1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 47 48 static struct dso *machine__kernel_dso(struct machine *machine) 49 { 50 return machine->vmlinux_map->dso; 51 } 52 53 static void dsos__init(struct dsos *dsos) 54 { 55 INIT_LIST_HEAD(&dsos->head); 56 dsos->root = RB_ROOT; 57 init_rwsem(&dsos->lock); 58 } 59 60 static void machine__threads_init(struct machine *machine) 61 { 62 int i; 63 64 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 65 struct threads *threads = &machine->threads[i]; 66 threads->entries = RB_ROOT_CACHED; 67 init_rwsem(&threads->lock); 68 threads->nr = 0; 69 INIT_LIST_HEAD(&threads->dead); 70 threads->last_match = NULL; 71 } 72 } 73 74 static int machine__set_mmap_name(struct machine *machine) 75 { 76 if (machine__is_host(machine)) 77 machine->mmap_name = strdup("[kernel.kallsyms]"); 78 else if (machine__is_default_guest(machine)) 79 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 80 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 81 machine->pid) < 0) 82 machine->mmap_name = NULL; 83 84 return machine->mmap_name ? 0 : -ENOMEM; 85 } 86 87 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 88 { 89 char comm[64]; 90 91 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 92 thread__set_comm(thread, comm, 0); 93 } 94 95 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 96 { 97 int err = -ENOMEM; 98 99 memset(machine, 0, sizeof(*machine)); 100 machine->kmaps = maps__new(machine); 101 if (machine->kmaps == NULL) 102 return -ENOMEM; 103 104 RB_CLEAR_NODE(&machine->rb_node); 105 dsos__init(&machine->dsos); 106 107 machine__threads_init(machine); 108 109 machine->vdso_info = NULL; 110 machine->env = NULL; 111 112 machine->pid = pid; 113 114 machine->id_hdr_size = 0; 115 machine->kptr_restrict_warned = false; 116 machine->comm_exec = false; 117 machine->kernel_start = 0; 118 machine->vmlinux_map = NULL; 119 120 machine->root_dir = strdup(root_dir); 121 if (machine->root_dir == NULL) 122 goto out; 123 124 if (machine__set_mmap_name(machine)) 125 goto out; 126 127 if (pid != HOST_KERNEL_ID) { 128 struct thread *thread = machine__findnew_thread(machine, -1, 129 pid); 130 131 if (thread == NULL) 132 goto out; 133 134 thread__set_guest_comm(thread, pid); 135 thread__put(thread); 136 } 137 138 machine->current_tid = NULL; 139 err = 0; 140 141 out: 142 if (err) { 143 zfree(&machine->kmaps); 144 zfree(&machine->root_dir); 145 zfree(&machine->mmap_name); 146 } 147 return 0; 148 } 149 150 struct machine *machine__new_host(void) 151 { 152 struct machine *machine = malloc(sizeof(*machine)); 153 154 if (machine != NULL) { 155 machine__init(machine, "", HOST_KERNEL_ID); 156 157 if (machine__create_kernel_maps(machine) < 0) 158 goto out_delete; 159 } 160 161 return machine; 162 out_delete: 163 free(machine); 164 return NULL; 165 } 166 167 struct machine *machine__new_kallsyms(void) 168 { 169 struct machine *machine = machine__new_host(); 170 /* 171 * FIXME: 172 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 173 * ask for not using the kcore parsing code, once this one is fixed 174 * to create a map per module. 175 */ 176 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 177 machine__delete(machine); 178 machine = NULL; 179 } 180 181 return machine; 182 } 183 184 static void dsos__purge(struct dsos *dsos) 185 { 186 struct dso *pos, *n; 187 188 down_write(&dsos->lock); 189 190 list_for_each_entry_safe(pos, n, &dsos->head, node) { 191 RB_CLEAR_NODE(&pos->rb_node); 192 pos->root = NULL; 193 list_del_init(&pos->node); 194 dso__put(pos); 195 } 196 197 up_write(&dsos->lock); 198 } 199 200 static void dsos__exit(struct dsos *dsos) 201 { 202 dsos__purge(dsos); 203 exit_rwsem(&dsos->lock); 204 } 205 206 void machine__delete_threads(struct machine *machine) 207 { 208 struct rb_node *nd; 209 int i; 210 211 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 212 struct threads *threads = &machine->threads[i]; 213 down_write(&threads->lock); 214 nd = rb_first_cached(&threads->entries); 215 while (nd) { 216 struct thread *t = rb_entry(nd, struct thread, rb_node); 217 218 nd = rb_next(nd); 219 __machine__remove_thread(machine, t, false); 220 } 221 up_write(&threads->lock); 222 } 223 } 224 225 void machine__exit(struct machine *machine) 226 { 227 int i; 228 229 if (machine == NULL) 230 return; 231 232 machine__destroy_kernel_maps(machine); 233 maps__delete(machine->kmaps); 234 dsos__exit(&machine->dsos); 235 machine__exit_vdso(machine); 236 zfree(&machine->root_dir); 237 zfree(&machine->mmap_name); 238 zfree(&machine->current_tid); 239 zfree(&machine->kallsyms_filename); 240 241 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 242 struct threads *threads = &machine->threads[i]; 243 struct thread *thread, *n; 244 /* 245 * Forget about the dead, at this point whatever threads were 246 * left in the dead lists better have a reference count taken 247 * by who is using them, and then, when they drop those references 248 * and it finally hits zero, thread__put() will check and see that 249 * its not in the dead threads list and will not try to remove it 250 * from there, just calling thread__delete() straight away. 251 */ 252 list_for_each_entry_safe(thread, n, &threads->dead, node) 253 list_del_init(&thread->node); 254 255 exit_rwsem(&threads->lock); 256 } 257 } 258 259 void machine__delete(struct machine *machine) 260 { 261 if (machine) { 262 machine__exit(machine); 263 free(machine); 264 } 265 } 266 267 void machines__init(struct machines *machines) 268 { 269 machine__init(&machines->host, "", HOST_KERNEL_ID); 270 machines->guests = RB_ROOT_CACHED; 271 } 272 273 void machines__exit(struct machines *machines) 274 { 275 machine__exit(&machines->host); 276 /* XXX exit guest */ 277 } 278 279 struct machine *machines__add(struct machines *machines, pid_t pid, 280 const char *root_dir) 281 { 282 struct rb_node **p = &machines->guests.rb_root.rb_node; 283 struct rb_node *parent = NULL; 284 struct machine *pos, *machine = malloc(sizeof(*machine)); 285 bool leftmost = true; 286 287 if (machine == NULL) 288 return NULL; 289 290 if (machine__init(machine, root_dir, pid) != 0) { 291 free(machine); 292 return NULL; 293 } 294 295 while (*p != NULL) { 296 parent = *p; 297 pos = rb_entry(parent, struct machine, rb_node); 298 if (pid < pos->pid) 299 p = &(*p)->rb_left; 300 else { 301 p = &(*p)->rb_right; 302 leftmost = false; 303 } 304 } 305 306 rb_link_node(&machine->rb_node, parent, p); 307 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 308 309 machine->machines = machines; 310 311 return machine; 312 } 313 314 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 315 { 316 struct rb_node *nd; 317 318 machines->host.comm_exec = comm_exec; 319 320 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 321 struct machine *machine = rb_entry(nd, struct machine, rb_node); 322 323 machine->comm_exec = comm_exec; 324 } 325 } 326 327 struct machine *machines__find(struct machines *machines, pid_t pid) 328 { 329 struct rb_node **p = &machines->guests.rb_root.rb_node; 330 struct rb_node *parent = NULL; 331 struct machine *machine; 332 struct machine *default_machine = NULL; 333 334 if (pid == HOST_KERNEL_ID) 335 return &machines->host; 336 337 while (*p != NULL) { 338 parent = *p; 339 machine = rb_entry(parent, struct machine, rb_node); 340 if (pid < machine->pid) 341 p = &(*p)->rb_left; 342 else if (pid > machine->pid) 343 p = &(*p)->rb_right; 344 else 345 return machine; 346 if (!machine->pid) 347 default_machine = machine; 348 } 349 350 return default_machine; 351 } 352 353 struct machine *machines__findnew(struct machines *machines, pid_t pid) 354 { 355 char path[PATH_MAX]; 356 const char *root_dir = ""; 357 struct machine *machine = machines__find(machines, pid); 358 359 if (machine && (machine->pid == pid)) 360 goto out; 361 362 if ((pid != HOST_KERNEL_ID) && 363 (pid != DEFAULT_GUEST_KERNEL_ID) && 364 (symbol_conf.guestmount)) { 365 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 366 if (access(path, R_OK)) { 367 static struct strlist *seen; 368 369 if (!seen) 370 seen = strlist__new(NULL, NULL); 371 372 if (!strlist__has_entry(seen, path)) { 373 pr_err("Can't access file %s\n", path); 374 strlist__add(seen, path); 375 } 376 machine = NULL; 377 goto out; 378 } 379 root_dir = path; 380 } 381 382 machine = machines__add(machines, pid, root_dir); 383 out: 384 return machine; 385 } 386 387 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 388 { 389 struct machine *machine = machines__find(machines, pid); 390 391 if (!machine) 392 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 393 return machine; 394 } 395 396 /* 397 * A common case for KVM test programs is that the test program acts as the 398 * hypervisor, creating, running and destroying the virtual machine, and 399 * providing the guest object code from its own object code. In this case, 400 * the VM is not running an OS, but only the functions loaded into it by the 401 * hypervisor test program, and conveniently, loaded at the same virtual 402 * addresses. 403 * 404 * Normally to resolve addresses, MMAP events are needed to map addresses 405 * back to the object code and debug symbols for that object code. 406 * 407 * Currently, there is no way to get such mapping information from guests 408 * but, in the scenario described above, the guest has the same mappings 409 * as the hypervisor, so support for that scenario can be achieved. 410 * 411 * To support that, copy the host thread's maps to the guest thread's maps. 412 * Note, we do not discover the guest until we encounter a guest event, 413 * which works well because it is not until then that we know that the host 414 * thread's maps have been set up. 415 * 416 * This function returns the guest thread. Apart from keeping the data 417 * structures sane, using a thread belonging to the guest machine, instead 418 * of the host thread, allows it to have its own comm (refer 419 * thread__set_guest_comm()). 420 */ 421 static struct thread *findnew_guest_code(struct machine *machine, 422 struct machine *host_machine, 423 pid_t pid) 424 { 425 struct thread *host_thread; 426 struct thread *thread; 427 int err; 428 429 if (!machine) 430 return NULL; 431 432 thread = machine__findnew_thread(machine, -1, pid); 433 if (!thread) 434 return NULL; 435 436 /* Assume maps are set up if there are any */ 437 if (thread->maps->nr_maps) 438 return thread; 439 440 host_thread = machine__find_thread(host_machine, -1, pid); 441 if (!host_thread) 442 goto out_err; 443 444 thread__set_guest_comm(thread, pid); 445 446 /* 447 * Guest code can be found in hypervisor process at the same address 448 * so copy host maps. 449 */ 450 err = maps__clone(thread, host_thread->maps); 451 thread__put(host_thread); 452 if (err) 453 goto out_err; 454 455 return thread; 456 457 out_err: 458 thread__zput(thread); 459 return NULL; 460 } 461 462 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 463 { 464 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 465 struct machine *machine = machines__findnew(machines, pid); 466 467 return findnew_guest_code(machine, host_machine, pid); 468 } 469 470 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 471 { 472 struct machines *machines = machine->machines; 473 struct machine *host_machine; 474 475 if (!machines) 476 return NULL; 477 478 host_machine = machines__find(machines, HOST_KERNEL_ID); 479 480 return findnew_guest_code(machine, host_machine, pid); 481 } 482 483 void machines__process_guests(struct machines *machines, 484 machine__process_t process, void *data) 485 { 486 struct rb_node *nd; 487 488 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 489 struct machine *pos = rb_entry(nd, struct machine, rb_node); 490 process(pos, data); 491 } 492 } 493 494 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 495 { 496 struct rb_node *node; 497 struct machine *machine; 498 499 machines->host.id_hdr_size = id_hdr_size; 500 501 for (node = rb_first_cached(&machines->guests); node; 502 node = rb_next(node)) { 503 machine = rb_entry(node, struct machine, rb_node); 504 machine->id_hdr_size = id_hdr_size; 505 } 506 507 return; 508 } 509 510 static void machine__update_thread_pid(struct machine *machine, 511 struct thread *th, pid_t pid) 512 { 513 struct thread *leader; 514 515 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 516 return; 517 518 th->pid_ = pid; 519 520 if (th->pid_ == th->tid) 521 return; 522 523 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 524 if (!leader) 525 goto out_err; 526 527 if (!leader->maps) 528 leader->maps = maps__new(machine); 529 530 if (!leader->maps) 531 goto out_err; 532 533 if (th->maps == leader->maps) 534 return; 535 536 if (th->maps) { 537 /* 538 * Maps are created from MMAP events which provide the pid and 539 * tid. Consequently there never should be any maps on a thread 540 * with an unknown pid. Just print an error if there are. 541 */ 542 if (!maps__empty(th->maps)) 543 pr_err("Discarding thread maps for %d:%d\n", 544 th->pid_, th->tid); 545 maps__put(th->maps); 546 } 547 548 th->maps = maps__get(leader->maps); 549 out_put: 550 thread__put(leader); 551 return; 552 out_err: 553 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 554 goto out_put; 555 } 556 557 /* 558 * Front-end cache - TID lookups come in blocks, 559 * so most of the time we dont have to look up 560 * the full rbtree: 561 */ 562 static struct thread* 563 __threads__get_last_match(struct threads *threads, struct machine *machine, 564 int pid, int tid) 565 { 566 struct thread *th; 567 568 th = threads->last_match; 569 if (th != NULL) { 570 if (th->tid == tid) { 571 machine__update_thread_pid(machine, th, pid); 572 return thread__get(th); 573 } 574 575 threads->last_match = NULL; 576 } 577 578 return NULL; 579 } 580 581 static struct thread* 582 threads__get_last_match(struct threads *threads, struct machine *machine, 583 int pid, int tid) 584 { 585 struct thread *th = NULL; 586 587 if (perf_singlethreaded) 588 th = __threads__get_last_match(threads, machine, pid, tid); 589 590 return th; 591 } 592 593 static void 594 __threads__set_last_match(struct threads *threads, struct thread *th) 595 { 596 threads->last_match = th; 597 } 598 599 static void 600 threads__set_last_match(struct threads *threads, struct thread *th) 601 { 602 if (perf_singlethreaded) 603 __threads__set_last_match(threads, th); 604 } 605 606 /* 607 * Caller must eventually drop thread->refcnt returned with a successful 608 * lookup/new thread inserted. 609 */ 610 static struct thread *____machine__findnew_thread(struct machine *machine, 611 struct threads *threads, 612 pid_t pid, pid_t tid, 613 bool create) 614 { 615 struct rb_node **p = &threads->entries.rb_root.rb_node; 616 struct rb_node *parent = NULL; 617 struct thread *th; 618 bool leftmost = true; 619 620 th = threads__get_last_match(threads, machine, pid, tid); 621 if (th) 622 return th; 623 624 while (*p != NULL) { 625 parent = *p; 626 th = rb_entry(parent, struct thread, rb_node); 627 628 if (th->tid == tid) { 629 threads__set_last_match(threads, th); 630 machine__update_thread_pid(machine, th, pid); 631 return thread__get(th); 632 } 633 634 if (tid < th->tid) 635 p = &(*p)->rb_left; 636 else { 637 p = &(*p)->rb_right; 638 leftmost = false; 639 } 640 } 641 642 if (!create) 643 return NULL; 644 645 th = thread__new(pid, tid); 646 if (th != NULL) { 647 rb_link_node(&th->rb_node, parent, p); 648 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 649 650 /* 651 * We have to initialize maps separately after rb tree is updated. 652 * 653 * The reason is that we call machine__findnew_thread 654 * within thread__init_maps to find the thread 655 * leader and that would screwed the rb tree. 656 */ 657 if (thread__init_maps(th, machine)) { 658 rb_erase_cached(&th->rb_node, &threads->entries); 659 RB_CLEAR_NODE(&th->rb_node); 660 thread__put(th); 661 return NULL; 662 } 663 /* 664 * It is now in the rbtree, get a ref 665 */ 666 thread__get(th); 667 threads__set_last_match(threads, th); 668 ++threads->nr; 669 } 670 671 return th; 672 } 673 674 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 675 { 676 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 677 } 678 679 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 680 pid_t tid) 681 { 682 struct threads *threads = machine__threads(machine, tid); 683 struct thread *th; 684 685 down_write(&threads->lock); 686 th = __machine__findnew_thread(machine, pid, tid); 687 up_write(&threads->lock); 688 return th; 689 } 690 691 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 692 pid_t tid) 693 { 694 struct threads *threads = machine__threads(machine, tid); 695 struct thread *th; 696 697 down_read(&threads->lock); 698 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 699 up_read(&threads->lock); 700 return th; 701 } 702 703 /* 704 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 705 * So here a single thread is created for that, but actually there is a separate 706 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 707 * is only 1. That causes problems for some tools, requiring workarounds. For 708 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 709 */ 710 struct thread *machine__idle_thread(struct machine *machine) 711 { 712 struct thread *thread = machine__findnew_thread(machine, 0, 0); 713 714 if (!thread || thread__set_comm(thread, "swapper", 0) || 715 thread__set_namespaces(thread, 0, NULL)) 716 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 717 718 return thread; 719 } 720 721 struct comm *machine__thread_exec_comm(struct machine *machine, 722 struct thread *thread) 723 { 724 if (machine->comm_exec) 725 return thread__exec_comm(thread); 726 else 727 return thread__comm(thread); 728 } 729 730 int machine__process_comm_event(struct machine *machine, union perf_event *event, 731 struct perf_sample *sample) 732 { 733 struct thread *thread = machine__findnew_thread(machine, 734 event->comm.pid, 735 event->comm.tid); 736 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 737 int err = 0; 738 739 if (exec) 740 machine->comm_exec = true; 741 742 if (dump_trace) 743 perf_event__fprintf_comm(event, stdout); 744 745 if (thread == NULL || 746 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 747 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 748 err = -1; 749 } 750 751 thread__put(thread); 752 753 return err; 754 } 755 756 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 757 union perf_event *event, 758 struct perf_sample *sample __maybe_unused) 759 { 760 struct thread *thread = machine__findnew_thread(machine, 761 event->namespaces.pid, 762 event->namespaces.tid); 763 int err = 0; 764 765 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 766 "\nWARNING: kernel seems to support more namespaces than perf" 767 " tool.\nTry updating the perf tool..\n\n"); 768 769 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 770 "\nWARNING: perf tool seems to support more namespaces than" 771 " the kernel.\nTry updating the kernel..\n\n"); 772 773 if (dump_trace) 774 perf_event__fprintf_namespaces(event, stdout); 775 776 if (thread == NULL || 777 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 778 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 779 err = -1; 780 } 781 782 thread__put(thread); 783 784 return err; 785 } 786 787 int machine__process_cgroup_event(struct machine *machine, 788 union perf_event *event, 789 struct perf_sample *sample __maybe_unused) 790 { 791 struct cgroup *cgrp; 792 793 if (dump_trace) 794 perf_event__fprintf_cgroup(event, stdout); 795 796 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 797 if (cgrp == NULL) 798 return -ENOMEM; 799 800 return 0; 801 } 802 803 int machine__process_lost_event(struct machine *machine __maybe_unused, 804 union perf_event *event, struct perf_sample *sample __maybe_unused) 805 { 806 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 807 event->lost.id, event->lost.lost); 808 return 0; 809 } 810 811 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 812 union perf_event *event, struct perf_sample *sample) 813 { 814 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 815 sample->id, event->lost_samples.lost); 816 return 0; 817 } 818 819 static struct dso *machine__findnew_module_dso(struct machine *machine, 820 struct kmod_path *m, 821 const char *filename) 822 { 823 struct dso *dso; 824 825 down_write(&machine->dsos.lock); 826 827 dso = __dsos__find(&machine->dsos, m->name, true); 828 if (!dso) { 829 dso = __dsos__addnew(&machine->dsos, m->name); 830 if (dso == NULL) 831 goto out_unlock; 832 833 dso__set_module_info(dso, m, machine); 834 dso__set_long_name(dso, strdup(filename), true); 835 dso->kernel = DSO_SPACE__KERNEL; 836 } 837 838 dso__get(dso); 839 out_unlock: 840 up_write(&machine->dsos.lock); 841 return dso; 842 } 843 844 int machine__process_aux_event(struct machine *machine __maybe_unused, 845 union perf_event *event) 846 { 847 if (dump_trace) 848 perf_event__fprintf_aux(event, stdout); 849 return 0; 850 } 851 852 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 853 union perf_event *event) 854 { 855 if (dump_trace) 856 perf_event__fprintf_itrace_start(event, stdout); 857 return 0; 858 } 859 860 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 861 union perf_event *event) 862 { 863 if (dump_trace) 864 perf_event__fprintf_aux_output_hw_id(event, stdout); 865 return 0; 866 } 867 868 int machine__process_switch_event(struct machine *machine __maybe_unused, 869 union perf_event *event) 870 { 871 if (dump_trace) 872 perf_event__fprintf_switch(event, stdout); 873 return 0; 874 } 875 876 static int machine__process_ksymbol_register(struct machine *machine, 877 union perf_event *event, 878 struct perf_sample *sample __maybe_unused) 879 { 880 struct symbol *sym; 881 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 882 883 if (!map) { 884 struct dso *dso = dso__new(event->ksymbol.name); 885 886 if (dso) { 887 dso->kernel = DSO_SPACE__KERNEL; 888 map = map__new2(0, dso); 889 dso__put(dso); 890 } 891 892 if (!dso || !map) { 893 return -ENOMEM; 894 } 895 896 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 897 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 898 map->dso->data.file_size = event->ksymbol.len; 899 dso__set_loaded(map->dso); 900 } 901 902 map->start = event->ksymbol.addr; 903 map->end = map->start + event->ksymbol.len; 904 maps__insert(machine__kernel_maps(machine), map); 905 map__put(map); 906 dso__set_loaded(dso); 907 908 if (is_bpf_image(event->ksymbol.name)) { 909 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 910 dso__set_long_name(dso, "", false); 911 } 912 } 913 914 sym = symbol__new(map->map_ip(map, map->start), 915 event->ksymbol.len, 916 0, 0, event->ksymbol.name); 917 if (!sym) 918 return -ENOMEM; 919 dso__insert_symbol(map->dso, sym); 920 return 0; 921 } 922 923 static int machine__process_ksymbol_unregister(struct machine *machine, 924 union perf_event *event, 925 struct perf_sample *sample __maybe_unused) 926 { 927 struct symbol *sym; 928 struct map *map; 929 930 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 931 if (!map) 932 return 0; 933 934 if (map != machine->vmlinux_map) 935 maps__remove(machine__kernel_maps(machine), map); 936 else { 937 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start)); 938 if (sym) 939 dso__delete_symbol(map->dso, sym); 940 } 941 942 return 0; 943 } 944 945 int machine__process_ksymbol(struct machine *machine __maybe_unused, 946 union perf_event *event, 947 struct perf_sample *sample) 948 { 949 if (dump_trace) 950 perf_event__fprintf_ksymbol(event, stdout); 951 952 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 953 return machine__process_ksymbol_unregister(machine, event, 954 sample); 955 return machine__process_ksymbol_register(machine, event, sample); 956 } 957 958 int machine__process_text_poke(struct machine *machine, union perf_event *event, 959 struct perf_sample *sample __maybe_unused) 960 { 961 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 962 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 963 964 if (dump_trace) 965 perf_event__fprintf_text_poke(event, machine, stdout); 966 967 if (!event->text_poke.new_len) 968 return 0; 969 970 if (cpumode != PERF_RECORD_MISC_KERNEL) { 971 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 972 return 0; 973 } 974 975 if (map && map->dso) { 976 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 977 int ret; 978 979 /* 980 * Kernel maps might be changed when loading symbols so loading 981 * must be done prior to using kernel maps. 982 */ 983 map__load(map); 984 ret = dso__data_write_cache_addr(map->dso, map, machine, 985 event->text_poke.addr, 986 new_bytes, 987 event->text_poke.new_len); 988 if (ret != event->text_poke.new_len) 989 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 990 event->text_poke.addr); 991 } else { 992 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 993 event->text_poke.addr); 994 } 995 996 return 0; 997 } 998 999 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 1000 const char *filename) 1001 { 1002 struct map *map = NULL; 1003 struct kmod_path m; 1004 struct dso *dso; 1005 1006 if (kmod_path__parse_name(&m, filename)) 1007 return NULL; 1008 1009 dso = machine__findnew_module_dso(machine, &m, filename); 1010 if (dso == NULL) 1011 goto out; 1012 1013 map = map__new2(start, dso); 1014 if (map == NULL) 1015 goto out; 1016 1017 maps__insert(machine__kernel_maps(machine), map); 1018 1019 /* Put the map here because maps__insert already got it */ 1020 map__put(map); 1021 out: 1022 /* put the dso here, corresponding to machine__findnew_module_dso */ 1023 dso__put(dso); 1024 zfree(&m.name); 1025 return map; 1026 } 1027 1028 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 1029 { 1030 struct rb_node *nd; 1031 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 1032 1033 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1034 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1035 ret += __dsos__fprintf(&pos->dsos.head, fp); 1036 } 1037 1038 return ret; 1039 } 1040 1041 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 1042 bool (skip)(struct dso *dso, int parm), int parm) 1043 { 1044 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 1045 } 1046 1047 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 1048 bool (skip)(struct dso *dso, int parm), int parm) 1049 { 1050 struct rb_node *nd; 1051 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 1052 1053 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1054 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1055 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 1056 } 1057 return ret; 1058 } 1059 1060 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 1061 { 1062 int i; 1063 size_t printed = 0; 1064 struct dso *kdso = machine__kernel_dso(machine); 1065 1066 if (kdso->has_build_id) { 1067 char filename[PATH_MAX]; 1068 if (dso__build_id_filename(kdso, filename, sizeof(filename), 1069 false)) 1070 printed += fprintf(fp, "[0] %s\n", filename); 1071 } 1072 1073 for (i = 0; i < vmlinux_path__nr_entries; ++i) 1074 printed += fprintf(fp, "[%d] %s\n", 1075 i + kdso->has_build_id, vmlinux_path[i]); 1076 1077 return printed; 1078 } 1079 1080 size_t machine__fprintf(struct machine *machine, FILE *fp) 1081 { 1082 struct rb_node *nd; 1083 size_t ret; 1084 int i; 1085 1086 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 1087 struct threads *threads = &machine->threads[i]; 1088 1089 down_read(&threads->lock); 1090 1091 ret = fprintf(fp, "Threads: %u\n", threads->nr); 1092 1093 for (nd = rb_first_cached(&threads->entries); nd; 1094 nd = rb_next(nd)) { 1095 struct thread *pos = rb_entry(nd, struct thread, rb_node); 1096 1097 ret += thread__fprintf(pos, fp); 1098 } 1099 1100 up_read(&threads->lock); 1101 } 1102 return ret; 1103 } 1104 1105 static struct dso *machine__get_kernel(struct machine *machine) 1106 { 1107 const char *vmlinux_name = machine->mmap_name; 1108 struct dso *kernel; 1109 1110 if (machine__is_host(machine)) { 1111 if (symbol_conf.vmlinux_name) 1112 vmlinux_name = symbol_conf.vmlinux_name; 1113 1114 kernel = machine__findnew_kernel(machine, vmlinux_name, 1115 "[kernel]", DSO_SPACE__KERNEL); 1116 } else { 1117 if (symbol_conf.default_guest_vmlinux_name) 1118 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1119 1120 kernel = machine__findnew_kernel(machine, vmlinux_name, 1121 "[guest.kernel]", 1122 DSO_SPACE__KERNEL_GUEST); 1123 } 1124 1125 if (kernel != NULL && (!kernel->has_build_id)) 1126 dso__read_running_kernel_build_id(kernel, machine); 1127 1128 return kernel; 1129 } 1130 1131 struct process_args { 1132 u64 start; 1133 }; 1134 1135 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1136 size_t bufsz) 1137 { 1138 if (machine__is_default_guest(machine)) 1139 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1140 else 1141 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1142 } 1143 1144 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1145 1146 /* Figure out the start address of kernel map from /proc/kallsyms. 1147 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1148 * symbol_name if it's not that important. 1149 */ 1150 static int machine__get_running_kernel_start(struct machine *machine, 1151 const char **symbol_name, 1152 u64 *start, u64 *end) 1153 { 1154 char filename[PATH_MAX]; 1155 int i, err = -1; 1156 const char *name; 1157 u64 addr = 0; 1158 1159 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1160 1161 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1162 return 0; 1163 1164 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1165 err = kallsyms__get_function_start(filename, name, &addr); 1166 if (!err) 1167 break; 1168 } 1169 1170 if (err) 1171 return -1; 1172 1173 if (symbol_name) 1174 *symbol_name = name; 1175 1176 *start = addr; 1177 1178 err = kallsyms__get_function_start(filename, "_etext", &addr); 1179 if (!err) 1180 *end = addr; 1181 1182 return 0; 1183 } 1184 1185 int machine__create_extra_kernel_map(struct machine *machine, 1186 struct dso *kernel, 1187 struct extra_kernel_map *xm) 1188 { 1189 struct kmap *kmap; 1190 struct map *map; 1191 1192 map = map__new2(xm->start, kernel); 1193 if (!map) 1194 return -1; 1195 1196 map->end = xm->end; 1197 map->pgoff = xm->pgoff; 1198 1199 kmap = map__kmap(map); 1200 1201 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1202 1203 maps__insert(machine__kernel_maps(machine), map); 1204 1205 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1206 kmap->name, map->start, map->end); 1207 1208 map__put(map); 1209 1210 return 0; 1211 } 1212 1213 static u64 find_entry_trampoline(struct dso *dso) 1214 { 1215 /* Duplicates are removed so lookup all aliases */ 1216 const char *syms[] = { 1217 "_entry_trampoline", 1218 "__entry_trampoline_start", 1219 "entry_SYSCALL_64_trampoline", 1220 }; 1221 struct symbol *sym = dso__first_symbol(dso); 1222 unsigned int i; 1223 1224 for (; sym; sym = dso__next_symbol(sym)) { 1225 if (sym->binding != STB_GLOBAL) 1226 continue; 1227 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1228 if (!strcmp(sym->name, syms[i])) 1229 return sym->start; 1230 } 1231 } 1232 1233 return 0; 1234 } 1235 1236 /* 1237 * These values can be used for kernels that do not have symbols for the entry 1238 * trampolines in kallsyms. 1239 */ 1240 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1241 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1242 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1243 1244 /* Map x86_64 PTI entry trampolines */ 1245 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1246 struct dso *kernel) 1247 { 1248 struct maps *kmaps = machine__kernel_maps(machine); 1249 int nr_cpus_avail, cpu; 1250 bool found = false; 1251 struct map *map; 1252 u64 pgoff; 1253 1254 /* 1255 * In the vmlinux case, pgoff is a virtual address which must now be 1256 * mapped to a vmlinux offset. 1257 */ 1258 maps__for_each_entry(kmaps, map) { 1259 struct kmap *kmap = __map__kmap(map); 1260 struct map *dest_map; 1261 1262 if (!kmap || !is_entry_trampoline(kmap->name)) 1263 continue; 1264 1265 dest_map = maps__find(kmaps, map->pgoff); 1266 if (dest_map != map) 1267 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1268 found = true; 1269 } 1270 if (found || machine->trampolines_mapped) 1271 return 0; 1272 1273 pgoff = find_entry_trampoline(kernel); 1274 if (!pgoff) 1275 return 0; 1276 1277 nr_cpus_avail = machine__nr_cpus_avail(machine); 1278 1279 /* Add a 1 page map for each CPU's entry trampoline */ 1280 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1281 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1282 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1283 X86_64_ENTRY_TRAMPOLINE; 1284 struct extra_kernel_map xm = { 1285 .start = va, 1286 .end = va + page_size, 1287 .pgoff = pgoff, 1288 }; 1289 1290 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1291 1292 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1293 return -1; 1294 } 1295 1296 machine->trampolines_mapped = nr_cpus_avail; 1297 1298 return 0; 1299 } 1300 1301 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1302 struct dso *kernel __maybe_unused) 1303 { 1304 return 0; 1305 } 1306 1307 static int 1308 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1309 { 1310 /* In case of renewal the kernel map, destroy previous one */ 1311 machine__destroy_kernel_maps(machine); 1312 1313 machine->vmlinux_map = map__new2(0, kernel); 1314 if (machine->vmlinux_map == NULL) 1315 return -1; 1316 1317 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1318 maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1319 return 0; 1320 } 1321 1322 void machine__destroy_kernel_maps(struct machine *machine) 1323 { 1324 struct kmap *kmap; 1325 struct map *map = machine__kernel_map(machine); 1326 1327 if (map == NULL) 1328 return; 1329 1330 kmap = map__kmap(map); 1331 maps__remove(machine__kernel_maps(machine), map); 1332 if (kmap && kmap->ref_reloc_sym) { 1333 zfree((char **)&kmap->ref_reloc_sym->name); 1334 zfree(&kmap->ref_reloc_sym); 1335 } 1336 1337 map__zput(machine->vmlinux_map); 1338 } 1339 1340 int machines__create_guest_kernel_maps(struct machines *machines) 1341 { 1342 int ret = 0; 1343 struct dirent **namelist = NULL; 1344 int i, items = 0; 1345 char path[PATH_MAX]; 1346 pid_t pid; 1347 char *endp; 1348 1349 if (symbol_conf.default_guest_vmlinux_name || 1350 symbol_conf.default_guest_modules || 1351 symbol_conf.default_guest_kallsyms) { 1352 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1353 } 1354 1355 if (symbol_conf.guestmount) { 1356 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1357 if (items <= 0) 1358 return -ENOENT; 1359 for (i = 0; i < items; i++) { 1360 if (!isdigit(namelist[i]->d_name[0])) { 1361 /* Filter out . and .. */ 1362 continue; 1363 } 1364 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1365 if ((*endp != '\0') || 1366 (endp == namelist[i]->d_name) || 1367 (errno == ERANGE)) { 1368 pr_debug("invalid directory (%s). Skipping.\n", 1369 namelist[i]->d_name); 1370 continue; 1371 } 1372 sprintf(path, "%s/%s/proc/kallsyms", 1373 symbol_conf.guestmount, 1374 namelist[i]->d_name); 1375 ret = access(path, R_OK); 1376 if (ret) { 1377 pr_debug("Can't access file %s\n", path); 1378 goto failure; 1379 } 1380 machines__create_kernel_maps(machines, pid); 1381 } 1382 failure: 1383 free(namelist); 1384 } 1385 1386 return ret; 1387 } 1388 1389 void machines__destroy_kernel_maps(struct machines *machines) 1390 { 1391 struct rb_node *next = rb_first_cached(&machines->guests); 1392 1393 machine__destroy_kernel_maps(&machines->host); 1394 1395 while (next) { 1396 struct machine *pos = rb_entry(next, struct machine, rb_node); 1397 1398 next = rb_next(&pos->rb_node); 1399 rb_erase_cached(&pos->rb_node, &machines->guests); 1400 machine__delete(pos); 1401 } 1402 } 1403 1404 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1405 { 1406 struct machine *machine = machines__findnew(machines, pid); 1407 1408 if (machine == NULL) 1409 return -1; 1410 1411 return machine__create_kernel_maps(machine); 1412 } 1413 1414 int machine__load_kallsyms(struct machine *machine, const char *filename) 1415 { 1416 struct map *map = machine__kernel_map(machine); 1417 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1418 1419 if (ret > 0) { 1420 dso__set_loaded(map->dso); 1421 /* 1422 * Since /proc/kallsyms will have multiple sessions for the 1423 * kernel, with modules between them, fixup the end of all 1424 * sections. 1425 */ 1426 maps__fixup_end(machine__kernel_maps(machine)); 1427 } 1428 1429 return ret; 1430 } 1431 1432 int machine__load_vmlinux_path(struct machine *machine) 1433 { 1434 struct map *map = machine__kernel_map(machine); 1435 int ret = dso__load_vmlinux_path(map->dso, map); 1436 1437 if (ret > 0) 1438 dso__set_loaded(map->dso); 1439 1440 return ret; 1441 } 1442 1443 static char *get_kernel_version(const char *root_dir) 1444 { 1445 char version[PATH_MAX]; 1446 FILE *file; 1447 char *name, *tmp; 1448 const char *prefix = "Linux version "; 1449 1450 sprintf(version, "%s/proc/version", root_dir); 1451 file = fopen(version, "r"); 1452 if (!file) 1453 return NULL; 1454 1455 tmp = fgets(version, sizeof(version), file); 1456 fclose(file); 1457 if (!tmp) 1458 return NULL; 1459 1460 name = strstr(version, prefix); 1461 if (!name) 1462 return NULL; 1463 name += strlen(prefix); 1464 tmp = strchr(name, ' '); 1465 if (tmp) 1466 *tmp = '\0'; 1467 1468 return strdup(name); 1469 } 1470 1471 static bool is_kmod_dso(struct dso *dso) 1472 { 1473 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1474 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1475 } 1476 1477 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1478 { 1479 char *long_name; 1480 struct map *map = maps__find_by_name(maps, m->name); 1481 1482 if (map == NULL) 1483 return 0; 1484 1485 long_name = strdup(path); 1486 if (long_name == NULL) 1487 return -ENOMEM; 1488 1489 dso__set_long_name(map->dso, long_name, true); 1490 dso__kernel_module_get_build_id(map->dso, ""); 1491 1492 /* 1493 * Full name could reveal us kmod compression, so 1494 * we need to update the symtab_type if needed. 1495 */ 1496 if (m->comp && is_kmod_dso(map->dso)) { 1497 map->dso->symtab_type++; 1498 map->dso->comp = m->comp; 1499 } 1500 1501 return 0; 1502 } 1503 1504 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1505 { 1506 struct dirent *dent; 1507 DIR *dir = opendir(dir_name); 1508 int ret = 0; 1509 1510 if (!dir) { 1511 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1512 return -1; 1513 } 1514 1515 while ((dent = readdir(dir)) != NULL) { 1516 char path[PATH_MAX]; 1517 struct stat st; 1518 1519 /*sshfs might return bad dent->d_type, so we have to stat*/ 1520 path__join(path, sizeof(path), dir_name, dent->d_name); 1521 if (stat(path, &st)) 1522 continue; 1523 1524 if (S_ISDIR(st.st_mode)) { 1525 if (!strcmp(dent->d_name, ".") || 1526 !strcmp(dent->d_name, "..")) 1527 continue; 1528 1529 /* Do not follow top-level source and build symlinks */ 1530 if (depth == 0) { 1531 if (!strcmp(dent->d_name, "source") || 1532 !strcmp(dent->d_name, "build")) 1533 continue; 1534 } 1535 1536 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1537 if (ret < 0) 1538 goto out; 1539 } else { 1540 struct kmod_path m; 1541 1542 ret = kmod_path__parse_name(&m, dent->d_name); 1543 if (ret) 1544 goto out; 1545 1546 if (m.kmod) 1547 ret = maps__set_module_path(maps, path, &m); 1548 1549 zfree(&m.name); 1550 1551 if (ret) 1552 goto out; 1553 } 1554 } 1555 1556 out: 1557 closedir(dir); 1558 return ret; 1559 } 1560 1561 static int machine__set_modules_path(struct machine *machine) 1562 { 1563 char *version; 1564 char modules_path[PATH_MAX]; 1565 1566 version = get_kernel_version(machine->root_dir); 1567 if (!version) 1568 return -1; 1569 1570 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1571 machine->root_dir, version); 1572 free(version); 1573 1574 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1575 } 1576 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1577 u64 *size __maybe_unused, 1578 const char *name __maybe_unused) 1579 { 1580 return 0; 1581 } 1582 1583 static int machine__create_module(void *arg, const char *name, u64 start, 1584 u64 size) 1585 { 1586 struct machine *machine = arg; 1587 struct map *map; 1588 1589 if (arch__fix_module_text_start(&start, &size, name) < 0) 1590 return -1; 1591 1592 map = machine__addnew_module_map(machine, start, name); 1593 if (map == NULL) 1594 return -1; 1595 map->end = start + size; 1596 1597 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1598 1599 return 0; 1600 } 1601 1602 static int machine__create_modules(struct machine *machine) 1603 { 1604 const char *modules; 1605 char path[PATH_MAX]; 1606 1607 if (machine__is_default_guest(machine)) { 1608 modules = symbol_conf.default_guest_modules; 1609 } else { 1610 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1611 modules = path; 1612 } 1613 1614 if (symbol__restricted_filename(modules, "/proc/modules")) 1615 return -1; 1616 1617 if (modules__parse(modules, machine, machine__create_module)) 1618 return -1; 1619 1620 if (!machine__set_modules_path(machine)) 1621 return 0; 1622 1623 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1624 1625 return 0; 1626 } 1627 1628 static void machine__set_kernel_mmap(struct machine *machine, 1629 u64 start, u64 end) 1630 { 1631 machine->vmlinux_map->start = start; 1632 machine->vmlinux_map->end = end; 1633 /* 1634 * Be a bit paranoid here, some perf.data file came with 1635 * a zero sized synthesized MMAP event for the kernel. 1636 */ 1637 if (start == 0 && end == 0) 1638 machine->vmlinux_map->end = ~0ULL; 1639 } 1640 1641 static void machine__update_kernel_mmap(struct machine *machine, 1642 u64 start, u64 end) 1643 { 1644 struct map *map = machine__kernel_map(machine); 1645 1646 map__get(map); 1647 maps__remove(machine__kernel_maps(machine), map); 1648 1649 machine__set_kernel_mmap(machine, start, end); 1650 1651 maps__insert(machine__kernel_maps(machine), map); 1652 map__put(map); 1653 } 1654 1655 int machine__create_kernel_maps(struct machine *machine) 1656 { 1657 struct dso *kernel = machine__get_kernel(machine); 1658 const char *name = NULL; 1659 struct map *map; 1660 u64 start = 0, end = ~0ULL; 1661 int ret; 1662 1663 if (kernel == NULL) 1664 return -1; 1665 1666 ret = __machine__create_kernel_maps(machine, kernel); 1667 if (ret < 0) 1668 goto out_put; 1669 1670 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1671 if (machine__is_host(machine)) 1672 pr_debug("Problems creating module maps, " 1673 "continuing anyway...\n"); 1674 else 1675 pr_debug("Problems creating module maps for guest %d, " 1676 "continuing anyway...\n", machine->pid); 1677 } 1678 1679 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1680 if (name && 1681 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1682 machine__destroy_kernel_maps(machine); 1683 ret = -1; 1684 goto out_put; 1685 } 1686 1687 /* 1688 * we have a real start address now, so re-order the kmaps 1689 * assume it's the last in the kmaps 1690 */ 1691 machine__update_kernel_mmap(machine, start, end); 1692 } 1693 1694 if (machine__create_extra_kernel_maps(machine, kernel)) 1695 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1696 1697 if (end == ~0ULL) { 1698 /* update end address of the kernel map using adjacent module address */ 1699 map = map__next(machine__kernel_map(machine)); 1700 if (map) 1701 machine__set_kernel_mmap(machine, start, map->start); 1702 } 1703 1704 out_put: 1705 dso__put(kernel); 1706 return ret; 1707 } 1708 1709 static bool machine__uses_kcore(struct machine *machine) 1710 { 1711 struct dso *dso; 1712 1713 list_for_each_entry(dso, &machine->dsos.head, node) { 1714 if (dso__is_kcore(dso)) 1715 return true; 1716 } 1717 1718 return false; 1719 } 1720 1721 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1722 struct extra_kernel_map *xm) 1723 { 1724 return machine__is(machine, "x86_64") && 1725 is_entry_trampoline(xm->name); 1726 } 1727 1728 static int machine__process_extra_kernel_map(struct machine *machine, 1729 struct extra_kernel_map *xm) 1730 { 1731 struct dso *kernel = machine__kernel_dso(machine); 1732 1733 if (kernel == NULL) 1734 return -1; 1735 1736 return machine__create_extra_kernel_map(machine, kernel, xm); 1737 } 1738 1739 static int machine__process_kernel_mmap_event(struct machine *machine, 1740 struct extra_kernel_map *xm, 1741 struct build_id *bid) 1742 { 1743 struct map *map; 1744 enum dso_space_type dso_space; 1745 bool is_kernel_mmap; 1746 const char *mmap_name = machine->mmap_name; 1747 1748 /* If we have maps from kcore then we do not need or want any others */ 1749 if (machine__uses_kcore(machine)) 1750 return 0; 1751 1752 if (machine__is_host(machine)) 1753 dso_space = DSO_SPACE__KERNEL; 1754 else 1755 dso_space = DSO_SPACE__KERNEL_GUEST; 1756 1757 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1758 if (!is_kernel_mmap && !machine__is_host(machine)) { 1759 /* 1760 * If the event was recorded inside the guest and injected into 1761 * the host perf.data file, then it will match a host mmap_name, 1762 * so try that - see machine__set_mmap_name(). 1763 */ 1764 mmap_name = "[kernel.kallsyms]"; 1765 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1766 } 1767 if (xm->name[0] == '/' || 1768 (!is_kernel_mmap && xm->name[0] == '[')) { 1769 map = machine__addnew_module_map(machine, xm->start, 1770 xm->name); 1771 if (map == NULL) 1772 goto out_problem; 1773 1774 map->end = map->start + xm->end - xm->start; 1775 1776 if (build_id__is_defined(bid)) 1777 dso__set_build_id(map->dso, bid); 1778 1779 } else if (is_kernel_mmap) { 1780 const char *symbol_name = xm->name + strlen(mmap_name); 1781 /* 1782 * Should be there already, from the build-id table in 1783 * the header. 1784 */ 1785 struct dso *kernel = NULL; 1786 struct dso *dso; 1787 1788 down_read(&machine->dsos.lock); 1789 1790 list_for_each_entry(dso, &machine->dsos.head, node) { 1791 1792 /* 1793 * The cpumode passed to is_kernel_module is not the 1794 * cpumode of *this* event. If we insist on passing 1795 * correct cpumode to is_kernel_module, we should 1796 * record the cpumode when we adding this dso to the 1797 * linked list. 1798 * 1799 * However we don't really need passing correct 1800 * cpumode. We know the correct cpumode must be kernel 1801 * mode (if not, we should not link it onto kernel_dsos 1802 * list). 1803 * 1804 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1805 * is_kernel_module() treats it as a kernel cpumode. 1806 */ 1807 1808 if (!dso->kernel || 1809 is_kernel_module(dso->long_name, 1810 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1811 continue; 1812 1813 1814 kernel = dso; 1815 break; 1816 } 1817 1818 up_read(&machine->dsos.lock); 1819 1820 if (kernel == NULL) 1821 kernel = machine__findnew_dso(machine, machine->mmap_name); 1822 if (kernel == NULL) 1823 goto out_problem; 1824 1825 kernel->kernel = dso_space; 1826 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1827 dso__put(kernel); 1828 goto out_problem; 1829 } 1830 1831 if (strstr(kernel->long_name, "vmlinux")) 1832 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1833 1834 machine__update_kernel_mmap(machine, xm->start, xm->end); 1835 1836 if (build_id__is_defined(bid)) 1837 dso__set_build_id(kernel, bid); 1838 1839 /* 1840 * Avoid using a zero address (kptr_restrict) for the ref reloc 1841 * symbol. Effectively having zero here means that at record 1842 * time /proc/sys/kernel/kptr_restrict was non zero. 1843 */ 1844 if (xm->pgoff != 0) { 1845 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1846 symbol_name, 1847 xm->pgoff); 1848 } 1849 1850 if (machine__is_default_guest(machine)) { 1851 /* 1852 * preload dso of guest kernel and modules 1853 */ 1854 dso__load(kernel, machine__kernel_map(machine)); 1855 } 1856 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1857 return machine__process_extra_kernel_map(machine, xm); 1858 } 1859 return 0; 1860 out_problem: 1861 return -1; 1862 } 1863 1864 int machine__process_mmap2_event(struct machine *machine, 1865 union perf_event *event, 1866 struct perf_sample *sample) 1867 { 1868 struct thread *thread; 1869 struct map *map; 1870 struct dso_id dso_id = { 1871 .maj = event->mmap2.maj, 1872 .min = event->mmap2.min, 1873 .ino = event->mmap2.ino, 1874 .ino_generation = event->mmap2.ino_generation, 1875 }; 1876 struct build_id __bid, *bid = NULL; 1877 int ret = 0; 1878 1879 if (dump_trace) 1880 perf_event__fprintf_mmap2(event, stdout); 1881 1882 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1883 bid = &__bid; 1884 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1885 } 1886 1887 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1888 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1889 struct extra_kernel_map xm = { 1890 .start = event->mmap2.start, 1891 .end = event->mmap2.start + event->mmap2.len, 1892 .pgoff = event->mmap2.pgoff, 1893 }; 1894 1895 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1896 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1897 if (ret < 0) 1898 goto out_problem; 1899 return 0; 1900 } 1901 1902 thread = machine__findnew_thread(machine, event->mmap2.pid, 1903 event->mmap2.tid); 1904 if (thread == NULL) 1905 goto out_problem; 1906 1907 map = map__new(machine, event->mmap2.start, 1908 event->mmap2.len, event->mmap2.pgoff, 1909 &dso_id, event->mmap2.prot, 1910 event->mmap2.flags, bid, 1911 event->mmap2.filename, thread); 1912 1913 if (map == NULL) 1914 goto out_problem_map; 1915 1916 ret = thread__insert_map(thread, map); 1917 if (ret) 1918 goto out_problem_insert; 1919 1920 thread__put(thread); 1921 map__put(map); 1922 return 0; 1923 1924 out_problem_insert: 1925 map__put(map); 1926 out_problem_map: 1927 thread__put(thread); 1928 out_problem: 1929 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1930 return 0; 1931 } 1932 1933 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1934 struct perf_sample *sample) 1935 { 1936 struct thread *thread; 1937 struct map *map; 1938 u32 prot = 0; 1939 int ret = 0; 1940 1941 if (dump_trace) 1942 perf_event__fprintf_mmap(event, stdout); 1943 1944 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1945 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1946 struct extra_kernel_map xm = { 1947 .start = event->mmap.start, 1948 .end = event->mmap.start + event->mmap.len, 1949 .pgoff = event->mmap.pgoff, 1950 }; 1951 1952 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1953 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1954 if (ret < 0) 1955 goto out_problem; 1956 return 0; 1957 } 1958 1959 thread = machine__findnew_thread(machine, event->mmap.pid, 1960 event->mmap.tid); 1961 if (thread == NULL) 1962 goto out_problem; 1963 1964 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1965 prot = PROT_EXEC; 1966 1967 map = map__new(machine, event->mmap.start, 1968 event->mmap.len, event->mmap.pgoff, 1969 NULL, prot, 0, NULL, event->mmap.filename, thread); 1970 1971 if (map == NULL) 1972 goto out_problem_map; 1973 1974 ret = thread__insert_map(thread, map); 1975 if (ret) 1976 goto out_problem_insert; 1977 1978 thread__put(thread); 1979 map__put(map); 1980 return 0; 1981 1982 out_problem_insert: 1983 map__put(map); 1984 out_problem_map: 1985 thread__put(thread); 1986 out_problem: 1987 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1988 return 0; 1989 } 1990 1991 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1992 { 1993 struct threads *threads = machine__threads(machine, th->tid); 1994 1995 if (threads->last_match == th) 1996 threads__set_last_match(threads, NULL); 1997 1998 if (lock) 1999 down_write(&threads->lock); 2000 2001 BUG_ON(refcount_read(&th->refcnt) == 0); 2002 2003 rb_erase_cached(&th->rb_node, &threads->entries); 2004 RB_CLEAR_NODE(&th->rb_node); 2005 --threads->nr; 2006 /* 2007 * Move it first to the dead_threads list, then drop the reference, 2008 * if this is the last reference, then the thread__delete destructor 2009 * will be called and we will remove it from the dead_threads list. 2010 */ 2011 list_add_tail(&th->node, &threads->dead); 2012 2013 /* 2014 * We need to do the put here because if this is the last refcount, 2015 * then we will be touching the threads->dead head when removing the 2016 * thread. 2017 */ 2018 thread__put(th); 2019 2020 if (lock) 2021 up_write(&threads->lock); 2022 } 2023 2024 void machine__remove_thread(struct machine *machine, struct thread *th) 2025 { 2026 return __machine__remove_thread(machine, th, true); 2027 } 2028 2029 int machine__process_fork_event(struct machine *machine, union perf_event *event, 2030 struct perf_sample *sample) 2031 { 2032 struct thread *thread = machine__find_thread(machine, 2033 event->fork.pid, 2034 event->fork.tid); 2035 struct thread *parent = machine__findnew_thread(machine, 2036 event->fork.ppid, 2037 event->fork.ptid); 2038 bool do_maps_clone = true; 2039 int err = 0; 2040 2041 if (dump_trace) 2042 perf_event__fprintf_task(event, stdout); 2043 2044 /* 2045 * There may be an existing thread that is not actually the parent, 2046 * either because we are processing events out of order, or because the 2047 * (fork) event that would have removed the thread was lost. Assume the 2048 * latter case and continue on as best we can. 2049 */ 2050 if (parent->pid_ != (pid_t)event->fork.ppid) { 2051 dump_printf("removing erroneous parent thread %d/%d\n", 2052 parent->pid_, parent->tid); 2053 machine__remove_thread(machine, parent); 2054 thread__put(parent); 2055 parent = machine__findnew_thread(machine, event->fork.ppid, 2056 event->fork.ptid); 2057 } 2058 2059 /* if a thread currently exists for the thread id remove it */ 2060 if (thread != NULL) { 2061 machine__remove_thread(machine, thread); 2062 thread__put(thread); 2063 } 2064 2065 thread = machine__findnew_thread(machine, event->fork.pid, 2066 event->fork.tid); 2067 /* 2068 * When synthesizing FORK events, we are trying to create thread 2069 * objects for the already running tasks on the machine. 2070 * 2071 * Normally, for a kernel FORK event, we want to clone the parent's 2072 * maps because that is what the kernel just did. 2073 * 2074 * But when synthesizing, this should not be done. If we do, we end up 2075 * with overlapping maps as we process the synthesized MMAP2 events that 2076 * get delivered shortly thereafter. 2077 * 2078 * Use the FORK event misc flags in an internal way to signal this 2079 * situation, so we can elide the map clone when appropriate. 2080 */ 2081 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 2082 do_maps_clone = false; 2083 2084 if (thread == NULL || parent == NULL || 2085 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 2086 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 2087 err = -1; 2088 } 2089 thread__put(thread); 2090 thread__put(parent); 2091 2092 return err; 2093 } 2094 2095 int machine__process_exit_event(struct machine *machine, union perf_event *event, 2096 struct perf_sample *sample __maybe_unused) 2097 { 2098 struct thread *thread = machine__find_thread(machine, 2099 event->fork.pid, 2100 event->fork.tid); 2101 2102 if (dump_trace) 2103 perf_event__fprintf_task(event, stdout); 2104 2105 if (thread != NULL) { 2106 thread__exited(thread); 2107 thread__put(thread); 2108 } 2109 2110 return 0; 2111 } 2112 2113 int machine__process_event(struct machine *machine, union perf_event *event, 2114 struct perf_sample *sample) 2115 { 2116 int ret; 2117 2118 switch (event->header.type) { 2119 case PERF_RECORD_COMM: 2120 ret = machine__process_comm_event(machine, event, sample); break; 2121 case PERF_RECORD_MMAP: 2122 ret = machine__process_mmap_event(machine, event, sample); break; 2123 case PERF_RECORD_NAMESPACES: 2124 ret = machine__process_namespaces_event(machine, event, sample); break; 2125 case PERF_RECORD_CGROUP: 2126 ret = machine__process_cgroup_event(machine, event, sample); break; 2127 case PERF_RECORD_MMAP2: 2128 ret = machine__process_mmap2_event(machine, event, sample); break; 2129 case PERF_RECORD_FORK: 2130 ret = machine__process_fork_event(machine, event, sample); break; 2131 case PERF_RECORD_EXIT: 2132 ret = machine__process_exit_event(machine, event, sample); break; 2133 case PERF_RECORD_LOST: 2134 ret = machine__process_lost_event(machine, event, sample); break; 2135 case PERF_RECORD_AUX: 2136 ret = machine__process_aux_event(machine, event); break; 2137 case PERF_RECORD_ITRACE_START: 2138 ret = machine__process_itrace_start_event(machine, event); break; 2139 case PERF_RECORD_LOST_SAMPLES: 2140 ret = machine__process_lost_samples_event(machine, event, sample); break; 2141 case PERF_RECORD_SWITCH: 2142 case PERF_RECORD_SWITCH_CPU_WIDE: 2143 ret = machine__process_switch_event(machine, event); break; 2144 case PERF_RECORD_KSYMBOL: 2145 ret = machine__process_ksymbol(machine, event, sample); break; 2146 case PERF_RECORD_BPF_EVENT: 2147 ret = machine__process_bpf(machine, event, sample); break; 2148 case PERF_RECORD_TEXT_POKE: 2149 ret = machine__process_text_poke(machine, event, sample); break; 2150 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2151 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2152 default: 2153 ret = -1; 2154 break; 2155 } 2156 2157 return ret; 2158 } 2159 2160 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2161 { 2162 if (!regexec(regex, sym->name, 0, NULL, 0)) 2163 return true; 2164 return false; 2165 } 2166 2167 static void ip__resolve_ams(struct thread *thread, 2168 struct addr_map_symbol *ams, 2169 u64 ip) 2170 { 2171 struct addr_location al; 2172 2173 memset(&al, 0, sizeof(al)); 2174 /* 2175 * We cannot use the header.misc hint to determine whether a 2176 * branch stack address is user, kernel, guest, hypervisor. 2177 * Branches may straddle the kernel/user/hypervisor boundaries. 2178 * Thus, we have to try consecutively until we find a match 2179 * or else, the symbol is unknown 2180 */ 2181 thread__find_cpumode_addr_location(thread, ip, &al); 2182 2183 ams->addr = ip; 2184 ams->al_addr = al.addr; 2185 ams->al_level = al.level; 2186 ams->ms.maps = al.maps; 2187 ams->ms.sym = al.sym; 2188 ams->ms.map = al.map; 2189 ams->phys_addr = 0; 2190 ams->data_page_size = 0; 2191 } 2192 2193 static void ip__resolve_data(struct thread *thread, 2194 u8 m, struct addr_map_symbol *ams, 2195 u64 addr, u64 phys_addr, u64 daddr_page_size) 2196 { 2197 struct addr_location al; 2198 2199 memset(&al, 0, sizeof(al)); 2200 2201 thread__find_symbol(thread, m, addr, &al); 2202 2203 ams->addr = addr; 2204 ams->al_addr = al.addr; 2205 ams->al_level = al.level; 2206 ams->ms.maps = al.maps; 2207 ams->ms.sym = al.sym; 2208 ams->ms.map = al.map; 2209 ams->phys_addr = phys_addr; 2210 ams->data_page_size = daddr_page_size; 2211 } 2212 2213 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2214 struct addr_location *al) 2215 { 2216 struct mem_info *mi = mem_info__new(); 2217 2218 if (!mi) 2219 return NULL; 2220 2221 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2222 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2223 sample->addr, sample->phys_addr, 2224 sample->data_page_size); 2225 mi->data_src.val = sample->data_src; 2226 2227 return mi; 2228 } 2229 2230 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2231 { 2232 struct map *map = ms->map; 2233 char *srcline = NULL; 2234 2235 if (!map || callchain_param.key == CCKEY_FUNCTION) 2236 return srcline; 2237 2238 srcline = srcline__tree_find(&map->dso->srclines, ip); 2239 if (!srcline) { 2240 bool show_sym = false; 2241 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2242 2243 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2244 ms->sym, show_sym, show_addr, ip); 2245 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2246 } 2247 2248 return srcline; 2249 } 2250 2251 struct iterations { 2252 int nr_loop_iter; 2253 u64 cycles; 2254 }; 2255 2256 static int add_callchain_ip(struct thread *thread, 2257 struct callchain_cursor *cursor, 2258 struct symbol **parent, 2259 struct addr_location *root_al, 2260 u8 *cpumode, 2261 u64 ip, 2262 bool branch, 2263 struct branch_flags *flags, 2264 struct iterations *iter, 2265 u64 branch_from) 2266 { 2267 struct map_symbol ms; 2268 struct addr_location al; 2269 int nr_loop_iter = 0; 2270 u64 iter_cycles = 0; 2271 const char *srcline = NULL; 2272 2273 al.filtered = 0; 2274 al.sym = NULL; 2275 al.srcline = NULL; 2276 if (!cpumode) { 2277 thread__find_cpumode_addr_location(thread, ip, &al); 2278 } else { 2279 if (ip >= PERF_CONTEXT_MAX) { 2280 switch (ip) { 2281 case PERF_CONTEXT_HV: 2282 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2283 break; 2284 case PERF_CONTEXT_KERNEL: 2285 *cpumode = PERF_RECORD_MISC_KERNEL; 2286 break; 2287 case PERF_CONTEXT_USER: 2288 *cpumode = PERF_RECORD_MISC_USER; 2289 break; 2290 default: 2291 pr_debug("invalid callchain context: " 2292 "%"PRId64"\n", (s64) ip); 2293 /* 2294 * It seems the callchain is corrupted. 2295 * Discard all. 2296 */ 2297 callchain_cursor_reset(cursor); 2298 return 1; 2299 } 2300 return 0; 2301 } 2302 thread__find_symbol(thread, *cpumode, ip, &al); 2303 } 2304 2305 if (al.sym != NULL) { 2306 if (perf_hpp_list.parent && !*parent && 2307 symbol__match_regex(al.sym, &parent_regex)) 2308 *parent = al.sym; 2309 else if (have_ignore_callees && root_al && 2310 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2311 /* Treat this symbol as the root, 2312 forgetting its callees. */ 2313 *root_al = al; 2314 callchain_cursor_reset(cursor); 2315 } 2316 } 2317 2318 if (symbol_conf.hide_unresolved && al.sym == NULL) 2319 return 0; 2320 2321 if (iter) { 2322 nr_loop_iter = iter->nr_loop_iter; 2323 iter_cycles = iter->cycles; 2324 } 2325 2326 ms.maps = al.maps; 2327 ms.map = al.map; 2328 ms.sym = al.sym; 2329 srcline = callchain_srcline(&ms, al.addr); 2330 return callchain_cursor_append(cursor, ip, &ms, 2331 branch, flags, nr_loop_iter, 2332 iter_cycles, branch_from, srcline); 2333 } 2334 2335 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2336 struct addr_location *al) 2337 { 2338 unsigned int i; 2339 const struct branch_stack *bs = sample->branch_stack; 2340 struct branch_entry *entries = perf_sample__branch_entries(sample); 2341 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2342 2343 if (!bi) 2344 return NULL; 2345 2346 for (i = 0; i < bs->nr; i++) { 2347 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2348 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2349 bi[i].flags = entries[i].flags; 2350 } 2351 return bi; 2352 } 2353 2354 static void save_iterations(struct iterations *iter, 2355 struct branch_entry *be, int nr) 2356 { 2357 int i; 2358 2359 iter->nr_loop_iter++; 2360 iter->cycles = 0; 2361 2362 for (i = 0; i < nr; i++) 2363 iter->cycles += be[i].flags.cycles; 2364 } 2365 2366 #define CHASHSZ 127 2367 #define CHASHBITS 7 2368 #define NO_ENTRY 0xff 2369 2370 #define PERF_MAX_BRANCH_DEPTH 127 2371 2372 /* Remove loops. */ 2373 static int remove_loops(struct branch_entry *l, int nr, 2374 struct iterations *iter) 2375 { 2376 int i, j, off; 2377 unsigned char chash[CHASHSZ]; 2378 2379 memset(chash, NO_ENTRY, sizeof(chash)); 2380 2381 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2382 2383 for (i = 0; i < nr; i++) { 2384 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2385 2386 /* no collision handling for now */ 2387 if (chash[h] == NO_ENTRY) { 2388 chash[h] = i; 2389 } else if (l[chash[h]].from == l[i].from) { 2390 bool is_loop = true; 2391 /* check if it is a real loop */ 2392 off = 0; 2393 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2394 if (l[j].from != l[i + off].from) { 2395 is_loop = false; 2396 break; 2397 } 2398 if (is_loop) { 2399 j = nr - (i + off); 2400 if (j > 0) { 2401 save_iterations(iter + i + off, 2402 l + i, off); 2403 2404 memmove(iter + i, iter + i + off, 2405 j * sizeof(*iter)); 2406 2407 memmove(l + i, l + i + off, 2408 j * sizeof(*l)); 2409 } 2410 2411 nr -= off; 2412 } 2413 } 2414 } 2415 return nr; 2416 } 2417 2418 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2419 struct callchain_cursor *cursor, 2420 struct perf_sample *sample, 2421 struct symbol **parent, 2422 struct addr_location *root_al, 2423 u64 branch_from, 2424 bool callee, int end) 2425 { 2426 struct ip_callchain *chain = sample->callchain; 2427 u8 cpumode = PERF_RECORD_MISC_USER; 2428 int err, i; 2429 2430 if (callee) { 2431 for (i = 0; i < end + 1; i++) { 2432 err = add_callchain_ip(thread, cursor, parent, 2433 root_al, &cpumode, chain->ips[i], 2434 false, NULL, NULL, branch_from); 2435 if (err) 2436 return err; 2437 } 2438 return 0; 2439 } 2440 2441 for (i = end; i >= 0; i--) { 2442 err = add_callchain_ip(thread, cursor, parent, 2443 root_al, &cpumode, chain->ips[i], 2444 false, NULL, NULL, branch_from); 2445 if (err) 2446 return err; 2447 } 2448 2449 return 0; 2450 } 2451 2452 static void save_lbr_cursor_node(struct thread *thread, 2453 struct callchain_cursor *cursor, 2454 int idx) 2455 { 2456 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2457 2458 if (!lbr_stitch) 2459 return; 2460 2461 if (cursor->pos == cursor->nr) { 2462 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2463 return; 2464 } 2465 2466 if (!cursor->curr) 2467 cursor->curr = cursor->first; 2468 else 2469 cursor->curr = cursor->curr->next; 2470 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2471 sizeof(struct callchain_cursor_node)); 2472 2473 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2474 cursor->pos++; 2475 } 2476 2477 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2478 struct callchain_cursor *cursor, 2479 struct perf_sample *sample, 2480 struct symbol **parent, 2481 struct addr_location *root_al, 2482 u64 *branch_from, 2483 bool callee) 2484 { 2485 struct branch_stack *lbr_stack = sample->branch_stack; 2486 struct branch_entry *entries = perf_sample__branch_entries(sample); 2487 u8 cpumode = PERF_RECORD_MISC_USER; 2488 int lbr_nr = lbr_stack->nr; 2489 struct branch_flags *flags; 2490 int err, i; 2491 u64 ip; 2492 2493 /* 2494 * The curr and pos are not used in writing session. They are cleared 2495 * in callchain_cursor_commit() when the writing session is closed. 2496 * Using curr and pos to track the current cursor node. 2497 */ 2498 if (thread->lbr_stitch) { 2499 cursor->curr = NULL; 2500 cursor->pos = cursor->nr; 2501 if (cursor->nr) { 2502 cursor->curr = cursor->first; 2503 for (i = 0; i < (int)(cursor->nr - 1); i++) 2504 cursor->curr = cursor->curr->next; 2505 } 2506 } 2507 2508 if (callee) { 2509 /* Add LBR ip from first entries.to */ 2510 ip = entries[0].to; 2511 flags = &entries[0].flags; 2512 *branch_from = entries[0].from; 2513 err = add_callchain_ip(thread, cursor, parent, 2514 root_al, &cpumode, ip, 2515 true, flags, NULL, 2516 *branch_from); 2517 if (err) 2518 return err; 2519 2520 /* 2521 * The number of cursor node increases. 2522 * Move the current cursor node. 2523 * But does not need to save current cursor node for entry 0. 2524 * It's impossible to stitch the whole LBRs of previous sample. 2525 */ 2526 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2527 if (!cursor->curr) 2528 cursor->curr = cursor->first; 2529 else 2530 cursor->curr = cursor->curr->next; 2531 cursor->pos++; 2532 } 2533 2534 /* Add LBR ip from entries.from one by one. */ 2535 for (i = 0; i < lbr_nr; i++) { 2536 ip = entries[i].from; 2537 flags = &entries[i].flags; 2538 err = add_callchain_ip(thread, cursor, parent, 2539 root_al, &cpumode, ip, 2540 true, flags, NULL, 2541 *branch_from); 2542 if (err) 2543 return err; 2544 save_lbr_cursor_node(thread, cursor, i); 2545 } 2546 return 0; 2547 } 2548 2549 /* Add LBR ip from entries.from one by one. */ 2550 for (i = lbr_nr - 1; i >= 0; i--) { 2551 ip = entries[i].from; 2552 flags = &entries[i].flags; 2553 err = add_callchain_ip(thread, cursor, parent, 2554 root_al, &cpumode, ip, 2555 true, flags, NULL, 2556 *branch_from); 2557 if (err) 2558 return err; 2559 save_lbr_cursor_node(thread, cursor, i); 2560 } 2561 2562 /* Add LBR ip from first entries.to */ 2563 ip = entries[0].to; 2564 flags = &entries[0].flags; 2565 *branch_from = entries[0].from; 2566 err = add_callchain_ip(thread, cursor, parent, 2567 root_al, &cpumode, ip, 2568 true, flags, NULL, 2569 *branch_from); 2570 if (err) 2571 return err; 2572 2573 return 0; 2574 } 2575 2576 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2577 struct callchain_cursor *cursor) 2578 { 2579 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2580 struct callchain_cursor_node *cnode; 2581 struct stitch_list *stitch_node; 2582 int err; 2583 2584 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2585 cnode = &stitch_node->cursor; 2586 2587 err = callchain_cursor_append(cursor, cnode->ip, 2588 &cnode->ms, 2589 cnode->branch, 2590 &cnode->branch_flags, 2591 cnode->nr_loop_iter, 2592 cnode->iter_cycles, 2593 cnode->branch_from, 2594 cnode->srcline); 2595 if (err) 2596 return err; 2597 } 2598 return 0; 2599 } 2600 2601 static struct stitch_list *get_stitch_node(struct thread *thread) 2602 { 2603 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2604 struct stitch_list *stitch_node; 2605 2606 if (!list_empty(&lbr_stitch->free_lists)) { 2607 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2608 struct stitch_list, node); 2609 list_del(&stitch_node->node); 2610 2611 return stitch_node; 2612 } 2613 2614 return malloc(sizeof(struct stitch_list)); 2615 } 2616 2617 static bool has_stitched_lbr(struct thread *thread, 2618 struct perf_sample *cur, 2619 struct perf_sample *prev, 2620 unsigned int max_lbr, 2621 bool callee) 2622 { 2623 struct branch_stack *cur_stack = cur->branch_stack; 2624 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2625 struct branch_stack *prev_stack = prev->branch_stack; 2626 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2627 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2628 int i, j, nr_identical_branches = 0; 2629 struct stitch_list *stitch_node; 2630 u64 cur_base, distance; 2631 2632 if (!cur_stack || !prev_stack) 2633 return false; 2634 2635 /* Find the physical index of the base-of-stack for current sample. */ 2636 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2637 2638 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2639 (max_lbr + prev_stack->hw_idx - cur_base); 2640 /* Previous sample has shorter stack. Nothing can be stitched. */ 2641 if (distance + 1 > prev_stack->nr) 2642 return false; 2643 2644 /* 2645 * Check if there are identical LBRs between two samples. 2646 * Identical LBRs must have same from, to and flags values. Also, 2647 * they have to be saved in the same LBR registers (same physical 2648 * index). 2649 * 2650 * Starts from the base-of-stack of current sample. 2651 */ 2652 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2653 if ((prev_entries[i].from != cur_entries[j].from) || 2654 (prev_entries[i].to != cur_entries[j].to) || 2655 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2656 break; 2657 nr_identical_branches++; 2658 } 2659 2660 if (!nr_identical_branches) 2661 return false; 2662 2663 /* 2664 * Save the LBRs between the base-of-stack of previous sample 2665 * and the base-of-stack of current sample into lbr_stitch->lists. 2666 * These LBRs will be stitched later. 2667 */ 2668 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2669 2670 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2671 continue; 2672 2673 stitch_node = get_stitch_node(thread); 2674 if (!stitch_node) 2675 return false; 2676 2677 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2678 sizeof(struct callchain_cursor_node)); 2679 2680 if (callee) 2681 list_add(&stitch_node->node, &lbr_stitch->lists); 2682 else 2683 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2684 } 2685 2686 return true; 2687 } 2688 2689 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2690 { 2691 if (thread->lbr_stitch) 2692 return true; 2693 2694 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2695 if (!thread->lbr_stitch) 2696 goto err; 2697 2698 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2699 if (!thread->lbr_stitch->prev_lbr_cursor) 2700 goto free_lbr_stitch; 2701 2702 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2703 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2704 2705 return true; 2706 2707 free_lbr_stitch: 2708 zfree(&thread->lbr_stitch); 2709 err: 2710 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2711 thread->lbr_stitch_enable = false; 2712 return false; 2713 } 2714 2715 /* 2716 * Resolve LBR callstack chain sample 2717 * Return: 2718 * 1 on success get LBR callchain information 2719 * 0 no available LBR callchain information, should try fp 2720 * negative error code on other errors. 2721 */ 2722 static int resolve_lbr_callchain_sample(struct thread *thread, 2723 struct callchain_cursor *cursor, 2724 struct perf_sample *sample, 2725 struct symbol **parent, 2726 struct addr_location *root_al, 2727 int max_stack, 2728 unsigned int max_lbr) 2729 { 2730 bool callee = (callchain_param.order == ORDER_CALLEE); 2731 struct ip_callchain *chain = sample->callchain; 2732 int chain_nr = min(max_stack, (int)chain->nr), i; 2733 struct lbr_stitch *lbr_stitch; 2734 bool stitched_lbr = false; 2735 u64 branch_from = 0; 2736 int err; 2737 2738 for (i = 0; i < chain_nr; i++) { 2739 if (chain->ips[i] == PERF_CONTEXT_USER) 2740 break; 2741 } 2742 2743 /* LBR only affects the user callchain */ 2744 if (i == chain_nr) 2745 return 0; 2746 2747 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2748 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2749 lbr_stitch = thread->lbr_stitch; 2750 2751 stitched_lbr = has_stitched_lbr(thread, sample, 2752 &lbr_stitch->prev_sample, 2753 max_lbr, callee); 2754 2755 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2756 list_replace_init(&lbr_stitch->lists, 2757 &lbr_stitch->free_lists); 2758 } 2759 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2760 } 2761 2762 if (callee) { 2763 /* Add kernel ip */ 2764 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2765 parent, root_al, branch_from, 2766 true, i); 2767 if (err) 2768 goto error; 2769 2770 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2771 root_al, &branch_from, true); 2772 if (err) 2773 goto error; 2774 2775 if (stitched_lbr) { 2776 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2777 if (err) 2778 goto error; 2779 } 2780 2781 } else { 2782 if (stitched_lbr) { 2783 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2784 if (err) 2785 goto error; 2786 } 2787 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2788 root_al, &branch_from, false); 2789 if (err) 2790 goto error; 2791 2792 /* Add kernel ip */ 2793 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2794 parent, root_al, branch_from, 2795 false, i); 2796 if (err) 2797 goto error; 2798 } 2799 return 1; 2800 2801 error: 2802 return (err < 0) ? err : 0; 2803 } 2804 2805 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2806 struct callchain_cursor *cursor, 2807 struct symbol **parent, 2808 struct addr_location *root_al, 2809 u8 *cpumode, int ent) 2810 { 2811 int err = 0; 2812 2813 while (--ent >= 0) { 2814 u64 ip = chain->ips[ent]; 2815 2816 if (ip >= PERF_CONTEXT_MAX) { 2817 err = add_callchain_ip(thread, cursor, parent, 2818 root_al, cpumode, ip, 2819 false, NULL, NULL, 0); 2820 break; 2821 } 2822 } 2823 return err; 2824 } 2825 2826 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2827 struct thread *thread, int usr_idx) 2828 { 2829 if (machine__normalized_is(thread->maps->machine, "arm64")) 2830 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2831 else 2832 return 0; 2833 } 2834 2835 static int thread__resolve_callchain_sample(struct thread *thread, 2836 struct callchain_cursor *cursor, 2837 struct evsel *evsel, 2838 struct perf_sample *sample, 2839 struct symbol **parent, 2840 struct addr_location *root_al, 2841 int max_stack) 2842 { 2843 struct branch_stack *branch = sample->branch_stack; 2844 struct branch_entry *entries = perf_sample__branch_entries(sample); 2845 struct ip_callchain *chain = sample->callchain; 2846 int chain_nr = 0; 2847 u8 cpumode = PERF_RECORD_MISC_USER; 2848 int i, j, err, nr_entries, usr_idx; 2849 int skip_idx = -1; 2850 int first_call = 0; 2851 u64 leaf_frame_caller; 2852 2853 if (chain) 2854 chain_nr = chain->nr; 2855 2856 if (evsel__has_branch_callstack(evsel)) { 2857 struct perf_env *env = evsel__env(evsel); 2858 2859 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2860 root_al, max_stack, 2861 !env ? 0 : env->max_branches); 2862 if (err) 2863 return (err < 0) ? err : 0; 2864 } 2865 2866 /* 2867 * Based on DWARF debug information, some architectures skip 2868 * a callchain entry saved by the kernel. 2869 */ 2870 skip_idx = arch_skip_callchain_idx(thread, chain); 2871 2872 /* 2873 * Add branches to call stack for easier browsing. This gives 2874 * more context for a sample than just the callers. 2875 * 2876 * This uses individual histograms of paths compared to the 2877 * aggregated histograms the normal LBR mode uses. 2878 * 2879 * Limitations for now: 2880 * - No extra filters 2881 * - No annotations (should annotate somehow) 2882 */ 2883 2884 if (branch && callchain_param.branch_callstack) { 2885 int nr = min(max_stack, (int)branch->nr); 2886 struct branch_entry be[nr]; 2887 struct iterations iter[nr]; 2888 2889 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2890 pr_warning("corrupted branch chain. skipping...\n"); 2891 goto check_calls; 2892 } 2893 2894 for (i = 0; i < nr; i++) { 2895 if (callchain_param.order == ORDER_CALLEE) { 2896 be[i] = entries[i]; 2897 2898 if (chain == NULL) 2899 continue; 2900 2901 /* 2902 * Check for overlap into the callchain. 2903 * The return address is one off compared to 2904 * the branch entry. To adjust for this 2905 * assume the calling instruction is not longer 2906 * than 8 bytes. 2907 */ 2908 if (i == skip_idx || 2909 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2910 first_call++; 2911 else if (be[i].from < chain->ips[first_call] && 2912 be[i].from >= chain->ips[first_call] - 8) 2913 first_call++; 2914 } else 2915 be[i] = entries[branch->nr - i - 1]; 2916 } 2917 2918 memset(iter, 0, sizeof(struct iterations) * nr); 2919 nr = remove_loops(be, nr, iter); 2920 2921 for (i = 0; i < nr; i++) { 2922 err = add_callchain_ip(thread, cursor, parent, 2923 root_al, 2924 NULL, be[i].to, 2925 true, &be[i].flags, 2926 NULL, be[i].from); 2927 2928 if (!err) 2929 err = add_callchain_ip(thread, cursor, parent, root_al, 2930 NULL, be[i].from, 2931 true, &be[i].flags, 2932 &iter[i], 0); 2933 if (err == -EINVAL) 2934 break; 2935 if (err) 2936 return err; 2937 } 2938 2939 if (chain_nr == 0) 2940 return 0; 2941 2942 chain_nr -= nr; 2943 } 2944 2945 check_calls: 2946 if (chain && callchain_param.order != ORDER_CALLEE) { 2947 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2948 &cpumode, chain->nr - first_call); 2949 if (err) 2950 return (err < 0) ? err : 0; 2951 } 2952 for (i = first_call, nr_entries = 0; 2953 i < chain_nr && nr_entries < max_stack; i++) { 2954 u64 ip; 2955 2956 if (callchain_param.order == ORDER_CALLEE) 2957 j = i; 2958 else 2959 j = chain->nr - i - 1; 2960 2961 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2962 if (j == skip_idx) 2963 continue; 2964 #endif 2965 ip = chain->ips[j]; 2966 if (ip < PERF_CONTEXT_MAX) 2967 ++nr_entries; 2968 else if (callchain_param.order != ORDER_CALLEE) { 2969 err = find_prev_cpumode(chain, thread, cursor, parent, 2970 root_al, &cpumode, j); 2971 if (err) 2972 return (err < 0) ? err : 0; 2973 continue; 2974 } 2975 2976 /* 2977 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 2978 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 2979 * the index will be different in order to add the missing frame 2980 * at the right place. 2981 */ 2982 2983 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 2984 2985 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 2986 2987 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 2988 2989 /* 2990 * check if leaf_frame_Caller != ip to not add the same 2991 * value twice. 2992 */ 2993 2994 if (leaf_frame_caller && leaf_frame_caller != ip) { 2995 2996 err = add_callchain_ip(thread, cursor, parent, 2997 root_al, &cpumode, leaf_frame_caller, 2998 false, NULL, NULL, 0); 2999 if (err) 3000 return (err < 0) ? err : 0; 3001 } 3002 } 3003 3004 err = add_callchain_ip(thread, cursor, parent, 3005 root_al, &cpumode, ip, 3006 false, NULL, NULL, 0); 3007 3008 if (err) 3009 return (err < 0) ? err : 0; 3010 } 3011 3012 return 0; 3013 } 3014 3015 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 3016 { 3017 struct symbol *sym = ms->sym; 3018 struct map *map = ms->map; 3019 struct inline_node *inline_node; 3020 struct inline_list *ilist; 3021 u64 addr; 3022 int ret = 1; 3023 3024 if (!symbol_conf.inline_name || !map || !sym) 3025 return ret; 3026 3027 addr = map__map_ip(map, ip); 3028 addr = map__rip_2objdump(map, addr); 3029 3030 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 3031 if (!inline_node) { 3032 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 3033 if (!inline_node) 3034 return ret; 3035 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 3036 } 3037 3038 list_for_each_entry(ilist, &inline_node->val, list) { 3039 struct map_symbol ilist_ms = { 3040 .maps = ms->maps, 3041 .map = map, 3042 .sym = ilist->symbol, 3043 }; 3044 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 3045 NULL, 0, 0, 0, ilist->srcline); 3046 3047 if (ret != 0) 3048 return ret; 3049 } 3050 3051 return ret; 3052 } 3053 3054 static int unwind_entry(struct unwind_entry *entry, void *arg) 3055 { 3056 struct callchain_cursor *cursor = arg; 3057 const char *srcline = NULL; 3058 u64 addr = entry->ip; 3059 3060 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 3061 return 0; 3062 3063 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 3064 return 0; 3065 3066 /* 3067 * Convert entry->ip from a virtual address to an offset in 3068 * its corresponding binary. 3069 */ 3070 if (entry->ms.map) 3071 addr = map__map_ip(entry->ms.map, entry->ip); 3072 3073 srcline = callchain_srcline(&entry->ms, addr); 3074 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 3075 false, NULL, 0, 0, 0, srcline); 3076 } 3077 3078 static int thread__resolve_callchain_unwind(struct thread *thread, 3079 struct callchain_cursor *cursor, 3080 struct evsel *evsel, 3081 struct perf_sample *sample, 3082 int max_stack) 3083 { 3084 /* Can we do dwarf post unwind? */ 3085 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 3086 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 3087 return 0; 3088 3089 /* Bail out if nothing was captured. */ 3090 if ((!sample->user_regs.regs) || 3091 (!sample->user_stack.size)) 3092 return 0; 3093 3094 return unwind__get_entries(unwind_entry, cursor, 3095 thread, sample, max_stack, false); 3096 } 3097 3098 int thread__resolve_callchain(struct thread *thread, 3099 struct callchain_cursor *cursor, 3100 struct evsel *evsel, 3101 struct perf_sample *sample, 3102 struct symbol **parent, 3103 struct addr_location *root_al, 3104 int max_stack) 3105 { 3106 int ret = 0; 3107 3108 callchain_cursor_reset(cursor); 3109 3110 if (callchain_param.order == ORDER_CALLEE) { 3111 ret = thread__resolve_callchain_sample(thread, cursor, 3112 evsel, sample, 3113 parent, root_al, 3114 max_stack); 3115 if (ret) 3116 return ret; 3117 ret = thread__resolve_callchain_unwind(thread, cursor, 3118 evsel, sample, 3119 max_stack); 3120 } else { 3121 ret = thread__resolve_callchain_unwind(thread, cursor, 3122 evsel, sample, 3123 max_stack); 3124 if (ret) 3125 return ret; 3126 ret = thread__resolve_callchain_sample(thread, cursor, 3127 evsel, sample, 3128 parent, root_al, 3129 max_stack); 3130 } 3131 3132 return ret; 3133 } 3134 3135 int machine__for_each_thread(struct machine *machine, 3136 int (*fn)(struct thread *thread, void *p), 3137 void *priv) 3138 { 3139 struct threads *threads; 3140 struct rb_node *nd; 3141 struct thread *thread; 3142 int rc = 0; 3143 int i; 3144 3145 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 3146 threads = &machine->threads[i]; 3147 for (nd = rb_first_cached(&threads->entries); nd; 3148 nd = rb_next(nd)) { 3149 thread = rb_entry(nd, struct thread, rb_node); 3150 rc = fn(thread, priv); 3151 if (rc != 0) 3152 return rc; 3153 } 3154 3155 list_for_each_entry(thread, &threads->dead, node) { 3156 rc = fn(thread, priv); 3157 if (rc != 0) 3158 return rc; 3159 } 3160 } 3161 return rc; 3162 } 3163 3164 int machines__for_each_thread(struct machines *machines, 3165 int (*fn)(struct thread *thread, void *p), 3166 void *priv) 3167 { 3168 struct rb_node *nd; 3169 int rc = 0; 3170 3171 rc = machine__for_each_thread(&machines->host, fn, priv); 3172 if (rc != 0) 3173 return rc; 3174 3175 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3176 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3177 3178 rc = machine__for_each_thread(machine, fn, priv); 3179 if (rc != 0) 3180 return rc; 3181 } 3182 return rc; 3183 } 3184 3185 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3186 { 3187 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3188 return -1; 3189 3190 return machine->current_tid[cpu]; 3191 } 3192 3193 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3194 pid_t tid) 3195 { 3196 struct thread *thread; 3197 const pid_t init_val = -1; 3198 3199 if (cpu < 0) 3200 return -EINVAL; 3201 3202 if (realloc_array_as_needed(machine->current_tid, 3203 machine->current_tid_sz, 3204 (unsigned int)cpu, 3205 &init_val)) 3206 return -ENOMEM; 3207 3208 machine->current_tid[cpu] = tid; 3209 3210 thread = machine__findnew_thread(machine, pid, tid); 3211 if (!thread) 3212 return -ENOMEM; 3213 3214 thread->cpu = cpu; 3215 thread__put(thread); 3216 3217 return 0; 3218 } 3219 3220 /* 3221 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3222 * machine__normalized_is() if a normalized arch is needed. 3223 */ 3224 bool machine__is(struct machine *machine, const char *arch) 3225 { 3226 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3227 } 3228 3229 bool machine__normalized_is(struct machine *machine, const char *arch) 3230 { 3231 return machine && !strcmp(perf_env__arch(machine->env), arch); 3232 } 3233 3234 int machine__nr_cpus_avail(struct machine *machine) 3235 { 3236 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3237 } 3238 3239 int machine__get_kernel_start(struct machine *machine) 3240 { 3241 struct map *map = machine__kernel_map(machine); 3242 int err = 0; 3243 3244 /* 3245 * The only addresses above 2^63 are kernel addresses of a 64-bit 3246 * kernel. Note that addresses are unsigned so that on a 32-bit system 3247 * all addresses including kernel addresses are less than 2^32. In 3248 * that case (32-bit system), if the kernel mapping is unknown, all 3249 * addresses will be assumed to be in user space - see 3250 * machine__kernel_ip(). 3251 */ 3252 machine->kernel_start = 1ULL << 63; 3253 if (map) { 3254 err = map__load(map); 3255 /* 3256 * On x86_64, PTI entry trampolines are less than the 3257 * start of kernel text, but still above 2^63. So leave 3258 * kernel_start = 1ULL << 63 for x86_64. 3259 */ 3260 if (!err && !machine__is(machine, "x86_64")) 3261 machine->kernel_start = map->start; 3262 } 3263 return err; 3264 } 3265 3266 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3267 { 3268 u8 addr_cpumode = cpumode; 3269 bool kernel_ip; 3270 3271 if (!machine->single_address_space) 3272 goto out; 3273 3274 kernel_ip = machine__kernel_ip(machine, addr); 3275 switch (cpumode) { 3276 case PERF_RECORD_MISC_KERNEL: 3277 case PERF_RECORD_MISC_USER: 3278 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3279 PERF_RECORD_MISC_USER; 3280 break; 3281 case PERF_RECORD_MISC_GUEST_KERNEL: 3282 case PERF_RECORD_MISC_GUEST_USER: 3283 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3284 PERF_RECORD_MISC_GUEST_USER; 3285 break; 3286 default: 3287 break; 3288 } 3289 out: 3290 return addr_cpumode; 3291 } 3292 3293 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3294 { 3295 return dsos__findnew_id(&machine->dsos, filename, id); 3296 } 3297 3298 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3299 { 3300 return machine__findnew_dso_id(machine, filename, NULL); 3301 } 3302 3303 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3304 { 3305 struct machine *machine = vmachine; 3306 struct map *map; 3307 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3308 3309 if (sym == NULL) 3310 return NULL; 3311 3312 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3313 *addrp = map->unmap_ip(map, sym->start); 3314 return sym->name; 3315 } 3316 3317 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3318 { 3319 struct dso *pos; 3320 int err = 0; 3321 3322 list_for_each_entry(pos, &machine->dsos.head, node) { 3323 if (fn(pos, machine, priv)) 3324 err = -1; 3325 } 3326 return err; 3327 } 3328 3329 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3330 { 3331 struct maps *maps = machine__kernel_maps(machine); 3332 struct map *map; 3333 int err = 0; 3334 3335 for (map = maps__first(maps); map != NULL; map = map__next(map)) { 3336 err = fn(map, priv); 3337 if (err != 0) { 3338 break; 3339 } 3340 } 3341 return err; 3342 } 3343