread; 1139 1140 ret += thread__fprintf(pos, fp); 1141 } 1142 1143 up_read(&threads->lock); 1144 } 1145 return ret; 1146 } 1147 1148 static struct dso *machine__get_kernel(struct machine *machine) 1149 { 1150 const char *vmlinux_name = machine->mmap_name; 1151 struct dso *kernel; 1152 1153 if (machine__is_host(machine)) { 1154 if (symbol_conf.vmlinux_name) 1155 vmlinux_name = symbol_conf.vmlinux_name; 1156 1157 kernel = machine__findnew_kernel(machine, vmlinux_name, 1158 "[kernel]", DSO_SPACE__KERNEL); 1159 } else { 1160 if (symbol_conf.default_guest_vmlinux_name) 1161 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1162 1163 kernel = machine__findnew_kernel(machine, vmlinux_name, 1164 "[guest.kernel]", 1165 DSO_SPACE__KERNEL_GUEST); 1166 } 1167 1168 if (kernel != NULL && (!kernel->has_build_id)) 1169 dso__read_running_kernel_build_id(kernel, machine); 1170 1171 return kernel; 1172 } 1173 1174 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1175 size_t bufsz) 1176 { 1177 if (machine__is_default_guest(machine)) 1178 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1179 else 1180 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1181 } 1182 1183 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1184 1185 /* Figure out the start address of kernel map from /proc/kallsyms. 1186 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1187 * symbol_name if it's not that important. 1188 */ 1189 static int machine__get_running_kernel_start(struct machine *machine, 1190 const char **symbol_name, 1191 u64 *start, u64 *end) 1192 { 1193 char filename[PATH_MAX]; 1194 int i, err = -1; 1195 const char *name; 1196 u64 addr = 0; 1197 1198 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1199 1200 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1201 return 0; 1202 1203 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1204 err = kallsyms__get_function_start(filename, name, &addr); 1205 if (!err) 1206 break; 1207 } 1208 1209 if (err) 1210 return -1; 1211 1212 if (symbol_name) 1213 *symbol_name = name; 1214 1215 *start = addr; 1216 1217 err = kallsyms__get_symbol_start(filename, "_edata", &addr); 1218 if (err) 1219 err = kallsyms__get_function_start(filename, "_etext", &addr); 1220 if (!err) 1221 *end = addr; 1222 1223 return 0; 1224 } 1225 1226 int machine__create_extra_kernel_map(struct machine *machine, 1227 struct dso *kernel, 1228 struct extra_kernel_map *xm) 1229 { 1230 struct kmap *kmap; 1231 struct map *map; 1232 int err; 1233 1234 map = map__new2(xm->start, kernel); 1235 if (!map) 1236 return -ENOMEM; 1237 1238 map__set_end(map, xm->end); 1239 map__set_pgoff(map, xm->pgoff); 1240 1241 kmap = map__kmap(map); 1242 1243 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1244 1245 err = maps__insert(machine__kernel_maps(machine), map); 1246 1247 if (!err) { 1248 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1249 kmap->name, map__start(map), map__end(map)); 1250 } 1251 1252 map__put(map); 1253 1254 return err; 1255 } 1256 1257 static u64 find_entry_trampoline(struct dso *dso) 1258 { 1259 /* Duplicates are removed so lookup all aliases */ 1260 const char *syms[] = { 1261 "_entry_trampoline", 1262 "__entry_trampoline_start", 1263 "entry_SYSCALL_64_trampoline", 1264 }; 1265 struct symbol *sym = dso__first_symbol(dso); 1266 unsigned int i; 1267 1268 for (; sym; sym = dso__next_symbol(sym)) { 1269 if (sym->binding != STB_GLOBAL) 1270 continue; 1271 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1272 if (!strcmp(sym->name, syms[i])) 1273 return sym->start; 1274 } 1275 } 1276 1277 return 0; 1278 } 1279 1280 /* 1281 * These values can be used for kernels that do not have symbols for the entry 1282 * trampolines in kallsyms. 1283 */ 1284 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1285 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1286 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1287 1288 /* Map x86_64 PTI entry trampolines */ 1289 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1290 struct dso *kernel) 1291 { 1292 struct maps *kmaps = machine__kernel_maps(machine); 1293 int nr_cpus_avail, cpu; 1294 bool found = false; 1295 struct map_rb_node *rb_node; 1296 u64 pgoff; 1297 1298 /* 1299 * In the vmlinux case, pgoff is a virtual address which must now be 1300 * mapped to a vmlinux offset. 1301 */ 1302 maps__for_each_entry(kmaps, rb_node) { 1303 struct map *dest_map, *map = rb_node->map; 1304 struct kmap *kmap = __map__kmap(map); 1305 1306 if (!kmap || !is_entry_trampoline(kmap->name)) 1307 continue; 1308 1309 dest_map = maps__find(kmaps, map__pgoff(map)); 1310 if (dest_map != map) 1311 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map))); 1312 found = true; 1313 } 1314 if (found || machine->trampolines_mapped) 1315 return 0; 1316 1317 pgoff = find_entry_trampoline(kernel); 1318 if (!pgoff) 1319 return 0; 1320 1321 nr_cpus_avail = machine__nr_cpus_avail(machine); 1322 1323 /* Add a 1 page map for each CPU's entry trampoline */ 1324 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1325 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1326 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1327 X86_64_ENTRY_TRAMPOLINE; 1328 struct extra_kernel_map xm = { 1329 .start = va, 1330 .end = va + page_size, 1331 .pgoff = pgoff, 1332 }; 1333 1334 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1335 1336 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1337 return -1; 1338 } 1339 1340 machine->trampolines_mapped = nr_cpus_avail; 1341 1342 return 0; 1343 } 1344 1345 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1346 struct dso *kernel __maybe_unused) 1347 { 1348 return 0; 1349 } 1350 1351 static int 1352 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1353 { 1354 /* In case of renewal the kernel map, destroy previous one */ 1355 machine__destroy_kernel_maps(machine); 1356 1357 map__put(machine->vmlinux_map); 1358 machine->vmlinux_map = map__new2(0, kernel); 1359 if (machine->vmlinux_map == NULL) 1360 return -ENOMEM; 1361 1362 map__set_map_ip(machine->vmlinux_map, identity__map_ip); 1363 map__set_unmap_ip(machine->vmlinux_map, identity__map_ip); 1364 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1365 } 1366 1367 void machine__destroy_kernel_maps(struct machine *machine) 1368 { 1369 struct kmap *kmap; 1370 struct map *map = machine__kernel_map(machine); 1371 1372 if (map == NULL) 1373 return; 1374 1375 kmap = map__kmap(map); 1376 maps__remove(machine__kernel_maps(machine), map); 1377 if (kmap && kmap->ref_reloc_sym) { 1378 zfree((char **)&kmap->ref_reloc_sym->name); 1379 zfree(&kmap->ref_reloc_sym); 1380 } 1381 1382 map__zput(machine->vmlinux_map); 1383 } 1384 1385 int machines__create_guest_kernel_maps(struct machines *machines) 1386 { 1387 int ret = 0; 1388 struct dirent **namelist = NULL; 1389 int i, items = 0; 1390 char path[PATH_MAX]; 1391 pid_t pid; 1392 char *endp; 1393 1394 if (symbol_conf.default_guest_vmlinux_name || 1395 symbol_conf.default_guest_modules || 1396 symbol_conf.default_guest_kallsyms) { 1397 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1398 } 1399 1400 if (symbol_conf.guestmount) { 1401 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1402 if (items <= 0) 1403 return -ENOENT; 1404 for (i = 0; i < items; i++) { 1405 if (!isdigit(namelist[i]->d_name[0])) { 1406 /* Filter out . and .. */ 1407 continue; 1408 } 1409 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1410 if ((*endp != '\0') || 1411 (endp == namelist[i]->d_name) || 1412 (errno == ERANGE)) { 1413 pr_debug("invalid directory (%s). Skipping.\n", 1414 namelist[i]->d_name); 1415 continue; 1416 } 1417 sprintf(path, "%s/%s/proc/kallsyms", 1418 symbol_conf.guestmount, 1419 namelist[i]->d_name); 1420 ret = access(path, R_OK); 1421 if (ret) { 1422 pr_debug("Can't access file %s\n", path); 1423 goto failure; 1424 } 1425 machines__create_kernel_maps(machines, pid); 1426 } 1427 failure: 1428 free(namelist); 1429 } 1430 1431 return ret; 1432 } 1433 1434 void machines__destroy_kernel_maps(struct machines *machines) 1435 { 1436 struct rb_node *next = rb_first_cached(&machines->guests); 1437 1438 machine__destroy_kernel_maps(&machines->host); 1439 1440 while (next) { 1441 struct machine *pos = rb_entry(next, struct machine, rb_node); 1442 1443 next = rb_next(&pos->rb_node); 1444 rb_erase_cached(&pos->rb_node, &machines->guests); 1445 machine__delete(pos); 1446 } 1447 } 1448 1449 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1450 { 1451 struct machine *machine = machines__findnew(machines, pid); 1452 1453 if (machine == NULL) 1454 return -1; 1455 1456 return machine__create_kernel_maps(machine); 1457 } 1458 1459 int machine__load_kallsyms(struct machine *machine, const char *filename) 1460 { 1461 struct map *map = machine__kernel_map(machine); 1462 struct dso *dso = map__dso(map); 1463 int ret = __dso__load_kallsyms(dso, filename, map, true); 1464 1465 if (ret > 0) { 1466 dso__set_loaded(dso); 1467 /* 1468 * Since /proc/kallsyms will have multiple sessions for the 1469 * kernel, with modules between them, fixup the end of all 1470 * sections. 1471 */ 1472 maps__fixup_end(machine__kernel_maps(machine)); 1473 } 1474 1475 return ret; 1476 } 1477 1478 int machine__load_vmlinux_path(struct machine *machine) 1479 { 1480 struct map *map = machine__kernel_map(machine); 1481 struct dso *dso = map__dso(map); 1482 int ret = dso__load_vmlinux_path(dso, map); 1483 1484 if (ret > 0) 1485 dso__set_loaded(dso); 1486 1487 return ret; 1488 } 1489 1490 static char *get_kernel_version(const char *root_dir) 1491 { 1492 char version[PATH_MAX]; 1493 FILE *file; 1494 char *name, *tmp; 1495 const char *prefix = "Linux version "; 1496 1497 sprintf(version, "%s/proc/version", root_dir); 1498 file = fopen(version, "r"); 1499 if (!file) 1500 return NULL; 1501 1502 tmp = fgets(version, sizeof(version), file); 1503 fclose(file); 1504 if (!tmp) 1505 return NULL; 1506 1507 name = strstr(version, prefix); 1508 if (!name) 1509 return NULL; 1510 name += strlen(prefix); 1511 tmp = strchr(name, ' '); 1512 if (tmp) 1513 *tmp = '\0'; 1514 1515 return strdup(name); 1516 } 1517 1518 static bool is_kmod_dso(struct dso *dso) 1519 { 1520 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1521 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1522 } 1523 1524 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1525 { 1526 char *long_name; 1527 struct dso *dso; 1528 struct map *map = maps__find_by_name(maps, m->name); 1529 1530 if (map == NULL) 1531 return 0; 1532 1533 long_name = strdup(path); 1534 if (long_name == NULL) 1535 return -ENOMEM; 1536 1537 dso = map__dso(map); 1538 dso__set_long_name(dso, long_name, true); 1539 dso__kernel_module_get_build_id(dso, ""); 1540 1541 /* 1542 * Full name could reveal us kmod compression, so 1543 * we need to update the symtab_type if needed. 1544 */ 1545 if (m->comp && is_kmod_dso(dso)) { 1546 dso->symtab_type++; 1547 dso->comp = m->comp; 1548 } 1549 1550 return 0; 1551 } 1552 1553 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1554 { 1555 struct dirent *dent; 1556 DIR *dir = opendir(dir_name); 1557 int ret = 0; 1558 1559 if (!dir) { 1560 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1561 return -1; 1562 } 1563 1564 while ((dent = readdir(dir)) != NULL) { 1565 char path[PATH_MAX]; 1566 struct stat st; 1567 1568 /*sshfs might return bad dent->d_type, so we have to stat*/ 1569 path__join(path, sizeof(path), dir_name, dent->d_name); 1570 if (stat(path, &st)) 1571 continue; 1572 1573 if (S_ISDIR(st.st_mode)) { 1574 if (!strcmp(dent->d_name, ".") || 1575 !strcmp(dent->d_name, "..")) 1576 continue; 1577 1578 /* Do not follow top-level source and build symlinks */ 1579 if (depth == 0) { 1580 if (!strcmp(dent->d_name, "source") || 1581 !strcmp(dent->d_name, "build")) 1582 continue; 1583 } 1584 1585 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1586 if (ret < 0) 1587 goto out; 1588 } else { 1589 struct kmod_path m; 1590 1591 ret = kmod_path__parse_name(&m, dent->d_name); 1592 if (ret) 1593 goto out; 1594 1595 if (m.kmod) 1596 ret = maps__set_module_path(maps, path, &m); 1597 1598 zfree(&m.name); 1599 1600 if (ret) 1601 goto out; 1602 } 1603 } 1604 1605 out: 1606 closedir(dir); 1607 return ret; 1608 } 1609 1610 static int machine__set_modules_path(struct machine *machine) 1611 { 1612 char *version; 1613 char modules_path[PATH_MAX]; 1614 1615 version = get_kernel_version(machine->root_dir); 1616 if (!version) 1617 return -1; 1618 1619 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1620 machine->root_dir, version); 1621 free(version); 1622 1623 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1624 } 1625 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1626 u64 *size __maybe_unused, 1627 const char *name __maybe_unused) 1628 { 1629 return 0; 1630 } 1631 1632 static int machine__create_module(void *arg, const char *name, u64 start, 1633 u64 size) 1634 { 1635 struct machine *machine = arg; 1636 struct map *map; 1637 1638 if (arch__fix_module_text_start(&start, &size, name) < 0) 1639 return -1; 1640 1641 map = machine__addnew_module_map(machine, start, name); 1642 if (map == NULL) 1643 return -1; 1644 map__set_end(map, start + size); 1645 1646 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); 1647 map__put(map); 1648 return 0; 1649 } 1650 1651 static int machine__create_modules(struct machine *machine) 1652 { 1653 const char *modules; 1654 char path[PATH_MAX]; 1655 1656 if (machine__is_default_guest(machine)) { 1657 modules = symbol_conf.default_guest_modules; 1658 } else { 1659 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1660 modules = path; 1661 } 1662 1663 if (symbol__restricted_filename(modules, "/proc/modules")) 1664 return -1; 1665 1666 if (modules__parse(modules, machine, machine__create_module)) 1667 return -1; 1668 1669 if (!machine__set_modules_path(machine)) 1670 return 0; 1671 1672 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1673 1674 return 0; 1675 } 1676 1677 static void machine__set_kernel_mmap(struct machine *machine, 1678 u64 start, u64 end) 1679 { 1680 map__set_start(machine->vmlinux_map, start); 1681 map__set_end(machine->vmlinux_map, end); 1682 /* 1683 * Be a bit paranoid here, some perf.data file came with 1684 * a zero sized synthesized MMAP event for the kernel. 1685 */ 1686 if (start == 0 && end == 0) 1687 map__set_end(machine->vmlinux_map, ~0ULL); 1688 } 1689 1690 static int machine__update_kernel_mmap(struct machine *machine, 1691 u64 start, u64 end) 1692 { 1693 struct map *orig, *updated; 1694 int err; 1695 1696 orig = machine->vmlinux_map; 1697 updated = map__get(orig); 1698 1699 machine->vmlinux_map = updated; 1700 machine__set_kernel_mmap(machine, start, end); 1701 maps__remove(machine__kernel_maps(machine), orig); 1702 err = maps__insert(machine__kernel_maps(machine), updated); 1703 map__put(orig); 1704 1705 return err; 1706 } 1707 1708 int machine__create_kernel_maps(struct machine *machine) 1709 { 1710 struct dso *kernel = machine__get_kernel(machine); 1711 const char *name = NULL; 1712 u64 start = 0, end = ~0ULL; 1713 int ret; 1714 1715 if (kernel == NULL) 1716 return -1; 1717 1718 ret = __machine__create_kernel_maps(machine, kernel); 1719 if (ret < 0) 1720 goto out_put; 1721 1722 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1723 if (machine__is_host(machine)) 1724 pr_debug("Problems creating module maps, " 1725 "continuing anyway...\n"); 1726 else 1727 pr_debug("Problems creating module maps for guest %d, " 1728 "continuing anyway...\n", machine->pid); 1729 } 1730 1731 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1732 if (name && 1733 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1734 machine__destroy_kernel_maps(machine); 1735 ret = -1; 1736 goto out_put; 1737 } 1738 1739 /* 1740 * we have a real start address now, so re-order the kmaps 1741 * assume it's the last in the kmaps 1742 */ 1743 ret = machine__update_kernel_mmap(machine, start, end); 1744 if (ret < 0) 1745 goto out_put; 1746 } 1747 1748 if (machine__create_extra_kernel_maps(machine, kernel)) 1749 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1750 1751 if (end == ~0ULL) { 1752 /* update end address of the kernel map using adjacent module address */ 1753 struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine), 1754 machine__kernel_map(machine)); 1755 struct map_rb_node *next = map_rb_node__next(rb_node); 1756 1757 if (next) 1758 machine__set_kernel_mmap(machine, start, map__start(next->map)); 1759 } 1760 1761 out_put: 1762 dso__put(kernel); 1763 return ret; 1764 } 1765 1766 static bool machine__uses_kcore(struct machine *machine) 1767 { 1768 struct dso *dso; 1769 1770 list_for_each_entry(dso, &machine->dsos.head, node) { 1771 if (dso__is_kcore(dso)) 1772 return true; 1773 } 1774 1775 return false; 1776 } 1777 1778 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1779 struct extra_kernel_map *xm) 1780 { 1781 return machine__is(machine, "x86_64") && 1782 is_entry_trampoline(xm->name); 1783 } 1784 1785 static int machine__process_extra_kernel_map(struct machine *machine, 1786 struct extra_kernel_map *xm) 1787 { 1788 struct dso *kernel = machine__kernel_dso(machine); 1789 1790 if (kernel == NULL) 1791 return -1; 1792 1793 return machine__create_extra_kernel_map(machine, kernel, xm); 1794 } 1795 1796 static int machine__process_kernel_mmap_event(struct machine *machine, 1797 struct extra_kernel_map *xm, 1798 struct build_id *bid) 1799 { 1800 enum dso_space_type dso_space; 1801 bool is_kernel_mmap; 1802 const char *mmap_name = machine->mmap_name; 1803 1804 /* If we have maps from kcore then we do not need or want any others */ 1805 if (machine__uses_kcore(machine)) 1806 return 0; 1807 1808 if (machine__is_host(machine)) 1809 dso_space = DSO_SPACE__KERNEL; 1810 else 1811 dso_space = DSO_SPACE__KERNEL_GUEST; 1812 1813 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1814 if (!is_kernel_mmap && !machine__is_host(machine)) { 1815 /* 1816 * If the event was recorded inside the guest and injected into 1817 * the host perf.data file, then it will match a host mmap_name, 1818 * so try that - see machine__set_mmap_name(). 1819 */ 1820 mmap_name = "[kernel.kallsyms]"; 1821 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1822 } 1823 if (xm->name[0] == '/' || 1824 (!is_kernel_mmap && xm->name[0] == '[')) { 1825 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name); 1826 1827 if (map == NULL) 1828 goto out_problem; 1829 1830 map__set_end(map, map__start(map) + xm->end - xm->start); 1831 1832 if (build_id__is_defined(bid)) 1833 dso__set_build_id(map__dso(map), bid); 1834 1835 map__put(map); 1836 } else if (is_kernel_mmap) { 1837 const char *symbol_name = xm->name + strlen(mmap_name); 1838 /* 1839 * Should be there already, from the build-id table in 1840 * the header. 1841 */ 1842 struct dso *kernel = NULL; 1843 struct dso *dso; 1844 1845 down_read(&machine->dsos.lock); 1846 1847 list_for_each_entry(dso, &machine->dsos.head, node) { 1848 1849 /* 1850 * The cpumode passed to is_kernel_module is not the 1851 * cpumode of *this* event. If we insist on passing 1852 * correct cpumode to is_kernel_module, we should 1853 * record the cpumode when we adding this dso to the 1854 * linked list. 1855 * 1856 * However we don't really need passing correct 1857 * cpumode. We know the correct cpumode must be kernel 1858 * mode (if not, we should not link it onto kernel_dsos 1859 * list). 1860 * 1861 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1862 * is_kernel_module() treats it as a kernel cpumode. 1863 */ 1864 1865 if (!dso->kernel || 1866 is_kernel_module(dso->long_name, 1867 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1868 continue; 1869 1870 1871 kernel = dso__get(dso); 1872 break; 1873 } 1874 1875 up_read(&machine->dsos.lock); 1876 1877 if (kernel == NULL) 1878 kernel = machine__findnew_dso(machine, machine->mmap_name); 1879 if (kernel == NULL) 1880 goto out_problem; 1881 1882 kernel->kernel = dso_space; 1883 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1884 dso__put(kernel); 1885 goto out_problem; 1886 } 1887 1888 if (strstr(kernel->long_name, "vmlinux")) 1889 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1890 1891 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { 1892 dso__put(kernel); 1893 goto out_problem; 1894 } 1895 1896 if (build_id__is_defined(bid)) 1897 dso__set_build_id(kernel, bid); 1898 1899 /* 1900 * Avoid using a zero address (kptr_restrict) for the ref reloc 1901 * symbol. Effectively having zero here means that at record 1902 * time /proc/sys/kernel/kptr_restrict was non zero. 1903 */ 1904 if (xm->pgoff != 0) { 1905 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1906 symbol_name, 1907 xm->pgoff); 1908 } 1909 1910 if (machine__is_default_guest(machine)) { 1911 /* 1912 * preload dso of guest kernel and modules 1913 */ 1914 dso__load(kernel, machine__kernel_map(machine)); 1915 } 1916 dso__put(kernel); 1917 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1918 return machine__process_extra_kernel_map(machine, xm); 1919 } 1920 return 0; 1921 out_problem: 1922 return -1; 1923 } 1924 1925 int machine__process_mmap2_event(struct machine *machine, 1926 union perf_event *event, 1927 struct perf_sample *sample) 1928 { 1929 struct thread *thread; 1930 struct map *map; 1931 struct dso_id dso_id = { 1932 .maj = event->mmap2.maj, 1933 .min = event->mmap2.min, 1934 .ino = event->mmap2.ino, 1935 .ino_generation = event->mmap2.ino_generation, 1936 }; 1937 struct build_id __bid, *bid = NULL; 1938 int ret = 0; 1939 1940 if (dump_trace) 1941 perf_event__fprintf_mmap2(event, stdout); 1942 1943 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1944 bid = &__bid; 1945 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1946 } 1947 1948 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1949 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1950 struct extra_kernel_map xm = { 1951 .start = event->mmap2.start, 1952 .end = event->mmap2.start + event->mmap2.len, 1953 .pgoff = event->mmap2.pgoff, 1954 }; 1955 1956 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1957 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1958 if (ret < 0) 1959 goto out_problem; 1960 return 0; 1961 } 1962 1963 thread = machine__findnew_thread(machine, event->mmap2.pid, 1964 event->mmap2.tid); 1965 if (thread == NULL) 1966 goto out_problem; 1967 1968 map = map__new(machine, event->mmap2.start, 1969 event->mmap2.len, event->mmap2.pgoff, 1970 &dso_id, event->mmap2.prot, 1971 event->mmap2.flags, bid, 1972 event->mmap2.filename, thread); 1973 1974 if (map == NULL) 1975 goto out_problem_map; 1976 1977 ret = thread__insert_map(thread, map); 1978 if (ret) 1979 goto out_problem_insert; 1980 1981 thread__put(thread); 1982 map__put(map); 1983 return 0; 1984 1985 out_problem_insert: 1986 map__put(map); 1987 out_problem_map: 1988 thread__put(thread); 1989 out_problem: 1990 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1991 return 0; 1992 } 1993 1994 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1995 struct perf_sample *sample) 1996 { 1997 struct thread *thread; 1998 struct map *map; 1999 u32 prot = 0; 2000 int ret = 0; 2001 2002 if (dump_trace) 2003 perf_event__fprintf_mmap(event, stdout); 2004 2005 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 2006 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 2007 struct extra_kernel_map xm = { 2008 .start = event->mmap.start, 2009 .end = event->mmap.start + event->mmap.len, 2010 .pgoff = event->mmap.pgoff, 2011 }; 2012 2013 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 2014 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 2015 if (ret < 0) 2016 goto out_problem; 2017 return 0; 2018 } 2019 2020 thread = machine__findnew_thread(machine, event->mmap.pid, 2021 event->mmap.tid); 2022 if (thread == NULL) 2023 goto out_problem; 2024 2025 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 2026 prot = PROT_EXEC; 2027 2028 map = map__new(machine, event->mmap.start, 2029 event->mmap.len, event->mmap.pgoff, 2030 NULL, prot, 0, NULL, event->mmap.filename, thread); 2031 2032 if (map == NULL) 2033 goto out_problem_map; 2034 2035 ret = thread__insert_map(thread, map); 2036 if (ret) 2037 goto out_problem_insert; 2038 2039 thread__put(thread); 2040 map__put(map); 2041 return 0; 2042 2043 out_problem_insert: 2044 map__put(map); 2045 out_problem_map: 2046 thread__put(thread); 2047 out_problem: 2048 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 2049 return 0; 2050 } 2051 2052 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd, 2053 struct thread *th, bool lock) 2054 { 2055 struct threads *threads = machine__threads(machine, thread__tid(th)); 2056 2057 if (!nd) 2058 nd = thread_rb_node__find(th, &threads->entries.rb_root); 2059 2060 if (threads->last_match && RC_CHK_EQUAL(threads->last_match, th)) 2061 threads__set_last_match(threads, NULL); 2062 2063 if (lock) 2064 down_write(&threads->lock); 2065 2066 BUG_ON(refcount_read(thread__refcnt(th)) == 0); 2067 2068 thread__put(nd->thread); 2069 rb_erase_cached(&nd->rb_node, &threads->entries); 2070 RB_CLEAR_NODE(&nd->rb_node); 2071 --threads->nr; 2072 2073 free(nd); 2074 2075 if (lock) 2076 up_write(&threads->lock); 2077 } 2078 2079 void machine__remove_thread(struct machine *machine, struct thread *th) 2080 { 2081 return __machine__remove_thread(machine, NULL, th, true); 2082 } 2083 2084 int machine__process_fork_event(struct machine *machine, union perf_event *event, 2085 struct perf_sample *sample) 2086 { 2087 struct thread *thread = machine__find_thread(machine, 2088 event->fork.pid, 2089 event->fork.tid); 2090 struct thread *parent = machine__findnew_thread(machine, 2091 event->fork.ppid, 2092 event->fork.ptid); 2093 bool do_maps_clone = true; 2094 int err = 0; 2095 2096 if (dump_trace) 2097 perf_event__fprintf_task(event, stdout); 2098 2099 /* 2100 * There may be an existing thread that is not actually the parent, 2101 * either because we are processing events out of order, or because the 2102 * (fork) event that would have removed the thread was lost. Assume the 2103 * latter case and continue on as best we can. 2104 */ 2105 if (thread__pid(parent) != (pid_t)event->fork.ppid) { 2106 dump_printf("removing erroneous parent thread %d/%d\n", 2107 thread__pid(parent), thread__tid(parent)); 2108 machine__remove_thread(machine, parent); 2109 thread__put(parent); 2110 parent = machine__findnew_thread(machine, event->fork.ppid, 2111 event->fork.ptid); 2112 } 2113 2114 /* if a thread currently exists for the thread id remove it */ 2115 if (thread != NULL) { 2116 machine__remove_thread(machine, thread); 2117 thread__put(thread); 2118 } 2119 2120 thread = machine__findnew_thread(machine, event->fork.pid, 2121 event->fork.tid); 2122 /* 2123 * When synthesizing FORK events, we are trying to create thread 2124 * objects for the already running tasks on the machine. 2125 * 2126 * Normally, for a kernel FORK event, we want to clone the parent's 2127 * maps because that is what the kernel just did. 2128 * 2129 * But when synthesizing, this should not be done. If we do, we end up 2130 * with overlapping maps as we process the synthesized MMAP2 events that 2131 * get delivered shortly thereafter. 2132 * 2133 * Use the FORK event misc flags in an internal way to signal this 2134 * situation, so we can elide the map clone when appropriate. 2135 */ 2136 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 2137 do_maps_clone = false; 2138 2139 if (thread == NULL || parent == NULL || 2140 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 2141 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 2142 err = -1; 2143 } 2144 thread__put(thread); 2145 thread__put(parent); 2146 2147 return err; 2148 } 2149 2150 int machine__process_exit_event(struct machine *machine, union perf_event *event, 2151 struct perf_sample *sample __maybe_unused) 2152 { 2153 struct thread *thread = machine__find_thread(machine, 2154 event->fork.pid, 2155 event->fork.tid); 2156 2157 if (dump_trace) 2158 perf_event__fprintf_task(event, stdout); 2159 2160 if (thread != NULL) 2161 thread__put(thread); 2162 2163 return 0; 2164 } 2165 2166 int machine__process_event(struct machine *machine, union perf_event *event, 2167 struct perf_sample *sample) 2168 { 2169 int ret; 2170 2171 switch (event->header.type) { 2172 case PERF_RECORD_COMM: 2173 ret = machine__process_comm_event(machine, event, sample); break; 2174 case PERF_RECORD_MMAP: 2175 ret = machine__process_mmap_event(machine, event, sample); break; 2176 case PERF_RECORD_NAMESPACES: 2177 ret = machine__process_namespaces_event(machine, event, sample); break; 2178 case PERF_RECORD_CGROUP: 2179 ret = machine__process_cgroup_event(machine, event, sample); break; 2180 case PERF_RECORD_MMAP2: 2181 ret = machine__process_mmap2_event(machine, event, sample); break; 2182 case PERF_RECORD_FORK: 2183 ret = machine__process_fork_event(machine, event, sample); break; 2184 case PERF_RECORD_EXIT: 2185 ret = machine__process_exit_event(machine, event, sample); break; 2186 case PERF_RECORD_LOST: 2187 ret = machine__process_lost_event(machine, event, sample); break; 2188 case PERF_RECORD_AUX: 2189 ret = machine__process_aux_event(machine, event); break; 2190 case PERF_RECORD_ITRACE_START: 2191 ret = machine__process_itrace_start_event(machine, event); break; 2192 case PERF_RECORD_LOST_SAMPLES: 2193 ret = machine__process_lost_samples_event(machine, event, sample); break; 2194 case PERF_RECORD_SWITCH: 2195 case PERF_RECORD_SWITCH_CPU_WIDE: 2196 ret = machine__process_switch_event(machine, event); break; 2197 case PERF_RECORD_KSYMBOL: 2198 ret = machine__process_ksymbol(machine, event, sample); break; 2199 case PERF_RECORD_BPF_EVENT: 2200 ret = machine__process_bpf(machine, event, sample); break; 2201 case PERF_RECORD_TEXT_POKE: 2202 ret = machine__process_text_poke(machine, event, sample); break; 2203 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2204 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2205 default: 2206 ret = -1; 2207 break; 2208 } 2209 2210 return ret; 2211 } 2212 2213 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2214 { 2215 return regexec(regex, sym->name, 0, NULL, 0) == 0; 2216 } 2217 2218 static void ip__resolve_ams(struct thread *thread, 2219 struct addr_map_symbol *ams, 2220 u64 ip) 2221 { 2222 struct addr_location al; 2223 2224 addr_location__init(&al); 2225 /* 2226 * We cannot use the header.misc hint to determine whether a 2227 * branch stack address is user, kernel, guest, hypervisor. 2228 * Branches may straddle the kernel/user/hypervisor boundaries. 2229 * Thus, we have to try consecutively until we find a match 2230 * or else, the symbol is unknown 2231 */ 2232 thread__find_cpumode_addr_location(thread, ip, &al); 2233 2234 ams->addr = ip; 2235 ams->al_addr = al.addr; 2236 ams->al_level = al.level; 2237 ams->ms.maps = maps__get(al.maps); 2238 ams->ms.sym = al.sym; 2239 ams->ms.map = map__get(al.map); 2240 ams->phys_addr = 0; 2241 ams->data_page_size = 0; 2242 addr_location__exit(&al); 2243 } 2244 2245 static void ip__resolve_data(struct thread *thread, 2246 u8 m, struct addr_map_symbol *ams, 2247 u64 addr, u64 phys_addr, u64 daddr_page_size) 2248 { 2249 struct addr_location al; 2250 2251 addr_location__init(&al); 2252 2253 thread__find_symbol(thread, m, addr, &al); 2254 2255 ams->addr = addr; 2256 ams->al_addr = al.addr; 2257 ams->al_level = al.level; 2258 ams->ms.maps = maps__get(al.maps); 2259 ams->ms.sym = al.sym; 2260 ams->ms.map = map__get(al.map); 2261 ams->phys_addr = phys_addr; 2262 ams->data_page_size = daddr_page_size; 2263 addr_location__exit(&al); 2264 } 2265 2266 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2267 struct addr_location *al) 2268 { 2269 struct mem_info *mi = mem_info__new(); 2270 2271 if (!mi) 2272 return NULL; 2273 2274 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2275 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2276 sample->addr, sample->phys_addr, 2277 sample->data_page_size); 2278 mi->data_src.val = sample->data_src; 2279 2280 return mi; 2281 } 2282 2283 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2284 { 2285 struct map *map = ms->map; 2286 char *srcline = NULL; 2287 struct dso *dso; 2288 2289 if (!map || callchain_param.key == CCKEY_FUNCTION) 2290 return srcline; 2291 2292 dso = map__dso(map); 2293 srcline = srcline__tree_find(&dso->srclines, ip); 2294 if (!srcline) { 2295 bool show_sym = false; 2296 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2297 2298 srcline = get_srcline(dso, map__rip_2objdump(map, ip), 2299 ms->sym, show_sym, show_addr, ip); 2300 srcline__tree_insert(&dso->srclines, ip, srcline); 2301 } 2302 2303 return srcline; 2304 } 2305 2306 struct iterations { 2307 int nr_loop_iter; 2308 u64 cycles; 2309 }; 2310 2311 static int add_callchain_ip(struct thread *thread, 2312 struct callchain_cursor *cursor, 2313 struct symbol **parent, 2314 struct addr_location *root_al, 2315 u8 *cpumode, 2316 u64 ip, 2317 bool branch, 2318 struct branch_flags *flags, 2319 struct iterations *iter, 2320 u64 branch_from) 2321 { 2322 struct map_symbol ms = {}; 2323 struct addr_location al; 2324 int nr_loop_iter = 0, err = 0; 2325 u64 iter_cycles = 0; 2326 const char *srcline = NULL; 2327 2328 addr_location__init(&al); 2329 al.filtered = 0; 2330 al.sym = NULL; 2331 al.srcline = NULL; 2332 if (!cpumode) { 2333 thread__find_cpumode_addr_location(thread, ip, &al); 2334 } else { 2335 if (ip >= PERF_CONTEXT_MAX) { 2336 switch (ip) { 2337 case PERF_CONTEXT_HV: 2338 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2339 break; 2340 case PERF_CONTEXT_KERNEL: 2341 *cpumode = PERF_RECORD_MISC_KERNEL; 2342 break; 2343 case PERF_CONTEXT_USER: 2344 *cpumode = PERF_RECORD_MISC_USER; 2345 break; 2346 default: 2347 pr_debug("invalid callchain context: " 2348 "%"PRId64"\n", (s64) ip); 2349 /* 2350 * It seems the callchain is corrupted. 2351 * Discard all. 2352 */ 2353 callchain_cursor_reset(cursor); 2354 err = 1; 2355 goto out; 2356 } 2357 goto out; 2358 } 2359 thread__find_symbol(thread, *cpumode, ip, &al); 2360 } 2361 2362 if (al.sym != NULL) { 2363 if (perf_hpp_list.parent && !*parent && 2364 symbol__match_regex(al.sym, &parent_regex)) 2365 *parent = al.sym; 2366 else if (have_ignore_callees && root_al && 2367 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2368 /* Treat this symbol as the root, 2369 forgetting its callees. */ 2370 addr_location__copy(root_al, &al); 2371 callchain_cursor_reset(cursor); 2372 } 2373 } 2374 2375 if (symbol_conf.hide_unresolved && al.sym == NULL) 2376 goto out; 2377 2378 if (iter) { 2379 nr_loop_iter = iter->nr_loop_iter; 2380 iter_cycles = iter->cycles; 2381 } 2382 2383 ms.maps = maps__get(al.maps); 2384 ms.map = map__get(al.map); 2385 ms.sym = al.sym; 2386 srcline = callchain_srcline(&ms, al.addr); 2387 err = callchain_cursor_append(cursor, ip, &ms, 2388 branch, flags, nr_loop_iter, 2389 iter_cycles, branch_from, srcline); 2390 out: 2391 addr_location__exit(&al); 2392 map_symbol__exit(&ms); 2393 return err; 2394 } 2395 2396 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2397 struct addr_location *al) 2398 { 2399 unsigned int i; 2400 const struct branch_stack *bs = sample->branch_stack; 2401 struct branch_entry *entries = perf_sample__branch_entries(sample); 2402 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2403 2404 if (!bi) 2405 return NULL; 2406 2407 for (i = 0; i < bs->nr; i++) { 2408 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2409 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2410 bi[i].flags = entries[i].flags; 2411 } 2412 return bi; 2413 } 2414 2415 static void save_iterations(struct iterations *iter, 2416 struct branch_entry *be, int nr) 2417 { 2418 int i; 2419 2420 iter->nr_loop_iter++; 2421 iter->cycles = 0; 2422 2423 for (i = 0; i < nr; i++) 2424 iter->cycles += be[i].flags.cycles; 2425 } 2426 2427 #define CHASHSZ 127 2428 #define CHASHBITS 7 2429 #define NO_ENTRY 0xff 2430 2431 #define PERF_MAX_BRANCH_DEPTH 127 2432 2433 /* Remove loops. */ 2434 static int remove_loops(struct branch_entry *l, int nr, 2435 struct iterations *iter) 2436 { 2437 int i, j, off; 2438 unsigned char chash[CHASHSZ]; 2439 2440 memset(chash, NO_ENTRY, sizeof(chash)); 2441 2442 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2443 2444 for (i = 0; i < nr; i++) { 2445 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2446 2447 /* no collision handling for now */ 2448 if (chash[h] == NO_ENTRY) { 2449 chash[h] = i; 2450 } else if (l[chash[h]].from == l[i].from) { 2451 bool is_loop = true; 2452 /* check if it is a real loop */ 2453 off = 0; 2454 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2455 if (l[j].from != l[i + off].from) { 2456 is_loop = false; 2457 break; 2458 } 2459 if (is_loop) { 2460 j = nr - (i + off); 2461 if (j > 0) { 2462 save_iterations(iter + i + off, 2463 l + i, off); 2464 2465 memmove(iter + i, iter + i + off, 2466 j * sizeof(*iter)); 2467 2468 memmove(l + i, l + i + off, 2469 j * sizeof(*l)); 2470 } 2471 2472 nr -= off; 2473 } 2474 } 2475 } 2476 return nr; 2477 } 2478 2479 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2480 struct callchain_cursor *cursor, 2481 struct perf_sample *sample, 2482 struct symbol **parent, 2483 struct addr_location *root_al, 2484 u64 branch_from, 2485 bool callee, int end) 2486 { 2487 struct ip_callchain *chain = sample->callchain; 2488 u8 cpumode = PERF_RECORD_MISC_USER; 2489 int err, i; 2490 2491 if (callee) { 2492 for (i = 0; i < end + 1; i++) { 2493 err = add_callchain_ip(thread, cursor, parent, 2494 root_al, &cpumode, chain->ips[i], 2495 false, NULL, NULL, branch_from); 2496 if (err) 2497 return err; 2498 } 2499 return 0; 2500 } 2501 2502 for (i = end; i >= 0; i--) { 2503 err = add_callchain_ip(thread, cursor, parent, 2504 root_al, &cpumode, chain->ips[i], 2505 false, NULL, NULL, branch_from); 2506 if (err) 2507 return err; 2508 } 2509 2510 return 0; 2511 } 2512 2513 static void save_lbr_cursor_node(struct thread *thread, 2514 struct callchain_cursor *cursor, 2515 int idx) 2516 { 2517 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2518 2519 if (!lbr_stitch) 2520 return; 2521 2522 if (cursor->pos == cursor->nr) { 2523 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2524 return; 2525 } 2526 2527 if (!cursor->curr) 2528 cursor->curr = cursor->first; 2529 else 2530 cursor->curr = cursor->curr->next; 2531 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2532 sizeof(struct callchain_cursor_node)); 2533 2534 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2535 cursor->pos++; 2536 } 2537 2538 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2539 struct callchain_cursor *cursor, 2540 struct perf_sample *sample, 2541 struct symbol **parent, 2542 struct addr_location *root_al, 2543 u64 *branch_from, 2544 bool callee) 2545 { 2546 struct branch_stack *lbr_stack = sample->branch_stack; 2547 struct branch_entry *entries = perf_sample__branch_entries(sample); 2548 u8 cpumode = PERF_RECORD_MISC_USER; 2549 int lbr_nr = lbr_stack->nr; 2550 struct branch_flags *flags; 2551 int err, i; 2552 u64 ip; 2553 2554 /* 2555 * The curr and pos are not used in writing session. They are cleared 2556 * in callchain_cursor_commit() when the writing session is closed. 2557 * Using curr and pos to track the current cursor node. 2558 */ 2559 if (thread__lbr_stitch(thread)) { 2560 cursor->curr = NULL; 2561 cursor->pos = cursor->nr; 2562 if (cursor->nr) { 2563 cursor->curr = cursor->first; 2564 for (i = 0; i < (int)(cursor->nr - 1); i++) 2565 cursor->curr = cursor->curr->next; 2566 } 2567 } 2568 2569 if (callee) { 2570 /* Add LBR ip from first entries.to */ 2571 ip = entries[0].to; 2572 flags = &entries[0].flags; 2573 *branch_from = entries[0].from; 2574 err = add_callchain_ip(thread, cursor, parent, 2575 root_al, &cpumode, ip, 2576 true, flags, NULL, 2577 *branch_from); 2578 if (err) 2579 return err; 2580 2581 /* 2582 * The number of cursor node increases. 2583 * Move the current cursor node. 2584 * But does not need to save current cursor node for entry 0. 2585 * It's impossible to stitch the whole LBRs of previous sample. 2586 */ 2587 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) { 2588 if (!cursor->curr) 2589 cursor->curr = cursor->first; 2590 else 2591 cursor->curr = cursor->curr->next; 2592 cursor->pos++; 2593 } 2594 2595 /* Add LBR ip from entries.from one by one. */ 2596 for (i = 0; i < lbr_nr; i++) { 2597 ip = entries[i].from; 2598 flags = &entries[i].flags; 2599 err = add_callchain_ip(thread, cursor, parent, 2600 root_al, &cpumode, ip, 2601 true, flags, NULL, 2602 *branch_from); 2603 if (err) 2604 return err; 2605 save_lbr_cursor_node(thread, cursor, i); 2606 } 2607 return 0; 2608 } 2609 2610 /* Add LBR ip from entries.from one by one. */ 2611 for (i = lbr_nr - 1; i >= 0; i--) { 2612 ip = entries[i].from; 2613 flags = &entries[i].flags; 2614 err = add_callchain_ip(thread, cursor, parent, 2615 root_al, &cpumode, ip, 2616 true, flags, NULL, 2617 *branch_from); 2618 if (err) 2619 return err; 2620 save_lbr_cursor_node(thread, cursor, i); 2621 } 2622 2623 if (lbr_nr > 0) { 2624 /* Add LBR ip from first entries.to */ 2625 ip = entries[0].to; 2626 flags = &entries[0].flags; 2627 *branch_from = entries[0].from; 2628 err = add_callchain_ip(thread, cursor, parent, 2629 root_al, &cpumode, ip, 2630 true, flags, NULL, 2631 *branch_from); 2632 if (err) 2633 return err; 2634 } 2635 2636 return 0; 2637 } 2638 2639 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2640 struct callchain_cursor *cursor) 2641 { 2642 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2643 struct callchain_cursor_node *cnode; 2644 struct stitch_list *stitch_node; 2645 int err; 2646 2647 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2648 cnode = &stitch_node->cursor; 2649 2650 err = callchain_cursor_append(cursor, cnode->ip, 2651 &cnode->ms, 2652 cnode->branch, 2653 &cnode->branch_flags, 2654 cnode->nr_loop_iter, 2655 cnode->iter_cycles, 2656 cnode->branch_from, 2657 cnode->srcline); 2658 if (err) 2659 return err; 2660 } 2661 return 0; 2662 } 2663 2664 static struct stitch_list *get_stitch_node(struct thread *thread) 2665 { 2666 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2667 struct stitch_list *stitch_node; 2668 2669 if (!list_empty(&lbr_stitch->free_lists)) { 2670 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2671 struct stitch_list, node); 2672 list_del(&stitch_node->node); 2673 2674 return stitch_node; 2675 } 2676 2677 return malloc(sizeof(struct stitch_list)); 2678 } 2679 2680 static bool has_stitched_lbr(struct thread *thread, 2681 struct perf_sample *cur, 2682 struct perf_sample *prev, 2683 unsigned int max_lbr, 2684 bool callee) 2685 { 2686 struct branch_stack *cur_stack = cur->branch_stack; 2687 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2688 struct branch_stack *prev_stack = prev->branch_stack; 2689 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2690 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2691 int i, j, nr_identical_branches = 0; 2692 struct stitch_list *stitch_node; 2693 u64 cur_base, distance; 2694 2695 if (!cur_stack || !prev_stack) 2696 return false; 2697 2698 /* Find the physical index of the base-of-stack for current sample. */ 2699 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2700 2701 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2702 (max_lbr + prev_stack->hw_idx - cur_base); 2703 /* Previous sample has shorter stack. Nothing can be stitched. */ 2704 if (distance + 1 > prev_stack->nr) 2705 return false; 2706 2707 /* 2708 * Check if there are identical LBRs between two samples. 2709 * Identical LBRs must have same from, to and flags values. Also, 2710 * they have to be saved in the same LBR registers (same physical 2711 * index). 2712 * 2713 * Starts from the base-of-stack of current sample. 2714 */ 2715 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2716 if ((prev_entries[i].from != cur_entries[j].from) || 2717 (prev_entries[i].to != cur_entries[j].to) || 2718 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2719 break; 2720 nr_identical_branches++; 2721 } 2722 2723 if (!nr_identical_branches) 2724 return false; 2725 2726 /* 2727 * Save the LBRs between the base-of-stack of previous sample 2728 * and the base-of-stack of current sample into lbr_stitch->lists. 2729 * These LBRs will be stitched later. 2730 */ 2731 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2732 2733 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2734 continue; 2735 2736 stitch_node = get_stitch_node(thread); 2737 if (!stitch_node) 2738 return false; 2739 2740 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2741 sizeof(struct callchain_cursor_node)); 2742 2743 if (callee) 2744 list_add(&stitch_node->node, &lbr_stitch->lists); 2745 else 2746 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2747 } 2748 2749 return true; 2750 } 2751 2752 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2753 { 2754 if (thread__lbr_stitch(thread)) 2755 return true; 2756 2757 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch))); 2758 if (!thread__lbr_stitch(thread)) 2759 goto err; 2760 2761 thread__lbr_stitch(thread)->prev_lbr_cursor = 2762 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2763 if (!thread__lbr_stitch(thread)->prev_lbr_cursor) 2764 goto free_lbr_stitch; 2765 2766 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists); 2767 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists); 2768 2769 return true; 2770 2771 free_lbr_stitch: 2772 free(thread__lbr_stitch(thread)); 2773 thread__set_lbr_stitch(thread, NULL); 2774 err: 2775 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2776 thread__set_lbr_stitch_enable(thread, false); 2777 return false; 2778 } 2779 2780 /* 2781 * Resolve LBR callstack chain sample 2782 * Return: 2783 * 1 on success get LBR callchain information 2784 * 0 no available LBR callchain information, should try fp 2785 * negative error code on other errors. 2786 */ 2787 static int resolve_lbr_callchain_sample(struct thread *thread, 2788 struct callchain_cursor *cursor, 2789 struct perf_sample *sample, 2790 struct symbol **parent, 2791 struct addr_location *root_al, 2792 int max_stack, 2793 unsigned int max_lbr) 2794 { 2795 bool callee = (callchain_param.order == ORDER_CALLEE); 2796 struct ip_callchain *chain = sample->callchain; 2797 int chain_nr = min(max_stack, (int)chain->nr), i; 2798 struct lbr_stitch *lbr_stitch; 2799 bool stitched_lbr = false; 2800 u64 branch_from = 0; 2801 int err; 2802 2803 for (i = 0; i < chain_nr; i++) { 2804 if (chain->ips[i] == PERF_CONTEXT_USER) 2805 break; 2806 } 2807 2808 /* LBR only affects the user callchain */ 2809 if (i == chain_nr) 2810 return 0; 2811 2812 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx && 2813 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2814 lbr_stitch = thread__lbr_stitch(thread); 2815 2816 stitched_lbr = has_stitched_lbr(thread, sample, 2817 &lbr_stitch->prev_sample, 2818 max_lbr, callee); 2819 2820 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2821 list_replace_init(&lbr_stitch->lists, 2822 &lbr_stitch->free_lists); 2823 } 2824 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2825 } 2826 2827 if (callee) { 2828 /* Add kernel ip */ 2829 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2830 parent, root_al, branch_from, 2831 true, i); 2832 if (err) 2833 goto error; 2834 2835 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2836 root_al, &branch_from, true); 2837 if (err) 2838 goto error; 2839 2840 if (stitched_lbr) { 2841 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2842 if (err) 2843 goto error; 2844 } 2845 2846 } else { 2847 if (stitched_lbr) { 2848 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2849 if (err) 2850 goto error; 2851 } 2852 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2853 root_al, &branch_from, false); 2854 if (err) 2855 goto error; 2856 2857 /* Add kernel ip */ 2858 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2859 parent, root_al, branch_from, 2860 false, i); 2861 if (err) 2862 goto error; 2863 } 2864 return 1; 2865 2866 error: 2867 return (err < 0) ? err : 0; 2868 } 2869 2870 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2871 struct callchain_cursor *cursor, 2872 struct symbol **parent, 2873 struct addr_location *root_al, 2874 u8 *cpumode, int ent) 2875 { 2876 int err = 0; 2877 2878 while (--ent >= 0) { 2879 u64 ip = chain->ips[ent]; 2880 2881 if (ip >= PERF_CONTEXT_MAX) { 2882 err = add_callchain_ip(thread, cursor, parent, 2883 root_al, cpumode, ip, 2884 false, NULL, NULL, 0); 2885 break; 2886 } 2887 } 2888 return err; 2889 } 2890 2891 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2892 struct thread *thread, int usr_idx) 2893 { 2894 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64")) 2895 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2896 else 2897 return 0; 2898 } 2899 2900 static int thread__resolve_callchain_sample(struct thread *thread, 2901 struct callchain_cursor *cursor, 2902 struct evsel *evsel, 2903 struct perf_sample *sample, 2904 struct symbol **parent, 2905 struct addr_location *root_al, 2906 int max_stack) 2907 { 2908 struct branch_stack *branch = sample->branch_stack; 2909 struct branch_entry *entries = perf_sample__branch_entries(sample); 2910 struct ip_callchain *chain = sample->callchain; 2911 int chain_nr = 0; 2912 u8 cpumode = PERF_RECORD_MISC_USER; 2913 int i, j, err, nr_entries, usr_idx; 2914 int skip_idx = -1; 2915 int first_call = 0; 2916 u64 leaf_frame_caller; 2917 2918 if (chain) 2919 chain_nr = chain->nr; 2920 2921 if (evsel__has_branch_callstack(evsel)) { 2922 struct perf_env *env = evsel__env(evsel); 2923 2924 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2925 root_al, max_stack, 2926 !env ? 0 : env->max_branches); 2927 if (err) 2928 return (err < 0) ? err : 0; 2929 } 2930 2931 /* 2932 * Based on DWARF debug information, some architectures skip 2933 * a callchain entry saved by the kernel. 2934 */ 2935 skip_idx = arch_skip_callchain_idx(thread, chain); 2936 2937 /* 2938 * Add branches to call stack for easier browsing. This gives 2939 * more context for a sample than just the callers. 2940 * 2941 * This uses individual histograms of paths compared to the 2942 * aggregated histograms the normal LBR mode uses. 2943 * 2944 * Limitations for now: 2945 * - No extra filters 2946 * - No annotations (should annotate somehow) 2947 */ 2948 2949 if (branch && callchain_param.branch_callstack) { 2950 int nr = min(max_stack, (int)branch->nr); 2951 struct branch_entry be[nr]; 2952 struct iterations iter[nr]; 2953 2954 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2955 pr_warning("corrupted branch chain. skipping...\n"); 2956 goto check_calls; 2957 } 2958 2959 for (i = 0; i < nr; i++) { 2960 if (callchain_param.order == ORDER_CALLEE) { 2961 be[i] = entries[i]; 2962 2963 if (chain == NULL) 2964 continue; 2965 2966 /* 2967 * Check for overlap into the callchain. 2968 * The return address is one off compared to 2969 * the branch entry. To adjust for this 2970 * assume the calling instruction is not longer 2971 * than 8 bytes. 2972 */ 2973 if (i == skip_idx || 2974 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2975 first_call++; 2976 else if (be[i].from < chain->ips[first_call] && 2977 be[i].from >= chain->ips[first_call] - 8) 2978 first_call++; 2979 } else 2980 be[i] = entries[branch->nr - i - 1]; 2981 } 2982 2983 memset(iter, 0, sizeof(struct iterations) * nr); 2984 nr = remove_loops(be, nr, iter); 2985 2986 for (i = 0; i < nr; i++) { 2987 err = add_callchain_ip(thread, cursor, parent, 2988 root_al, 2989 NULL, be[i].to, 2990 true, &be[i].flags, 2991 NULL, be[i].from); 2992 2993 if (!err) 2994 err = add_callchain_ip(thread, cursor, parent, root_al, 2995 NULL, be[i].from, 2996 true, &be[i].flags, 2997 &iter[i], 0); 2998 if (err == -EINVAL) 2999 break; 3000 if (err) 3001 return err; 3002 } 3003 3004 if (chain_nr == 0) 3005 return 0; 3006 3007 chain_nr -= nr; 3008 } 3009 3010 check_calls: 3011 if (chain && callchain_param.order != ORDER_CALLEE) { 3012 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 3013 &cpumode, chain->nr - first_call); 3014 if (err) 3015 return (err < 0) ? err : 0; 3016 } 3017 for (i = first_call, nr_entries = 0; 3018 i < chain_nr && nr_entries < max_stack; i++) { 3019 u64 ip; 3020 3021 if (callchain_param.order == ORDER_CALLEE) 3022 j = i; 3023 else 3024 j = chain->nr - i - 1; 3025 3026 #ifdef HAVE_SKIP_CALLCHAIN_IDX 3027 if (j == skip_idx) 3028 continue; 3029 #endif 3030 ip = chain->ips[j]; 3031 if (ip < PERF_CONTEXT_MAX) 3032 ++nr_entries; 3033 else if (callchain_param.order != ORDER_CALLEE) { 3034 err = find_prev_cpumode(chain, thread, cursor, parent, 3035 root_al, &cpumode, j); 3036 if (err) 3037 return (err < 0) ? err : 0; 3038 continue; 3039 } 3040 3041 /* 3042 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 3043 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 3044 * the index will be different in order to add the missing frame 3045 * at the right place. 3046 */ 3047 3048 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 3049 3050 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 3051 3052 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 3053 3054 /* 3055 * check if leaf_frame_Caller != ip to not add the same 3056 * value twice. 3057 */ 3058 3059 if (leaf_frame_caller && leaf_frame_caller != ip) { 3060 3061 err = add_callchain_ip(thread, cursor, parent, 3062 root_al, &cpumode, leaf_frame_caller, 3063 false, NULL, NULL, 0); 3064 if (err) 3065 return (err < 0) ? err : 0; 3066 } 3067 } 3068 3069 err = add_callchain_ip(thread, cursor, parent, 3070 root_al, &cpumode, ip, 3071 false, NULL, NULL, 0); 3072 3073 if (err) 3074 return (err < 0) ? err : 0; 3075 } 3076 3077 return 0; 3078 } 3079 3080 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 3081 { 3082 struct symbol *sym = ms->sym; 3083 struct map *map = ms->map; 3084 struct inline_node *inline_node; 3085 struct inline_list *ilist; 3086 struct dso *dso; 3087 u64 addr; 3088 int ret = 1; 3089 struct map_symbol ilist_ms; 3090 3091 if (!symbol_conf.inline_name || !map || !sym) 3092 return ret; 3093 3094 addr = map__dso_map_ip(map, ip); 3095 addr = map__rip_2objdump(map, addr); 3096 dso = map__dso(map); 3097 3098 inline_node = inlines__tree_find(&dso->inlined_nodes, addr); 3099 if (!inline_node) { 3100 inline_node = dso__parse_addr_inlines(dso, addr, sym); 3101 if (!inline_node) 3102 return ret; 3103 inlines__tree_insert(&dso->inlined_nodes, inline_node); 3104 } 3105 3106 ilist_ms = (struct map_symbol) { 3107 .maps = maps__get(ms->maps), 3108 .map = map__get(map), 3109 }; 3110 list_for_each_entry(ilist, &inline_node->val, list) { 3111 ilist_ms.sym = ilist->symbol; 3112 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 3113 NULL, 0, 0, 0, ilist->srcline); 3114 3115 if (ret != 0) 3116 return ret; 3117 } 3118 map_symbol__exit(&ilist_ms); 3119 3120 return ret; 3121 } 3122 3123 static int unwind_entry(struct unwind_entry *entry, void *arg) 3124 { 3125 struct callchain_cursor *cursor = arg; 3126 const char *srcline = NULL; 3127 u64 addr = entry->ip; 3128 3129 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 3130 return 0; 3131 3132 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 3133 return 0; 3134 3135 /* 3136 * Convert entry->ip from a virtual address to an offset in 3137 * its corresponding binary. 3138 */ 3139 if (entry->ms.map) 3140 addr = map__dso_map_ip(entry->ms.map, entry->ip); 3141 3142 srcline = callchain_srcline(&entry->ms, addr); 3143 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 3144 false, NULL, 0, 0, 0, srcline); 3145 } 3146 3147 static int thread__resolve_callchain_unwind(struct thread *thread, 3148 struct callchain_cursor *cursor, 3149 struct evsel *evsel, 3150 struct perf_sample *sample, 3151 int max_stack) 3152 { 3153 /* Can we do dwarf post unwind? */ 3154 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 3155 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 3156 return 0; 3157 3158 /* Bail out if nothing was captured. */ 3159 if ((!sample->user_regs.regs) || 3160 (!sample->user_stack.size)) 3161 return 0; 3162 3163 return unwind__get_entries(unwind_entry, cursor, 3164 thread, sample, max_stack, false); 3165 } 3166 3167 int thread__resolve_callchain(struct thread *thread, 3168 struct callchain_cursor *cursor, 3169 struct evsel *evsel, 3170 struct perf_sample *sample, 3171 struct symbol **parent, 3172 struct addr_location *root_al, 3173 int max_stack) 3174 { 3175 int ret = 0; 3176 3177 if (cursor == NULL) 3178 return -ENOMEM; 3179 3180 callchain_cursor_reset(cursor); 3181 3182 if (callchain_param.order == ORDER_CALLEE) { 3183 ret = thread__resolve_callchain_sample(thread, cursor, 3184 evsel, sample, 3185 parent, root_al, 3186 max_stack); 3187 if (ret) 3188 return ret; 3189 ret = thread__resolve_callchain_unwind(thread, cursor, 3190 evsel, sample, 3191 max_stack); 3192 } else { 3193 ret = thread__resolve_callchain_unwind(thread, cursor, 3194 evsel, sample, 3195 max_stack); 3196 if (ret) 3197 return ret; 3198 ret = thread__resolve_callchain_sample(thread, cursor, 3199 evsel, sample, 3200 parent, root_al, 3201 max_stack); 3202 } 3203 3204 return ret; 3205 } 3206 3207 int machine__for_each_thread(struct machine *machine, 3208 int (*fn)(struct thread *thread, void *p), 3209 void *priv) 3210 { 3211 struct threads *threads; 3212 struct rb_node *nd; 3213 int rc = 0; 3214 int i; 3215 3216 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 3217 threads = &machine->threads[i]; 3218 for (nd = rb_first_cached(&threads->entries); nd; 3219 nd = rb_next(nd)) { 3220 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node); 3221 3222 rc = fn(trb->thread, priv); 3223 if (rc != 0) 3224 return rc; 3225 } 3226 } 3227 return rc; 3228 } 3229 3230 int machines__for_each_thread(struct machines *machines, 3231 int (*fn)(struct thread *thread, void *p), 3232 void *priv) 3233 { 3234 struct rb_node *nd; 3235 int rc = 0; 3236 3237 rc = machine__for_each_thread(&machines->host, fn, priv); 3238 if (rc != 0) 3239 return rc; 3240 3241 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3242 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3243 3244 rc = machine__for_each_thread(machine, fn, priv); 3245 if (rc != 0) 3246 return rc; 3247 } 3248 return rc; 3249 } 3250 3251 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3252 { 3253 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3254 return -1; 3255 3256 return machine->current_tid[cpu]; 3257 } 3258 3259 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3260 pid_t tid) 3261 { 3262 struct thread *thread; 3263 const pid_t init_val = -1; 3264 3265 if (cpu < 0) 3266 return -EINVAL; 3267 3268 if (realloc_array_as_needed(machine->current_tid, 3269 machine->current_tid_sz, 3270 (unsigned int)cpu, 3271 &init_val)) 3272 return -ENOMEM; 3273 3274 machine->current_tid[cpu] = tid; 3275 3276 thread = machine__findnew_thread(machine, pid, tid); 3277 if (!thread) 3278 return -ENOMEM; 3279 3280 thread__set_cpu(thread, cpu); 3281 thread__put(thread); 3282 3283 return 0; 3284 } 3285 3286 /* 3287 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3288 * machine__normalized_is() if a normalized arch is needed. 3289 */ 3290 bool machine__is(struct machine *machine, const char *arch) 3291 { 3292 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3293 } 3294 3295 bool machine__normalized_is(struct machine *machine, const char *arch) 3296 { 3297 return machine && !strcmp(perf_env__arch(machine->env), arch); 3298 } 3299 3300 int machine__nr_cpus_avail(struct machine *machine) 3301 { 3302 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3303 } 3304 3305 int machine__get_kernel_start(struct machine *machine) 3306 { 3307 struct map *map = machine__kernel_map(machine); 3308 int err = 0; 3309 3310 /* 3311 * The only addresses above 2^63 are kernel addresses of a 64-bit 3312 * kernel. Note that addresses are unsigned so that on a 32-bit system 3313 * all addresses including kernel addresses are less than 2^32. In 3314 * that case (32-bit system), if the kernel mapping is unknown, all 3315 * addresses will be assumed to be in user space - see 3316 * machine__kernel_ip(). 3317 */ 3318 machine->kernel_start = 1ULL << 63; 3319 if (map) { 3320 err = map__load(map); 3321 /* 3322 * On x86_64, PTI entry trampolines are less than the 3323 * start of kernel text, but still above 2^63. So leave 3324 * kernel_start = 1ULL << 63 for x86_64. 3325 */ 3326 if (!err && !machine__is(machine, "x86_64")) 3327 machine->kernel_start = map__start(map); 3328 } 3329 return err; 3330 } 3331 3332 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3333 { 3334 u8 addr_cpumode = cpumode; 3335 bool kernel_ip; 3336 3337 if (!machine->single_address_space) 3338 goto out; 3339 3340 kernel_ip = machine__kernel_ip(machine, addr); 3341 switch (cpumode) { 3342 case PERF_RECORD_MISC_KERNEL: 3343 case PERF_RECORD_MISC_USER: 3344 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3345 PERF_RECORD_MISC_USER; 3346 break; 3347 case PERF_RECORD_MISC_GUEST_KERNEL: 3348 case PERF_RECORD_MISC_GUEST_USER: 3349 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3350 PERF_RECORD_MISC_GUEST_USER; 3351 break; 3352 default: 3353 break; 3354 } 3355 out: 3356 return addr_cpumode; 3357 } 3358 3359 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3360 { 3361 return dsos__findnew_id(&machine->dsos, filename, id); 3362 } 3363 3364 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3365 { 3366 return machine__findnew_dso_id(machine, filename, NULL); 3367 } 3368 3369 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3370 { 3371 struct machine *machine = vmachine; 3372 struct map *map; 3373 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3374 3375 if (sym == NULL) 3376 return NULL; 3377 3378 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL; 3379 *addrp = map__unmap_ip(map, sym->start); 3380 return sym->name; 3381 } 3382 3383 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3384 { 3385 struct dso *pos; 3386 int err = 0; 3387 3388 list_for_each_entry(pos, &machine->dsos.head, node) { 3389 if (fn(pos, machine, priv)) 3390 err = -1; 3391 } 3392 return err; 3393 } 3394 3395 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3396 { 3397 struct maps *maps = machine__kernel_maps(machine); 3398 struct map_rb_node *pos; 3399 int err = 0; 3400 3401 maps__for_each_entry(maps, pos) { 3402 err = fn(pos->map, priv); 3403 if (err != 0) { 3404 break; 3405 } 3406 } 3407 return err; 3408 } 3409 3410 bool machine__is_lock_function(struct machine *machine, u64 addr) 3411 { 3412 if (!machine->sched.text_start) { 3413 struct map *kmap; 3414 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3415 3416 if (!sym) { 3417 /* to avoid retry */ 3418 machine->sched.text_start = 1; 3419 return false; 3420 } 3421 3422 machine->sched.text_start = map__unmap_ip(kmap, sym->start); 3423 3424 /* should not fail from here */ 3425 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3426 machine->sched.text_end = map__unmap_ip(kmap, sym->start); 3427 3428 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3429 machine->lock.text_start = map__unmap_ip(kmap, sym->start); 3430 3431 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3432 machine->lock.text_end = map__unmap_ip(kmap, sym->start); 3433 } 3434 3435 /* failed to get kernel symbols */ 3436 if (machine->sched.text_start == 1) 3437 return false; 3438 3439 /* mutex and rwsem functions are in sched text section */ 3440 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3441 return true; 3442 3443 /* spinlock functions are in lock text section */ 3444 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3445 return true; 3446 3447 return false; 3448 } 3449