xref: /linux/tools/perf/util/machine.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
37 
38 #include <linux/ctype.h>
39 #include <symbol/kallsyms.h>
40 #include <linux/mman.h>
41 #include <linux/string.h>
42 #include <linux/zalloc.h>
43 
44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45 
46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48 	return machine->vmlinux_map->dso;
49 }
50 
51 static void dsos__init(struct dsos *dsos)
52 {
53 	INIT_LIST_HEAD(&dsos->head);
54 	dsos->root = RB_ROOT;
55 	init_rwsem(&dsos->lock);
56 }
57 
58 static void machine__threads_init(struct machine *machine)
59 {
60 	int i;
61 
62 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 		struct threads *threads = &machine->threads[i];
64 		threads->entries = RB_ROOT_CACHED;
65 		init_rwsem(&threads->lock);
66 		threads->nr = 0;
67 		INIT_LIST_HEAD(&threads->dead);
68 		threads->last_match = NULL;
69 	}
70 }
71 
72 static int machine__set_mmap_name(struct machine *machine)
73 {
74 	if (machine__is_host(machine))
75 		machine->mmap_name = strdup("[kernel.kallsyms]");
76 	else if (machine__is_default_guest(machine))
77 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 			  machine->pid) < 0)
80 		machine->mmap_name = NULL;
81 
82 	return machine->mmap_name ? 0 : -ENOMEM;
83 }
84 
85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86 {
87 	int err = -ENOMEM;
88 
89 	memset(machine, 0, sizeof(*machine));
90 	maps__init(&machine->kmaps, machine);
91 	RB_CLEAR_NODE(&machine->rb_node);
92 	dsos__init(&machine->dsos);
93 
94 	machine__threads_init(machine);
95 
96 	machine->vdso_info = NULL;
97 	machine->env = NULL;
98 
99 	machine->pid = pid;
100 
101 	machine->id_hdr_size = 0;
102 	machine->kptr_restrict_warned = false;
103 	machine->comm_exec = false;
104 	machine->kernel_start = 0;
105 	machine->vmlinux_map = NULL;
106 
107 	machine->root_dir = strdup(root_dir);
108 	if (machine->root_dir == NULL)
109 		return -ENOMEM;
110 
111 	if (machine__set_mmap_name(machine))
112 		goto out;
113 
114 	if (pid != HOST_KERNEL_ID) {
115 		struct thread *thread = machine__findnew_thread(machine, -1,
116 								pid);
117 		char comm[64];
118 
119 		if (thread == NULL)
120 			goto out;
121 
122 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 		thread__set_comm(thread, comm, 0);
124 		thread__put(thread);
125 	}
126 
127 	machine->current_tid = NULL;
128 	err = 0;
129 
130 out:
131 	if (err) {
132 		zfree(&machine->root_dir);
133 		zfree(&machine->mmap_name);
134 	}
135 	return 0;
136 }
137 
138 struct machine *machine__new_host(void)
139 {
140 	struct machine *machine = malloc(sizeof(*machine));
141 
142 	if (machine != NULL) {
143 		machine__init(machine, "", HOST_KERNEL_ID);
144 
145 		if (machine__create_kernel_maps(machine) < 0)
146 			goto out_delete;
147 	}
148 
149 	return machine;
150 out_delete:
151 	free(machine);
152 	return NULL;
153 }
154 
155 struct machine *machine__new_kallsyms(void)
156 {
157 	struct machine *machine = machine__new_host();
158 	/*
159 	 * FIXME:
160 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 	 *    ask for not using the kcore parsing code, once this one is fixed
162 	 *    to create a map per module.
163 	 */
164 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 		machine__delete(machine);
166 		machine = NULL;
167 	}
168 
169 	return machine;
170 }
171 
172 static void dsos__purge(struct dsos *dsos)
173 {
174 	struct dso *pos, *n;
175 
176 	down_write(&dsos->lock);
177 
178 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 		RB_CLEAR_NODE(&pos->rb_node);
180 		pos->root = NULL;
181 		list_del_init(&pos->node);
182 		dso__put(pos);
183 	}
184 
185 	up_write(&dsos->lock);
186 }
187 
188 static void dsos__exit(struct dsos *dsos)
189 {
190 	dsos__purge(dsos);
191 	exit_rwsem(&dsos->lock);
192 }
193 
194 void machine__delete_threads(struct machine *machine)
195 {
196 	struct rb_node *nd;
197 	int i;
198 
199 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 		struct threads *threads = &machine->threads[i];
201 		down_write(&threads->lock);
202 		nd = rb_first_cached(&threads->entries);
203 		while (nd) {
204 			struct thread *t = rb_entry(nd, struct thread, rb_node);
205 
206 			nd = rb_next(nd);
207 			__machine__remove_thread(machine, t, false);
208 		}
209 		up_write(&threads->lock);
210 	}
211 }
212 
213 void machine__exit(struct machine *machine)
214 {
215 	int i;
216 
217 	if (machine == NULL)
218 		return;
219 
220 	machine__destroy_kernel_maps(machine);
221 	maps__exit(&machine->kmaps);
222 	dsos__exit(&machine->dsos);
223 	machine__exit_vdso(machine);
224 	zfree(&machine->root_dir);
225 	zfree(&machine->mmap_name);
226 	zfree(&machine->current_tid);
227 
228 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 		struct threads *threads = &machine->threads[i];
230 		struct thread *thread, *n;
231 		/*
232 		 * Forget about the dead, at this point whatever threads were
233 		 * left in the dead lists better have a reference count taken
234 		 * by who is using them, and then, when they drop those references
235 		 * and it finally hits zero, thread__put() will check and see that
236 		 * its not in the dead threads list and will not try to remove it
237 		 * from there, just calling thread__delete() straight away.
238 		 */
239 		list_for_each_entry_safe(thread, n, &threads->dead, node)
240 			list_del_init(&thread->node);
241 
242 		exit_rwsem(&threads->lock);
243 	}
244 }
245 
246 void machine__delete(struct machine *machine)
247 {
248 	if (machine) {
249 		machine__exit(machine);
250 		free(machine);
251 	}
252 }
253 
254 void machines__init(struct machines *machines)
255 {
256 	machine__init(&machines->host, "", HOST_KERNEL_ID);
257 	machines->guests = RB_ROOT_CACHED;
258 }
259 
260 void machines__exit(struct machines *machines)
261 {
262 	machine__exit(&machines->host);
263 	/* XXX exit guest */
264 }
265 
266 struct machine *machines__add(struct machines *machines, pid_t pid,
267 			      const char *root_dir)
268 {
269 	struct rb_node **p = &machines->guests.rb_root.rb_node;
270 	struct rb_node *parent = NULL;
271 	struct machine *pos, *machine = malloc(sizeof(*machine));
272 	bool leftmost = true;
273 
274 	if (machine == NULL)
275 		return NULL;
276 
277 	if (machine__init(machine, root_dir, pid) != 0) {
278 		free(machine);
279 		return NULL;
280 	}
281 
282 	while (*p != NULL) {
283 		parent = *p;
284 		pos = rb_entry(parent, struct machine, rb_node);
285 		if (pid < pos->pid)
286 			p = &(*p)->rb_left;
287 		else {
288 			p = &(*p)->rb_right;
289 			leftmost = false;
290 		}
291 	}
292 
293 	rb_link_node(&machine->rb_node, parent, p);
294 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295 
296 	return machine;
297 }
298 
299 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300 {
301 	struct rb_node *nd;
302 
303 	machines->host.comm_exec = comm_exec;
304 
305 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
307 
308 		machine->comm_exec = comm_exec;
309 	}
310 }
311 
312 struct machine *machines__find(struct machines *machines, pid_t pid)
313 {
314 	struct rb_node **p = &machines->guests.rb_root.rb_node;
315 	struct rb_node *parent = NULL;
316 	struct machine *machine;
317 	struct machine *default_machine = NULL;
318 
319 	if (pid == HOST_KERNEL_ID)
320 		return &machines->host;
321 
322 	while (*p != NULL) {
323 		parent = *p;
324 		machine = rb_entry(parent, struct machine, rb_node);
325 		if (pid < machine->pid)
326 			p = &(*p)->rb_left;
327 		else if (pid > machine->pid)
328 			p = &(*p)->rb_right;
329 		else
330 			return machine;
331 		if (!machine->pid)
332 			default_machine = machine;
333 	}
334 
335 	return default_machine;
336 }
337 
338 struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 {
340 	char path[PATH_MAX];
341 	const char *root_dir = "";
342 	struct machine *machine = machines__find(machines, pid);
343 
344 	if (machine && (machine->pid == pid))
345 		goto out;
346 
347 	if ((pid != HOST_KERNEL_ID) &&
348 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 	    (symbol_conf.guestmount)) {
350 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 		if (access(path, R_OK)) {
352 			static struct strlist *seen;
353 
354 			if (!seen)
355 				seen = strlist__new(NULL, NULL);
356 
357 			if (!strlist__has_entry(seen, path)) {
358 				pr_err("Can't access file %s\n", path);
359 				strlist__add(seen, path);
360 			}
361 			machine = NULL;
362 			goto out;
363 		}
364 		root_dir = path;
365 	}
366 
367 	machine = machines__add(machines, pid, root_dir);
368 out:
369 	return machine;
370 }
371 
372 void machines__process_guests(struct machines *machines,
373 			      machine__process_t process, void *data)
374 {
375 	struct rb_node *nd;
376 
377 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
379 		process(pos, data);
380 	}
381 }
382 
383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384 {
385 	struct rb_node *node;
386 	struct machine *machine;
387 
388 	machines->host.id_hdr_size = id_hdr_size;
389 
390 	for (node = rb_first_cached(&machines->guests); node;
391 	     node = rb_next(node)) {
392 		machine = rb_entry(node, struct machine, rb_node);
393 		machine->id_hdr_size = id_hdr_size;
394 	}
395 
396 	return;
397 }
398 
399 static void machine__update_thread_pid(struct machine *machine,
400 				       struct thread *th, pid_t pid)
401 {
402 	struct thread *leader;
403 
404 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
405 		return;
406 
407 	th->pid_ = pid;
408 
409 	if (th->pid_ == th->tid)
410 		return;
411 
412 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413 	if (!leader)
414 		goto out_err;
415 
416 	if (!leader->maps)
417 		leader->maps = maps__new(machine);
418 
419 	if (!leader->maps)
420 		goto out_err;
421 
422 	if (th->maps == leader->maps)
423 		return;
424 
425 	if (th->maps) {
426 		/*
427 		 * Maps are created from MMAP events which provide the pid and
428 		 * tid.  Consequently there never should be any maps on a thread
429 		 * with an unknown pid.  Just print an error if there are.
430 		 */
431 		if (!maps__empty(th->maps))
432 			pr_err("Discarding thread maps for %d:%d\n",
433 			       th->pid_, th->tid);
434 		maps__put(th->maps);
435 	}
436 
437 	th->maps = maps__get(leader->maps);
438 out_put:
439 	thread__put(leader);
440 	return;
441 out_err:
442 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443 	goto out_put;
444 }
445 
446 /*
447  * Front-end cache - TID lookups come in blocks,
448  * so most of the time we dont have to look up
449  * the full rbtree:
450  */
451 static struct thread*
452 __threads__get_last_match(struct threads *threads, struct machine *machine,
453 			  int pid, int tid)
454 {
455 	struct thread *th;
456 
457 	th = threads->last_match;
458 	if (th != NULL) {
459 		if (th->tid == tid) {
460 			machine__update_thread_pid(machine, th, pid);
461 			return thread__get(th);
462 		}
463 
464 		threads->last_match = NULL;
465 	}
466 
467 	return NULL;
468 }
469 
470 static struct thread*
471 threads__get_last_match(struct threads *threads, struct machine *machine,
472 			int pid, int tid)
473 {
474 	struct thread *th = NULL;
475 
476 	if (perf_singlethreaded)
477 		th = __threads__get_last_match(threads, machine, pid, tid);
478 
479 	return th;
480 }
481 
482 static void
483 __threads__set_last_match(struct threads *threads, struct thread *th)
484 {
485 	threads->last_match = th;
486 }
487 
488 static void
489 threads__set_last_match(struct threads *threads, struct thread *th)
490 {
491 	if (perf_singlethreaded)
492 		__threads__set_last_match(threads, th);
493 }
494 
495 /*
496  * Caller must eventually drop thread->refcnt returned with a successful
497  * lookup/new thread inserted.
498  */
499 static struct thread *____machine__findnew_thread(struct machine *machine,
500 						  struct threads *threads,
501 						  pid_t pid, pid_t tid,
502 						  bool create)
503 {
504 	struct rb_node **p = &threads->entries.rb_root.rb_node;
505 	struct rb_node *parent = NULL;
506 	struct thread *th;
507 	bool leftmost = true;
508 
509 	th = threads__get_last_match(threads, machine, pid, tid);
510 	if (th)
511 		return th;
512 
513 	while (*p != NULL) {
514 		parent = *p;
515 		th = rb_entry(parent, struct thread, rb_node);
516 
517 		if (th->tid == tid) {
518 			threads__set_last_match(threads, th);
519 			machine__update_thread_pid(machine, th, pid);
520 			return thread__get(th);
521 		}
522 
523 		if (tid < th->tid)
524 			p = &(*p)->rb_left;
525 		else {
526 			p = &(*p)->rb_right;
527 			leftmost = false;
528 		}
529 	}
530 
531 	if (!create)
532 		return NULL;
533 
534 	th = thread__new(pid, tid);
535 	if (th != NULL) {
536 		rb_link_node(&th->rb_node, parent, p);
537 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538 
539 		/*
540 		 * We have to initialize maps separately after rb tree is updated.
541 		 *
542 		 * The reason is that we call machine__findnew_thread
543 		 * within thread__init_maps to find the thread
544 		 * leader and that would screwed the rb tree.
545 		 */
546 		if (thread__init_maps(th, machine)) {
547 			rb_erase_cached(&th->rb_node, &threads->entries);
548 			RB_CLEAR_NODE(&th->rb_node);
549 			thread__put(th);
550 			return NULL;
551 		}
552 		/*
553 		 * It is now in the rbtree, get a ref
554 		 */
555 		thread__get(th);
556 		threads__set_last_match(threads, th);
557 		++threads->nr;
558 	}
559 
560 	return th;
561 }
562 
563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564 {
565 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566 }
567 
568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569 				       pid_t tid)
570 {
571 	struct threads *threads = machine__threads(machine, tid);
572 	struct thread *th;
573 
574 	down_write(&threads->lock);
575 	th = __machine__findnew_thread(machine, pid, tid);
576 	up_write(&threads->lock);
577 	return th;
578 }
579 
580 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581 				    pid_t tid)
582 {
583 	struct threads *threads = machine__threads(machine, tid);
584 	struct thread *th;
585 
586 	down_read(&threads->lock);
587 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
588 	up_read(&threads->lock);
589 	return th;
590 }
591 
592 struct comm *machine__thread_exec_comm(struct machine *machine,
593 				       struct thread *thread)
594 {
595 	if (machine->comm_exec)
596 		return thread__exec_comm(thread);
597 	else
598 		return thread__comm(thread);
599 }
600 
601 int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 				struct perf_sample *sample)
603 {
604 	struct thread *thread = machine__findnew_thread(machine,
605 							event->comm.pid,
606 							event->comm.tid);
607 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 	int err = 0;
609 
610 	if (exec)
611 		machine->comm_exec = true;
612 
613 	if (dump_trace)
614 		perf_event__fprintf_comm(event, stdout);
615 
616 	if (thread == NULL ||
617 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 		err = -1;
620 	}
621 
622 	thread__put(thread);
623 
624 	return err;
625 }
626 
627 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 				      union perf_event *event,
629 				      struct perf_sample *sample __maybe_unused)
630 {
631 	struct thread *thread = machine__findnew_thread(machine,
632 							event->namespaces.pid,
633 							event->namespaces.tid);
634 	int err = 0;
635 
636 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 		  "\nWARNING: kernel seems to support more namespaces than perf"
638 		  " tool.\nTry updating the perf tool..\n\n");
639 
640 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 		  "\nWARNING: perf tool seems to support more namespaces than"
642 		  " the kernel.\nTry updating the kernel..\n\n");
643 
644 	if (dump_trace)
645 		perf_event__fprintf_namespaces(event, stdout);
646 
647 	if (thread == NULL ||
648 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 		err = -1;
651 	}
652 
653 	thread__put(thread);
654 
655 	return err;
656 }
657 
658 int machine__process_cgroup_event(struct machine *machine,
659 				  union perf_event *event,
660 				  struct perf_sample *sample __maybe_unused)
661 {
662 	struct cgroup *cgrp;
663 
664 	if (dump_trace)
665 		perf_event__fprintf_cgroup(event, stdout);
666 
667 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668 	if (cgrp == NULL)
669 		return -ENOMEM;
670 
671 	return 0;
672 }
673 
674 int machine__process_lost_event(struct machine *machine __maybe_unused,
675 				union perf_event *event, struct perf_sample *sample __maybe_unused)
676 {
677 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 		    event->lost.id, event->lost.lost);
679 	return 0;
680 }
681 
682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683 					union perf_event *event, struct perf_sample *sample)
684 {
685 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686 		    sample->id, event->lost_samples.lost);
687 	return 0;
688 }
689 
690 static struct dso *machine__findnew_module_dso(struct machine *machine,
691 					       struct kmod_path *m,
692 					       const char *filename)
693 {
694 	struct dso *dso;
695 
696 	down_write(&machine->dsos.lock);
697 
698 	dso = __dsos__find(&machine->dsos, m->name, true);
699 	if (!dso) {
700 		dso = __dsos__addnew(&machine->dsos, m->name);
701 		if (dso == NULL)
702 			goto out_unlock;
703 
704 		dso__set_module_info(dso, m, machine);
705 		dso__set_long_name(dso, strdup(filename), true);
706 		dso->kernel = DSO_SPACE__KERNEL;
707 	}
708 
709 	dso__get(dso);
710 out_unlock:
711 	up_write(&machine->dsos.lock);
712 	return dso;
713 }
714 
715 int machine__process_aux_event(struct machine *machine __maybe_unused,
716 			       union perf_event *event)
717 {
718 	if (dump_trace)
719 		perf_event__fprintf_aux(event, stdout);
720 	return 0;
721 }
722 
723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
724 					union perf_event *event)
725 {
726 	if (dump_trace)
727 		perf_event__fprintf_itrace_start(event, stdout);
728 	return 0;
729 }
730 
731 int machine__process_switch_event(struct machine *machine __maybe_unused,
732 				  union perf_event *event)
733 {
734 	if (dump_trace)
735 		perf_event__fprintf_switch(event, stdout);
736 	return 0;
737 }
738 
739 static int is_bpf_image(const char *name)
740 {
741 	return strncmp(name, "bpf_trampoline_", sizeof("bpf_trampoline_") - 1) == 0 ||
742 	       strncmp(name, "bpf_dispatcher_", sizeof("bpf_dispatcher_") - 1) == 0;
743 }
744 
745 static int machine__process_ksymbol_register(struct machine *machine,
746 					     union perf_event *event,
747 					     struct perf_sample *sample __maybe_unused)
748 {
749 	struct symbol *sym;
750 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
751 
752 	if (!map) {
753 		struct dso *dso = dso__new(event->ksymbol.name);
754 
755 		if (dso) {
756 			dso->kernel = DSO_SPACE__KERNEL;
757 			map = map__new2(0, dso);
758 		}
759 
760 		if (!dso || !map) {
761 			dso__put(dso);
762 			return -ENOMEM;
763 		}
764 
765 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
766 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
767 			map->dso->data.file_size = event->ksymbol.len;
768 			dso__set_loaded(map->dso);
769 		}
770 
771 		map->start = event->ksymbol.addr;
772 		map->end = map->start + event->ksymbol.len;
773 		maps__insert(&machine->kmaps, map);
774 		dso__set_loaded(dso);
775 
776 		if (is_bpf_image(event->ksymbol.name)) {
777 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
778 			dso__set_long_name(dso, "", false);
779 		}
780 	}
781 
782 	sym = symbol__new(map->map_ip(map, map->start),
783 			  event->ksymbol.len,
784 			  0, 0, event->ksymbol.name);
785 	if (!sym)
786 		return -ENOMEM;
787 	dso__insert_symbol(map->dso, sym);
788 	return 0;
789 }
790 
791 static int machine__process_ksymbol_unregister(struct machine *machine,
792 					       union perf_event *event,
793 					       struct perf_sample *sample __maybe_unused)
794 {
795 	struct map *map;
796 
797 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
798 	if (map)
799 		maps__remove(&machine->kmaps, map);
800 
801 	return 0;
802 }
803 
804 int machine__process_ksymbol(struct machine *machine __maybe_unused,
805 			     union perf_event *event,
806 			     struct perf_sample *sample)
807 {
808 	if (dump_trace)
809 		perf_event__fprintf_ksymbol(event, stdout);
810 
811 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
812 		return machine__process_ksymbol_unregister(machine, event,
813 							   sample);
814 	return machine__process_ksymbol_register(machine, event, sample);
815 }
816 
817 int machine__process_text_poke(struct machine *machine, union perf_event *event,
818 			       struct perf_sample *sample __maybe_unused)
819 {
820 	struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
821 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
822 
823 	if (dump_trace)
824 		perf_event__fprintf_text_poke(event, machine, stdout);
825 
826 	if (!event->text_poke.new_len)
827 		return 0;
828 
829 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
830 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
831 		return 0;
832 	}
833 
834 	if (map && map->dso) {
835 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
836 		int ret;
837 
838 		/*
839 		 * Kernel maps might be changed when loading symbols so loading
840 		 * must be done prior to using kernel maps.
841 		 */
842 		map__load(map);
843 		ret = dso__data_write_cache_addr(map->dso, map, machine,
844 						 event->text_poke.addr,
845 						 new_bytes,
846 						 event->text_poke.new_len);
847 		if (ret != event->text_poke.new_len)
848 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
849 				 event->text_poke.addr);
850 	} else {
851 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
852 			 event->text_poke.addr);
853 	}
854 
855 	return 0;
856 }
857 
858 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
859 					      const char *filename)
860 {
861 	struct map *map = NULL;
862 	struct kmod_path m;
863 	struct dso *dso;
864 
865 	if (kmod_path__parse_name(&m, filename))
866 		return NULL;
867 
868 	dso = machine__findnew_module_dso(machine, &m, filename);
869 	if (dso == NULL)
870 		goto out;
871 
872 	map = map__new2(start, dso);
873 	if (map == NULL)
874 		goto out;
875 
876 	maps__insert(&machine->kmaps, map);
877 
878 	/* Put the map here because maps__insert alread got it */
879 	map__put(map);
880 out:
881 	/* put the dso here, corresponding to  machine__findnew_module_dso */
882 	dso__put(dso);
883 	zfree(&m.name);
884 	return map;
885 }
886 
887 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
888 {
889 	struct rb_node *nd;
890 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
891 
892 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
893 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
894 		ret += __dsos__fprintf(&pos->dsos.head, fp);
895 	}
896 
897 	return ret;
898 }
899 
900 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
901 				     bool (skip)(struct dso *dso, int parm), int parm)
902 {
903 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
904 }
905 
906 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
907 				     bool (skip)(struct dso *dso, int parm), int parm)
908 {
909 	struct rb_node *nd;
910 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
911 
912 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
913 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
914 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
915 	}
916 	return ret;
917 }
918 
919 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
920 {
921 	int i;
922 	size_t printed = 0;
923 	struct dso *kdso = machine__kernel_dso(machine);
924 
925 	if (kdso->has_build_id) {
926 		char filename[PATH_MAX];
927 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
928 					   false))
929 			printed += fprintf(fp, "[0] %s\n", filename);
930 	}
931 
932 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
933 		printed += fprintf(fp, "[%d] %s\n",
934 				   i + kdso->has_build_id, vmlinux_path[i]);
935 
936 	return printed;
937 }
938 
939 size_t machine__fprintf(struct machine *machine, FILE *fp)
940 {
941 	struct rb_node *nd;
942 	size_t ret;
943 	int i;
944 
945 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
946 		struct threads *threads = &machine->threads[i];
947 
948 		down_read(&threads->lock);
949 
950 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
951 
952 		for (nd = rb_first_cached(&threads->entries); nd;
953 		     nd = rb_next(nd)) {
954 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
955 
956 			ret += thread__fprintf(pos, fp);
957 		}
958 
959 		up_read(&threads->lock);
960 	}
961 	return ret;
962 }
963 
964 static struct dso *machine__get_kernel(struct machine *machine)
965 {
966 	const char *vmlinux_name = machine->mmap_name;
967 	struct dso *kernel;
968 
969 	if (machine__is_host(machine)) {
970 		if (symbol_conf.vmlinux_name)
971 			vmlinux_name = symbol_conf.vmlinux_name;
972 
973 		kernel = machine__findnew_kernel(machine, vmlinux_name,
974 						 "[kernel]", DSO_SPACE__KERNEL);
975 	} else {
976 		if (symbol_conf.default_guest_vmlinux_name)
977 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
978 
979 		kernel = machine__findnew_kernel(machine, vmlinux_name,
980 						 "[guest.kernel]",
981 						 DSO_SPACE__KERNEL_GUEST);
982 	}
983 
984 	if (kernel != NULL && (!kernel->has_build_id))
985 		dso__read_running_kernel_build_id(kernel, machine);
986 
987 	return kernel;
988 }
989 
990 struct process_args {
991 	u64 start;
992 };
993 
994 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
995 				    size_t bufsz)
996 {
997 	if (machine__is_default_guest(machine))
998 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
999 	else
1000 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1001 }
1002 
1003 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1004 
1005 /* Figure out the start address of kernel map from /proc/kallsyms.
1006  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1007  * symbol_name if it's not that important.
1008  */
1009 static int machine__get_running_kernel_start(struct machine *machine,
1010 					     const char **symbol_name,
1011 					     u64 *start, u64 *end)
1012 {
1013 	char filename[PATH_MAX];
1014 	int i, err = -1;
1015 	const char *name;
1016 	u64 addr = 0;
1017 
1018 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1019 
1020 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1021 		return 0;
1022 
1023 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1024 		err = kallsyms__get_function_start(filename, name, &addr);
1025 		if (!err)
1026 			break;
1027 	}
1028 
1029 	if (err)
1030 		return -1;
1031 
1032 	if (symbol_name)
1033 		*symbol_name = name;
1034 
1035 	*start = addr;
1036 
1037 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1038 	if (!err)
1039 		*end = addr;
1040 
1041 	return 0;
1042 }
1043 
1044 int machine__create_extra_kernel_map(struct machine *machine,
1045 				     struct dso *kernel,
1046 				     struct extra_kernel_map *xm)
1047 {
1048 	struct kmap *kmap;
1049 	struct map *map;
1050 
1051 	map = map__new2(xm->start, kernel);
1052 	if (!map)
1053 		return -1;
1054 
1055 	map->end   = xm->end;
1056 	map->pgoff = xm->pgoff;
1057 
1058 	kmap = map__kmap(map);
1059 
1060 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1061 
1062 	maps__insert(&machine->kmaps, map);
1063 
1064 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1065 		  kmap->name, map->start, map->end);
1066 
1067 	map__put(map);
1068 
1069 	return 0;
1070 }
1071 
1072 static u64 find_entry_trampoline(struct dso *dso)
1073 {
1074 	/* Duplicates are removed so lookup all aliases */
1075 	const char *syms[] = {
1076 		"_entry_trampoline",
1077 		"__entry_trampoline_start",
1078 		"entry_SYSCALL_64_trampoline",
1079 	};
1080 	struct symbol *sym = dso__first_symbol(dso);
1081 	unsigned int i;
1082 
1083 	for (; sym; sym = dso__next_symbol(sym)) {
1084 		if (sym->binding != STB_GLOBAL)
1085 			continue;
1086 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1087 			if (!strcmp(sym->name, syms[i]))
1088 				return sym->start;
1089 		}
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * These values can be used for kernels that do not have symbols for the entry
1097  * trampolines in kallsyms.
1098  */
1099 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1100 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1101 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1102 
1103 /* Map x86_64 PTI entry trampolines */
1104 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1105 					  struct dso *kernel)
1106 {
1107 	struct maps *kmaps = &machine->kmaps;
1108 	int nr_cpus_avail, cpu;
1109 	bool found = false;
1110 	struct map *map;
1111 	u64 pgoff;
1112 
1113 	/*
1114 	 * In the vmlinux case, pgoff is a virtual address which must now be
1115 	 * mapped to a vmlinux offset.
1116 	 */
1117 	maps__for_each_entry(kmaps, map) {
1118 		struct kmap *kmap = __map__kmap(map);
1119 		struct map *dest_map;
1120 
1121 		if (!kmap || !is_entry_trampoline(kmap->name))
1122 			continue;
1123 
1124 		dest_map = maps__find(kmaps, map->pgoff);
1125 		if (dest_map != map)
1126 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1127 		found = true;
1128 	}
1129 	if (found || machine->trampolines_mapped)
1130 		return 0;
1131 
1132 	pgoff = find_entry_trampoline(kernel);
1133 	if (!pgoff)
1134 		return 0;
1135 
1136 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1137 
1138 	/* Add a 1 page map for each CPU's entry trampoline */
1139 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1140 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1141 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1142 			 X86_64_ENTRY_TRAMPOLINE;
1143 		struct extra_kernel_map xm = {
1144 			.start = va,
1145 			.end   = va + page_size,
1146 			.pgoff = pgoff,
1147 		};
1148 
1149 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1150 
1151 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1152 			return -1;
1153 	}
1154 
1155 	machine->trampolines_mapped = nr_cpus_avail;
1156 
1157 	return 0;
1158 }
1159 
1160 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1161 					     struct dso *kernel __maybe_unused)
1162 {
1163 	return 0;
1164 }
1165 
1166 static int
1167 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1168 {
1169 	/* In case of renewal the kernel map, destroy previous one */
1170 	machine__destroy_kernel_maps(machine);
1171 
1172 	machine->vmlinux_map = map__new2(0, kernel);
1173 	if (machine->vmlinux_map == NULL)
1174 		return -1;
1175 
1176 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1177 	maps__insert(&machine->kmaps, machine->vmlinux_map);
1178 	return 0;
1179 }
1180 
1181 void machine__destroy_kernel_maps(struct machine *machine)
1182 {
1183 	struct kmap *kmap;
1184 	struct map *map = machine__kernel_map(machine);
1185 
1186 	if (map == NULL)
1187 		return;
1188 
1189 	kmap = map__kmap(map);
1190 	maps__remove(&machine->kmaps, map);
1191 	if (kmap && kmap->ref_reloc_sym) {
1192 		zfree((char **)&kmap->ref_reloc_sym->name);
1193 		zfree(&kmap->ref_reloc_sym);
1194 	}
1195 
1196 	map__zput(machine->vmlinux_map);
1197 }
1198 
1199 int machines__create_guest_kernel_maps(struct machines *machines)
1200 {
1201 	int ret = 0;
1202 	struct dirent **namelist = NULL;
1203 	int i, items = 0;
1204 	char path[PATH_MAX];
1205 	pid_t pid;
1206 	char *endp;
1207 
1208 	if (symbol_conf.default_guest_vmlinux_name ||
1209 	    symbol_conf.default_guest_modules ||
1210 	    symbol_conf.default_guest_kallsyms) {
1211 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1212 	}
1213 
1214 	if (symbol_conf.guestmount) {
1215 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1216 		if (items <= 0)
1217 			return -ENOENT;
1218 		for (i = 0; i < items; i++) {
1219 			if (!isdigit(namelist[i]->d_name[0])) {
1220 				/* Filter out . and .. */
1221 				continue;
1222 			}
1223 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1224 			if ((*endp != '\0') ||
1225 			    (endp == namelist[i]->d_name) ||
1226 			    (errno == ERANGE)) {
1227 				pr_debug("invalid directory (%s). Skipping.\n",
1228 					 namelist[i]->d_name);
1229 				continue;
1230 			}
1231 			sprintf(path, "%s/%s/proc/kallsyms",
1232 				symbol_conf.guestmount,
1233 				namelist[i]->d_name);
1234 			ret = access(path, R_OK);
1235 			if (ret) {
1236 				pr_debug("Can't access file %s\n", path);
1237 				goto failure;
1238 			}
1239 			machines__create_kernel_maps(machines, pid);
1240 		}
1241 failure:
1242 		free(namelist);
1243 	}
1244 
1245 	return ret;
1246 }
1247 
1248 void machines__destroy_kernel_maps(struct machines *machines)
1249 {
1250 	struct rb_node *next = rb_first_cached(&machines->guests);
1251 
1252 	machine__destroy_kernel_maps(&machines->host);
1253 
1254 	while (next) {
1255 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1256 
1257 		next = rb_next(&pos->rb_node);
1258 		rb_erase_cached(&pos->rb_node, &machines->guests);
1259 		machine__delete(pos);
1260 	}
1261 }
1262 
1263 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1264 {
1265 	struct machine *machine = machines__findnew(machines, pid);
1266 
1267 	if (machine == NULL)
1268 		return -1;
1269 
1270 	return machine__create_kernel_maps(machine);
1271 }
1272 
1273 int machine__load_kallsyms(struct machine *machine, const char *filename)
1274 {
1275 	struct map *map = machine__kernel_map(machine);
1276 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1277 
1278 	if (ret > 0) {
1279 		dso__set_loaded(map->dso);
1280 		/*
1281 		 * Since /proc/kallsyms will have multiple sessions for the
1282 		 * kernel, with modules between them, fixup the end of all
1283 		 * sections.
1284 		 */
1285 		maps__fixup_end(&machine->kmaps);
1286 	}
1287 
1288 	return ret;
1289 }
1290 
1291 int machine__load_vmlinux_path(struct machine *machine)
1292 {
1293 	struct map *map = machine__kernel_map(machine);
1294 	int ret = dso__load_vmlinux_path(map->dso, map);
1295 
1296 	if (ret > 0)
1297 		dso__set_loaded(map->dso);
1298 
1299 	return ret;
1300 }
1301 
1302 static char *get_kernel_version(const char *root_dir)
1303 {
1304 	char version[PATH_MAX];
1305 	FILE *file;
1306 	char *name, *tmp;
1307 	const char *prefix = "Linux version ";
1308 
1309 	sprintf(version, "%s/proc/version", root_dir);
1310 	file = fopen(version, "r");
1311 	if (!file)
1312 		return NULL;
1313 
1314 	tmp = fgets(version, sizeof(version), file);
1315 	fclose(file);
1316 	if (!tmp)
1317 		return NULL;
1318 
1319 	name = strstr(version, prefix);
1320 	if (!name)
1321 		return NULL;
1322 	name += strlen(prefix);
1323 	tmp = strchr(name, ' ');
1324 	if (tmp)
1325 		*tmp = '\0';
1326 
1327 	return strdup(name);
1328 }
1329 
1330 static bool is_kmod_dso(struct dso *dso)
1331 {
1332 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1333 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1334 }
1335 
1336 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1337 {
1338 	char *long_name;
1339 	struct map *map = maps__find_by_name(maps, m->name);
1340 
1341 	if (map == NULL)
1342 		return 0;
1343 
1344 	long_name = strdup(path);
1345 	if (long_name == NULL)
1346 		return -ENOMEM;
1347 
1348 	dso__set_long_name(map->dso, long_name, true);
1349 	dso__kernel_module_get_build_id(map->dso, "");
1350 
1351 	/*
1352 	 * Full name could reveal us kmod compression, so
1353 	 * we need to update the symtab_type if needed.
1354 	 */
1355 	if (m->comp && is_kmod_dso(map->dso)) {
1356 		map->dso->symtab_type++;
1357 		map->dso->comp = m->comp;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1364 {
1365 	struct dirent *dent;
1366 	DIR *dir = opendir(dir_name);
1367 	int ret = 0;
1368 
1369 	if (!dir) {
1370 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1371 		return -1;
1372 	}
1373 
1374 	while ((dent = readdir(dir)) != NULL) {
1375 		char path[PATH_MAX];
1376 		struct stat st;
1377 
1378 		/*sshfs might return bad dent->d_type, so we have to stat*/
1379 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1380 		if (stat(path, &st))
1381 			continue;
1382 
1383 		if (S_ISDIR(st.st_mode)) {
1384 			if (!strcmp(dent->d_name, ".") ||
1385 			    !strcmp(dent->d_name, ".."))
1386 				continue;
1387 
1388 			/* Do not follow top-level source and build symlinks */
1389 			if (depth == 0) {
1390 				if (!strcmp(dent->d_name, "source") ||
1391 				    !strcmp(dent->d_name, "build"))
1392 					continue;
1393 			}
1394 
1395 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1396 			if (ret < 0)
1397 				goto out;
1398 		} else {
1399 			struct kmod_path m;
1400 
1401 			ret = kmod_path__parse_name(&m, dent->d_name);
1402 			if (ret)
1403 				goto out;
1404 
1405 			if (m.kmod)
1406 				ret = maps__set_module_path(maps, path, &m);
1407 
1408 			zfree(&m.name);
1409 
1410 			if (ret)
1411 				goto out;
1412 		}
1413 	}
1414 
1415 out:
1416 	closedir(dir);
1417 	return ret;
1418 }
1419 
1420 static int machine__set_modules_path(struct machine *machine)
1421 {
1422 	char *version;
1423 	char modules_path[PATH_MAX];
1424 
1425 	version = get_kernel_version(machine->root_dir);
1426 	if (!version)
1427 		return -1;
1428 
1429 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1430 		 machine->root_dir, version);
1431 	free(version);
1432 
1433 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1434 }
1435 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1436 				u64 *size __maybe_unused,
1437 				const char *name __maybe_unused)
1438 {
1439 	return 0;
1440 }
1441 
1442 static int machine__create_module(void *arg, const char *name, u64 start,
1443 				  u64 size)
1444 {
1445 	struct machine *machine = arg;
1446 	struct map *map;
1447 
1448 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1449 		return -1;
1450 
1451 	map = machine__addnew_module_map(machine, start, name);
1452 	if (map == NULL)
1453 		return -1;
1454 	map->end = start + size;
1455 
1456 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1457 
1458 	return 0;
1459 }
1460 
1461 static int machine__create_modules(struct machine *machine)
1462 {
1463 	const char *modules;
1464 	char path[PATH_MAX];
1465 
1466 	if (machine__is_default_guest(machine)) {
1467 		modules = symbol_conf.default_guest_modules;
1468 	} else {
1469 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1470 		modules = path;
1471 	}
1472 
1473 	if (symbol__restricted_filename(modules, "/proc/modules"))
1474 		return -1;
1475 
1476 	if (modules__parse(modules, machine, machine__create_module))
1477 		return -1;
1478 
1479 	if (!machine__set_modules_path(machine))
1480 		return 0;
1481 
1482 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1483 
1484 	return 0;
1485 }
1486 
1487 static void machine__set_kernel_mmap(struct machine *machine,
1488 				     u64 start, u64 end)
1489 {
1490 	machine->vmlinux_map->start = start;
1491 	machine->vmlinux_map->end   = end;
1492 	/*
1493 	 * Be a bit paranoid here, some perf.data file came with
1494 	 * a zero sized synthesized MMAP event for the kernel.
1495 	 */
1496 	if (start == 0 && end == 0)
1497 		machine->vmlinux_map->end = ~0ULL;
1498 }
1499 
1500 static void machine__update_kernel_mmap(struct machine *machine,
1501 				     u64 start, u64 end)
1502 {
1503 	struct map *map = machine__kernel_map(machine);
1504 
1505 	map__get(map);
1506 	maps__remove(&machine->kmaps, map);
1507 
1508 	machine__set_kernel_mmap(machine, start, end);
1509 
1510 	maps__insert(&machine->kmaps, map);
1511 	map__put(map);
1512 }
1513 
1514 int machine__create_kernel_maps(struct machine *machine)
1515 {
1516 	struct dso *kernel = machine__get_kernel(machine);
1517 	const char *name = NULL;
1518 	struct map *map;
1519 	u64 start = 0, end = ~0ULL;
1520 	int ret;
1521 
1522 	if (kernel == NULL)
1523 		return -1;
1524 
1525 	ret = __machine__create_kernel_maps(machine, kernel);
1526 	if (ret < 0)
1527 		goto out_put;
1528 
1529 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1530 		if (machine__is_host(machine))
1531 			pr_debug("Problems creating module maps, "
1532 				 "continuing anyway...\n");
1533 		else
1534 			pr_debug("Problems creating module maps for guest %d, "
1535 				 "continuing anyway...\n", machine->pid);
1536 	}
1537 
1538 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1539 		if (name &&
1540 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1541 			machine__destroy_kernel_maps(machine);
1542 			ret = -1;
1543 			goto out_put;
1544 		}
1545 
1546 		/*
1547 		 * we have a real start address now, so re-order the kmaps
1548 		 * assume it's the last in the kmaps
1549 		 */
1550 		machine__update_kernel_mmap(machine, start, end);
1551 	}
1552 
1553 	if (machine__create_extra_kernel_maps(machine, kernel))
1554 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1555 
1556 	if (end == ~0ULL) {
1557 		/* update end address of the kernel map using adjacent module address */
1558 		map = map__next(machine__kernel_map(machine));
1559 		if (map)
1560 			machine__set_kernel_mmap(machine, start, map->start);
1561 	}
1562 
1563 out_put:
1564 	dso__put(kernel);
1565 	return ret;
1566 }
1567 
1568 static bool machine__uses_kcore(struct machine *machine)
1569 {
1570 	struct dso *dso;
1571 
1572 	list_for_each_entry(dso, &machine->dsos.head, node) {
1573 		if (dso__is_kcore(dso))
1574 			return true;
1575 	}
1576 
1577 	return false;
1578 }
1579 
1580 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1581 					     union perf_event *event)
1582 {
1583 	return machine__is(machine, "x86_64") &&
1584 	       is_entry_trampoline(event->mmap.filename);
1585 }
1586 
1587 static int machine__process_extra_kernel_map(struct machine *machine,
1588 					     union perf_event *event)
1589 {
1590 	struct dso *kernel = machine__kernel_dso(machine);
1591 	struct extra_kernel_map xm = {
1592 		.start = event->mmap.start,
1593 		.end   = event->mmap.start + event->mmap.len,
1594 		.pgoff = event->mmap.pgoff,
1595 	};
1596 
1597 	if (kernel == NULL)
1598 		return -1;
1599 
1600 	strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1601 
1602 	return machine__create_extra_kernel_map(machine, kernel, &xm);
1603 }
1604 
1605 static int machine__process_kernel_mmap_event(struct machine *machine,
1606 					      union perf_event *event)
1607 {
1608 	struct map *map;
1609 	enum dso_space_type dso_space;
1610 	bool is_kernel_mmap;
1611 
1612 	/* If we have maps from kcore then we do not need or want any others */
1613 	if (machine__uses_kcore(machine))
1614 		return 0;
1615 
1616 	if (machine__is_host(machine))
1617 		dso_space = DSO_SPACE__KERNEL;
1618 	else
1619 		dso_space = DSO_SPACE__KERNEL_GUEST;
1620 
1621 	is_kernel_mmap = memcmp(event->mmap.filename,
1622 				machine->mmap_name,
1623 				strlen(machine->mmap_name) - 1) == 0;
1624 	if (event->mmap.filename[0] == '/' ||
1625 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1626 		map = machine__addnew_module_map(machine, event->mmap.start,
1627 						 event->mmap.filename);
1628 		if (map == NULL)
1629 			goto out_problem;
1630 
1631 		map->end = map->start + event->mmap.len;
1632 	} else if (is_kernel_mmap) {
1633 		const char *symbol_name = (event->mmap.filename +
1634 				strlen(machine->mmap_name));
1635 		/*
1636 		 * Should be there already, from the build-id table in
1637 		 * the header.
1638 		 */
1639 		struct dso *kernel = NULL;
1640 		struct dso *dso;
1641 
1642 		down_read(&machine->dsos.lock);
1643 
1644 		list_for_each_entry(dso, &machine->dsos.head, node) {
1645 
1646 			/*
1647 			 * The cpumode passed to is_kernel_module is not the
1648 			 * cpumode of *this* event. If we insist on passing
1649 			 * correct cpumode to is_kernel_module, we should
1650 			 * record the cpumode when we adding this dso to the
1651 			 * linked list.
1652 			 *
1653 			 * However we don't really need passing correct
1654 			 * cpumode.  We know the correct cpumode must be kernel
1655 			 * mode (if not, we should not link it onto kernel_dsos
1656 			 * list).
1657 			 *
1658 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1659 			 * is_kernel_module() treats it as a kernel cpumode.
1660 			 */
1661 
1662 			if (!dso->kernel ||
1663 			    is_kernel_module(dso->long_name,
1664 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1665 				continue;
1666 
1667 
1668 			kernel = dso;
1669 			break;
1670 		}
1671 
1672 		up_read(&machine->dsos.lock);
1673 
1674 		if (kernel == NULL)
1675 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1676 		if (kernel == NULL)
1677 			goto out_problem;
1678 
1679 		kernel->kernel = dso_space;
1680 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1681 			dso__put(kernel);
1682 			goto out_problem;
1683 		}
1684 
1685 		if (strstr(kernel->long_name, "vmlinux"))
1686 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1687 
1688 		machine__update_kernel_mmap(machine, event->mmap.start,
1689 					 event->mmap.start + event->mmap.len);
1690 
1691 		/*
1692 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1693 		 * symbol. Effectively having zero here means that at record
1694 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1695 		 */
1696 		if (event->mmap.pgoff != 0) {
1697 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1698 							symbol_name,
1699 							event->mmap.pgoff);
1700 		}
1701 
1702 		if (machine__is_default_guest(machine)) {
1703 			/*
1704 			 * preload dso of guest kernel and modules
1705 			 */
1706 			dso__load(kernel, machine__kernel_map(machine));
1707 		}
1708 	} else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1709 		return machine__process_extra_kernel_map(machine, event);
1710 	}
1711 	return 0;
1712 out_problem:
1713 	return -1;
1714 }
1715 
1716 int machine__process_mmap2_event(struct machine *machine,
1717 				 union perf_event *event,
1718 				 struct perf_sample *sample)
1719 {
1720 	struct thread *thread;
1721 	struct map *map;
1722 	struct dso_id dso_id = {
1723 		.maj = event->mmap2.maj,
1724 		.min = event->mmap2.min,
1725 		.ino = event->mmap2.ino,
1726 		.ino_generation = event->mmap2.ino_generation,
1727 	};
1728 	int ret = 0;
1729 
1730 	if (dump_trace)
1731 		perf_event__fprintf_mmap2(event, stdout);
1732 
1733 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1734 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1735 		ret = machine__process_kernel_mmap_event(machine, event);
1736 		if (ret < 0)
1737 			goto out_problem;
1738 		return 0;
1739 	}
1740 
1741 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1742 					event->mmap2.tid);
1743 	if (thread == NULL)
1744 		goto out_problem;
1745 
1746 	map = map__new(machine, event->mmap2.start,
1747 			event->mmap2.len, event->mmap2.pgoff,
1748 			&dso_id, event->mmap2.prot,
1749 			event->mmap2.flags,
1750 			event->mmap2.filename, thread);
1751 
1752 	if (map == NULL)
1753 		goto out_problem_map;
1754 
1755 	ret = thread__insert_map(thread, map);
1756 	if (ret)
1757 		goto out_problem_insert;
1758 
1759 	thread__put(thread);
1760 	map__put(map);
1761 	return 0;
1762 
1763 out_problem_insert:
1764 	map__put(map);
1765 out_problem_map:
1766 	thread__put(thread);
1767 out_problem:
1768 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1769 	return 0;
1770 }
1771 
1772 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1773 				struct perf_sample *sample)
1774 {
1775 	struct thread *thread;
1776 	struct map *map;
1777 	u32 prot = 0;
1778 	int ret = 0;
1779 
1780 	if (dump_trace)
1781 		perf_event__fprintf_mmap(event, stdout);
1782 
1783 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1784 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1785 		ret = machine__process_kernel_mmap_event(machine, event);
1786 		if (ret < 0)
1787 			goto out_problem;
1788 		return 0;
1789 	}
1790 
1791 	thread = machine__findnew_thread(machine, event->mmap.pid,
1792 					 event->mmap.tid);
1793 	if (thread == NULL)
1794 		goto out_problem;
1795 
1796 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1797 		prot = PROT_EXEC;
1798 
1799 	map = map__new(machine, event->mmap.start,
1800 			event->mmap.len, event->mmap.pgoff,
1801 			NULL, prot, 0, event->mmap.filename, thread);
1802 
1803 	if (map == NULL)
1804 		goto out_problem_map;
1805 
1806 	ret = thread__insert_map(thread, map);
1807 	if (ret)
1808 		goto out_problem_insert;
1809 
1810 	thread__put(thread);
1811 	map__put(map);
1812 	return 0;
1813 
1814 out_problem_insert:
1815 	map__put(map);
1816 out_problem_map:
1817 	thread__put(thread);
1818 out_problem:
1819 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1820 	return 0;
1821 }
1822 
1823 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1824 {
1825 	struct threads *threads = machine__threads(machine, th->tid);
1826 
1827 	if (threads->last_match == th)
1828 		threads__set_last_match(threads, NULL);
1829 
1830 	if (lock)
1831 		down_write(&threads->lock);
1832 
1833 	BUG_ON(refcount_read(&th->refcnt) == 0);
1834 
1835 	rb_erase_cached(&th->rb_node, &threads->entries);
1836 	RB_CLEAR_NODE(&th->rb_node);
1837 	--threads->nr;
1838 	/*
1839 	 * Move it first to the dead_threads list, then drop the reference,
1840 	 * if this is the last reference, then the thread__delete destructor
1841 	 * will be called and we will remove it from the dead_threads list.
1842 	 */
1843 	list_add_tail(&th->node, &threads->dead);
1844 
1845 	/*
1846 	 * We need to do the put here because if this is the last refcount,
1847 	 * then we will be touching the threads->dead head when removing the
1848 	 * thread.
1849 	 */
1850 	thread__put(th);
1851 
1852 	if (lock)
1853 		up_write(&threads->lock);
1854 }
1855 
1856 void machine__remove_thread(struct machine *machine, struct thread *th)
1857 {
1858 	return __machine__remove_thread(machine, th, true);
1859 }
1860 
1861 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1862 				struct perf_sample *sample)
1863 {
1864 	struct thread *thread = machine__find_thread(machine,
1865 						     event->fork.pid,
1866 						     event->fork.tid);
1867 	struct thread *parent = machine__findnew_thread(machine,
1868 							event->fork.ppid,
1869 							event->fork.ptid);
1870 	bool do_maps_clone = true;
1871 	int err = 0;
1872 
1873 	if (dump_trace)
1874 		perf_event__fprintf_task(event, stdout);
1875 
1876 	/*
1877 	 * There may be an existing thread that is not actually the parent,
1878 	 * either because we are processing events out of order, or because the
1879 	 * (fork) event that would have removed the thread was lost. Assume the
1880 	 * latter case and continue on as best we can.
1881 	 */
1882 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1883 		dump_printf("removing erroneous parent thread %d/%d\n",
1884 			    parent->pid_, parent->tid);
1885 		machine__remove_thread(machine, parent);
1886 		thread__put(parent);
1887 		parent = machine__findnew_thread(machine, event->fork.ppid,
1888 						 event->fork.ptid);
1889 	}
1890 
1891 	/* if a thread currently exists for the thread id remove it */
1892 	if (thread != NULL) {
1893 		machine__remove_thread(machine, thread);
1894 		thread__put(thread);
1895 	}
1896 
1897 	thread = machine__findnew_thread(machine, event->fork.pid,
1898 					 event->fork.tid);
1899 	/*
1900 	 * When synthesizing FORK events, we are trying to create thread
1901 	 * objects for the already running tasks on the machine.
1902 	 *
1903 	 * Normally, for a kernel FORK event, we want to clone the parent's
1904 	 * maps because that is what the kernel just did.
1905 	 *
1906 	 * But when synthesizing, this should not be done.  If we do, we end up
1907 	 * with overlapping maps as we process the sythesized MMAP2 events that
1908 	 * get delivered shortly thereafter.
1909 	 *
1910 	 * Use the FORK event misc flags in an internal way to signal this
1911 	 * situation, so we can elide the map clone when appropriate.
1912 	 */
1913 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1914 		do_maps_clone = false;
1915 
1916 	if (thread == NULL || parent == NULL ||
1917 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1918 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1919 		err = -1;
1920 	}
1921 	thread__put(thread);
1922 	thread__put(parent);
1923 
1924 	return err;
1925 }
1926 
1927 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1928 				struct perf_sample *sample __maybe_unused)
1929 {
1930 	struct thread *thread = machine__find_thread(machine,
1931 						     event->fork.pid,
1932 						     event->fork.tid);
1933 
1934 	if (dump_trace)
1935 		perf_event__fprintf_task(event, stdout);
1936 
1937 	if (thread != NULL) {
1938 		thread__exited(thread);
1939 		thread__put(thread);
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 int machine__process_event(struct machine *machine, union perf_event *event,
1946 			   struct perf_sample *sample)
1947 {
1948 	int ret;
1949 
1950 	switch (event->header.type) {
1951 	case PERF_RECORD_COMM:
1952 		ret = machine__process_comm_event(machine, event, sample); break;
1953 	case PERF_RECORD_MMAP:
1954 		ret = machine__process_mmap_event(machine, event, sample); break;
1955 	case PERF_RECORD_NAMESPACES:
1956 		ret = machine__process_namespaces_event(machine, event, sample); break;
1957 	case PERF_RECORD_CGROUP:
1958 		ret = machine__process_cgroup_event(machine, event, sample); break;
1959 	case PERF_RECORD_MMAP2:
1960 		ret = machine__process_mmap2_event(machine, event, sample); break;
1961 	case PERF_RECORD_FORK:
1962 		ret = machine__process_fork_event(machine, event, sample); break;
1963 	case PERF_RECORD_EXIT:
1964 		ret = machine__process_exit_event(machine, event, sample); break;
1965 	case PERF_RECORD_LOST:
1966 		ret = machine__process_lost_event(machine, event, sample); break;
1967 	case PERF_RECORD_AUX:
1968 		ret = machine__process_aux_event(machine, event); break;
1969 	case PERF_RECORD_ITRACE_START:
1970 		ret = machine__process_itrace_start_event(machine, event); break;
1971 	case PERF_RECORD_LOST_SAMPLES:
1972 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1973 	case PERF_RECORD_SWITCH:
1974 	case PERF_RECORD_SWITCH_CPU_WIDE:
1975 		ret = machine__process_switch_event(machine, event); break;
1976 	case PERF_RECORD_KSYMBOL:
1977 		ret = machine__process_ksymbol(machine, event, sample); break;
1978 	case PERF_RECORD_BPF_EVENT:
1979 		ret = machine__process_bpf(machine, event, sample); break;
1980 	case PERF_RECORD_TEXT_POKE:
1981 		ret = machine__process_text_poke(machine, event, sample); break;
1982 	default:
1983 		ret = -1;
1984 		break;
1985 	}
1986 
1987 	return ret;
1988 }
1989 
1990 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1991 {
1992 	if (!regexec(regex, sym->name, 0, NULL, 0))
1993 		return 1;
1994 	return 0;
1995 }
1996 
1997 static void ip__resolve_ams(struct thread *thread,
1998 			    struct addr_map_symbol *ams,
1999 			    u64 ip)
2000 {
2001 	struct addr_location al;
2002 
2003 	memset(&al, 0, sizeof(al));
2004 	/*
2005 	 * We cannot use the header.misc hint to determine whether a
2006 	 * branch stack address is user, kernel, guest, hypervisor.
2007 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2008 	 * Thus, we have to try consecutively until we find a match
2009 	 * or else, the symbol is unknown
2010 	 */
2011 	thread__find_cpumode_addr_location(thread, ip, &al);
2012 
2013 	ams->addr = ip;
2014 	ams->al_addr = al.addr;
2015 	ams->ms.maps = al.maps;
2016 	ams->ms.sym = al.sym;
2017 	ams->ms.map = al.map;
2018 	ams->phys_addr = 0;
2019 }
2020 
2021 static void ip__resolve_data(struct thread *thread,
2022 			     u8 m, struct addr_map_symbol *ams,
2023 			     u64 addr, u64 phys_addr)
2024 {
2025 	struct addr_location al;
2026 
2027 	memset(&al, 0, sizeof(al));
2028 
2029 	thread__find_symbol(thread, m, addr, &al);
2030 
2031 	ams->addr = addr;
2032 	ams->al_addr = al.addr;
2033 	ams->ms.maps = al.maps;
2034 	ams->ms.sym = al.sym;
2035 	ams->ms.map = al.map;
2036 	ams->phys_addr = phys_addr;
2037 }
2038 
2039 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2040 				     struct addr_location *al)
2041 {
2042 	struct mem_info *mi = mem_info__new();
2043 
2044 	if (!mi)
2045 		return NULL;
2046 
2047 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2048 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2049 			 sample->addr, sample->phys_addr);
2050 	mi->data_src.val = sample->data_src;
2051 
2052 	return mi;
2053 }
2054 
2055 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2056 {
2057 	struct map *map = ms->map;
2058 	char *srcline = NULL;
2059 
2060 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2061 		return srcline;
2062 
2063 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2064 	if (!srcline) {
2065 		bool show_sym = false;
2066 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2067 
2068 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2069 				      ms->sym, show_sym, show_addr, ip);
2070 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2071 	}
2072 
2073 	return srcline;
2074 }
2075 
2076 struct iterations {
2077 	int nr_loop_iter;
2078 	u64 cycles;
2079 };
2080 
2081 static int add_callchain_ip(struct thread *thread,
2082 			    struct callchain_cursor *cursor,
2083 			    struct symbol **parent,
2084 			    struct addr_location *root_al,
2085 			    u8 *cpumode,
2086 			    u64 ip,
2087 			    bool branch,
2088 			    struct branch_flags *flags,
2089 			    struct iterations *iter,
2090 			    u64 branch_from)
2091 {
2092 	struct map_symbol ms;
2093 	struct addr_location al;
2094 	int nr_loop_iter = 0;
2095 	u64 iter_cycles = 0;
2096 	const char *srcline = NULL;
2097 
2098 	al.filtered = 0;
2099 	al.sym = NULL;
2100 	if (!cpumode) {
2101 		thread__find_cpumode_addr_location(thread, ip, &al);
2102 	} else {
2103 		if (ip >= PERF_CONTEXT_MAX) {
2104 			switch (ip) {
2105 			case PERF_CONTEXT_HV:
2106 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2107 				break;
2108 			case PERF_CONTEXT_KERNEL:
2109 				*cpumode = PERF_RECORD_MISC_KERNEL;
2110 				break;
2111 			case PERF_CONTEXT_USER:
2112 				*cpumode = PERF_RECORD_MISC_USER;
2113 				break;
2114 			default:
2115 				pr_debug("invalid callchain context: "
2116 					 "%"PRId64"\n", (s64) ip);
2117 				/*
2118 				 * It seems the callchain is corrupted.
2119 				 * Discard all.
2120 				 */
2121 				callchain_cursor_reset(cursor);
2122 				return 1;
2123 			}
2124 			return 0;
2125 		}
2126 		thread__find_symbol(thread, *cpumode, ip, &al);
2127 	}
2128 
2129 	if (al.sym != NULL) {
2130 		if (perf_hpp_list.parent && !*parent &&
2131 		    symbol__match_regex(al.sym, &parent_regex))
2132 			*parent = al.sym;
2133 		else if (have_ignore_callees && root_al &&
2134 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2135 			/* Treat this symbol as the root,
2136 			   forgetting its callees. */
2137 			*root_al = al;
2138 			callchain_cursor_reset(cursor);
2139 		}
2140 	}
2141 
2142 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2143 		return 0;
2144 
2145 	if (iter) {
2146 		nr_loop_iter = iter->nr_loop_iter;
2147 		iter_cycles = iter->cycles;
2148 	}
2149 
2150 	ms.maps = al.maps;
2151 	ms.map = al.map;
2152 	ms.sym = al.sym;
2153 	srcline = callchain_srcline(&ms, al.addr);
2154 	return callchain_cursor_append(cursor, ip, &ms,
2155 				       branch, flags, nr_loop_iter,
2156 				       iter_cycles, branch_from, srcline);
2157 }
2158 
2159 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2160 					   struct addr_location *al)
2161 {
2162 	unsigned int i;
2163 	const struct branch_stack *bs = sample->branch_stack;
2164 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2165 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2166 
2167 	if (!bi)
2168 		return NULL;
2169 
2170 	for (i = 0; i < bs->nr; i++) {
2171 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2172 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2173 		bi[i].flags = entries[i].flags;
2174 	}
2175 	return bi;
2176 }
2177 
2178 static void save_iterations(struct iterations *iter,
2179 			    struct branch_entry *be, int nr)
2180 {
2181 	int i;
2182 
2183 	iter->nr_loop_iter++;
2184 	iter->cycles = 0;
2185 
2186 	for (i = 0; i < nr; i++)
2187 		iter->cycles += be[i].flags.cycles;
2188 }
2189 
2190 #define CHASHSZ 127
2191 #define CHASHBITS 7
2192 #define NO_ENTRY 0xff
2193 
2194 #define PERF_MAX_BRANCH_DEPTH 127
2195 
2196 /* Remove loops. */
2197 static int remove_loops(struct branch_entry *l, int nr,
2198 			struct iterations *iter)
2199 {
2200 	int i, j, off;
2201 	unsigned char chash[CHASHSZ];
2202 
2203 	memset(chash, NO_ENTRY, sizeof(chash));
2204 
2205 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2206 
2207 	for (i = 0; i < nr; i++) {
2208 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2209 
2210 		/* no collision handling for now */
2211 		if (chash[h] == NO_ENTRY) {
2212 			chash[h] = i;
2213 		} else if (l[chash[h]].from == l[i].from) {
2214 			bool is_loop = true;
2215 			/* check if it is a real loop */
2216 			off = 0;
2217 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2218 				if (l[j].from != l[i + off].from) {
2219 					is_loop = false;
2220 					break;
2221 				}
2222 			if (is_loop) {
2223 				j = nr - (i + off);
2224 				if (j > 0) {
2225 					save_iterations(iter + i + off,
2226 						l + i, off);
2227 
2228 					memmove(iter + i, iter + i + off,
2229 						j * sizeof(*iter));
2230 
2231 					memmove(l + i, l + i + off,
2232 						j * sizeof(*l));
2233 				}
2234 
2235 				nr -= off;
2236 			}
2237 		}
2238 	}
2239 	return nr;
2240 }
2241 
2242 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2243 				       struct callchain_cursor *cursor,
2244 				       struct perf_sample *sample,
2245 				       struct symbol **parent,
2246 				       struct addr_location *root_al,
2247 				       u64 branch_from,
2248 				       bool callee, int end)
2249 {
2250 	struct ip_callchain *chain = sample->callchain;
2251 	u8 cpumode = PERF_RECORD_MISC_USER;
2252 	int err, i;
2253 
2254 	if (callee) {
2255 		for (i = 0; i < end + 1; i++) {
2256 			err = add_callchain_ip(thread, cursor, parent,
2257 					       root_al, &cpumode, chain->ips[i],
2258 					       false, NULL, NULL, branch_from);
2259 			if (err)
2260 				return err;
2261 		}
2262 		return 0;
2263 	}
2264 
2265 	for (i = end; i >= 0; i--) {
2266 		err = add_callchain_ip(thread, cursor, parent,
2267 				       root_al, &cpumode, chain->ips[i],
2268 				       false, NULL, NULL, branch_from);
2269 		if (err)
2270 			return err;
2271 	}
2272 
2273 	return 0;
2274 }
2275 
2276 static void save_lbr_cursor_node(struct thread *thread,
2277 				 struct callchain_cursor *cursor,
2278 				 int idx)
2279 {
2280 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2281 
2282 	if (!lbr_stitch)
2283 		return;
2284 
2285 	if (cursor->pos == cursor->nr) {
2286 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2287 		return;
2288 	}
2289 
2290 	if (!cursor->curr)
2291 		cursor->curr = cursor->first;
2292 	else
2293 		cursor->curr = cursor->curr->next;
2294 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2295 	       sizeof(struct callchain_cursor_node));
2296 
2297 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2298 	cursor->pos++;
2299 }
2300 
2301 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2302 				    struct callchain_cursor *cursor,
2303 				    struct perf_sample *sample,
2304 				    struct symbol **parent,
2305 				    struct addr_location *root_al,
2306 				    u64 *branch_from,
2307 				    bool callee)
2308 {
2309 	struct branch_stack *lbr_stack = sample->branch_stack;
2310 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2311 	u8 cpumode = PERF_RECORD_MISC_USER;
2312 	int lbr_nr = lbr_stack->nr;
2313 	struct branch_flags *flags;
2314 	int err, i;
2315 	u64 ip;
2316 
2317 	/*
2318 	 * The curr and pos are not used in writing session. They are cleared
2319 	 * in callchain_cursor_commit() when the writing session is closed.
2320 	 * Using curr and pos to track the current cursor node.
2321 	 */
2322 	if (thread->lbr_stitch) {
2323 		cursor->curr = NULL;
2324 		cursor->pos = cursor->nr;
2325 		if (cursor->nr) {
2326 			cursor->curr = cursor->first;
2327 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2328 				cursor->curr = cursor->curr->next;
2329 		}
2330 	}
2331 
2332 	if (callee) {
2333 		/* Add LBR ip from first entries.to */
2334 		ip = entries[0].to;
2335 		flags = &entries[0].flags;
2336 		*branch_from = entries[0].from;
2337 		err = add_callchain_ip(thread, cursor, parent,
2338 				       root_al, &cpumode, ip,
2339 				       true, flags, NULL,
2340 				       *branch_from);
2341 		if (err)
2342 			return err;
2343 
2344 		/*
2345 		 * The number of cursor node increases.
2346 		 * Move the current cursor node.
2347 		 * But does not need to save current cursor node for entry 0.
2348 		 * It's impossible to stitch the whole LBRs of previous sample.
2349 		 */
2350 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2351 			if (!cursor->curr)
2352 				cursor->curr = cursor->first;
2353 			else
2354 				cursor->curr = cursor->curr->next;
2355 			cursor->pos++;
2356 		}
2357 
2358 		/* Add LBR ip from entries.from one by one. */
2359 		for (i = 0; i < lbr_nr; i++) {
2360 			ip = entries[i].from;
2361 			flags = &entries[i].flags;
2362 			err = add_callchain_ip(thread, cursor, parent,
2363 					       root_al, &cpumode, ip,
2364 					       true, flags, NULL,
2365 					       *branch_from);
2366 			if (err)
2367 				return err;
2368 			save_lbr_cursor_node(thread, cursor, i);
2369 		}
2370 		return 0;
2371 	}
2372 
2373 	/* Add LBR ip from entries.from one by one. */
2374 	for (i = lbr_nr - 1; i >= 0; i--) {
2375 		ip = entries[i].from;
2376 		flags = &entries[i].flags;
2377 		err = add_callchain_ip(thread, cursor, parent,
2378 				       root_al, &cpumode, ip,
2379 				       true, flags, NULL,
2380 				       *branch_from);
2381 		if (err)
2382 			return err;
2383 		save_lbr_cursor_node(thread, cursor, i);
2384 	}
2385 
2386 	/* Add LBR ip from first entries.to */
2387 	ip = entries[0].to;
2388 	flags = &entries[0].flags;
2389 	*branch_from = entries[0].from;
2390 	err = add_callchain_ip(thread, cursor, parent,
2391 			       root_al, &cpumode, ip,
2392 			       true, flags, NULL,
2393 			       *branch_from);
2394 	if (err)
2395 		return err;
2396 
2397 	return 0;
2398 }
2399 
2400 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2401 					     struct callchain_cursor *cursor)
2402 {
2403 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2404 	struct callchain_cursor_node *cnode;
2405 	struct stitch_list *stitch_node;
2406 	int err;
2407 
2408 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2409 		cnode = &stitch_node->cursor;
2410 
2411 		err = callchain_cursor_append(cursor, cnode->ip,
2412 					      &cnode->ms,
2413 					      cnode->branch,
2414 					      &cnode->branch_flags,
2415 					      cnode->nr_loop_iter,
2416 					      cnode->iter_cycles,
2417 					      cnode->branch_from,
2418 					      cnode->srcline);
2419 		if (err)
2420 			return err;
2421 	}
2422 	return 0;
2423 }
2424 
2425 static struct stitch_list *get_stitch_node(struct thread *thread)
2426 {
2427 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2428 	struct stitch_list *stitch_node;
2429 
2430 	if (!list_empty(&lbr_stitch->free_lists)) {
2431 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2432 					       struct stitch_list, node);
2433 		list_del(&stitch_node->node);
2434 
2435 		return stitch_node;
2436 	}
2437 
2438 	return malloc(sizeof(struct stitch_list));
2439 }
2440 
2441 static bool has_stitched_lbr(struct thread *thread,
2442 			     struct perf_sample *cur,
2443 			     struct perf_sample *prev,
2444 			     unsigned int max_lbr,
2445 			     bool callee)
2446 {
2447 	struct branch_stack *cur_stack = cur->branch_stack;
2448 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2449 	struct branch_stack *prev_stack = prev->branch_stack;
2450 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2451 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2452 	int i, j, nr_identical_branches = 0;
2453 	struct stitch_list *stitch_node;
2454 	u64 cur_base, distance;
2455 
2456 	if (!cur_stack || !prev_stack)
2457 		return false;
2458 
2459 	/* Find the physical index of the base-of-stack for current sample. */
2460 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2461 
2462 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2463 						     (max_lbr + prev_stack->hw_idx - cur_base);
2464 	/* Previous sample has shorter stack. Nothing can be stitched. */
2465 	if (distance + 1 > prev_stack->nr)
2466 		return false;
2467 
2468 	/*
2469 	 * Check if there are identical LBRs between two samples.
2470 	 * Identicall LBRs must have same from, to and flags values. Also,
2471 	 * they have to be saved in the same LBR registers (same physical
2472 	 * index).
2473 	 *
2474 	 * Starts from the base-of-stack of current sample.
2475 	 */
2476 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2477 		if ((prev_entries[i].from != cur_entries[j].from) ||
2478 		    (prev_entries[i].to != cur_entries[j].to) ||
2479 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2480 			break;
2481 		nr_identical_branches++;
2482 	}
2483 
2484 	if (!nr_identical_branches)
2485 		return false;
2486 
2487 	/*
2488 	 * Save the LBRs between the base-of-stack of previous sample
2489 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2490 	 * These LBRs will be stitched later.
2491 	 */
2492 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2493 
2494 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2495 			continue;
2496 
2497 		stitch_node = get_stitch_node(thread);
2498 		if (!stitch_node)
2499 			return false;
2500 
2501 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2502 		       sizeof(struct callchain_cursor_node));
2503 
2504 		if (callee)
2505 			list_add(&stitch_node->node, &lbr_stitch->lists);
2506 		else
2507 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2508 	}
2509 
2510 	return true;
2511 }
2512 
2513 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2514 {
2515 	if (thread->lbr_stitch)
2516 		return true;
2517 
2518 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2519 	if (!thread->lbr_stitch)
2520 		goto err;
2521 
2522 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2523 	if (!thread->lbr_stitch->prev_lbr_cursor)
2524 		goto free_lbr_stitch;
2525 
2526 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2527 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2528 
2529 	return true;
2530 
2531 free_lbr_stitch:
2532 	zfree(&thread->lbr_stitch);
2533 err:
2534 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2535 	thread->lbr_stitch_enable = false;
2536 	return false;
2537 }
2538 
2539 /*
2540  * Recolve LBR callstack chain sample
2541  * Return:
2542  * 1 on success get LBR callchain information
2543  * 0 no available LBR callchain information, should try fp
2544  * negative error code on other errors.
2545  */
2546 static int resolve_lbr_callchain_sample(struct thread *thread,
2547 					struct callchain_cursor *cursor,
2548 					struct perf_sample *sample,
2549 					struct symbol **parent,
2550 					struct addr_location *root_al,
2551 					int max_stack,
2552 					unsigned int max_lbr)
2553 {
2554 	bool callee = (callchain_param.order == ORDER_CALLEE);
2555 	struct ip_callchain *chain = sample->callchain;
2556 	int chain_nr = min(max_stack, (int)chain->nr), i;
2557 	struct lbr_stitch *lbr_stitch;
2558 	bool stitched_lbr = false;
2559 	u64 branch_from = 0;
2560 	int err;
2561 
2562 	for (i = 0; i < chain_nr; i++) {
2563 		if (chain->ips[i] == PERF_CONTEXT_USER)
2564 			break;
2565 	}
2566 
2567 	/* LBR only affects the user callchain */
2568 	if (i == chain_nr)
2569 		return 0;
2570 
2571 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2572 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2573 		lbr_stitch = thread->lbr_stitch;
2574 
2575 		stitched_lbr = has_stitched_lbr(thread, sample,
2576 						&lbr_stitch->prev_sample,
2577 						max_lbr, callee);
2578 
2579 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2580 			list_replace_init(&lbr_stitch->lists,
2581 					  &lbr_stitch->free_lists);
2582 		}
2583 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2584 	}
2585 
2586 	if (callee) {
2587 		/* Add kernel ip */
2588 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2589 						  parent, root_al, branch_from,
2590 						  true, i);
2591 		if (err)
2592 			goto error;
2593 
2594 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2595 					       root_al, &branch_from, true);
2596 		if (err)
2597 			goto error;
2598 
2599 		if (stitched_lbr) {
2600 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2601 			if (err)
2602 				goto error;
2603 		}
2604 
2605 	} else {
2606 		if (stitched_lbr) {
2607 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2608 			if (err)
2609 				goto error;
2610 		}
2611 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2612 					       root_al, &branch_from, false);
2613 		if (err)
2614 			goto error;
2615 
2616 		/* Add kernel ip */
2617 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2618 						  parent, root_al, branch_from,
2619 						  false, i);
2620 		if (err)
2621 			goto error;
2622 	}
2623 	return 1;
2624 
2625 error:
2626 	return (err < 0) ? err : 0;
2627 }
2628 
2629 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2630 			     struct callchain_cursor *cursor,
2631 			     struct symbol **parent,
2632 			     struct addr_location *root_al,
2633 			     u8 *cpumode, int ent)
2634 {
2635 	int err = 0;
2636 
2637 	while (--ent >= 0) {
2638 		u64 ip = chain->ips[ent];
2639 
2640 		if (ip >= PERF_CONTEXT_MAX) {
2641 			err = add_callchain_ip(thread, cursor, parent,
2642 					       root_al, cpumode, ip,
2643 					       false, NULL, NULL, 0);
2644 			break;
2645 		}
2646 	}
2647 	return err;
2648 }
2649 
2650 static int thread__resolve_callchain_sample(struct thread *thread,
2651 					    struct callchain_cursor *cursor,
2652 					    struct evsel *evsel,
2653 					    struct perf_sample *sample,
2654 					    struct symbol **parent,
2655 					    struct addr_location *root_al,
2656 					    int max_stack)
2657 {
2658 	struct branch_stack *branch = sample->branch_stack;
2659 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2660 	struct ip_callchain *chain = sample->callchain;
2661 	int chain_nr = 0;
2662 	u8 cpumode = PERF_RECORD_MISC_USER;
2663 	int i, j, err, nr_entries;
2664 	int skip_idx = -1;
2665 	int first_call = 0;
2666 
2667 	if (chain)
2668 		chain_nr = chain->nr;
2669 
2670 	if (evsel__has_branch_callstack(evsel)) {
2671 		struct perf_env *env = evsel__env(evsel);
2672 
2673 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2674 						   root_al, max_stack,
2675 						   !env ? 0 : env->max_branches);
2676 		if (err)
2677 			return (err < 0) ? err : 0;
2678 	}
2679 
2680 	/*
2681 	 * Based on DWARF debug information, some architectures skip
2682 	 * a callchain entry saved by the kernel.
2683 	 */
2684 	skip_idx = arch_skip_callchain_idx(thread, chain);
2685 
2686 	/*
2687 	 * Add branches to call stack for easier browsing. This gives
2688 	 * more context for a sample than just the callers.
2689 	 *
2690 	 * This uses individual histograms of paths compared to the
2691 	 * aggregated histograms the normal LBR mode uses.
2692 	 *
2693 	 * Limitations for now:
2694 	 * - No extra filters
2695 	 * - No annotations (should annotate somehow)
2696 	 */
2697 
2698 	if (branch && callchain_param.branch_callstack) {
2699 		int nr = min(max_stack, (int)branch->nr);
2700 		struct branch_entry be[nr];
2701 		struct iterations iter[nr];
2702 
2703 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2704 			pr_warning("corrupted branch chain. skipping...\n");
2705 			goto check_calls;
2706 		}
2707 
2708 		for (i = 0; i < nr; i++) {
2709 			if (callchain_param.order == ORDER_CALLEE) {
2710 				be[i] = entries[i];
2711 
2712 				if (chain == NULL)
2713 					continue;
2714 
2715 				/*
2716 				 * Check for overlap into the callchain.
2717 				 * The return address is one off compared to
2718 				 * the branch entry. To adjust for this
2719 				 * assume the calling instruction is not longer
2720 				 * than 8 bytes.
2721 				 */
2722 				if (i == skip_idx ||
2723 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2724 					first_call++;
2725 				else if (be[i].from < chain->ips[first_call] &&
2726 				    be[i].from >= chain->ips[first_call] - 8)
2727 					first_call++;
2728 			} else
2729 				be[i] = entries[branch->nr - i - 1];
2730 		}
2731 
2732 		memset(iter, 0, sizeof(struct iterations) * nr);
2733 		nr = remove_loops(be, nr, iter);
2734 
2735 		for (i = 0; i < nr; i++) {
2736 			err = add_callchain_ip(thread, cursor, parent,
2737 					       root_al,
2738 					       NULL, be[i].to,
2739 					       true, &be[i].flags,
2740 					       NULL, be[i].from);
2741 
2742 			if (!err)
2743 				err = add_callchain_ip(thread, cursor, parent, root_al,
2744 						       NULL, be[i].from,
2745 						       true, &be[i].flags,
2746 						       &iter[i], 0);
2747 			if (err == -EINVAL)
2748 				break;
2749 			if (err)
2750 				return err;
2751 		}
2752 
2753 		if (chain_nr == 0)
2754 			return 0;
2755 
2756 		chain_nr -= nr;
2757 	}
2758 
2759 check_calls:
2760 	if (chain && callchain_param.order != ORDER_CALLEE) {
2761 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2762 					&cpumode, chain->nr - first_call);
2763 		if (err)
2764 			return (err < 0) ? err : 0;
2765 	}
2766 	for (i = first_call, nr_entries = 0;
2767 	     i < chain_nr && nr_entries < max_stack; i++) {
2768 		u64 ip;
2769 
2770 		if (callchain_param.order == ORDER_CALLEE)
2771 			j = i;
2772 		else
2773 			j = chain->nr - i - 1;
2774 
2775 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2776 		if (j == skip_idx)
2777 			continue;
2778 #endif
2779 		ip = chain->ips[j];
2780 		if (ip < PERF_CONTEXT_MAX)
2781                        ++nr_entries;
2782 		else if (callchain_param.order != ORDER_CALLEE) {
2783 			err = find_prev_cpumode(chain, thread, cursor, parent,
2784 						root_al, &cpumode, j);
2785 			if (err)
2786 				return (err < 0) ? err : 0;
2787 			continue;
2788 		}
2789 
2790 		err = add_callchain_ip(thread, cursor, parent,
2791 				       root_al, &cpumode, ip,
2792 				       false, NULL, NULL, 0);
2793 
2794 		if (err)
2795 			return (err < 0) ? err : 0;
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2802 {
2803 	struct symbol *sym = ms->sym;
2804 	struct map *map = ms->map;
2805 	struct inline_node *inline_node;
2806 	struct inline_list *ilist;
2807 	u64 addr;
2808 	int ret = 1;
2809 
2810 	if (!symbol_conf.inline_name || !map || !sym)
2811 		return ret;
2812 
2813 	addr = map__map_ip(map, ip);
2814 	addr = map__rip_2objdump(map, addr);
2815 
2816 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2817 	if (!inline_node) {
2818 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2819 		if (!inline_node)
2820 			return ret;
2821 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2822 	}
2823 
2824 	list_for_each_entry(ilist, &inline_node->val, list) {
2825 		struct map_symbol ilist_ms = {
2826 			.maps = ms->maps,
2827 			.map = map,
2828 			.sym = ilist->symbol,
2829 		};
2830 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2831 					      NULL, 0, 0, 0, ilist->srcline);
2832 
2833 		if (ret != 0)
2834 			return ret;
2835 	}
2836 
2837 	return ret;
2838 }
2839 
2840 static int unwind_entry(struct unwind_entry *entry, void *arg)
2841 {
2842 	struct callchain_cursor *cursor = arg;
2843 	const char *srcline = NULL;
2844 	u64 addr = entry->ip;
2845 
2846 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2847 		return 0;
2848 
2849 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2850 		return 0;
2851 
2852 	/*
2853 	 * Convert entry->ip from a virtual address to an offset in
2854 	 * its corresponding binary.
2855 	 */
2856 	if (entry->ms.map)
2857 		addr = map__map_ip(entry->ms.map, entry->ip);
2858 
2859 	srcline = callchain_srcline(&entry->ms, addr);
2860 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2861 				       false, NULL, 0, 0, 0, srcline);
2862 }
2863 
2864 static int thread__resolve_callchain_unwind(struct thread *thread,
2865 					    struct callchain_cursor *cursor,
2866 					    struct evsel *evsel,
2867 					    struct perf_sample *sample,
2868 					    int max_stack)
2869 {
2870 	/* Can we do dwarf post unwind? */
2871 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2872 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2873 		return 0;
2874 
2875 	/* Bail out if nothing was captured. */
2876 	if ((!sample->user_regs.regs) ||
2877 	    (!sample->user_stack.size))
2878 		return 0;
2879 
2880 	return unwind__get_entries(unwind_entry, cursor,
2881 				   thread, sample, max_stack);
2882 }
2883 
2884 int thread__resolve_callchain(struct thread *thread,
2885 			      struct callchain_cursor *cursor,
2886 			      struct evsel *evsel,
2887 			      struct perf_sample *sample,
2888 			      struct symbol **parent,
2889 			      struct addr_location *root_al,
2890 			      int max_stack)
2891 {
2892 	int ret = 0;
2893 
2894 	callchain_cursor_reset(cursor);
2895 
2896 	if (callchain_param.order == ORDER_CALLEE) {
2897 		ret = thread__resolve_callchain_sample(thread, cursor,
2898 						       evsel, sample,
2899 						       parent, root_al,
2900 						       max_stack);
2901 		if (ret)
2902 			return ret;
2903 		ret = thread__resolve_callchain_unwind(thread, cursor,
2904 						       evsel, sample,
2905 						       max_stack);
2906 	} else {
2907 		ret = thread__resolve_callchain_unwind(thread, cursor,
2908 						       evsel, sample,
2909 						       max_stack);
2910 		if (ret)
2911 			return ret;
2912 		ret = thread__resolve_callchain_sample(thread, cursor,
2913 						       evsel, sample,
2914 						       parent, root_al,
2915 						       max_stack);
2916 	}
2917 
2918 	return ret;
2919 }
2920 
2921 int machine__for_each_thread(struct machine *machine,
2922 			     int (*fn)(struct thread *thread, void *p),
2923 			     void *priv)
2924 {
2925 	struct threads *threads;
2926 	struct rb_node *nd;
2927 	struct thread *thread;
2928 	int rc = 0;
2929 	int i;
2930 
2931 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2932 		threads = &machine->threads[i];
2933 		for (nd = rb_first_cached(&threads->entries); nd;
2934 		     nd = rb_next(nd)) {
2935 			thread = rb_entry(nd, struct thread, rb_node);
2936 			rc = fn(thread, priv);
2937 			if (rc != 0)
2938 				return rc;
2939 		}
2940 
2941 		list_for_each_entry(thread, &threads->dead, node) {
2942 			rc = fn(thread, priv);
2943 			if (rc != 0)
2944 				return rc;
2945 		}
2946 	}
2947 	return rc;
2948 }
2949 
2950 int machines__for_each_thread(struct machines *machines,
2951 			      int (*fn)(struct thread *thread, void *p),
2952 			      void *priv)
2953 {
2954 	struct rb_node *nd;
2955 	int rc = 0;
2956 
2957 	rc = machine__for_each_thread(&machines->host, fn, priv);
2958 	if (rc != 0)
2959 		return rc;
2960 
2961 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2962 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2963 
2964 		rc = machine__for_each_thread(machine, fn, priv);
2965 		if (rc != 0)
2966 			return rc;
2967 	}
2968 	return rc;
2969 }
2970 
2971 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2972 {
2973 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2974 
2975 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2976 		return -1;
2977 
2978 	return machine->current_tid[cpu];
2979 }
2980 
2981 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2982 			     pid_t tid)
2983 {
2984 	struct thread *thread;
2985 	int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2986 
2987 	if (cpu < 0)
2988 		return -EINVAL;
2989 
2990 	if (!machine->current_tid) {
2991 		int i;
2992 
2993 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2994 		if (!machine->current_tid)
2995 			return -ENOMEM;
2996 		for (i = 0; i < nr_cpus; i++)
2997 			machine->current_tid[i] = -1;
2998 	}
2999 
3000 	if (cpu >= nr_cpus) {
3001 		pr_err("Requested CPU %d too large. ", cpu);
3002 		pr_err("Consider raising MAX_NR_CPUS\n");
3003 		return -EINVAL;
3004 	}
3005 
3006 	machine->current_tid[cpu] = tid;
3007 
3008 	thread = machine__findnew_thread(machine, pid, tid);
3009 	if (!thread)
3010 		return -ENOMEM;
3011 
3012 	thread->cpu = cpu;
3013 	thread__put(thread);
3014 
3015 	return 0;
3016 }
3017 
3018 /*
3019  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3020  * normalized arch is needed.
3021  */
3022 bool machine__is(struct machine *machine, const char *arch)
3023 {
3024 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3025 }
3026 
3027 int machine__nr_cpus_avail(struct machine *machine)
3028 {
3029 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3030 }
3031 
3032 int machine__get_kernel_start(struct machine *machine)
3033 {
3034 	struct map *map = machine__kernel_map(machine);
3035 	int err = 0;
3036 
3037 	/*
3038 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3039 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3040 	 * all addresses including kernel addresses are less than 2^32.  In
3041 	 * that case (32-bit system), if the kernel mapping is unknown, all
3042 	 * addresses will be assumed to be in user space - see
3043 	 * machine__kernel_ip().
3044 	 */
3045 	machine->kernel_start = 1ULL << 63;
3046 	if (map) {
3047 		err = map__load(map);
3048 		/*
3049 		 * On x86_64, PTI entry trampolines are less than the
3050 		 * start of kernel text, but still above 2^63. So leave
3051 		 * kernel_start = 1ULL << 63 for x86_64.
3052 		 */
3053 		if (!err && !machine__is(machine, "x86_64"))
3054 			machine->kernel_start = map->start;
3055 	}
3056 	return err;
3057 }
3058 
3059 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3060 {
3061 	u8 addr_cpumode = cpumode;
3062 	bool kernel_ip;
3063 
3064 	if (!machine->single_address_space)
3065 		goto out;
3066 
3067 	kernel_ip = machine__kernel_ip(machine, addr);
3068 	switch (cpumode) {
3069 	case PERF_RECORD_MISC_KERNEL:
3070 	case PERF_RECORD_MISC_USER:
3071 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3072 					   PERF_RECORD_MISC_USER;
3073 		break;
3074 	case PERF_RECORD_MISC_GUEST_KERNEL:
3075 	case PERF_RECORD_MISC_GUEST_USER:
3076 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3077 					   PERF_RECORD_MISC_GUEST_USER;
3078 		break;
3079 	default:
3080 		break;
3081 	}
3082 out:
3083 	return addr_cpumode;
3084 }
3085 
3086 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3087 {
3088 	return dsos__findnew_id(&machine->dsos, filename, id);
3089 }
3090 
3091 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3092 {
3093 	return machine__findnew_dso_id(machine, filename, NULL);
3094 }
3095 
3096 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3097 {
3098 	struct machine *machine = vmachine;
3099 	struct map *map;
3100 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3101 
3102 	if (sym == NULL)
3103 		return NULL;
3104 
3105 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3106 	*addrp = map->unmap_ip(map, sym->start);
3107 	return sym->name;
3108 }
3109