1 #include "callchain.h" 2 #include "debug.h" 3 #include "event.h" 4 #include "evsel.h" 5 #include "hist.h" 6 #include "machine.h" 7 #include "map.h" 8 #include "sort.h" 9 #include "strlist.h" 10 #include "thread.h" 11 #include "vdso.h" 12 #include <stdbool.h> 13 #include <symbol/kallsyms.h> 14 #include "unwind.h" 15 #include "linux/hash.h" 16 17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 18 19 static void dsos__init(struct dsos *dsos) 20 { 21 INIT_LIST_HEAD(&dsos->head); 22 dsos->root = RB_ROOT; 23 pthread_rwlock_init(&dsos->lock, NULL); 24 } 25 26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 27 { 28 memset(machine, 0, sizeof(*machine)); 29 map_groups__init(&machine->kmaps, machine); 30 RB_CLEAR_NODE(&machine->rb_node); 31 dsos__init(&machine->dsos); 32 33 machine->threads = RB_ROOT; 34 pthread_rwlock_init(&machine->threads_lock, NULL); 35 machine->nr_threads = 0; 36 INIT_LIST_HEAD(&machine->dead_threads); 37 machine->last_match = NULL; 38 39 machine->vdso_info = NULL; 40 machine->env = NULL; 41 42 machine->pid = pid; 43 44 machine->id_hdr_size = 0; 45 machine->kptr_restrict_warned = false; 46 machine->comm_exec = false; 47 machine->kernel_start = 0; 48 49 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps)); 50 51 machine->root_dir = strdup(root_dir); 52 if (machine->root_dir == NULL) 53 return -ENOMEM; 54 55 if (pid != HOST_KERNEL_ID) { 56 struct thread *thread = machine__findnew_thread(machine, -1, 57 pid); 58 char comm[64]; 59 60 if (thread == NULL) 61 return -ENOMEM; 62 63 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 64 thread__set_comm(thread, comm, 0); 65 thread__put(thread); 66 } 67 68 machine->current_tid = NULL; 69 70 return 0; 71 } 72 73 struct machine *machine__new_host(void) 74 { 75 struct machine *machine = malloc(sizeof(*machine)); 76 77 if (machine != NULL) { 78 machine__init(machine, "", HOST_KERNEL_ID); 79 80 if (machine__create_kernel_maps(machine) < 0) 81 goto out_delete; 82 } 83 84 return machine; 85 out_delete: 86 free(machine); 87 return NULL; 88 } 89 90 static void dsos__purge(struct dsos *dsos) 91 { 92 struct dso *pos, *n; 93 94 pthread_rwlock_wrlock(&dsos->lock); 95 96 list_for_each_entry_safe(pos, n, &dsos->head, node) { 97 RB_CLEAR_NODE(&pos->rb_node); 98 pos->root = NULL; 99 list_del_init(&pos->node); 100 dso__put(pos); 101 } 102 103 pthread_rwlock_unlock(&dsos->lock); 104 } 105 106 static void dsos__exit(struct dsos *dsos) 107 { 108 dsos__purge(dsos); 109 pthread_rwlock_destroy(&dsos->lock); 110 } 111 112 void machine__delete_threads(struct machine *machine) 113 { 114 struct rb_node *nd; 115 116 pthread_rwlock_wrlock(&machine->threads_lock); 117 nd = rb_first(&machine->threads); 118 while (nd) { 119 struct thread *t = rb_entry(nd, struct thread, rb_node); 120 121 nd = rb_next(nd); 122 __machine__remove_thread(machine, t, false); 123 } 124 pthread_rwlock_unlock(&machine->threads_lock); 125 } 126 127 void machine__exit(struct machine *machine) 128 { 129 machine__destroy_kernel_maps(machine); 130 map_groups__exit(&machine->kmaps); 131 dsos__exit(&machine->dsos); 132 machine__exit_vdso(machine); 133 zfree(&machine->root_dir); 134 zfree(&machine->current_tid); 135 pthread_rwlock_destroy(&machine->threads_lock); 136 } 137 138 void machine__delete(struct machine *machine) 139 { 140 if (machine) { 141 machine__exit(machine); 142 free(machine); 143 } 144 } 145 146 void machines__init(struct machines *machines) 147 { 148 machine__init(&machines->host, "", HOST_KERNEL_ID); 149 machines->guests = RB_ROOT; 150 } 151 152 void machines__exit(struct machines *machines) 153 { 154 machine__exit(&machines->host); 155 /* XXX exit guest */ 156 } 157 158 struct machine *machines__add(struct machines *machines, pid_t pid, 159 const char *root_dir) 160 { 161 struct rb_node **p = &machines->guests.rb_node; 162 struct rb_node *parent = NULL; 163 struct machine *pos, *machine = malloc(sizeof(*machine)); 164 165 if (machine == NULL) 166 return NULL; 167 168 if (machine__init(machine, root_dir, pid) != 0) { 169 free(machine); 170 return NULL; 171 } 172 173 while (*p != NULL) { 174 parent = *p; 175 pos = rb_entry(parent, struct machine, rb_node); 176 if (pid < pos->pid) 177 p = &(*p)->rb_left; 178 else 179 p = &(*p)->rb_right; 180 } 181 182 rb_link_node(&machine->rb_node, parent, p); 183 rb_insert_color(&machine->rb_node, &machines->guests); 184 185 return machine; 186 } 187 188 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 189 { 190 struct rb_node *nd; 191 192 machines->host.comm_exec = comm_exec; 193 194 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 195 struct machine *machine = rb_entry(nd, struct machine, rb_node); 196 197 machine->comm_exec = comm_exec; 198 } 199 } 200 201 struct machine *machines__find(struct machines *machines, pid_t pid) 202 { 203 struct rb_node **p = &machines->guests.rb_node; 204 struct rb_node *parent = NULL; 205 struct machine *machine; 206 struct machine *default_machine = NULL; 207 208 if (pid == HOST_KERNEL_ID) 209 return &machines->host; 210 211 while (*p != NULL) { 212 parent = *p; 213 machine = rb_entry(parent, struct machine, rb_node); 214 if (pid < machine->pid) 215 p = &(*p)->rb_left; 216 else if (pid > machine->pid) 217 p = &(*p)->rb_right; 218 else 219 return machine; 220 if (!machine->pid) 221 default_machine = machine; 222 } 223 224 return default_machine; 225 } 226 227 struct machine *machines__findnew(struct machines *machines, pid_t pid) 228 { 229 char path[PATH_MAX]; 230 const char *root_dir = ""; 231 struct machine *machine = machines__find(machines, pid); 232 233 if (machine && (machine->pid == pid)) 234 goto out; 235 236 if ((pid != HOST_KERNEL_ID) && 237 (pid != DEFAULT_GUEST_KERNEL_ID) && 238 (symbol_conf.guestmount)) { 239 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 240 if (access(path, R_OK)) { 241 static struct strlist *seen; 242 243 if (!seen) 244 seen = strlist__new(NULL, NULL); 245 246 if (!strlist__has_entry(seen, path)) { 247 pr_err("Can't access file %s\n", path); 248 strlist__add(seen, path); 249 } 250 machine = NULL; 251 goto out; 252 } 253 root_dir = path; 254 } 255 256 machine = machines__add(machines, pid, root_dir); 257 out: 258 return machine; 259 } 260 261 void machines__process_guests(struct machines *machines, 262 machine__process_t process, void *data) 263 { 264 struct rb_node *nd; 265 266 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 267 struct machine *pos = rb_entry(nd, struct machine, rb_node); 268 process(pos, data); 269 } 270 } 271 272 char *machine__mmap_name(struct machine *machine, char *bf, size_t size) 273 { 274 if (machine__is_host(machine)) 275 snprintf(bf, size, "[%s]", "kernel.kallsyms"); 276 else if (machine__is_default_guest(machine)) 277 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms"); 278 else { 279 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms", 280 machine->pid); 281 } 282 283 return bf; 284 } 285 286 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 287 { 288 struct rb_node *node; 289 struct machine *machine; 290 291 machines->host.id_hdr_size = id_hdr_size; 292 293 for (node = rb_first(&machines->guests); node; node = rb_next(node)) { 294 machine = rb_entry(node, struct machine, rb_node); 295 machine->id_hdr_size = id_hdr_size; 296 } 297 298 return; 299 } 300 301 static void machine__update_thread_pid(struct machine *machine, 302 struct thread *th, pid_t pid) 303 { 304 struct thread *leader; 305 306 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 307 return; 308 309 th->pid_ = pid; 310 311 if (th->pid_ == th->tid) 312 return; 313 314 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 315 if (!leader) 316 goto out_err; 317 318 if (!leader->mg) 319 leader->mg = map_groups__new(machine); 320 321 if (!leader->mg) 322 goto out_err; 323 324 if (th->mg == leader->mg) 325 return; 326 327 if (th->mg) { 328 /* 329 * Maps are created from MMAP events which provide the pid and 330 * tid. Consequently there never should be any maps on a thread 331 * with an unknown pid. Just print an error if there are. 332 */ 333 if (!map_groups__empty(th->mg)) 334 pr_err("Discarding thread maps for %d:%d\n", 335 th->pid_, th->tid); 336 map_groups__put(th->mg); 337 } 338 339 th->mg = map_groups__get(leader->mg); 340 out_put: 341 thread__put(leader); 342 return; 343 out_err: 344 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 345 goto out_put; 346 } 347 348 /* 349 * Caller must eventually drop thread->refcnt returned with a successful 350 * lookup/new thread inserted. 351 */ 352 static struct thread *____machine__findnew_thread(struct machine *machine, 353 pid_t pid, pid_t tid, 354 bool create) 355 { 356 struct rb_node **p = &machine->threads.rb_node; 357 struct rb_node *parent = NULL; 358 struct thread *th; 359 360 /* 361 * Front-end cache - TID lookups come in blocks, 362 * so most of the time we dont have to look up 363 * the full rbtree: 364 */ 365 th = machine->last_match; 366 if (th != NULL) { 367 if (th->tid == tid) { 368 machine__update_thread_pid(machine, th, pid); 369 return thread__get(th); 370 } 371 372 machine->last_match = NULL; 373 } 374 375 while (*p != NULL) { 376 parent = *p; 377 th = rb_entry(parent, struct thread, rb_node); 378 379 if (th->tid == tid) { 380 machine->last_match = th; 381 machine__update_thread_pid(machine, th, pid); 382 return thread__get(th); 383 } 384 385 if (tid < th->tid) 386 p = &(*p)->rb_left; 387 else 388 p = &(*p)->rb_right; 389 } 390 391 if (!create) 392 return NULL; 393 394 th = thread__new(pid, tid); 395 if (th != NULL) { 396 rb_link_node(&th->rb_node, parent, p); 397 rb_insert_color(&th->rb_node, &machine->threads); 398 399 /* 400 * We have to initialize map_groups separately 401 * after rb tree is updated. 402 * 403 * The reason is that we call machine__findnew_thread 404 * within thread__init_map_groups to find the thread 405 * leader and that would screwed the rb tree. 406 */ 407 if (thread__init_map_groups(th, machine)) { 408 rb_erase_init(&th->rb_node, &machine->threads); 409 RB_CLEAR_NODE(&th->rb_node); 410 thread__put(th); 411 return NULL; 412 } 413 /* 414 * It is now in the rbtree, get a ref 415 */ 416 thread__get(th); 417 machine->last_match = th; 418 ++machine->nr_threads; 419 } 420 421 return th; 422 } 423 424 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 425 { 426 return ____machine__findnew_thread(machine, pid, tid, true); 427 } 428 429 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 430 pid_t tid) 431 { 432 struct thread *th; 433 434 pthread_rwlock_wrlock(&machine->threads_lock); 435 th = __machine__findnew_thread(machine, pid, tid); 436 pthread_rwlock_unlock(&machine->threads_lock); 437 return th; 438 } 439 440 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 441 pid_t tid) 442 { 443 struct thread *th; 444 pthread_rwlock_rdlock(&machine->threads_lock); 445 th = ____machine__findnew_thread(machine, pid, tid, false); 446 pthread_rwlock_unlock(&machine->threads_lock); 447 return th; 448 } 449 450 struct comm *machine__thread_exec_comm(struct machine *machine, 451 struct thread *thread) 452 { 453 if (machine->comm_exec) 454 return thread__exec_comm(thread); 455 else 456 return thread__comm(thread); 457 } 458 459 int machine__process_comm_event(struct machine *machine, union perf_event *event, 460 struct perf_sample *sample) 461 { 462 struct thread *thread = machine__findnew_thread(machine, 463 event->comm.pid, 464 event->comm.tid); 465 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 466 int err = 0; 467 468 if (exec) 469 machine->comm_exec = true; 470 471 if (dump_trace) 472 perf_event__fprintf_comm(event, stdout); 473 474 if (thread == NULL || 475 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 476 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 477 err = -1; 478 } 479 480 thread__put(thread); 481 482 return err; 483 } 484 485 int machine__process_lost_event(struct machine *machine __maybe_unused, 486 union perf_event *event, struct perf_sample *sample __maybe_unused) 487 { 488 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 489 event->lost.id, event->lost.lost); 490 return 0; 491 } 492 493 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 494 union perf_event *event, struct perf_sample *sample) 495 { 496 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 497 sample->id, event->lost_samples.lost); 498 return 0; 499 } 500 501 static struct dso *machine__findnew_module_dso(struct machine *machine, 502 struct kmod_path *m, 503 const char *filename) 504 { 505 struct dso *dso; 506 507 pthread_rwlock_wrlock(&machine->dsos.lock); 508 509 dso = __dsos__find(&machine->dsos, m->name, true); 510 if (!dso) { 511 dso = __dsos__addnew(&machine->dsos, m->name); 512 if (dso == NULL) 513 goto out_unlock; 514 515 if (machine__is_host(machine)) 516 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE; 517 else 518 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE; 519 520 /* _KMODULE_COMP should be next to _KMODULE */ 521 if (m->kmod && m->comp) 522 dso->symtab_type++; 523 524 dso__set_short_name(dso, strdup(m->name), true); 525 dso__set_long_name(dso, strdup(filename), true); 526 } 527 528 dso__get(dso); 529 out_unlock: 530 pthread_rwlock_unlock(&machine->dsos.lock); 531 return dso; 532 } 533 534 int machine__process_aux_event(struct machine *machine __maybe_unused, 535 union perf_event *event) 536 { 537 if (dump_trace) 538 perf_event__fprintf_aux(event, stdout); 539 return 0; 540 } 541 542 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 543 union perf_event *event) 544 { 545 if (dump_trace) 546 perf_event__fprintf_itrace_start(event, stdout); 547 return 0; 548 } 549 550 int machine__process_switch_event(struct machine *machine __maybe_unused, 551 union perf_event *event) 552 { 553 if (dump_trace) 554 perf_event__fprintf_switch(event, stdout); 555 return 0; 556 } 557 558 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 559 { 560 const char *dup_filename; 561 562 if (!filename || !dso || !dso->long_name) 563 return; 564 if (dso->long_name[0] != '[') 565 return; 566 if (!strchr(filename, '/')) 567 return; 568 569 dup_filename = strdup(filename); 570 if (!dup_filename) 571 return; 572 573 dso__set_long_name(dso, dup_filename, true); 574 } 575 576 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 577 const char *filename) 578 { 579 struct map *map = NULL; 580 struct dso *dso = NULL; 581 struct kmod_path m; 582 583 if (kmod_path__parse_name(&m, filename)) 584 return NULL; 585 586 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION, 587 m.name); 588 if (map) { 589 /* 590 * If the map's dso is an offline module, give dso__load() 591 * a chance to find the file path of that module by fixing 592 * long_name. 593 */ 594 dso__adjust_kmod_long_name(map->dso, filename); 595 goto out; 596 } 597 598 dso = machine__findnew_module_dso(machine, &m, filename); 599 if (dso == NULL) 600 goto out; 601 602 map = map__new2(start, dso, MAP__FUNCTION); 603 if (map == NULL) 604 goto out; 605 606 map_groups__insert(&machine->kmaps, map); 607 608 /* Put the map here because map_groups__insert alread got it */ 609 map__put(map); 610 out: 611 /* put the dso here, corresponding to machine__findnew_module_dso */ 612 dso__put(dso); 613 free(m.name); 614 return map; 615 } 616 617 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 618 { 619 struct rb_node *nd; 620 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 621 622 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 623 struct machine *pos = rb_entry(nd, struct machine, rb_node); 624 ret += __dsos__fprintf(&pos->dsos.head, fp); 625 } 626 627 return ret; 628 } 629 630 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 631 bool (skip)(struct dso *dso, int parm), int parm) 632 { 633 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 634 } 635 636 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 637 bool (skip)(struct dso *dso, int parm), int parm) 638 { 639 struct rb_node *nd; 640 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 641 642 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 643 struct machine *pos = rb_entry(nd, struct machine, rb_node); 644 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 645 } 646 return ret; 647 } 648 649 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 650 { 651 int i; 652 size_t printed = 0; 653 struct dso *kdso = machine__kernel_map(machine)->dso; 654 655 if (kdso->has_build_id) { 656 char filename[PATH_MAX]; 657 if (dso__build_id_filename(kdso, filename, sizeof(filename))) 658 printed += fprintf(fp, "[0] %s\n", filename); 659 } 660 661 for (i = 0; i < vmlinux_path__nr_entries; ++i) 662 printed += fprintf(fp, "[%d] %s\n", 663 i + kdso->has_build_id, vmlinux_path[i]); 664 665 return printed; 666 } 667 668 size_t machine__fprintf(struct machine *machine, FILE *fp) 669 { 670 size_t ret; 671 struct rb_node *nd; 672 673 pthread_rwlock_rdlock(&machine->threads_lock); 674 675 ret = fprintf(fp, "Threads: %u\n", machine->nr_threads); 676 677 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 678 struct thread *pos = rb_entry(nd, struct thread, rb_node); 679 680 ret += thread__fprintf(pos, fp); 681 } 682 683 pthread_rwlock_unlock(&machine->threads_lock); 684 685 return ret; 686 } 687 688 static struct dso *machine__get_kernel(struct machine *machine) 689 { 690 const char *vmlinux_name = NULL; 691 struct dso *kernel; 692 693 if (machine__is_host(machine)) { 694 vmlinux_name = symbol_conf.vmlinux_name; 695 if (!vmlinux_name) 696 vmlinux_name = DSO__NAME_KALLSYMS; 697 698 kernel = machine__findnew_kernel(machine, vmlinux_name, 699 "[kernel]", DSO_TYPE_KERNEL); 700 } else { 701 char bf[PATH_MAX]; 702 703 if (machine__is_default_guest(machine)) 704 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 705 if (!vmlinux_name) 706 vmlinux_name = machine__mmap_name(machine, bf, 707 sizeof(bf)); 708 709 kernel = machine__findnew_kernel(machine, vmlinux_name, 710 "[guest.kernel]", 711 DSO_TYPE_GUEST_KERNEL); 712 } 713 714 if (kernel != NULL && (!kernel->has_build_id)) 715 dso__read_running_kernel_build_id(kernel, machine); 716 717 return kernel; 718 } 719 720 struct process_args { 721 u64 start; 722 }; 723 724 static void machine__get_kallsyms_filename(struct machine *machine, char *buf, 725 size_t bufsz) 726 { 727 if (machine__is_default_guest(machine)) 728 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 729 else 730 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 731 } 732 733 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 734 735 /* Figure out the start address of kernel map from /proc/kallsyms. 736 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 737 * symbol_name if it's not that important. 738 */ 739 static u64 machine__get_running_kernel_start(struct machine *machine, 740 const char **symbol_name) 741 { 742 char filename[PATH_MAX]; 743 int i; 744 const char *name; 745 u64 addr = 0; 746 747 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 748 749 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 750 return 0; 751 752 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 753 addr = kallsyms__get_function_start(filename, name); 754 if (addr) 755 break; 756 } 757 758 if (symbol_name) 759 *symbol_name = name; 760 761 return addr; 762 } 763 764 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 765 { 766 enum map_type type; 767 u64 start = machine__get_running_kernel_start(machine, NULL); 768 769 /* In case of renewal the kernel map, destroy previous one */ 770 machine__destroy_kernel_maps(machine); 771 772 for (type = 0; type < MAP__NR_TYPES; ++type) { 773 struct kmap *kmap; 774 struct map *map; 775 776 machine->vmlinux_maps[type] = map__new2(start, kernel, type); 777 if (machine->vmlinux_maps[type] == NULL) 778 return -1; 779 780 machine->vmlinux_maps[type]->map_ip = 781 machine->vmlinux_maps[type]->unmap_ip = 782 identity__map_ip; 783 map = __machine__kernel_map(machine, type); 784 kmap = map__kmap(map); 785 if (!kmap) 786 return -1; 787 788 kmap->kmaps = &machine->kmaps; 789 map_groups__insert(&machine->kmaps, map); 790 } 791 792 return 0; 793 } 794 795 void machine__destroy_kernel_maps(struct machine *machine) 796 { 797 enum map_type type; 798 799 for (type = 0; type < MAP__NR_TYPES; ++type) { 800 struct kmap *kmap; 801 struct map *map = __machine__kernel_map(machine, type); 802 803 if (map == NULL) 804 continue; 805 806 kmap = map__kmap(map); 807 map_groups__remove(&machine->kmaps, map); 808 if (kmap && kmap->ref_reloc_sym) { 809 /* 810 * ref_reloc_sym is shared among all maps, so free just 811 * on one of them. 812 */ 813 if (type == MAP__FUNCTION) { 814 zfree((char **)&kmap->ref_reloc_sym->name); 815 zfree(&kmap->ref_reloc_sym); 816 } else 817 kmap->ref_reloc_sym = NULL; 818 } 819 820 map__put(machine->vmlinux_maps[type]); 821 machine->vmlinux_maps[type] = NULL; 822 } 823 } 824 825 int machines__create_guest_kernel_maps(struct machines *machines) 826 { 827 int ret = 0; 828 struct dirent **namelist = NULL; 829 int i, items = 0; 830 char path[PATH_MAX]; 831 pid_t pid; 832 char *endp; 833 834 if (symbol_conf.default_guest_vmlinux_name || 835 symbol_conf.default_guest_modules || 836 symbol_conf.default_guest_kallsyms) { 837 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 838 } 839 840 if (symbol_conf.guestmount) { 841 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 842 if (items <= 0) 843 return -ENOENT; 844 for (i = 0; i < items; i++) { 845 if (!isdigit(namelist[i]->d_name[0])) { 846 /* Filter out . and .. */ 847 continue; 848 } 849 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 850 if ((*endp != '\0') || 851 (endp == namelist[i]->d_name) || 852 (errno == ERANGE)) { 853 pr_debug("invalid directory (%s). Skipping.\n", 854 namelist[i]->d_name); 855 continue; 856 } 857 sprintf(path, "%s/%s/proc/kallsyms", 858 symbol_conf.guestmount, 859 namelist[i]->d_name); 860 ret = access(path, R_OK); 861 if (ret) { 862 pr_debug("Can't access file %s\n", path); 863 goto failure; 864 } 865 machines__create_kernel_maps(machines, pid); 866 } 867 failure: 868 free(namelist); 869 } 870 871 return ret; 872 } 873 874 void machines__destroy_kernel_maps(struct machines *machines) 875 { 876 struct rb_node *next = rb_first(&machines->guests); 877 878 machine__destroy_kernel_maps(&machines->host); 879 880 while (next) { 881 struct machine *pos = rb_entry(next, struct machine, rb_node); 882 883 next = rb_next(&pos->rb_node); 884 rb_erase(&pos->rb_node, &machines->guests); 885 machine__delete(pos); 886 } 887 } 888 889 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 890 { 891 struct machine *machine = machines__findnew(machines, pid); 892 893 if (machine == NULL) 894 return -1; 895 896 return machine__create_kernel_maps(machine); 897 } 898 899 int __machine__load_kallsyms(struct machine *machine, const char *filename, 900 enum map_type type, bool no_kcore) 901 { 902 struct map *map = machine__kernel_map(machine); 903 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore); 904 905 if (ret > 0) { 906 dso__set_loaded(map->dso, type); 907 /* 908 * Since /proc/kallsyms will have multiple sessions for the 909 * kernel, with modules between them, fixup the end of all 910 * sections. 911 */ 912 __map_groups__fixup_end(&machine->kmaps, type); 913 } 914 915 return ret; 916 } 917 918 int machine__load_kallsyms(struct machine *machine, const char *filename, 919 enum map_type type) 920 { 921 return __machine__load_kallsyms(machine, filename, type, false); 922 } 923 924 int machine__load_vmlinux_path(struct machine *machine, enum map_type type) 925 { 926 struct map *map = machine__kernel_map(machine); 927 int ret = dso__load_vmlinux_path(map->dso, map); 928 929 if (ret > 0) 930 dso__set_loaded(map->dso, type); 931 932 return ret; 933 } 934 935 static void map_groups__fixup_end(struct map_groups *mg) 936 { 937 int i; 938 for (i = 0; i < MAP__NR_TYPES; ++i) 939 __map_groups__fixup_end(mg, i); 940 } 941 942 static char *get_kernel_version(const char *root_dir) 943 { 944 char version[PATH_MAX]; 945 FILE *file; 946 char *name, *tmp; 947 const char *prefix = "Linux version "; 948 949 sprintf(version, "%s/proc/version", root_dir); 950 file = fopen(version, "r"); 951 if (!file) 952 return NULL; 953 954 version[0] = '\0'; 955 tmp = fgets(version, sizeof(version), file); 956 fclose(file); 957 958 name = strstr(version, prefix); 959 if (!name) 960 return NULL; 961 name += strlen(prefix); 962 tmp = strchr(name, ' '); 963 if (tmp) 964 *tmp = '\0'; 965 966 return strdup(name); 967 } 968 969 static bool is_kmod_dso(struct dso *dso) 970 { 971 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 972 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 973 } 974 975 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 976 struct kmod_path *m) 977 { 978 struct map *map; 979 char *long_name; 980 981 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name); 982 if (map == NULL) 983 return 0; 984 985 long_name = strdup(path); 986 if (long_name == NULL) 987 return -ENOMEM; 988 989 dso__set_long_name(map->dso, long_name, true); 990 dso__kernel_module_get_build_id(map->dso, ""); 991 992 /* 993 * Full name could reveal us kmod compression, so 994 * we need to update the symtab_type if needed. 995 */ 996 if (m->comp && is_kmod_dso(map->dso)) 997 map->dso->symtab_type++; 998 999 return 0; 1000 } 1001 1002 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1003 const char *dir_name, int depth) 1004 { 1005 struct dirent *dent; 1006 DIR *dir = opendir(dir_name); 1007 int ret = 0; 1008 1009 if (!dir) { 1010 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1011 return -1; 1012 } 1013 1014 while ((dent = readdir(dir)) != NULL) { 1015 char path[PATH_MAX]; 1016 struct stat st; 1017 1018 /*sshfs might return bad dent->d_type, so we have to stat*/ 1019 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1020 if (stat(path, &st)) 1021 continue; 1022 1023 if (S_ISDIR(st.st_mode)) { 1024 if (!strcmp(dent->d_name, ".") || 1025 !strcmp(dent->d_name, "..")) 1026 continue; 1027 1028 /* Do not follow top-level source and build symlinks */ 1029 if (depth == 0) { 1030 if (!strcmp(dent->d_name, "source") || 1031 !strcmp(dent->d_name, "build")) 1032 continue; 1033 } 1034 1035 ret = map_groups__set_modules_path_dir(mg, path, 1036 depth + 1); 1037 if (ret < 0) 1038 goto out; 1039 } else { 1040 struct kmod_path m; 1041 1042 ret = kmod_path__parse_name(&m, dent->d_name); 1043 if (ret) 1044 goto out; 1045 1046 if (m.kmod) 1047 ret = map_groups__set_module_path(mg, path, &m); 1048 1049 free(m.name); 1050 1051 if (ret) 1052 goto out; 1053 } 1054 } 1055 1056 out: 1057 closedir(dir); 1058 return ret; 1059 } 1060 1061 static int machine__set_modules_path(struct machine *machine) 1062 { 1063 char *version; 1064 char modules_path[PATH_MAX]; 1065 1066 version = get_kernel_version(machine->root_dir); 1067 if (!version) 1068 return -1; 1069 1070 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1071 machine->root_dir, version); 1072 free(version); 1073 1074 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1075 } 1076 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1077 const char *name __maybe_unused) 1078 { 1079 return 0; 1080 } 1081 1082 static int machine__create_module(void *arg, const char *name, u64 start) 1083 { 1084 struct machine *machine = arg; 1085 struct map *map; 1086 1087 if (arch__fix_module_text_start(&start, name) < 0) 1088 return -1; 1089 1090 map = machine__findnew_module_map(machine, start, name); 1091 if (map == NULL) 1092 return -1; 1093 1094 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1095 1096 return 0; 1097 } 1098 1099 static int machine__create_modules(struct machine *machine) 1100 { 1101 const char *modules; 1102 char path[PATH_MAX]; 1103 1104 if (machine__is_default_guest(machine)) { 1105 modules = symbol_conf.default_guest_modules; 1106 } else { 1107 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1108 modules = path; 1109 } 1110 1111 if (symbol__restricted_filename(modules, "/proc/modules")) 1112 return -1; 1113 1114 if (modules__parse(modules, machine, machine__create_module)) 1115 return -1; 1116 1117 if (!machine__set_modules_path(machine)) 1118 return 0; 1119 1120 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1121 1122 return 0; 1123 } 1124 1125 int machine__create_kernel_maps(struct machine *machine) 1126 { 1127 struct dso *kernel = machine__get_kernel(machine); 1128 const char *name; 1129 u64 addr; 1130 int ret; 1131 1132 if (kernel == NULL) 1133 return -1; 1134 1135 ret = __machine__create_kernel_maps(machine, kernel); 1136 dso__put(kernel); 1137 if (ret < 0) 1138 return -1; 1139 1140 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1141 if (machine__is_host(machine)) 1142 pr_debug("Problems creating module maps, " 1143 "continuing anyway...\n"); 1144 else 1145 pr_debug("Problems creating module maps for guest %d, " 1146 "continuing anyway...\n", machine->pid); 1147 } 1148 1149 /* 1150 * Now that we have all the maps created, just set the ->end of them: 1151 */ 1152 map_groups__fixup_end(&machine->kmaps); 1153 1154 addr = machine__get_running_kernel_start(machine, &name); 1155 if (!addr) { 1156 } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) { 1157 machine__destroy_kernel_maps(machine); 1158 return -1; 1159 } 1160 1161 return 0; 1162 } 1163 1164 static void machine__set_kernel_mmap_len(struct machine *machine, 1165 union perf_event *event) 1166 { 1167 int i; 1168 1169 for (i = 0; i < MAP__NR_TYPES; i++) { 1170 machine->vmlinux_maps[i]->start = event->mmap.start; 1171 machine->vmlinux_maps[i]->end = (event->mmap.start + 1172 event->mmap.len); 1173 /* 1174 * Be a bit paranoid here, some perf.data file came with 1175 * a zero sized synthesized MMAP event for the kernel. 1176 */ 1177 if (machine->vmlinux_maps[i]->end == 0) 1178 machine->vmlinux_maps[i]->end = ~0ULL; 1179 } 1180 } 1181 1182 static bool machine__uses_kcore(struct machine *machine) 1183 { 1184 struct dso *dso; 1185 1186 list_for_each_entry(dso, &machine->dsos.head, node) { 1187 if (dso__is_kcore(dso)) 1188 return true; 1189 } 1190 1191 return false; 1192 } 1193 1194 static int machine__process_kernel_mmap_event(struct machine *machine, 1195 union perf_event *event) 1196 { 1197 struct map *map; 1198 char kmmap_prefix[PATH_MAX]; 1199 enum dso_kernel_type kernel_type; 1200 bool is_kernel_mmap; 1201 1202 /* If we have maps from kcore then we do not need or want any others */ 1203 if (machine__uses_kcore(machine)) 1204 return 0; 1205 1206 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix)); 1207 if (machine__is_host(machine)) 1208 kernel_type = DSO_TYPE_KERNEL; 1209 else 1210 kernel_type = DSO_TYPE_GUEST_KERNEL; 1211 1212 is_kernel_mmap = memcmp(event->mmap.filename, 1213 kmmap_prefix, 1214 strlen(kmmap_prefix) - 1) == 0; 1215 if (event->mmap.filename[0] == '/' || 1216 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1217 map = machine__findnew_module_map(machine, event->mmap.start, 1218 event->mmap.filename); 1219 if (map == NULL) 1220 goto out_problem; 1221 1222 map->end = map->start + event->mmap.len; 1223 } else if (is_kernel_mmap) { 1224 const char *symbol_name = (event->mmap.filename + 1225 strlen(kmmap_prefix)); 1226 /* 1227 * Should be there already, from the build-id table in 1228 * the header. 1229 */ 1230 struct dso *kernel = NULL; 1231 struct dso *dso; 1232 1233 pthread_rwlock_rdlock(&machine->dsos.lock); 1234 1235 list_for_each_entry(dso, &machine->dsos.head, node) { 1236 1237 /* 1238 * The cpumode passed to is_kernel_module is not the 1239 * cpumode of *this* event. If we insist on passing 1240 * correct cpumode to is_kernel_module, we should 1241 * record the cpumode when we adding this dso to the 1242 * linked list. 1243 * 1244 * However we don't really need passing correct 1245 * cpumode. We know the correct cpumode must be kernel 1246 * mode (if not, we should not link it onto kernel_dsos 1247 * list). 1248 * 1249 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1250 * is_kernel_module() treats it as a kernel cpumode. 1251 */ 1252 1253 if (!dso->kernel || 1254 is_kernel_module(dso->long_name, 1255 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1256 continue; 1257 1258 1259 kernel = dso; 1260 break; 1261 } 1262 1263 pthread_rwlock_unlock(&machine->dsos.lock); 1264 1265 if (kernel == NULL) 1266 kernel = machine__findnew_dso(machine, kmmap_prefix); 1267 if (kernel == NULL) 1268 goto out_problem; 1269 1270 kernel->kernel = kernel_type; 1271 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1272 dso__put(kernel); 1273 goto out_problem; 1274 } 1275 1276 if (strstr(kernel->long_name, "vmlinux")) 1277 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1278 1279 machine__set_kernel_mmap_len(machine, event); 1280 1281 /* 1282 * Avoid using a zero address (kptr_restrict) for the ref reloc 1283 * symbol. Effectively having zero here means that at record 1284 * time /proc/sys/kernel/kptr_restrict was non zero. 1285 */ 1286 if (event->mmap.pgoff != 0) { 1287 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, 1288 symbol_name, 1289 event->mmap.pgoff); 1290 } 1291 1292 if (machine__is_default_guest(machine)) { 1293 /* 1294 * preload dso of guest kernel and modules 1295 */ 1296 dso__load(kernel, machine__kernel_map(machine)); 1297 } 1298 } 1299 return 0; 1300 out_problem: 1301 return -1; 1302 } 1303 1304 int machine__process_mmap2_event(struct machine *machine, 1305 union perf_event *event, 1306 struct perf_sample *sample) 1307 { 1308 struct thread *thread; 1309 struct map *map; 1310 enum map_type type; 1311 int ret = 0; 1312 1313 if (dump_trace) 1314 perf_event__fprintf_mmap2(event, stdout); 1315 1316 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1317 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1318 ret = machine__process_kernel_mmap_event(machine, event); 1319 if (ret < 0) 1320 goto out_problem; 1321 return 0; 1322 } 1323 1324 thread = machine__findnew_thread(machine, event->mmap2.pid, 1325 event->mmap2.tid); 1326 if (thread == NULL) 1327 goto out_problem; 1328 1329 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1330 type = MAP__VARIABLE; 1331 else 1332 type = MAP__FUNCTION; 1333 1334 map = map__new(machine, event->mmap2.start, 1335 event->mmap2.len, event->mmap2.pgoff, 1336 event->mmap2.pid, event->mmap2.maj, 1337 event->mmap2.min, event->mmap2.ino, 1338 event->mmap2.ino_generation, 1339 event->mmap2.prot, 1340 event->mmap2.flags, 1341 event->mmap2.filename, type, thread); 1342 1343 if (map == NULL) 1344 goto out_problem_map; 1345 1346 ret = thread__insert_map(thread, map); 1347 if (ret) 1348 goto out_problem_insert; 1349 1350 thread__put(thread); 1351 map__put(map); 1352 return 0; 1353 1354 out_problem_insert: 1355 map__put(map); 1356 out_problem_map: 1357 thread__put(thread); 1358 out_problem: 1359 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1360 return 0; 1361 } 1362 1363 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1364 struct perf_sample *sample) 1365 { 1366 struct thread *thread; 1367 struct map *map; 1368 enum map_type type; 1369 int ret = 0; 1370 1371 if (dump_trace) 1372 perf_event__fprintf_mmap(event, stdout); 1373 1374 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1375 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1376 ret = machine__process_kernel_mmap_event(machine, event); 1377 if (ret < 0) 1378 goto out_problem; 1379 return 0; 1380 } 1381 1382 thread = machine__findnew_thread(machine, event->mmap.pid, 1383 event->mmap.tid); 1384 if (thread == NULL) 1385 goto out_problem; 1386 1387 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA) 1388 type = MAP__VARIABLE; 1389 else 1390 type = MAP__FUNCTION; 1391 1392 map = map__new(machine, event->mmap.start, 1393 event->mmap.len, event->mmap.pgoff, 1394 event->mmap.pid, 0, 0, 0, 0, 0, 0, 1395 event->mmap.filename, 1396 type, thread); 1397 1398 if (map == NULL) 1399 goto out_problem_map; 1400 1401 ret = thread__insert_map(thread, map); 1402 if (ret) 1403 goto out_problem_insert; 1404 1405 thread__put(thread); 1406 map__put(map); 1407 return 0; 1408 1409 out_problem_insert: 1410 map__put(map); 1411 out_problem_map: 1412 thread__put(thread); 1413 out_problem: 1414 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1415 return 0; 1416 } 1417 1418 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1419 { 1420 if (machine->last_match == th) 1421 machine->last_match = NULL; 1422 1423 BUG_ON(atomic_read(&th->refcnt) == 0); 1424 if (lock) 1425 pthread_rwlock_wrlock(&machine->threads_lock); 1426 rb_erase_init(&th->rb_node, &machine->threads); 1427 RB_CLEAR_NODE(&th->rb_node); 1428 --machine->nr_threads; 1429 /* 1430 * Move it first to the dead_threads list, then drop the reference, 1431 * if this is the last reference, then the thread__delete destructor 1432 * will be called and we will remove it from the dead_threads list. 1433 */ 1434 list_add_tail(&th->node, &machine->dead_threads); 1435 if (lock) 1436 pthread_rwlock_unlock(&machine->threads_lock); 1437 thread__put(th); 1438 } 1439 1440 void machine__remove_thread(struct machine *machine, struct thread *th) 1441 { 1442 return __machine__remove_thread(machine, th, true); 1443 } 1444 1445 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1446 struct perf_sample *sample) 1447 { 1448 struct thread *thread = machine__find_thread(machine, 1449 event->fork.pid, 1450 event->fork.tid); 1451 struct thread *parent = machine__findnew_thread(machine, 1452 event->fork.ppid, 1453 event->fork.ptid); 1454 int err = 0; 1455 1456 if (dump_trace) 1457 perf_event__fprintf_task(event, stdout); 1458 1459 /* 1460 * There may be an existing thread that is not actually the parent, 1461 * either because we are processing events out of order, or because the 1462 * (fork) event that would have removed the thread was lost. Assume the 1463 * latter case and continue on as best we can. 1464 */ 1465 if (parent->pid_ != (pid_t)event->fork.ppid) { 1466 dump_printf("removing erroneous parent thread %d/%d\n", 1467 parent->pid_, parent->tid); 1468 machine__remove_thread(machine, parent); 1469 thread__put(parent); 1470 parent = machine__findnew_thread(machine, event->fork.ppid, 1471 event->fork.ptid); 1472 } 1473 1474 /* if a thread currently exists for the thread id remove it */ 1475 if (thread != NULL) { 1476 machine__remove_thread(machine, thread); 1477 thread__put(thread); 1478 } 1479 1480 thread = machine__findnew_thread(machine, event->fork.pid, 1481 event->fork.tid); 1482 1483 if (thread == NULL || parent == NULL || 1484 thread__fork(thread, parent, sample->time) < 0) { 1485 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1486 err = -1; 1487 } 1488 thread__put(thread); 1489 thread__put(parent); 1490 1491 return err; 1492 } 1493 1494 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1495 struct perf_sample *sample __maybe_unused) 1496 { 1497 struct thread *thread = machine__find_thread(machine, 1498 event->fork.pid, 1499 event->fork.tid); 1500 1501 if (dump_trace) 1502 perf_event__fprintf_task(event, stdout); 1503 1504 if (thread != NULL) { 1505 thread__exited(thread); 1506 thread__put(thread); 1507 } 1508 1509 return 0; 1510 } 1511 1512 int machine__process_event(struct machine *machine, union perf_event *event, 1513 struct perf_sample *sample) 1514 { 1515 int ret; 1516 1517 switch (event->header.type) { 1518 case PERF_RECORD_COMM: 1519 ret = machine__process_comm_event(machine, event, sample); break; 1520 case PERF_RECORD_MMAP: 1521 ret = machine__process_mmap_event(machine, event, sample); break; 1522 case PERF_RECORD_MMAP2: 1523 ret = machine__process_mmap2_event(machine, event, sample); break; 1524 case PERF_RECORD_FORK: 1525 ret = machine__process_fork_event(machine, event, sample); break; 1526 case PERF_RECORD_EXIT: 1527 ret = machine__process_exit_event(machine, event, sample); break; 1528 case PERF_RECORD_LOST: 1529 ret = machine__process_lost_event(machine, event, sample); break; 1530 case PERF_RECORD_AUX: 1531 ret = machine__process_aux_event(machine, event); break; 1532 case PERF_RECORD_ITRACE_START: 1533 ret = machine__process_itrace_start_event(machine, event); break; 1534 case PERF_RECORD_LOST_SAMPLES: 1535 ret = machine__process_lost_samples_event(machine, event, sample); break; 1536 case PERF_RECORD_SWITCH: 1537 case PERF_RECORD_SWITCH_CPU_WIDE: 1538 ret = machine__process_switch_event(machine, event); break; 1539 default: 1540 ret = -1; 1541 break; 1542 } 1543 1544 return ret; 1545 } 1546 1547 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1548 { 1549 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0)) 1550 return 1; 1551 return 0; 1552 } 1553 1554 static void ip__resolve_ams(struct thread *thread, 1555 struct addr_map_symbol *ams, 1556 u64 ip) 1557 { 1558 struct addr_location al; 1559 1560 memset(&al, 0, sizeof(al)); 1561 /* 1562 * We cannot use the header.misc hint to determine whether a 1563 * branch stack address is user, kernel, guest, hypervisor. 1564 * Branches may straddle the kernel/user/hypervisor boundaries. 1565 * Thus, we have to try consecutively until we find a match 1566 * or else, the symbol is unknown 1567 */ 1568 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al); 1569 1570 ams->addr = ip; 1571 ams->al_addr = al.addr; 1572 ams->sym = al.sym; 1573 ams->map = al.map; 1574 } 1575 1576 static void ip__resolve_data(struct thread *thread, 1577 u8 m, struct addr_map_symbol *ams, u64 addr) 1578 { 1579 struct addr_location al; 1580 1581 memset(&al, 0, sizeof(al)); 1582 1583 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al); 1584 if (al.map == NULL) { 1585 /* 1586 * some shared data regions have execute bit set which puts 1587 * their mapping in the MAP__FUNCTION type array. 1588 * Check there as a fallback option before dropping the sample. 1589 */ 1590 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al); 1591 } 1592 1593 ams->addr = addr; 1594 ams->al_addr = al.addr; 1595 ams->sym = al.sym; 1596 ams->map = al.map; 1597 } 1598 1599 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1600 struct addr_location *al) 1601 { 1602 struct mem_info *mi = zalloc(sizeof(*mi)); 1603 1604 if (!mi) 1605 return NULL; 1606 1607 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1608 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr); 1609 mi->data_src.val = sample->data_src; 1610 1611 return mi; 1612 } 1613 1614 static int add_callchain_ip(struct thread *thread, 1615 struct callchain_cursor *cursor, 1616 struct symbol **parent, 1617 struct addr_location *root_al, 1618 u8 *cpumode, 1619 u64 ip, 1620 bool branch, 1621 struct branch_flags *flags, 1622 int nr_loop_iter, 1623 int samples) 1624 { 1625 struct addr_location al; 1626 1627 al.filtered = 0; 1628 al.sym = NULL; 1629 if (!cpumode) { 1630 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, 1631 ip, &al); 1632 } else { 1633 if (ip >= PERF_CONTEXT_MAX) { 1634 switch (ip) { 1635 case PERF_CONTEXT_HV: 1636 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 1637 break; 1638 case PERF_CONTEXT_KERNEL: 1639 *cpumode = PERF_RECORD_MISC_KERNEL; 1640 break; 1641 case PERF_CONTEXT_USER: 1642 *cpumode = PERF_RECORD_MISC_USER; 1643 break; 1644 default: 1645 pr_debug("invalid callchain context: " 1646 "%"PRId64"\n", (s64) ip); 1647 /* 1648 * It seems the callchain is corrupted. 1649 * Discard all. 1650 */ 1651 callchain_cursor_reset(cursor); 1652 return 1; 1653 } 1654 return 0; 1655 } 1656 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION, 1657 ip, &al); 1658 } 1659 1660 if (al.sym != NULL) { 1661 if (perf_hpp_list.parent && !*parent && 1662 symbol__match_regex(al.sym, &parent_regex)) 1663 *parent = al.sym; 1664 else if (have_ignore_callees && root_al && 1665 symbol__match_regex(al.sym, &ignore_callees_regex)) { 1666 /* Treat this symbol as the root, 1667 forgetting its callees. */ 1668 *root_al = al; 1669 callchain_cursor_reset(cursor); 1670 } 1671 } 1672 1673 if (symbol_conf.hide_unresolved && al.sym == NULL) 1674 return 0; 1675 return callchain_cursor_append(cursor, al.addr, al.map, al.sym, 1676 branch, flags, nr_loop_iter, samples); 1677 } 1678 1679 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 1680 struct addr_location *al) 1681 { 1682 unsigned int i; 1683 const struct branch_stack *bs = sample->branch_stack; 1684 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 1685 1686 if (!bi) 1687 return NULL; 1688 1689 for (i = 0; i < bs->nr; i++) { 1690 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 1691 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 1692 bi[i].flags = bs->entries[i].flags; 1693 } 1694 return bi; 1695 } 1696 1697 #define CHASHSZ 127 1698 #define CHASHBITS 7 1699 #define NO_ENTRY 0xff 1700 1701 #define PERF_MAX_BRANCH_DEPTH 127 1702 1703 /* Remove loops. */ 1704 static int remove_loops(struct branch_entry *l, int nr) 1705 { 1706 int i, j, off; 1707 unsigned char chash[CHASHSZ]; 1708 1709 memset(chash, NO_ENTRY, sizeof(chash)); 1710 1711 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 1712 1713 for (i = 0; i < nr; i++) { 1714 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 1715 1716 /* no collision handling for now */ 1717 if (chash[h] == NO_ENTRY) { 1718 chash[h] = i; 1719 } else if (l[chash[h]].from == l[i].from) { 1720 bool is_loop = true; 1721 /* check if it is a real loop */ 1722 off = 0; 1723 for (j = chash[h]; j < i && i + off < nr; j++, off++) 1724 if (l[j].from != l[i + off].from) { 1725 is_loop = false; 1726 break; 1727 } 1728 if (is_loop) { 1729 memmove(l + i, l + i + off, 1730 (nr - (i + off)) * sizeof(*l)); 1731 nr -= off; 1732 } 1733 } 1734 } 1735 return nr; 1736 } 1737 1738 /* 1739 * Recolve LBR callstack chain sample 1740 * Return: 1741 * 1 on success get LBR callchain information 1742 * 0 no available LBR callchain information, should try fp 1743 * negative error code on other errors. 1744 */ 1745 static int resolve_lbr_callchain_sample(struct thread *thread, 1746 struct callchain_cursor *cursor, 1747 struct perf_sample *sample, 1748 struct symbol **parent, 1749 struct addr_location *root_al, 1750 int max_stack) 1751 { 1752 struct ip_callchain *chain = sample->callchain; 1753 int chain_nr = min(max_stack, (int)chain->nr), i; 1754 u8 cpumode = PERF_RECORD_MISC_USER; 1755 u64 ip; 1756 1757 for (i = 0; i < chain_nr; i++) { 1758 if (chain->ips[i] == PERF_CONTEXT_USER) 1759 break; 1760 } 1761 1762 /* LBR only affects the user callchain */ 1763 if (i != chain_nr) { 1764 struct branch_stack *lbr_stack = sample->branch_stack; 1765 int lbr_nr = lbr_stack->nr, j, k; 1766 bool branch; 1767 struct branch_flags *flags; 1768 /* 1769 * LBR callstack can only get user call chain. 1770 * The mix_chain_nr is kernel call chain 1771 * number plus LBR user call chain number. 1772 * i is kernel call chain number, 1773 * 1 is PERF_CONTEXT_USER, 1774 * lbr_nr + 1 is the user call chain number. 1775 * For details, please refer to the comments 1776 * in callchain__printf 1777 */ 1778 int mix_chain_nr = i + 1 + lbr_nr + 1; 1779 1780 for (j = 0; j < mix_chain_nr; j++) { 1781 int err; 1782 branch = false; 1783 flags = NULL; 1784 1785 if (callchain_param.order == ORDER_CALLEE) { 1786 if (j < i + 1) 1787 ip = chain->ips[j]; 1788 else if (j > i + 1) { 1789 k = j - i - 2; 1790 ip = lbr_stack->entries[k].from; 1791 branch = true; 1792 flags = &lbr_stack->entries[k].flags; 1793 } else { 1794 ip = lbr_stack->entries[0].to; 1795 branch = true; 1796 flags = &lbr_stack->entries[0].flags; 1797 } 1798 } else { 1799 if (j < lbr_nr) { 1800 k = lbr_nr - j - 1; 1801 ip = lbr_stack->entries[k].from; 1802 branch = true; 1803 flags = &lbr_stack->entries[k].flags; 1804 } 1805 else if (j > lbr_nr) 1806 ip = chain->ips[i + 1 - (j - lbr_nr)]; 1807 else { 1808 ip = lbr_stack->entries[0].to; 1809 branch = true; 1810 flags = &lbr_stack->entries[0].flags; 1811 } 1812 } 1813 1814 err = add_callchain_ip(thread, cursor, parent, 1815 root_al, &cpumode, ip, 1816 branch, flags, 0, 0); 1817 if (err) 1818 return (err < 0) ? err : 0; 1819 } 1820 return 1; 1821 } 1822 1823 return 0; 1824 } 1825 1826 static int thread__resolve_callchain_sample(struct thread *thread, 1827 struct callchain_cursor *cursor, 1828 struct perf_evsel *evsel, 1829 struct perf_sample *sample, 1830 struct symbol **parent, 1831 struct addr_location *root_al, 1832 int max_stack) 1833 { 1834 struct branch_stack *branch = sample->branch_stack; 1835 struct ip_callchain *chain = sample->callchain; 1836 int chain_nr = chain->nr; 1837 u8 cpumode = PERF_RECORD_MISC_USER; 1838 int i, j, err, nr_entries; 1839 int skip_idx = -1; 1840 int first_call = 0; 1841 int nr_loop_iter; 1842 1843 if (perf_evsel__has_branch_callstack(evsel)) { 1844 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 1845 root_al, max_stack); 1846 if (err) 1847 return (err < 0) ? err : 0; 1848 } 1849 1850 /* 1851 * Based on DWARF debug information, some architectures skip 1852 * a callchain entry saved by the kernel. 1853 */ 1854 skip_idx = arch_skip_callchain_idx(thread, chain); 1855 1856 /* 1857 * Add branches to call stack for easier browsing. This gives 1858 * more context for a sample than just the callers. 1859 * 1860 * This uses individual histograms of paths compared to the 1861 * aggregated histograms the normal LBR mode uses. 1862 * 1863 * Limitations for now: 1864 * - No extra filters 1865 * - No annotations (should annotate somehow) 1866 */ 1867 1868 if (branch && callchain_param.branch_callstack) { 1869 int nr = min(max_stack, (int)branch->nr); 1870 struct branch_entry be[nr]; 1871 1872 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 1873 pr_warning("corrupted branch chain. skipping...\n"); 1874 goto check_calls; 1875 } 1876 1877 for (i = 0; i < nr; i++) { 1878 if (callchain_param.order == ORDER_CALLEE) { 1879 be[i] = branch->entries[i]; 1880 /* 1881 * Check for overlap into the callchain. 1882 * The return address is one off compared to 1883 * the branch entry. To adjust for this 1884 * assume the calling instruction is not longer 1885 * than 8 bytes. 1886 */ 1887 if (i == skip_idx || 1888 chain->ips[first_call] >= PERF_CONTEXT_MAX) 1889 first_call++; 1890 else if (be[i].from < chain->ips[first_call] && 1891 be[i].from >= chain->ips[first_call] - 8) 1892 first_call++; 1893 } else 1894 be[i] = branch->entries[branch->nr - i - 1]; 1895 } 1896 1897 nr_loop_iter = nr; 1898 nr = remove_loops(be, nr); 1899 1900 /* 1901 * Get the number of iterations. 1902 * It's only approximation, but good enough in practice. 1903 */ 1904 if (nr_loop_iter > nr) 1905 nr_loop_iter = nr_loop_iter - nr + 1; 1906 else 1907 nr_loop_iter = 0; 1908 1909 for (i = 0; i < nr; i++) { 1910 if (i == nr - 1) 1911 err = add_callchain_ip(thread, cursor, parent, 1912 root_al, 1913 NULL, be[i].to, 1914 true, &be[i].flags, 1915 nr_loop_iter, 1); 1916 else 1917 err = add_callchain_ip(thread, cursor, parent, 1918 root_al, 1919 NULL, be[i].to, 1920 true, &be[i].flags, 1921 0, 0); 1922 1923 if (!err) 1924 err = add_callchain_ip(thread, cursor, parent, root_al, 1925 NULL, be[i].from, 1926 true, &be[i].flags, 1927 0, 0); 1928 if (err == -EINVAL) 1929 break; 1930 if (err) 1931 return err; 1932 } 1933 chain_nr -= nr; 1934 } 1935 1936 check_calls: 1937 for (i = first_call, nr_entries = 0; 1938 i < chain_nr && nr_entries < max_stack; i++) { 1939 u64 ip; 1940 1941 if (callchain_param.order == ORDER_CALLEE) 1942 j = i; 1943 else 1944 j = chain->nr - i - 1; 1945 1946 #ifdef HAVE_SKIP_CALLCHAIN_IDX 1947 if (j == skip_idx) 1948 continue; 1949 #endif 1950 ip = chain->ips[j]; 1951 1952 if (ip < PERF_CONTEXT_MAX) 1953 ++nr_entries; 1954 1955 err = add_callchain_ip(thread, cursor, parent, 1956 root_al, &cpumode, ip, 1957 false, NULL, 0, 0); 1958 1959 if (err) 1960 return (err < 0) ? err : 0; 1961 } 1962 1963 return 0; 1964 } 1965 1966 static int unwind_entry(struct unwind_entry *entry, void *arg) 1967 { 1968 struct callchain_cursor *cursor = arg; 1969 1970 if (symbol_conf.hide_unresolved && entry->sym == NULL) 1971 return 0; 1972 return callchain_cursor_append(cursor, entry->ip, 1973 entry->map, entry->sym, 1974 false, NULL, 0, 0); 1975 } 1976 1977 static int thread__resolve_callchain_unwind(struct thread *thread, 1978 struct callchain_cursor *cursor, 1979 struct perf_evsel *evsel, 1980 struct perf_sample *sample, 1981 int max_stack) 1982 { 1983 /* Can we do dwarf post unwind? */ 1984 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 1985 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 1986 return 0; 1987 1988 /* Bail out if nothing was captured. */ 1989 if ((!sample->user_regs.regs) || 1990 (!sample->user_stack.size)) 1991 return 0; 1992 1993 return unwind__get_entries(unwind_entry, cursor, 1994 thread, sample, max_stack); 1995 } 1996 1997 int thread__resolve_callchain(struct thread *thread, 1998 struct callchain_cursor *cursor, 1999 struct perf_evsel *evsel, 2000 struct perf_sample *sample, 2001 struct symbol **parent, 2002 struct addr_location *root_al, 2003 int max_stack) 2004 { 2005 int ret = 0; 2006 2007 callchain_cursor_reset(&callchain_cursor); 2008 2009 if (callchain_param.order == ORDER_CALLEE) { 2010 ret = thread__resolve_callchain_sample(thread, cursor, 2011 evsel, sample, 2012 parent, root_al, 2013 max_stack); 2014 if (ret) 2015 return ret; 2016 ret = thread__resolve_callchain_unwind(thread, cursor, 2017 evsel, sample, 2018 max_stack); 2019 } else { 2020 ret = thread__resolve_callchain_unwind(thread, cursor, 2021 evsel, sample, 2022 max_stack); 2023 if (ret) 2024 return ret; 2025 ret = thread__resolve_callchain_sample(thread, cursor, 2026 evsel, sample, 2027 parent, root_al, 2028 max_stack); 2029 } 2030 2031 return ret; 2032 } 2033 2034 int machine__for_each_thread(struct machine *machine, 2035 int (*fn)(struct thread *thread, void *p), 2036 void *priv) 2037 { 2038 struct rb_node *nd; 2039 struct thread *thread; 2040 int rc = 0; 2041 2042 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) { 2043 thread = rb_entry(nd, struct thread, rb_node); 2044 rc = fn(thread, priv); 2045 if (rc != 0) 2046 return rc; 2047 } 2048 2049 list_for_each_entry(thread, &machine->dead_threads, node) { 2050 rc = fn(thread, priv); 2051 if (rc != 0) 2052 return rc; 2053 } 2054 return rc; 2055 } 2056 2057 int machines__for_each_thread(struct machines *machines, 2058 int (*fn)(struct thread *thread, void *p), 2059 void *priv) 2060 { 2061 struct rb_node *nd; 2062 int rc = 0; 2063 2064 rc = machine__for_each_thread(&machines->host, fn, priv); 2065 if (rc != 0) 2066 return rc; 2067 2068 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) { 2069 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2070 2071 rc = machine__for_each_thread(machine, fn, priv); 2072 if (rc != 0) 2073 return rc; 2074 } 2075 return rc; 2076 } 2077 2078 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2079 struct target *target, struct thread_map *threads, 2080 perf_event__handler_t process, bool data_mmap, 2081 unsigned int proc_map_timeout) 2082 { 2083 if (target__has_task(target)) 2084 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout); 2085 else if (target__has_cpu(target)) 2086 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout); 2087 /* command specified */ 2088 return 0; 2089 } 2090 2091 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2092 { 2093 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2094 return -1; 2095 2096 return machine->current_tid[cpu]; 2097 } 2098 2099 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2100 pid_t tid) 2101 { 2102 struct thread *thread; 2103 2104 if (cpu < 0) 2105 return -EINVAL; 2106 2107 if (!machine->current_tid) { 2108 int i; 2109 2110 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2111 if (!machine->current_tid) 2112 return -ENOMEM; 2113 for (i = 0; i < MAX_NR_CPUS; i++) 2114 machine->current_tid[i] = -1; 2115 } 2116 2117 if (cpu >= MAX_NR_CPUS) { 2118 pr_err("Requested CPU %d too large. ", cpu); 2119 pr_err("Consider raising MAX_NR_CPUS\n"); 2120 return -EINVAL; 2121 } 2122 2123 machine->current_tid[cpu] = tid; 2124 2125 thread = machine__findnew_thread(machine, pid, tid); 2126 if (!thread) 2127 return -ENOMEM; 2128 2129 thread->cpu = cpu; 2130 thread__put(thread); 2131 2132 return 0; 2133 } 2134 2135 int machine__get_kernel_start(struct machine *machine) 2136 { 2137 struct map *map = machine__kernel_map(machine); 2138 int err = 0; 2139 2140 /* 2141 * The only addresses above 2^63 are kernel addresses of a 64-bit 2142 * kernel. Note that addresses are unsigned so that on a 32-bit system 2143 * all addresses including kernel addresses are less than 2^32. In 2144 * that case (32-bit system), if the kernel mapping is unknown, all 2145 * addresses will be assumed to be in user space - see 2146 * machine__kernel_ip(). 2147 */ 2148 machine->kernel_start = 1ULL << 63; 2149 if (map) { 2150 err = map__load(map); 2151 if (map->start) 2152 machine->kernel_start = map->start; 2153 } 2154 return err; 2155 } 2156 2157 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2158 { 2159 return dsos__findnew(&machine->dsos, filename); 2160 } 2161 2162 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2163 { 2164 struct machine *machine = vmachine; 2165 struct map *map; 2166 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map); 2167 2168 if (sym == NULL) 2169 return NULL; 2170 2171 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2172 *addrp = map->unmap_ip(map, sym->start); 2173 return sym->name; 2174 } 2175