1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "mem-info.h" 20 #include "path.h" 21 #include "srcline.h" 22 #include "symbol.h" 23 #include "synthetic-events.h" 24 #include "sort.h" 25 #include "strlist.h" 26 #include "target.h" 27 #include "thread.h" 28 #include "util.h" 29 #include "vdso.h" 30 #include <stdbool.h> 31 #include <sys/types.h> 32 #include <sys/stat.h> 33 #include <unistd.h> 34 #include "unwind.h" 35 #include "linux/hash.h" 36 #include "asm/bug.h" 37 #include "bpf-event.h" 38 #include <internal/lib.h> // page_size 39 #include "cgroup.h" 40 #include "arm64-frame-pointer-unwind-support.h" 41 #include <api/io_dir.h> 42 43 #include <linux/ctype.h> 44 #include <symbol/kallsyms.h> 45 #include <linux/mman.h> 46 #include <linux/string.h> 47 #include <linux/zalloc.h> 48 49 static struct dso *machine__kernel_dso(struct machine *machine) 50 { 51 return map__dso(machine->vmlinux_map); 52 } 53 54 static int machine__set_mmap_name(struct machine *machine) 55 { 56 if (machine__is_host(machine)) 57 machine->mmap_name = strdup("[kernel.kallsyms]"); 58 else if (machine__is_default_guest(machine)) 59 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 60 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 61 machine->pid) < 0) 62 machine->mmap_name = NULL; 63 64 return machine->mmap_name ? 0 : -ENOMEM; 65 } 66 67 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 68 { 69 char comm[64]; 70 71 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 72 thread__set_comm(thread, comm, 0); 73 } 74 75 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 76 { 77 int err = -ENOMEM; 78 79 memset(machine, 0, sizeof(*machine)); 80 machine->kmaps = maps__new(machine); 81 if (machine->kmaps == NULL) 82 return -ENOMEM; 83 84 RB_CLEAR_NODE(&machine->rb_node); 85 dsos__init(&machine->dsos); 86 87 threads__init(&machine->threads); 88 89 machine->vdso_info = NULL; 90 machine->env = NULL; 91 92 machine->pid = pid; 93 94 machine->id_hdr_size = 0; 95 machine->kptr_restrict_warned = false; 96 machine->comm_exec = false; 97 machine->kernel_start = 0; 98 machine->vmlinux_map = NULL; 99 /* There is no initial context switch in, so we start at 1. */ 100 machine->parallelism = 1; 101 102 machine->root_dir = strdup(root_dir); 103 if (machine->root_dir == NULL) 104 goto out; 105 106 if (machine__set_mmap_name(machine)) 107 goto out; 108 109 if (pid != HOST_KERNEL_ID) { 110 struct thread *thread = machine__findnew_thread(machine, -1, 111 pid); 112 113 if (thread == NULL) 114 goto out; 115 116 thread__set_guest_comm(thread, pid); 117 thread__put(thread); 118 } 119 120 machine->current_tid = NULL; 121 err = 0; 122 123 out: 124 if (err) { 125 zfree(&machine->kmaps); 126 zfree(&machine->root_dir); 127 zfree(&machine->mmap_name); 128 } 129 return 0; 130 } 131 132 static struct machine *__machine__new_host(struct perf_env *host_env, bool kernel_maps) 133 { 134 struct machine *machine = malloc(sizeof(*machine)); 135 136 if (!machine) 137 return NULL; 138 139 machine__init(machine, "", HOST_KERNEL_ID); 140 141 if (kernel_maps && machine__create_kernel_maps(machine) < 0) { 142 free(machine); 143 return NULL; 144 } 145 machine->env = host_env; 146 return machine; 147 } 148 149 struct machine *machine__new_host(struct perf_env *host_env) 150 { 151 return __machine__new_host(host_env, /*kernel_maps=*/true); 152 } 153 154 static int mmap_handler(const struct perf_tool *tool __maybe_unused, 155 union perf_event *event, 156 struct perf_sample *sample, 157 struct machine *machine) 158 { 159 return machine__process_mmap2_event(machine, event, sample); 160 } 161 162 static int machine__init_live(struct machine *machine, pid_t pid) 163 { 164 union perf_event event; 165 166 memset(&event, 0, sizeof(event)); 167 return perf_event__synthesize_mmap_events(NULL, &event, pid, pid, 168 mmap_handler, machine, true); 169 } 170 171 struct machine *machine__new_live(struct perf_env *host_env, bool kernel_maps, pid_t pid) 172 { 173 struct machine *machine = __machine__new_host(host_env, kernel_maps); 174 175 if (!machine) 176 return NULL; 177 178 if (machine__init_live(machine, pid)) { 179 machine__delete(machine); 180 return NULL; 181 } 182 return machine; 183 } 184 185 struct machine *machine__new_kallsyms(struct perf_env *host_env) 186 { 187 struct machine *machine = machine__new_host(host_env); 188 /* 189 * FIXME: 190 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 191 * ask for not using the kcore parsing code, once this one is fixed 192 * to create a map per module. 193 */ 194 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 195 machine__delete(machine); 196 machine = NULL; 197 } 198 199 return machine; 200 } 201 202 void machine__delete_threads(struct machine *machine) 203 { 204 threads__remove_all_threads(&machine->threads); 205 } 206 207 void machine__exit(struct machine *machine) 208 { 209 if (machine == NULL) 210 return; 211 212 machine__destroy_kernel_maps(machine); 213 maps__zput(machine->kmaps); 214 dsos__exit(&machine->dsos); 215 machine__exit_vdso(machine); 216 zfree(&machine->root_dir); 217 zfree(&machine->mmap_name); 218 zfree(&machine->current_tid); 219 zfree(&machine->kallsyms_filename); 220 221 threads__exit(&machine->threads); 222 } 223 224 void machine__delete(struct machine *machine) 225 { 226 if (machine) { 227 machine__exit(machine); 228 free(machine); 229 } 230 } 231 232 void machines__init(struct machines *machines) 233 { 234 machine__init(&machines->host, "", HOST_KERNEL_ID); 235 machines->guests = RB_ROOT_CACHED; 236 } 237 238 void machines__exit(struct machines *machines) 239 { 240 machine__exit(&machines->host); 241 /* XXX exit guest */ 242 } 243 244 struct machine *machines__add(struct machines *machines, pid_t pid, 245 const char *root_dir) 246 { 247 struct rb_node **p = &machines->guests.rb_root.rb_node; 248 struct rb_node *parent = NULL; 249 struct machine *pos, *machine = malloc(sizeof(*machine)); 250 bool leftmost = true; 251 252 if (machine == NULL) 253 return NULL; 254 255 if (machine__init(machine, root_dir, pid) != 0) { 256 free(machine); 257 return NULL; 258 } 259 260 while (*p != NULL) { 261 parent = *p; 262 pos = rb_entry(parent, struct machine, rb_node); 263 if (pid < pos->pid) 264 p = &(*p)->rb_left; 265 else { 266 p = &(*p)->rb_right; 267 leftmost = false; 268 } 269 } 270 271 rb_link_node(&machine->rb_node, parent, p); 272 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 273 274 machine->machines = machines; 275 276 return machine; 277 } 278 279 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 280 { 281 struct rb_node *nd; 282 283 machines->host.comm_exec = comm_exec; 284 285 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 286 struct machine *machine = rb_entry(nd, struct machine, rb_node); 287 288 machine->comm_exec = comm_exec; 289 } 290 } 291 292 struct machine *machines__find(struct machines *machines, pid_t pid) 293 { 294 struct rb_node **p = &machines->guests.rb_root.rb_node; 295 struct rb_node *parent = NULL; 296 struct machine *machine; 297 struct machine *default_machine = NULL; 298 299 if (pid == HOST_KERNEL_ID) 300 return &machines->host; 301 302 while (*p != NULL) { 303 parent = *p; 304 machine = rb_entry(parent, struct machine, rb_node); 305 if (pid < machine->pid) 306 p = &(*p)->rb_left; 307 else if (pid > machine->pid) 308 p = &(*p)->rb_right; 309 else 310 return machine; 311 if (!machine->pid) 312 default_machine = machine; 313 } 314 315 return default_machine; 316 } 317 318 struct machine *machines__findnew(struct machines *machines, pid_t pid) 319 { 320 char path[PATH_MAX]; 321 const char *root_dir = ""; 322 struct machine *machine = machines__find(machines, pid); 323 324 if (machine && (machine->pid == pid)) 325 goto out; 326 327 if ((pid != HOST_KERNEL_ID) && 328 (pid != DEFAULT_GUEST_KERNEL_ID) && 329 (symbol_conf.guestmount)) { 330 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 331 if (access(path, R_OK)) { 332 static struct strlist *seen; 333 334 if (!seen) 335 seen = strlist__new(NULL, NULL); 336 337 if (!strlist__has_entry(seen, path)) { 338 pr_err("Can't access file %s\n", path); 339 strlist__add(seen, path); 340 } 341 machine = NULL; 342 goto out; 343 } 344 root_dir = path; 345 } 346 347 machine = machines__add(machines, pid, root_dir); 348 out: 349 return machine; 350 } 351 352 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 353 { 354 struct machine *machine = machines__find(machines, pid); 355 356 if (!machine) 357 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 358 return machine; 359 } 360 361 /* 362 * A common case for KVM test programs is that the test program acts as the 363 * hypervisor, creating, running and destroying the virtual machine, and 364 * providing the guest object code from its own object code. In this case, 365 * the VM is not running an OS, but only the functions loaded into it by the 366 * hypervisor test program, and conveniently, loaded at the same virtual 367 * addresses. 368 * 369 * Normally to resolve addresses, MMAP events are needed to map addresses 370 * back to the object code and debug symbols for that object code. 371 * 372 * Currently, there is no way to get such mapping information from guests 373 * but, in the scenario described above, the guest has the same mappings 374 * as the hypervisor, so support for that scenario can be achieved. 375 * 376 * To support that, copy the host thread's maps to the guest thread's maps. 377 * Note, we do not discover the guest until we encounter a guest event, 378 * which works well because it is not until then that we know that the host 379 * thread's maps have been set up. 380 * 381 * This function returns the guest thread. Apart from keeping the data 382 * structures sane, using a thread belonging to the guest machine, instead 383 * of the host thread, allows it to have its own comm (refer 384 * thread__set_guest_comm()). 385 */ 386 static struct thread *findnew_guest_code(struct machine *machine, 387 struct machine *host_machine, 388 pid_t pid) 389 { 390 struct thread *host_thread; 391 struct thread *thread; 392 int err; 393 394 if (!machine) 395 return NULL; 396 397 thread = machine__findnew_thread(machine, -1, pid); 398 if (!thread) 399 return NULL; 400 401 /* Assume maps are set up if there are any */ 402 if (!maps__empty(thread__maps(thread))) 403 return thread; 404 405 host_thread = machine__find_thread(host_machine, -1, pid); 406 if (!host_thread) 407 goto out_err; 408 409 thread__set_guest_comm(thread, pid); 410 411 /* 412 * Guest code can be found in hypervisor process at the same address 413 * so copy host maps. 414 */ 415 err = maps__copy_from(thread__maps(thread), thread__maps(host_thread)); 416 thread__put(host_thread); 417 if (err) 418 goto out_err; 419 420 return thread; 421 422 out_err: 423 thread__zput(thread); 424 return NULL; 425 } 426 427 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 428 { 429 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 430 struct machine *machine = machines__findnew(machines, pid); 431 432 return findnew_guest_code(machine, host_machine, pid); 433 } 434 435 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 436 { 437 struct machines *machines = machine->machines; 438 struct machine *host_machine; 439 440 if (!machines) 441 return NULL; 442 443 host_machine = machines__find(machines, HOST_KERNEL_ID); 444 445 return findnew_guest_code(machine, host_machine, pid); 446 } 447 448 void machines__process_guests(struct machines *machines, 449 machine__process_t process, void *data) 450 { 451 struct rb_node *nd; 452 453 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 454 struct machine *pos = rb_entry(nd, struct machine, rb_node); 455 process(pos, data); 456 } 457 } 458 459 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 460 { 461 struct rb_node *node; 462 struct machine *machine; 463 464 machines->host.id_hdr_size = id_hdr_size; 465 466 for (node = rb_first_cached(&machines->guests); node; 467 node = rb_next(node)) { 468 machine = rb_entry(node, struct machine, rb_node); 469 machine->id_hdr_size = id_hdr_size; 470 } 471 472 return; 473 } 474 475 static void machine__update_thread_pid(struct machine *machine, 476 struct thread *th, pid_t pid) 477 { 478 struct thread *leader; 479 480 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1) 481 return; 482 483 thread__set_pid(th, pid); 484 485 if (thread__pid(th) == thread__tid(th)) 486 return; 487 488 leader = machine__findnew_thread(machine, thread__pid(th), thread__pid(th)); 489 if (!leader) 490 goto out_err; 491 492 if (!thread__maps(leader)) 493 thread__set_maps(leader, maps__new(machine)); 494 495 if (!thread__maps(leader)) 496 goto out_err; 497 498 if (thread__maps(th) == thread__maps(leader)) 499 goto out_put; 500 501 if (thread__maps(th)) { 502 /* 503 * Maps are created from MMAP events which provide the pid and 504 * tid. Consequently there never should be any maps on a thread 505 * with an unknown pid. Just print an error if there are. 506 */ 507 if (!maps__empty(thread__maps(th))) 508 pr_err("Discarding thread maps for %d:%d\n", 509 thread__pid(th), thread__tid(th)); 510 maps__put(thread__maps(th)); 511 } 512 513 thread__set_maps(th, maps__get(thread__maps(leader))); 514 out_put: 515 thread__put(leader); 516 return; 517 out_err: 518 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th)); 519 goto out_put; 520 } 521 522 /* 523 * Caller must eventually drop thread->refcnt returned with a successful 524 * lookup/new thread inserted. 525 */ 526 static struct thread *__machine__findnew_thread(struct machine *machine, 527 pid_t pid, 528 pid_t tid, 529 bool create) 530 { 531 struct thread *th = threads__find(&machine->threads, tid); 532 bool created; 533 534 if (th) { 535 machine__update_thread_pid(machine, th, pid); 536 return th; 537 } 538 if (!create) 539 return NULL; 540 541 th = threads__findnew(&machine->threads, pid, tid, &created); 542 if (created) { 543 /* 544 * We have to initialize maps separately after rb tree is 545 * updated. 546 * 547 * The reason is that we call machine__findnew_thread within 548 * thread__init_maps to find the thread leader and that would 549 * screwed the rb tree. 550 */ 551 if (thread__init_maps(th, machine)) { 552 pr_err("Thread init failed thread %d\n", pid); 553 threads__remove(&machine->threads, th); 554 thread__put(th); 555 return NULL; 556 } 557 } else 558 machine__update_thread_pid(machine, th, pid); 559 560 return th; 561 } 562 563 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 564 { 565 return __machine__findnew_thread(machine, pid, tid, /*create=*/true); 566 } 567 568 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 569 pid_t tid) 570 { 571 return __machine__findnew_thread(machine, pid, tid, /*create=*/false); 572 } 573 574 /* 575 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 576 * So here a single thread is created for that, but actually there is a separate 577 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 578 * is only 1. That causes problems for some tools, requiring workarounds. For 579 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 580 */ 581 struct thread *machine__idle_thread(struct machine *machine) 582 { 583 struct thread *thread = machine__findnew_thread(machine, 0, 0); 584 585 if (!thread || thread__set_comm(thread, "swapper", 0) || 586 thread__set_namespaces(thread, 0, NULL)) 587 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 588 589 return thread; 590 } 591 592 struct comm *machine__thread_exec_comm(struct machine *machine, 593 struct thread *thread) 594 { 595 if (machine->comm_exec) 596 return thread__exec_comm(thread); 597 else 598 return thread__comm(thread); 599 } 600 601 int machine__process_comm_event(struct machine *machine, union perf_event *event, 602 struct perf_sample *sample) 603 { 604 struct thread *thread = machine__findnew_thread(machine, 605 event->comm.pid, 606 event->comm.tid); 607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 608 int err = 0; 609 610 if (exec) 611 machine->comm_exec = true; 612 613 if (dump_trace) 614 perf_event__fprintf_comm(event, stdout); 615 616 if (thread == NULL || 617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 619 err = -1; 620 } 621 622 thread__put(thread); 623 624 return err; 625 } 626 627 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 628 union perf_event *event, 629 struct perf_sample *sample __maybe_unused) 630 { 631 struct thread *thread = machine__findnew_thread(machine, 632 event->namespaces.pid, 633 event->namespaces.tid); 634 int err = 0; 635 636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 637 "\nWARNING: kernel seems to support more namespaces than perf" 638 " tool.\nTry updating the perf tool..\n\n"); 639 640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 641 "\nWARNING: perf tool seems to support more namespaces than" 642 " the kernel.\nTry updating the kernel..\n\n"); 643 644 if (dump_trace) 645 perf_event__fprintf_namespaces(event, stdout); 646 647 if (thread == NULL || 648 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 650 err = -1; 651 } 652 653 thread__put(thread); 654 655 return err; 656 } 657 658 int machine__process_cgroup_event(struct machine *machine, 659 union perf_event *event, 660 struct perf_sample *sample __maybe_unused) 661 { 662 struct cgroup *cgrp; 663 664 if (dump_trace) 665 perf_event__fprintf_cgroup(event, stdout); 666 667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 668 if (cgrp == NULL) 669 return -ENOMEM; 670 671 return 0; 672 } 673 674 int machine__process_lost_event(struct machine *machine __maybe_unused, 675 union perf_event *event, struct perf_sample *sample __maybe_unused) 676 { 677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 678 event->lost.id, event->lost.lost); 679 return 0; 680 } 681 682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 683 union perf_event *event, struct perf_sample *sample) 684 { 685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "%s\n", 686 sample->id, event->lost_samples.lost, 687 event->header.misc & PERF_RECORD_MISC_LOST_SAMPLES_BPF ? " (BPF)" : ""); 688 return 0; 689 } 690 691 int machine__process_aux_event(struct machine *machine __maybe_unused, 692 union perf_event *event) 693 { 694 if (dump_trace) 695 perf_event__fprintf_aux(event, stdout); 696 return 0; 697 } 698 699 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 700 union perf_event *event) 701 { 702 if (dump_trace) 703 perf_event__fprintf_itrace_start(event, stdout); 704 return 0; 705 } 706 707 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 708 union perf_event *event) 709 { 710 if (dump_trace) 711 perf_event__fprintf_aux_output_hw_id(event, stdout); 712 return 0; 713 } 714 715 int machine__process_switch_event(struct machine *machine __maybe_unused, 716 union perf_event *event) 717 { 718 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 719 720 if (dump_trace) 721 perf_event__fprintf_switch(event, stdout); 722 machine->parallelism += out ? -1 : 1; 723 return 0; 724 } 725 726 static int machine__process_ksymbol_register(struct machine *machine, 727 union perf_event *event, 728 struct perf_sample *sample __maybe_unused) 729 { 730 struct symbol *sym; 731 struct dso *dso = NULL; 732 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 733 int err = 0; 734 735 if (!map) { 736 dso = dso__new(event->ksymbol.name); 737 738 if (!dso) { 739 err = -ENOMEM; 740 goto out; 741 } 742 dso__set_kernel(dso, DSO_SPACE__KERNEL); 743 map = map__new2(0, dso); 744 if (!map) { 745 err = -ENOMEM; 746 goto out; 747 } 748 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 749 dso__set_binary_type(dso, DSO_BINARY_TYPE__OOL); 750 dso__data(dso)->file_size = event->ksymbol.len; 751 dso__set_loaded(dso); 752 } 753 754 map__set_start(map, event->ksymbol.addr); 755 map__set_end(map, map__start(map) + event->ksymbol.len); 756 err = maps__fixup_overlap_and_insert(machine__kernel_maps(machine), map); 757 if (err) { 758 err = -ENOMEM; 759 goto out; 760 } 761 762 dso__set_loaded(dso); 763 764 if (is_bpf_image(event->ksymbol.name)) { 765 dso__set_binary_type(dso, DSO_BINARY_TYPE__BPF_IMAGE); 766 dso__set_long_name(dso, "", false); 767 } 768 } else { 769 dso = dso__get(map__dso(map)); 770 } 771 772 sym = symbol__new(map__map_ip(map, map__start(map)), 773 event->ksymbol.len, 774 0, 0, event->ksymbol.name); 775 if (!sym) { 776 err = -ENOMEM; 777 goto out; 778 } 779 dso__insert_symbol(dso, sym); 780 out: 781 map__put(map); 782 dso__put(dso); 783 return err; 784 } 785 786 static int machine__process_ksymbol_unregister(struct machine *machine, 787 union perf_event *event, 788 struct perf_sample *sample __maybe_unused) 789 { 790 struct symbol *sym; 791 struct map *map; 792 793 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 794 if (!map) 795 return 0; 796 797 if (!RC_CHK_EQUAL(map, machine->vmlinux_map)) 798 maps__remove(machine__kernel_maps(machine), map); 799 else { 800 struct dso *dso = map__dso(map); 801 802 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map))); 803 if (sym) 804 dso__delete_symbol(dso, sym); 805 } 806 map__put(map); 807 return 0; 808 } 809 810 int machine__process_ksymbol(struct machine *machine __maybe_unused, 811 union perf_event *event, 812 struct perf_sample *sample) 813 { 814 if (dump_trace) 815 perf_event__fprintf_ksymbol(event, stdout); 816 817 /* no need to process non-JIT BPF as it cannot get samples */ 818 if (event->ksymbol.len == 0) 819 return 0; 820 821 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 822 return machine__process_ksymbol_unregister(machine, event, 823 sample); 824 return machine__process_ksymbol_register(machine, event, sample); 825 } 826 827 int machine__process_text_poke(struct machine *machine, union perf_event *event, 828 struct perf_sample *sample __maybe_unused) 829 { 830 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 831 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 832 struct dso *dso = map ? map__dso(map) : NULL; 833 834 if (dump_trace) 835 perf_event__fprintf_text_poke(event, machine, stdout); 836 837 if (!event->text_poke.new_len) 838 goto out; 839 840 if (cpumode != PERF_RECORD_MISC_KERNEL) { 841 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 842 goto out; 843 } 844 845 if (dso) { 846 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 847 int ret; 848 849 /* 850 * Kernel maps might be changed when loading symbols so loading 851 * must be done prior to using kernel maps. 852 */ 853 map__load(map); 854 ret = dso__data_write_cache_addr(dso, map, machine, 855 event->text_poke.addr, 856 new_bytes, 857 event->text_poke.new_len); 858 if (ret != event->text_poke.new_len) 859 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 860 event->text_poke.addr); 861 } else { 862 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 863 event->text_poke.addr); 864 } 865 out: 866 map__put(map); 867 return 0; 868 } 869 870 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 871 const char *filename) 872 { 873 struct map *map = NULL; 874 struct kmod_path m; 875 struct dso *dso; 876 int err; 877 878 if (kmod_path__parse_name(&m, filename)) 879 return NULL; 880 881 dso = dsos__findnew_module_dso(&machine->dsos, machine, &m, filename); 882 if (dso == NULL) 883 goto out; 884 885 map = map__new2(start, dso); 886 if (map == NULL) 887 goto out; 888 889 err = maps__insert(machine__kernel_maps(machine), map); 890 /* If maps__insert failed, return NULL. */ 891 if (err) { 892 map__put(map); 893 map = NULL; 894 } 895 out: 896 /* put the dso here, corresponding to machine__findnew_module_dso */ 897 dso__put(dso); 898 zfree(&m.name); 899 return map; 900 } 901 902 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 903 { 904 struct rb_node *nd; 905 size_t ret = dsos__fprintf(&machines->host.dsos, fp); 906 907 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 908 struct machine *pos = rb_entry(nd, struct machine, rb_node); 909 ret += dsos__fprintf(&pos->dsos, fp); 910 } 911 912 return ret; 913 } 914 915 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 916 bool (skip)(struct dso *dso, int parm), int parm) 917 { 918 return dsos__fprintf_buildid(&m->dsos, fp, skip, parm); 919 } 920 921 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 922 bool (skip)(struct dso *dso, int parm), int parm) 923 { 924 struct rb_node *nd; 925 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 926 927 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 928 struct machine *pos = rb_entry(nd, struct machine, rb_node); 929 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 930 } 931 return ret; 932 } 933 934 struct machine_fprintf_cb_args { 935 FILE *fp; 936 size_t printed; 937 }; 938 939 static int machine_fprintf_cb(struct thread *thread, void *data) 940 { 941 struct machine_fprintf_cb_args *args = data; 942 943 /* TODO: handle fprintf errors. */ 944 args->printed += thread__fprintf(thread, args->fp); 945 return 0; 946 } 947 948 size_t machine__fprintf(struct machine *machine, FILE *fp) 949 { 950 struct machine_fprintf_cb_args args = { 951 .fp = fp, 952 .printed = 0, 953 }; 954 size_t ret = fprintf(fp, "Threads: %zu\n", threads__nr(&machine->threads)); 955 956 machine__for_each_thread(machine, machine_fprintf_cb, &args); 957 return ret + args.printed; 958 } 959 960 static struct dso *machine__get_kernel(struct machine *machine) 961 { 962 const char *vmlinux_name = machine->mmap_name; 963 struct dso *kernel; 964 965 if (machine__is_host(machine)) { 966 if (symbol_conf.vmlinux_name) 967 vmlinux_name = symbol_conf.vmlinux_name; 968 969 kernel = machine__findnew_kernel(machine, vmlinux_name, 970 "[kernel]", DSO_SPACE__KERNEL); 971 } else { 972 if (symbol_conf.default_guest_vmlinux_name) 973 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 974 975 kernel = machine__findnew_kernel(machine, vmlinux_name, 976 "[guest.kernel]", 977 DSO_SPACE__KERNEL_GUEST); 978 } 979 980 if (kernel != NULL && (!dso__has_build_id(kernel))) 981 dso__read_running_kernel_build_id(kernel, machine); 982 983 return kernel; 984 } 985 986 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 987 size_t bufsz) 988 { 989 if (machine__is_default_guest(machine)) 990 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 991 else 992 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 993 } 994 995 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 996 997 /* Figure out the start address of kernel map from /proc/kallsyms. 998 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 999 * symbol_name if it's not that important. 1000 */ 1001 static int machine__get_running_kernel_start(struct machine *machine, 1002 const char **symbol_name, 1003 u64 *start, u64 *end) 1004 { 1005 char filename[PATH_MAX]; 1006 int i, err = -1; 1007 const char *name; 1008 u64 addr = 0; 1009 1010 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1011 1012 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1013 return 0; 1014 1015 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1016 err = kallsyms__get_function_start(filename, name, &addr); 1017 if (!err) 1018 break; 1019 } 1020 1021 if (err) 1022 return -1; 1023 1024 if (symbol_name) 1025 *symbol_name = name; 1026 1027 *start = addr; 1028 1029 err = kallsyms__get_symbol_start(filename, "_edata", &addr); 1030 if (err) 1031 err = kallsyms__get_symbol_start(filename, "_etext", &addr); 1032 if (!err) 1033 *end = addr; 1034 1035 return 0; 1036 } 1037 1038 int machine__create_extra_kernel_map(struct machine *machine, 1039 struct dso *kernel, 1040 struct extra_kernel_map *xm) 1041 { 1042 struct kmap *kmap; 1043 struct map *map; 1044 int err; 1045 1046 map = map__new2(xm->start, kernel); 1047 if (!map) 1048 return -ENOMEM; 1049 1050 map__set_end(map, xm->end); 1051 map__set_pgoff(map, xm->pgoff); 1052 1053 kmap = map__kmap(map); 1054 1055 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1056 1057 err = maps__insert(machine__kernel_maps(machine), map); 1058 1059 if (!err) { 1060 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1061 kmap->name, map__start(map), map__end(map)); 1062 } 1063 1064 map__put(map); 1065 1066 return err; 1067 } 1068 1069 static u64 find_entry_trampoline(struct dso *dso) 1070 { 1071 /* Duplicates are removed so lookup all aliases */ 1072 const char *syms[] = { 1073 "_entry_trampoline", 1074 "__entry_trampoline_start", 1075 "entry_SYSCALL_64_trampoline", 1076 }; 1077 struct symbol *sym = dso__first_symbol(dso); 1078 unsigned int i; 1079 1080 for (; sym; sym = dso__next_symbol(sym)) { 1081 if (sym->binding != STB_GLOBAL) 1082 continue; 1083 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1084 if (!strcmp(sym->name, syms[i])) 1085 return sym->start; 1086 } 1087 } 1088 1089 return 0; 1090 } 1091 1092 /* 1093 * These values can be used for kernels that do not have symbols for the entry 1094 * trampolines in kallsyms. 1095 */ 1096 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1097 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1098 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1099 1100 struct machine__map_x86_64_entry_trampolines_args { 1101 struct maps *kmaps; 1102 bool found; 1103 }; 1104 1105 static int machine__map_x86_64_entry_trampolines_cb(struct map *map, void *data) 1106 { 1107 struct machine__map_x86_64_entry_trampolines_args *args = data; 1108 struct map *dest_map; 1109 struct kmap *kmap = __map__kmap(map); 1110 1111 if (!kmap || !is_entry_trampoline(kmap->name)) 1112 return 0; 1113 1114 dest_map = maps__find(args->kmaps, map__pgoff(map)); 1115 if (RC_CHK_ACCESS(dest_map) != RC_CHK_ACCESS(map)) 1116 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map))); 1117 1118 map__put(dest_map); 1119 args->found = true; 1120 return 0; 1121 } 1122 1123 /* Map x86_64 PTI entry trampolines */ 1124 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1125 struct dso *kernel) 1126 { 1127 struct machine__map_x86_64_entry_trampolines_args args = { 1128 .kmaps = machine__kernel_maps(machine), 1129 .found = false, 1130 }; 1131 int nr_cpus_avail, cpu; 1132 u64 pgoff; 1133 1134 /* 1135 * In the vmlinux case, pgoff is a virtual address which must now be 1136 * mapped to a vmlinux offset. 1137 */ 1138 maps__for_each_map(args.kmaps, machine__map_x86_64_entry_trampolines_cb, &args); 1139 1140 if (args.found || machine->trampolines_mapped) 1141 return 0; 1142 1143 pgoff = find_entry_trampoline(kernel); 1144 if (!pgoff) 1145 return 0; 1146 1147 nr_cpus_avail = machine__nr_cpus_avail(machine); 1148 1149 /* Add a 1 page map for each CPU's entry trampoline */ 1150 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1151 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1152 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1153 X86_64_ENTRY_TRAMPOLINE; 1154 struct extra_kernel_map xm = { 1155 .start = va, 1156 .end = va + page_size, 1157 .pgoff = pgoff, 1158 }; 1159 1160 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1161 1162 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1163 return -1; 1164 } 1165 1166 machine->trampolines_mapped = nr_cpus_avail; 1167 1168 return 0; 1169 } 1170 1171 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1172 struct dso *kernel __maybe_unused) 1173 { 1174 return 0; 1175 } 1176 1177 static int 1178 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1179 { 1180 /* In case of renewal the kernel map, destroy previous one */ 1181 machine__destroy_kernel_maps(machine); 1182 1183 map__put(machine->vmlinux_map); 1184 machine->vmlinux_map = map__new2(0, kernel); 1185 if (machine->vmlinux_map == NULL) 1186 return -ENOMEM; 1187 1188 map__set_mapping_type(machine->vmlinux_map, MAPPING_TYPE__IDENTITY); 1189 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1190 } 1191 1192 void machine__destroy_kernel_maps(struct machine *machine) 1193 { 1194 struct kmap *kmap; 1195 struct map *map = machine__kernel_map(machine); 1196 1197 if (map == NULL) 1198 return; 1199 1200 kmap = map__kmap(map); 1201 maps__remove(machine__kernel_maps(machine), map); 1202 if (kmap && kmap->ref_reloc_sym) { 1203 zfree((char **)&kmap->ref_reloc_sym->name); 1204 zfree(&kmap->ref_reloc_sym); 1205 } 1206 1207 map__zput(machine->vmlinux_map); 1208 } 1209 1210 int machines__create_guest_kernel_maps(struct machines *machines) 1211 { 1212 int ret = 0; 1213 struct dirent **namelist = NULL; 1214 int i, items = 0; 1215 char path[PATH_MAX]; 1216 pid_t pid; 1217 char *endp; 1218 1219 if (symbol_conf.default_guest_vmlinux_name || 1220 symbol_conf.default_guest_modules || 1221 symbol_conf.default_guest_kallsyms) { 1222 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1223 } 1224 1225 if (symbol_conf.guestmount) { 1226 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1227 if (items <= 0) 1228 return -ENOENT; 1229 for (i = 0; i < items; i++) { 1230 if (!isdigit(namelist[i]->d_name[0])) { 1231 /* Filter out . and .. */ 1232 continue; 1233 } 1234 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1235 if ((*endp != '\0') || 1236 (endp == namelist[i]->d_name) || 1237 (errno == ERANGE)) { 1238 pr_debug("invalid directory (%s). Skipping.\n", 1239 namelist[i]->d_name); 1240 continue; 1241 } 1242 sprintf(path, "%s/%s/proc/kallsyms", 1243 symbol_conf.guestmount, 1244 namelist[i]->d_name); 1245 ret = access(path, R_OK); 1246 if (ret) { 1247 pr_debug("Can't access file %s\n", path); 1248 goto failure; 1249 } 1250 machines__create_kernel_maps(machines, pid); 1251 } 1252 failure: 1253 free(namelist); 1254 } 1255 1256 return ret; 1257 } 1258 1259 void machines__destroy_kernel_maps(struct machines *machines) 1260 { 1261 struct rb_node *next = rb_first_cached(&machines->guests); 1262 1263 machine__destroy_kernel_maps(&machines->host); 1264 1265 while (next) { 1266 struct machine *pos = rb_entry(next, struct machine, rb_node); 1267 1268 next = rb_next(&pos->rb_node); 1269 rb_erase_cached(&pos->rb_node, &machines->guests); 1270 machine__delete(pos); 1271 } 1272 } 1273 1274 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1275 { 1276 struct machine *machine = machines__findnew(machines, pid); 1277 1278 if (machine == NULL) 1279 return -1; 1280 1281 return machine__create_kernel_maps(machine); 1282 } 1283 1284 int machine__load_kallsyms(struct machine *machine, const char *filename) 1285 { 1286 struct map *map = machine__kernel_map(machine); 1287 struct dso *dso = map__dso(map); 1288 int ret = __dso__load_kallsyms(dso, filename, map, true); 1289 1290 if (ret > 0) { 1291 dso__set_loaded(dso); 1292 /* 1293 * Since /proc/kallsyms will have multiple sessions for the 1294 * kernel, with modules between them, fixup the end of all 1295 * sections. 1296 */ 1297 maps__fixup_end(machine__kernel_maps(machine)); 1298 } 1299 1300 return ret; 1301 } 1302 1303 int machine__load_vmlinux_path(struct machine *machine) 1304 { 1305 struct map *map = machine__kernel_map(machine); 1306 struct dso *dso = map__dso(map); 1307 int ret = dso__load_vmlinux_path(dso, map); 1308 1309 if (ret > 0) 1310 dso__set_loaded(dso); 1311 1312 return ret; 1313 } 1314 1315 static char *get_kernel_version(const char *root_dir) 1316 { 1317 char version[PATH_MAX]; 1318 FILE *file; 1319 char *name, *tmp; 1320 const char *prefix = "Linux version "; 1321 1322 sprintf(version, "%s/proc/version", root_dir); 1323 file = fopen(version, "r"); 1324 if (!file) 1325 return NULL; 1326 1327 tmp = fgets(version, sizeof(version), file); 1328 fclose(file); 1329 if (!tmp) 1330 return NULL; 1331 1332 name = strstr(version, prefix); 1333 if (!name) 1334 return NULL; 1335 name += strlen(prefix); 1336 tmp = strchr(name, ' '); 1337 if (tmp) 1338 *tmp = '\0'; 1339 1340 return strdup(name); 1341 } 1342 1343 static bool is_kmod_dso(struct dso *dso) 1344 { 1345 return dso__symtab_type(dso) == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1346 dso__symtab_type(dso) == DSO_BINARY_TYPE__GUEST_KMODULE; 1347 } 1348 1349 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1350 { 1351 char *long_name; 1352 struct dso *dso; 1353 struct map *map = maps__find_by_name(maps, m->name); 1354 1355 if (map == NULL) 1356 return 0; 1357 1358 long_name = strdup(path); 1359 if (long_name == NULL) { 1360 map__put(map); 1361 return -ENOMEM; 1362 } 1363 1364 dso = map__dso(map); 1365 dso__set_long_name(dso, long_name, true); 1366 dso__kernel_module_get_build_id(dso, ""); 1367 1368 /* 1369 * Full name could reveal us kmod compression, so 1370 * we need to update the symtab_type if needed. 1371 */ 1372 if (m->comp && is_kmod_dso(dso)) { 1373 dso__set_symtab_type(dso, dso__symtab_type(dso)+1); 1374 dso__set_comp(dso, m->comp); 1375 } 1376 map__put(map); 1377 return 0; 1378 } 1379 1380 static int maps__set_modules_path_dir(struct maps *maps, char *path, size_t path_size, int depth) 1381 { 1382 struct io_dirent64 *dent; 1383 struct io_dir iod; 1384 size_t root_len = strlen(path); 1385 int ret = 0; 1386 1387 io_dir__init(&iod, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY)); 1388 if (iod.dirfd < 0) { 1389 pr_debug("%s: cannot open %s dir\n", __func__, path); 1390 return -1; 1391 } 1392 /* Bounds check, should never happen. */ 1393 if (root_len >= path_size) 1394 return -1; 1395 path[root_len++] = '/'; 1396 while ((dent = io_dir__readdir(&iod)) != NULL) { 1397 if (io_dir__is_dir(&iod, dent)) { 1398 if (!strcmp(dent->d_name, ".") || 1399 !strcmp(dent->d_name, "..")) 1400 continue; 1401 1402 /* Do not follow top-level source and build symlinks */ 1403 if (depth == 0) { 1404 if (!strcmp(dent->d_name, "source") || 1405 !strcmp(dent->d_name, "build")) 1406 continue; 1407 } 1408 1409 /* Bounds check, should never happen. */ 1410 if (root_len + strlen(dent->d_name) >= path_size) 1411 continue; 1412 1413 strcpy(path + root_len, dent->d_name); 1414 ret = maps__set_modules_path_dir(maps, path, path_size, depth + 1); 1415 if (ret < 0) 1416 goto out; 1417 } else { 1418 struct kmod_path m; 1419 1420 ret = kmod_path__parse_name(&m, dent->d_name); 1421 if (ret) 1422 goto out; 1423 1424 if (m.kmod) { 1425 /* Bounds check, should never happen. */ 1426 if (root_len + strlen(dent->d_name) < path_size) { 1427 strcpy(path + root_len, dent->d_name); 1428 ret = maps__set_module_path(maps, path, &m); 1429 1430 } 1431 } 1432 zfree(&m.name); 1433 1434 if (ret) 1435 goto out; 1436 } 1437 } 1438 1439 out: 1440 close(iod.dirfd); 1441 return ret; 1442 } 1443 1444 static int machine__set_modules_path(struct machine *machine) 1445 { 1446 char *version; 1447 char modules_path[PATH_MAX]; 1448 1449 version = get_kernel_version(machine->root_dir); 1450 if (!version) 1451 return -1; 1452 1453 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1454 machine->root_dir, version); 1455 free(version); 1456 1457 return maps__set_modules_path_dir(machine__kernel_maps(machine), 1458 modules_path, sizeof(modules_path), 0); 1459 } 1460 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1461 u64 *size __maybe_unused, 1462 const char *name __maybe_unused) 1463 { 1464 return 0; 1465 } 1466 1467 static int machine__create_module(void *arg, const char *name, u64 start, 1468 u64 size) 1469 { 1470 struct machine *machine = arg; 1471 struct map *map; 1472 1473 if (arch__fix_module_text_start(&start, &size, name) < 0) 1474 return -1; 1475 1476 map = machine__addnew_module_map(machine, start, name); 1477 if (map == NULL) 1478 return -1; 1479 map__set_end(map, start + size); 1480 1481 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir); 1482 map__put(map); 1483 return 0; 1484 } 1485 1486 static int machine__create_modules(struct machine *machine) 1487 { 1488 const char *modules; 1489 char path[PATH_MAX]; 1490 1491 if (machine__is_default_guest(machine)) { 1492 modules = symbol_conf.default_guest_modules; 1493 } else { 1494 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1495 modules = path; 1496 } 1497 1498 if (symbol__restricted_filename(modules, "/proc/modules")) 1499 return -1; 1500 1501 if (modules__parse(modules, machine, machine__create_module)) 1502 return -1; 1503 1504 if (!machine__set_modules_path(machine)) 1505 return 0; 1506 1507 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1508 1509 return 0; 1510 } 1511 1512 static void machine__set_kernel_mmap(struct machine *machine, 1513 u64 start, u64 end) 1514 { 1515 map__set_start(machine->vmlinux_map, start); 1516 map__set_end(machine->vmlinux_map, end); 1517 /* 1518 * Be a bit paranoid here, some perf.data file came with 1519 * a zero sized synthesized MMAP event for the kernel. 1520 */ 1521 if (start == 0 && end == 0) 1522 map__set_end(machine->vmlinux_map, ~0ULL); 1523 } 1524 1525 static int machine__update_kernel_mmap(struct machine *machine, 1526 u64 start, u64 end) 1527 { 1528 struct map *orig, *updated; 1529 int err; 1530 1531 orig = machine->vmlinux_map; 1532 updated = map__get(orig); 1533 1534 machine->vmlinux_map = updated; 1535 maps__remove(machine__kernel_maps(machine), orig); 1536 machine__set_kernel_mmap(machine, start, end); 1537 err = maps__insert(machine__kernel_maps(machine), updated); 1538 map__put(orig); 1539 1540 return err; 1541 } 1542 1543 int machine__create_kernel_maps(struct machine *machine) 1544 { 1545 struct dso *kernel = machine__get_kernel(machine); 1546 const char *name = NULL; 1547 u64 start = 0, end = ~0ULL; 1548 int ret; 1549 1550 if (kernel == NULL) 1551 return -1; 1552 1553 ret = __machine__create_kernel_maps(machine, kernel); 1554 if (ret < 0) 1555 goto out_put; 1556 1557 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1558 if (machine__is_host(machine)) 1559 pr_debug("Problems creating module maps, " 1560 "continuing anyway...\n"); 1561 else 1562 pr_debug("Problems creating module maps for guest %d, " 1563 "continuing anyway...\n", machine->pid); 1564 } 1565 1566 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1567 if (name && 1568 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1569 machine__destroy_kernel_maps(machine); 1570 ret = -1; 1571 goto out_put; 1572 } 1573 1574 /* 1575 * we have a real start address now, so re-order the kmaps 1576 * assume it's the last in the kmaps 1577 */ 1578 ret = machine__update_kernel_mmap(machine, start, end); 1579 if (ret < 0) 1580 goto out_put; 1581 } 1582 1583 if (machine__create_extra_kernel_maps(machine, kernel)) 1584 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1585 1586 if (end == ~0ULL) { 1587 /* update end address of the kernel map using adjacent module address */ 1588 struct map *next = maps__find_next_entry(machine__kernel_maps(machine), 1589 machine__kernel_map(machine)); 1590 1591 if (next) { 1592 machine__set_kernel_mmap(machine, start, map__start(next)); 1593 map__put(next); 1594 } 1595 } 1596 1597 maps__fixup_end(machine__kernel_maps(machine)); 1598 1599 out_put: 1600 dso__put(kernel); 1601 return ret; 1602 } 1603 1604 static int machine__uses_kcore_cb(struct dso *dso, void *data __maybe_unused) 1605 { 1606 return dso__is_kcore(dso) ? 1 : 0; 1607 } 1608 1609 static bool machine__uses_kcore(struct machine *machine) 1610 { 1611 return dsos__for_each_dso(&machine->dsos, machine__uses_kcore_cb, NULL) != 0 ? true : false; 1612 } 1613 1614 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1615 struct extra_kernel_map *xm) 1616 { 1617 return machine__is(machine, "x86_64") && 1618 is_entry_trampoline(xm->name); 1619 } 1620 1621 static int machine__process_extra_kernel_map(struct machine *machine, 1622 struct extra_kernel_map *xm) 1623 { 1624 struct dso *kernel = machine__kernel_dso(machine); 1625 1626 if (kernel == NULL) 1627 return -1; 1628 1629 return machine__create_extra_kernel_map(machine, kernel, xm); 1630 } 1631 1632 static int machine__process_kernel_mmap_event(struct machine *machine, 1633 struct extra_kernel_map *xm, 1634 struct build_id *bid) 1635 { 1636 enum dso_space_type dso_space; 1637 bool is_kernel_mmap; 1638 const char *mmap_name = machine->mmap_name; 1639 1640 /* If we have maps from kcore then we do not need or want any others */ 1641 if (machine__uses_kcore(machine)) 1642 return 0; 1643 1644 if (machine__is_host(machine)) 1645 dso_space = DSO_SPACE__KERNEL; 1646 else 1647 dso_space = DSO_SPACE__KERNEL_GUEST; 1648 1649 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1650 if (!is_kernel_mmap && !machine__is_host(machine)) { 1651 /* 1652 * If the event was recorded inside the guest and injected into 1653 * the host perf.data file, then it will match a host mmap_name, 1654 * so try that - see machine__set_mmap_name(). 1655 */ 1656 mmap_name = "[kernel.kallsyms]"; 1657 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1658 } 1659 if (xm->name[0] == '/' || 1660 (!is_kernel_mmap && xm->name[0] == '[')) { 1661 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name); 1662 1663 if (map == NULL) 1664 goto out_problem; 1665 1666 map__set_end(map, map__start(map) + xm->end - xm->start); 1667 1668 if (build_id__is_defined(bid)) 1669 dso__set_build_id(map__dso(map), bid); 1670 1671 map__put(map); 1672 } else if (is_kernel_mmap) { 1673 const char *symbol_name = xm->name + strlen(mmap_name); 1674 /* 1675 * Should be there already, from the build-id table in 1676 * the header. 1677 */ 1678 struct dso *kernel = dsos__find_kernel_dso(&machine->dsos); 1679 1680 if (kernel == NULL) 1681 kernel = machine__findnew_dso(machine, machine->mmap_name); 1682 if (kernel == NULL) 1683 goto out_problem; 1684 1685 dso__set_kernel(kernel, dso_space); 1686 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1687 dso__put(kernel); 1688 goto out_problem; 1689 } 1690 1691 if (strstr(dso__long_name(kernel), "vmlinux")) 1692 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1693 1694 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) { 1695 dso__put(kernel); 1696 goto out_problem; 1697 } 1698 1699 if (build_id__is_defined(bid)) 1700 dso__set_build_id(kernel, bid); 1701 1702 /* 1703 * Avoid using a zero address (kptr_restrict) for the ref reloc 1704 * symbol. Effectively having zero here means that at record 1705 * time /proc/sys/kernel/kptr_restrict was non zero. 1706 */ 1707 if (xm->pgoff != 0) { 1708 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1709 symbol_name, 1710 xm->pgoff); 1711 } 1712 1713 if (machine__is_default_guest(machine)) { 1714 /* 1715 * preload dso of guest kernel and modules 1716 */ 1717 dso__load(kernel, machine__kernel_map(machine)); 1718 } 1719 dso__put(kernel); 1720 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1721 return machine__process_extra_kernel_map(machine, xm); 1722 } 1723 return 0; 1724 out_problem: 1725 return -1; 1726 } 1727 1728 int machine__process_mmap2_event(struct machine *machine, 1729 union perf_event *event, 1730 struct perf_sample *sample) 1731 { 1732 struct thread *thread; 1733 struct map *map; 1734 struct dso_id dso_id = dso_id_empty; 1735 int ret = 0; 1736 1737 if (dump_trace) 1738 perf_event__fprintf_mmap2(event, stdout); 1739 1740 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1741 build_id__init(&dso_id.build_id, event->mmap2.build_id, event->mmap2.build_id_size); 1742 } else { 1743 dso_id.maj = event->mmap2.maj; 1744 dso_id.min = event->mmap2.min; 1745 dso_id.ino = event->mmap2.ino; 1746 dso_id.ino_generation = event->mmap2.ino_generation; 1747 dso_id.mmap2_valid = true; 1748 dso_id.mmap2_ino_generation_valid = true; 1749 } 1750 1751 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1752 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1753 struct extra_kernel_map xm = { 1754 .start = event->mmap2.start, 1755 .end = event->mmap2.start + event->mmap2.len, 1756 .pgoff = event->mmap2.pgoff, 1757 }; 1758 1759 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1760 ret = machine__process_kernel_mmap_event(machine, &xm, &dso_id.build_id); 1761 if (ret < 0) 1762 goto out_problem; 1763 return 0; 1764 } 1765 1766 thread = machine__findnew_thread(machine, event->mmap2.pid, 1767 event->mmap2.tid); 1768 if (thread == NULL) 1769 goto out_problem; 1770 1771 map = map__new(machine, event->mmap2.start, 1772 event->mmap2.len, event->mmap2.pgoff, 1773 &dso_id, event->mmap2.prot, 1774 event->mmap2.flags, 1775 event->mmap2.filename, thread); 1776 1777 if (map == NULL) 1778 goto out_problem_map; 1779 1780 ret = thread__insert_map(thread, map); 1781 if (ret) 1782 goto out_problem_insert; 1783 1784 thread__put(thread); 1785 map__put(map); 1786 return 0; 1787 1788 out_problem_insert: 1789 map__put(map); 1790 out_problem_map: 1791 thread__put(thread); 1792 out_problem: 1793 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1794 return 0; 1795 } 1796 1797 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1798 struct perf_sample *sample) 1799 { 1800 struct thread *thread; 1801 struct map *map; 1802 u32 prot = 0; 1803 int ret = 0; 1804 1805 if (dump_trace) 1806 perf_event__fprintf_mmap(event, stdout); 1807 1808 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1809 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1810 struct extra_kernel_map xm = { 1811 .start = event->mmap.start, 1812 .end = event->mmap.start + event->mmap.len, 1813 .pgoff = event->mmap.pgoff, 1814 }; 1815 1816 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1817 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1818 if (ret < 0) 1819 goto out_problem; 1820 return 0; 1821 } 1822 1823 thread = machine__findnew_thread(machine, event->mmap.pid, 1824 event->mmap.tid); 1825 if (thread == NULL) 1826 goto out_problem; 1827 1828 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1829 prot = PROT_EXEC; 1830 1831 map = map__new(machine, event->mmap.start, 1832 event->mmap.len, event->mmap.pgoff, 1833 &dso_id_empty, prot, /*flags=*/0, event->mmap.filename, thread); 1834 1835 if (map == NULL) 1836 goto out_problem_map; 1837 1838 ret = thread__insert_map(thread, map); 1839 if (ret) 1840 goto out_problem_insert; 1841 1842 thread__put(thread); 1843 map__put(map); 1844 return 0; 1845 1846 out_problem_insert: 1847 map__put(map); 1848 out_problem_map: 1849 thread__put(thread); 1850 out_problem: 1851 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1852 return 0; 1853 } 1854 1855 void machine__remove_thread(struct machine *machine, struct thread *th) 1856 { 1857 return threads__remove(&machine->threads, th); 1858 } 1859 1860 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1861 struct perf_sample *sample) 1862 { 1863 struct thread *thread = machine__find_thread(machine, 1864 event->fork.pid, 1865 event->fork.tid); 1866 struct thread *parent = machine__findnew_thread(machine, 1867 event->fork.ppid, 1868 event->fork.ptid); 1869 bool do_maps_clone = true; 1870 int err = 0; 1871 1872 if (dump_trace) 1873 perf_event__fprintf_task(event, stdout); 1874 1875 /* 1876 * There may be an existing thread that is not actually the parent, 1877 * either because we are processing events out of order, or because the 1878 * (fork) event that would have removed the thread was lost. Assume the 1879 * latter case and continue on as best we can. 1880 */ 1881 if (thread__pid(parent) != (pid_t)event->fork.ppid) { 1882 dump_printf("removing erroneous parent thread %d/%d\n", 1883 thread__pid(parent), thread__tid(parent)); 1884 machine__remove_thread(machine, parent); 1885 thread__put(parent); 1886 parent = machine__findnew_thread(machine, event->fork.ppid, 1887 event->fork.ptid); 1888 } 1889 1890 /* if a thread currently exists for the thread id remove it */ 1891 if (thread != NULL) { 1892 machine__remove_thread(machine, thread); 1893 thread__put(thread); 1894 } 1895 1896 thread = machine__findnew_thread(machine, event->fork.pid, 1897 event->fork.tid); 1898 /* 1899 * When synthesizing FORK events, we are trying to create thread 1900 * objects for the already running tasks on the machine. 1901 * 1902 * Normally, for a kernel FORK event, we want to clone the parent's 1903 * maps because that is what the kernel just did. 1904 * 1905 * But when synthesizing, this should not be done. If we do, we end up 1906 * with overlapping maps as we process the synthesized MMAP2 events that 1907 * get delivered shortly thereafter. 1908 * 1909 * Use the FORK event misc flags in an internal way to signal this 1910 * situation, so we can elide the map clone when appropriate. 1911 */ 1912 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1913 do_maps_clone = false; 1914 1915 if (thread == NULL || parent == NULL || 1916 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1917 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1918 err = -1; 1919 } 1920 thread__put(thread); 1921 thread__put(parent); 1922 1923 return err; 1924 } 1925 1926 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1927 struct perf_sample *sample __maybe_unused) 1928 { 1929 struct thread *thread = machine__find_thread(machine, 1930 event->fork.pid, 1931 event->fork.tid); 1932 1933 if (dump_trace) 1934 perf_event__fprintf_task(event, stdout); 1935 1936 /* There is no context switch out before exit, so we decrement here. */ 1937 machine->parallelism--; 1938 if (thread != NULL) { 1939 if (symbol_conf.keep_exited_threads) 1940 thread__set_exited(thread, /*exited=*/true); 1941 else 1942 machine__remove_thread(machine, thread); 1943 } 1944 thread__put(thread); 1945 return 0; 1946 } 1947 1948 int machine__process_event(struct machine *machine, union perf_event *event, 1949 struct perf_sample *sample) 1950 { 1951 int ret; 1952 1953 switch (event->header.type) { 1954 case PERF_RECORD_COMM: 1955 ret = machine__process_comm_event(machine, event, sample); break; 1956 case PERF_RECORD_MMAP: 1957 ret = machine__process_mmap_event(machine, event, sample); break; 1958 case PERF_RECORD_NAMESPACES: 1959 ret = machine__process_namespaces_event(machine, event, sample); break; 1960 case PERF_RECORD_CGROUP: 1961 ret = machine__process_cgroup_event(machine, event, sample); break; 1962 case PERF_RECORD_MMAP2: 1963 ret = machine__process_mmap2_event(machine, event, sample); break; 1964 case PERF_RECORD_FORK: 1965 ret = machine__process_fork_event(machine, event, sample); break; 1966 case PERF_RECORD_EXIT: 1967 ret = machine__process_exit_event(machine, event, sample); break; 1968 case PERF_RECORD_LOST: 1969 ret = machine__process_lost_event(machine, event, sample); break; 1970 case PERF_RECORD_AUX: 1971 ret = machine__process_aux_event(machine, event); break; 1972 case PERF_RECORD_ITRACE_START: 1973 ret = machine__process_itrace_start_event(machine, event); break; 1974 case PERF_RECORD_LOST_SAMPLES: 1975 ret = machine__process_lost_samples_event(machine, event, sample); break; 1976 case PERF_RECORD_SWITCH: 1977 case PERF_RECORD_SWITCH_CPU_WIDE: 1978 ret = machine__process_switch_event(machine, event); break; 1979 case PERF_RECORD_KSYMBOL: 1980 ret = machine__process_ksymbol(machine, event, sample); break; 1981 case PERF_RECORD_BPF_EVENT: 1982 ret = machine__process_bpf(machine, event, sample); break; 1983 case PERF_RECORD_TEXT_POKE: 1984 ret = machine__process_text_poke(machine, event, sample); break; 1985 case PERF_RECORD_AUX_OUTPUT_HW_ID: 1986 ret = machine__process_aux_output_hw_id_event(machine, event); break; 1987 default: 1988 ret = -1; 1989 break; 1990 } 1991 1992 return ret; 1993 } 1994 1995 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1996 { 1997 return regexec(regex, sym->name, 0, NULL, 0) == 0; 1998 } 1999 2000 static void ip__resolve_ams(struct thread *thread, 2001 struct addr_map_symbol *ams, 2002 u64 ip) 2003 { 2004 struct addr_location al; 2005 2006 addr_location__init(&al); 2007 /* 2008 * We cannot use the header.misc hint to determine whether a 2009 * branch stack address is user, kernel, guest, hypervisor. 2010 * Branches may straddle the kernel/user/hypervisor boundaries. 2011 * Thus, we have to try consecutively until we find a match 2012 * or else, the symbol is unknown 2013 */ 2014 thread__find_cpumode_addr_location(thread, ip, /*symbols=*/true, &al); 2015 2016 ams->addr = ip; 2017 ams->al_addr = al.addr; 2018 ams->al_level = al.level; 2019 ams->ms.maps = maps__get(al.maps); 2020 ams->ms.sym = al.sym; 2021 ams->ms.map = map__get(al.map); 2022 ams->phys_addr = 0; 2023 ams->data_page_size = 0; 2024 addr_location__exit(&al); 2025 } 2026 2027 static void ip__resolve_data(struct thread *thread, 2028 u8 m, struct addr_map_symbol *ams, 2029 u64 addr, u64 phys_addr, u64 daddr_page_size) 2030 { 2031 struct addr_location al; 2032 2033 addr_location__init(&al); 2034 2035 thread__find_symbol(thread, m, addr, &al); 2036 2037 ams->addr = addr; 2038 ams->al_addr = al.addr; 2039 ams->al_level = al.level; 2040 ams->ms.maps = maps__get(al.maps); 2041 ams->ms.sym = al.sym; 2042 ams->ms.map = map__get(al.map); 2043 ams->phys_addr = phys_addr; 2044 ams->data_page_size = daddr_page_size; 2045 addr_location__exit(&al); 2046 } 2047 2048 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2049 struct addr_location *al) 2050 { 2051 struct mem_info *mi = mem_info__new(); 2052 2053 if (!mi) 2054 return NULL; 2055 2056 ip__resolve_ams(al->thread, mem_info__iaddr(mi), sample->ip); 2057 ip__resolve_data(al->thread, al->cpumode, mem_info__daddr(mi), 2058 sample->addr, sample->phys_addr, 2059 sample->data_page_size); 2060 mem_info__data_src(mi)->val = sample->data_src; 2061 2062 return mi; 2063 } 2064 2065 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2066 { 2067 struct map *map = ms->map; 2068 char *srcline = NULL; 2069 struct dso *dso; 2070 2071 if (!map || callchain_param.key == CCKEY_FUNCTION) 2072 return srcline; 2073 2074 dso = map__dso(map); 2075 srcline = srcline__tree_find(dso__srclines(dso), ip); 2076 if (!srcline) { 2077 bool show_sym = false; 2078 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2079 2080 srcline = get_srcline(dso, map__rip_2objdump(map, ip), 2081 ms->sym, show_sym, show_addr, ip); 2082 srcline__tree_insert(dso__srclines(dso), ip, srcline); 2083 } 2084 2085 return srcline; 2086 } 2087 2088 struct iterations { 2089 int nr_loop_iter; 2090 u64 cycles; 2091 }; 2092 2093 static int add_callchain_ip(struct thread *thread, 2094 struct callchain_cursor *cursor, 2095 struct symbol **parent, 2096 struct addr_location *root_al, 2097 u8 *cpumode, 2098 u64 ip, 2099 bool branch, 2100 struct branch_flags *flags, 2101 struct iterations *iter, 2102 u64 branch_from, 2103 bool symbols) 2104 { 2105 struct map_symbol ms = {}; 2106 struct addr_location al; 2107 int nr_loop_iter = 0, err = 0; 2108 u64 iter_cycles = 0; 2109 const char *srcline = NULL; 2110 2111 addr_location__init(&al); 2112 al.filtered = 0; 2113 al.sym = NULL; 2114 al.srcline = NULL; 2115 if (!cpumode) { 2116 thread__find_cpumode_addr_location(thread, ip, symbols, &al); 2117 } else { 2118 if (ip >= PERF_CONTEXT_MAX) { 2119 switch (ip) { 2120 case PERF_CONTEXT_HV: 2121 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2122 break; 2123 case PERF_CONTEXT_KERNEL: 2124 *cpumode = PERF_RECORD_MISC_KERNEL; 2125 break; 2126 case PERF_CONTEXT_USER: 2127 *cpumode = PERF_RECORD_MISC_USER; 2128 break; 2129 default: 2130 pr_debug("invalid callchain context: " 2131 "%"PRId64"\n", (s64) ip); 2132 /* 2133 * It seems the callchain is corrupted. 2134 * Discard all. 2135 */ 2136 callchain_cursor_reset(cursor); 2137 err = 1; 2138 goto out; 2139 } 2140 goto out; 2141 } 2142 if (symbols) 2143 thread__find_symbol(thread, *cpumode, ip, &al); 2144 else 2145 thread__find_map(thread, *cpumode, ip, &al); 2146 } 2147 2148 if (al.sym != NULL) { 2149 if (perf_hpp_list.parent && !*parent && 2150 symbol__match_regex(al.sym, &parent_regex)) 2151 *parent = al.sym; 2152 else if (have_ignore_callees && root_al && 2153 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2154 /* Treat this symbol as the root, 2155 forgetting its callees. */ 2156 addr_location__copy(root_al, &al); 2157 callchain_cursor_reset(cursor); 2158 } 2159 } 2160 2161 if (symbol_conf.hide_unresolved && al.sym == NULL) 2162 goto out; 2163 2164 if (iter) { 2165 nr_loop_iter = iter->nr_loop_iter; 2166 iter_cycles = iter->cycles; 2167 } 2168 2169 ms.maps = maps__get(al.maps); 2170 ms.map = map__get(al.map); 2171 ms.sym = al.sym; 2172 srcline = callchain_srcline(&ms, al.addr); 2173 err = callchain_cursor_append(cursor, ip, &ms, 2174 branch, flags, nr_loop_iter, 2175 iter_cycles, branch_from, srcline); 2176 out: 2177 addr_location__exit(&al); 2178 map_symbol__exit(&ms); 2179 return err; 2180 } 2181 2182 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2183 struct addr_location *al) 2184 { 2185 unsigned int i; 2186 const struct branch_stack *bs = sample->branch_stack; 2187 struct branch_entry *entries = perf_sample__branch_entries(sample); 2188 u64 *branch_stack_cntr = sample->branch_stack_cntr; 2189 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2190 2191 if (!bi) 2192 return NULL; 2193 2194 for (i = 0; i < bs->nr; i++) { 2195 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2196 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2197 bi[i].flags = entries[i].flags; 2198 if (branch_stack_cntr) 2199 bi[i].branch_stack_cntr = branch_stack_cntr[i]; 2200 } 2201 return bi; 2202 } 2203 2204 static void save_iterations(struct iterations *iter, 2205 struct branch_entry *be, int nr) 2206 { 2207 int i; 2208 2209 iter->nr_loop_iter++; 2210 iter->cycles = 0; 2211 2212 for (i = 0; i < nr; i++) 2213 iter->cycles += be[i].flags.cycles; 2214 } 2215 2216 #define CHASHSZ 127 2217 #define CHASHBITS 7 2218 #define NO_ENTRY 0xff 2219 2220 #define PERF_MAX_BRANCH_DEPTH 127 2221 2222 /* Remove loops. */ 2223 static int remove_loops(struct branch_entry *l, int nr, 2224 struct iterations *iter) 2225 { 2226 int i, j, off; 2227 unsigned char chash[CHASHSZ]; 2228 2229 memset(chash, NO_ENTRY, sizeof(chash)); 2230 2231 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2232 2233 for (i = 0; i < nr; i++) { 2234 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2235 2236 /* no collision handling for now */ 2237 if (chash[h] == NO_ENTRY) { 2238 chash[h] = i; 2239 } else if (l[chash[h]].from == l[i].from) { 2240 bool is_loop = true; 2241 /* check if it is a real loop */ 2242 off = 0; 2243 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2244 if (l[j].from != l[i + off].from) { 2245 is_loop = false; 2246 break; 2247 } 2248 if (is_loop) { 2249 j = nr - (i + off); 2250 if (j > 0) { 2251 save_iterations(iter + i + off, 2252 l + i, off); 2253 2254 memmove(iter + i, iter + i + off, 2255 j * sizeof(*iter)); 2256 2257 memmove(l + i, l + i + off, 2258 j * sizeof(*l)); 2259 } 2260 2261 nr -= off; 2262 } 2263 } 2264 } 2265 return nr; 2266 } 2267 2268 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2269 struct callchain_cursor *cursor, 2270 struct perf_sample *sample, 2271 struct symbol **parent, 2272 struct addr_location *root_al, 2273 u64 branch_from, 2274 bool callee, int end, 2275 bool symbols) 2276 { 2277 struct ip_callchain *chain = sample->callchain; 2278 u8 cpumode = PERF_RECORD_MISC_USER; 2279 int err, i; 2280 2281 if (callee) { 2282 for (i = 0; i < end + 1; i++) { 2283 err = add_callchain_ip(thread, cursor, parent, 2284 root_al, &cpumode, chain->ips[i], 2285 false, NULL, NULL, branch_from, 2286 symbols); 2287 if (err) 2288 return err; 2289 } 2290 return 0; 2291 } 2292 2293 for (i = end; i >= 0; i--) { 2294 err = add_callchain_ip(thread, cursor, parent, 2295 root_al, &cpumode, chain->ips[i], 2296 false, NULL, NULL, branch_from, 2297 symbols); 2298 if (err) 2299 return err; 2300 } 2301 2302 return 0; 2303 } 2304 2305 static void save_lbr_cursor_node(struct thread *thread, 2306 struct callchain_cursor *cursor, 2307 int idx) 2308 { 2309 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2310 2311 if (!lbr_stitch) 2312 return; 2313 2314 if (cursor->pos == cursor->nr) { 2315 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2316 return; 2317 } 2318 2319 if (!cursor->curr) 2320 cursor->curr = cursor->first; 2321 else 2322 cursor->curr = cursor->curr->next; 2323 2324 map_symbol__exit(&lbr_stitch->prev_lbr_cursor[idx].ms); 2325 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2326 sizeof(struct callchain_cursor_node)); 2327 lbr_stitch->prev_lbr_cursor[idx].ms.maps = maps__get(cursor->curr->ms.maps); 2328 lbr_stitch->prev_lbr_cursor[idx].ms.map = map__get(cursor->curr->ms.map); 2329 2330 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2331 cursor->pos++; 2332 } 2333 2334 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2335 struct callchain_cursor *cursor, 2336 struct perf_sample *sample, 2337 struct symbol **parent, 2338 struct addr_location *root_al, 2339 u64 *branch_from, 2340 bool callee, 2341 bool symbols) 2342 { 2343 struct branch_stack *lbr_stack = sample->branch_stack; 2344 struct branch_entry *entries = perf_sample__branch_entries(sample); 2345 u8 cpumode = PERF_RECORD_MISC_USER; 2346 int lbr_nr = lbr_stack->nr; 2347 struct branch_flags *flags; 2348 int err, i; 2349 u64 ip; 2350 2351 /* 2352 * The curr and pos are not used in writing session. They are cleared 2353 * in callchain_cursor_commit() when the writing session is closed. 2354 * Using curr and pos to track the current cursor node. 2355 */ 2356 if (thread__lbr_stitch(thread)) { 2357 cursor->curr = NULL; 2358 cursor->pos = cursor->nr; 2359 if (cursor->nr) { 2360 cursor->curr = cursor->first; 2361 for (i = 0; i < (int)(cursor->nr - 1); i++) 2362 cursor->curr = cursor->curr->next; 2363 } 2364 } 2365 2366 if (callee) { 2367 /* Add LBR ip from first entries.to */ 2368 ip = entries[0].to; 2369 flags = &entries[0].flags; 2370 *branch_from = entries[0].from; 2371 err = add_callchain_ip(thread, cursor, parent, 2372 root_al, &cpumode, ip, 2373 true, flags, NULL, 2374 *branch_from, symbols); 2375 if (err) 2376 return err; 2377 2378 /* 2379 * The number of cursor node increases. 2380 * Move the current cursor node. 2381 * But does not need to save current cursor node for entry 0. 2382 * It's impossible to stitch the whole LBRs of previous sample. 2383 */ 2384 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) { 2385 if (!cursor->curr) 2386 cursor->curr = cursor->first; 2387 else 2388 cursor->curr = cursor->curr->next; 2389 cursor->pos++; 2390 } 2391 2392 /* Add LBR ip from entries.from one by one. */ 2393 for (i = 0; i < lbr_nr; i++) { 2394 ip = entries[i].from; 2395 flags = &entries[i].flags; 2396 err = add_callchain_ip(thread, cursor, parent, 2397 root_al, &cpumode, ip, 2398 true, flags, NULL, 2399 *branch_from, symbols); 2400 if (err) 2401 return err; 2402 save_lbr_cursor_node(thread, cursor, i); 2403 } 2404 return 0; 2405 } 2406 2407 /* Add LBR ip from entries.from one by one. */ 2408 for (i = lbr_nr - 1; i >= 0; i--) { 2409 ip = entries[i].from; 2410 flags = &entries[i].flags; 2411 err = add_callchain_ip(thread, cursor, parent, 2412 root_al, &cpumode, ip, 2413 true, flags, NULL, 2414 *branch_from, symbols); 2415 if (err) 2416 return err; 2417 save_lbr_cursor_node(thread, cursor, i); 2418 } 2419 2420 if (lbr_nr > 0) { 2421 /* Add LBR ip from first entries.to */ 2422 ip = entries[0].to; 2423 flags = &entries[0].flags; 2424 *branch_from = entries[0].from; 2425 err = add_callchain_ip(thread, cursor, parent, 2426 root_al, &cpumode, ip, 2427 true, flags, NULL, 2428 *branch_from, symbols); 2429 if (err) 2430 return err; 2431 } 2432 2433 return 0; 2434 } 2435 2436 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2437 struct callchain_cursor *cursor) 2438 { 2439 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2440 struct callchain_cursor_node *cnode; 2441 struct stitch_list *stitch_node; 2442 int err; 2443 2444 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2445 cnode = &stitch_node->cursor; 2446 2447 err = callchain_cursor_append(cursor, cnode->ip, 2448 &cnode->ms, 2449 cnode->branch, 2450 &cnode->branch_flags, 2451 cnode->nr_loop_iter, 2452 cnode->iter_cycles, 2453 cnode->branch_from, 2454 cnode->srcline); 2455 if (err) 2456 return err; 2457 } 2458 return 0; 2459 } 2460 2461 static struct stitch_list *get_stitch_node(struct thread *thread) 2462 { 2463 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2464 struct stitch_list *stitch_node; 2465 2466 if (!list_empty(&lbr_stitch->free_lists)) { 2467 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2468 struct stitch_list, node); 2469 list_del(&stitch_node->node); 2470 2471 return stitch_node; 2472 } 2473 2474 return malloc(sizeof(struct stitch_list)); 2475 } 2476 2477 static bool has_stitched_lbr(struct thread *thread, 2478 struct perf_sample *cur, 2479 struct perf_sample *prev, 2480 unsigned int max_lbr, 2481 bool callee) 2482 { 2483 struct branch_stack *cur_stack = cur->branch_stack; 2484 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2485 struct branch_stack *prev_stack = prev->branch_stack; 2486 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2487 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread); 2488 int i, j, nr_identical_branches = 0; 2489 struct stitch_list *stitch_node; 2490 u64 cur_base, distance; 2491 2492 if (!cur_stack || !prev_stack) 2493 return false; 2494 2495 /* Find the physical index of the base-of-stack for current sample. */ 2496 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2497 2498 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2499 (max_lbr + prev_stack->hw_idx - cur_base); 2500 /* Previous sample has shorter stack. Nothing can be stitched. */ 2501 if (distance + 1 > prev_stack->nr) 2502 return false; 2503 2504 /* 2505 * Check if there are identical LBRs between two samples. 2506 * Identical LBRs must have same from, to and flags values. Also, 2507 * they have to be saved in the same LBR registers (same physical 2508 * index). 2509 * 2510 * Starts from the base-of-stack of current sample. 2511 */ 2512 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2513 if ((prev_entries[i].from != cur_entries[j].from) || 2514 (prev_entries[i].to != cur_entries[j].to) || 2515 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2516 break; 2517 nr_identical_branches++; 2518 } 2519 2520 if (!nr_identical_branches) 2521 return false; 2522 2523 /* 2524 * Save the LBRs between the base-of-stack of previous sample 2525 * and the base-of-stack of current sample into lbr_stitch->lists. 2526 * These LBRs will be stitched later. 2527 */ 2528 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2529 2530 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2531 continue; 2532 2533 stitch_node = get_stitch_node(thread); 2534 if (!stitch_node) 2535 return false; 2536 2537 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2538 sizeof(struct callchain_cursor_node)); 2539 2540 stitch_node->cursor.ms.maps = maps__get(lbr_stitch->prev_lbr_cursor[i].ms.maps); 2541 stitch_node->cursor.ms.map = map__get(lbr_stitch->prev_lbr_cursor[i].ms.map); 2542 2543 if (callee) 2544 list_add(&stitch_node->node, &lbr_stitch->lists); 2545 else 2546 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2547 } 2548 2549 return true; 2550 } 2551 2552 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2553 { 2554 if (thread__lbr_stitch(thread)) 2555 return true; 2556 2557 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch))); 2558 if (!thread__lbr_stitch(thread)) 2559 goto err; 2560 2561 thread__lbr_stitch(thread)->prev_lbr_cursor = 2562 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2563 if (!thread__lbr_stitch(thread)->prev_lbr_cursor) 2564 goto free_lbr_stitch; 2565 2566 thread__lbr_stitch(thread)->prev_lbr_cursor_size = max_lbr + 1; 2567 2568 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists); 2569 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists); 2570 2571 return true; 2572 2573 free_lbr_stitch: 2574 free(thread__lbr_stitch(thread)); 2575 thread__set_lbr_stitch(thread, NULL); 2576 err: 2577 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2578 thread__set_lbr_stitch_enable(thread, false); 2579 return false; 2580 } 2581 2582 /* 2583 * Resolve LBR callstack chain sample 2584 * Return: 2585 * 1 on success get LBR callchain information 2586 * 0 no available LBR callchain information, should try fp 2587 * negative error code on other errors. 2588 */ 2589 static int resolve_lbr_callchain_sample(struct thread *thread, 2590 struct callchain_cursor *cursor, 2591 struct perf_sample *sample, 2592 struct symbol **parent, 2593 struct addr_location *root_al, 2594 int max_stack, 2595 unsigned int max_lbr, 2596 bool symbols) 2597 { 2598 bool callee = (callchain_param.order == ORDER_CALLEE); 2599 struct ip_callchain *chain = sample->callchain; 2600 int chain_nr = min(max_stack, (int)chain->nr), i; 2601 struct lbr_stitch *lbr_stitch; 2602 bool stitched_lbr = false; 2603 u64 branch_from = 0; 2604 int err; 2605 2606 for (i = 0; i < chain_nr; i++) { 2607 if (chain->ips[i] == PERF_CONTEXT_USER) 2608 break; 2609 } 2610 2611 /* LBR only affects the user callchain */ 2612 if (i == chain_nr) 2613 return 0; 2614 2615 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx && 2616 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2617 lbr_stitch = thread__lbr_stitch(thread); 2618 2619 stitched_lbr = has_stitched_lbr(thread, sample, 2620 &lbr_stitch->prev_sample, 2621 max_lbr, callee); 2622 2623 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2624 struct stitch_list *stitch_node; 2625 2626 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) 2627 map_symbol__exit(&stitch_node->cursor.ms); 2628 2629 list_splice_init(&lbr_stitch->lists, &lbr_stitch->free_lists); 2630 } 2631 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2632 } 2633 2634 if (callee) { 2635 /* Add kernel ip */ 2636 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2637 parent, root_al, branch_from, 2638 true, i, symbols); 2639 if (err) 2640 goto error; 2641 2642 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2643 root_al, &branch_from, true, symbols); 2644 if (err) 2645 goto error; 2646 2647 if (stitched_lbr) { 2648 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2649 if (err) 2650 goto error; 2651 } 2652 2653 } else { 2654 if (stitched_lbr) { 2655 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2656 if (err) 2657 goto error; 2658 } 2659 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2660 root_al, &branch_from, false, symbols); 2661 if (err) 2662 goto error; 2663 2664 /* Add kernel ip */ 2665 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2666 parent, root_al, branch_from, 2667 false, i, symbols); 2668 if (err) 2669 goto error; 2670 } 2671 return 1; 2672 2673 error: 2674 return (err < 0) ? err : 0; 2675 } 2676 2677 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2678 struct callchain_cursor *cursor, 2679 struct symbol **parent, 2680 struct addr_location *root_al, 2681 u8 *cpumode, int ent, bool symbols) 2682 { 2683 int err = 0; 2684 2685 while (--ent >= 0) { 2686 u64 ip = chain->ips[ent]; 2687 2688 if (ip >= PERF_CONTEXT_MAX) { 2689 err = add_callchain_ip(thread, cursor, parent, 2690 root_al, cpumode, ip, 2691 false, NULL, NULL, 0, symbols); 2692 break; 2693 } 2694 } 2695 return err; 2696 } 2697 2698 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2699 struct thread *thread, int usr_idx) 2700 { 2701 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64")) 2702 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2703 else 2704 return 0; 2705 } 2706 2707 static int thread__resolve_callchain_sample(struct thread *thread, 2708 struct callchain_cursor *cursor, 2709 struct evsel *evsel, 2710 struct perf_sample *sample, 2711 struct symbol **parent, 2712 struct addr_location *root_al, 2713 int max_stack, 2714 bool symbols) 2715 { 2716 struct branch_stack *branch = sample->branch_stack; 2717 struct branch_entry *entries = perf_sample__branch_entries(sample); 2718 struct ip_callchain *chain = sample->callchain; 2719 int chain_nr = 0; 2720 u8 cpumode = PERF_RECORD_MISC_USER; 2721 int i, j, err, nr_entries, usr_idx; 2722 int skip_idx = -1; 2723 int first_call = 0; 2724 u64 leaf_frame_caller; 2725 2726 if (chain) 2727 chain_nr = chain->nr; 2728 2729 if (evsel__has_branch_callstack(evsel)) { 2730 struct perf_env *env = evsel__env(evsel); 2731 2732 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2733 root_al, max_stack, 2734 !env ? 0 : env->max_branches, 2735 symbols); 2736 if (err) 2737 return (err < 0) ? err : 0; 2738 } 2739 2740 /* 2741 * Based on DWARF debug information, some architectures skip 2742 * a callchain entry saved by the kernel. 2743 */ 2744 skip_idx = arch_skip_callchain_idx(thread, chain); 2745 2746 /* 2747 * Add branches to call stack for easier browsing. This gives 2748 * more context for a sample than just the callers. 2749 * 2750 * This uses individual histograms of paths compared to the 2751 * aggregated histograms the normal LBR mode uses. 2752 * 2753 * Limitations for now: 2754 * - No extra filters 2755 * - No annotations (should annotate somehow) 2756 */ 2757 2758 if (branch && callchain_param.branch_callstack) { 2759 int nr = min(max_stack, (int)branch->nr); 2760 struct branch_entry be[nr]; 2761 struct iterations iter[nr]; 2762 2763 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2764 pr_warning("corrupted branch chain. skipping...\n"); 2765 goto check_calls; 2766 } 2767 2768 for (i = 0; i < nr; i++) { 2769 if (callchain_param.order == ORDER_CALLEE) { 2770 be[i] = entries[i]; 2771 2772 if (chain == NULL) 2773 continue; 2774 2775 /* 2776 * Check for overlap into the callchain. 2777 * The return address is one off compared to 2778 * the branch entry. To adjust for this 2779 * assume the calling instruction is not longer 2780 * than 8 bytes. 2781 */ 2782 if (i == skip_idx || 2783 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2784 first_call++; 2785 else if (be[i].from < chain->ips[first_call] && 2786 be[i].from >= chain->ips[first_call] - 8) 2787 first_call++; 2788 } else 2789 be[i] = entries[branch->nr - i - 1]; 2790 } 2791 2792 memset(iter, 0, sizeof(struct iterations) * nr); 2793 nr = remove_loops(be, nr, iter); 2794 2795 for (i = 0; i < nr; i++) { 2796 err = add_callchain_ip(thread, cursor, parent, 2797 root_al, 2798 NULL, be[i].to, 2799 true, &be[i].flags, 2800 NULL, be[i].from, symbols); 2801 2802 if (!err) { 2803 err = add_callchain_ip(thread, cursor, parent, root_al, 2804 NULL, be[i].from, 2805 true, &be[i].flags, 2806 &iter[i], 0, symbols); 2807 } 2808 if (err == -EINVAL) 2809 break; 2810 if (err) 2811 return err; 2812 } 2813 2814 if (chain_nr == 0) 2815 return 0; 2816 2817 chain_nr -= nr; 2818 } 2819 2820 check_calls: 2821 if (chain && callchain_param.order != ORDER_CALLEE) { 2822 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2823 &cpumode, chain->nr - first_call, symbols); 2824 if (err) 2825 return (err < 0) ? err : 0; 2826 } 2827 for (i = first_call, nr_entries = 0; 2828 i < chain_nr && nr_entries < max_stack; i++) { 2829 u64 ip; 2830 2831 if (callchain_param.order == ORDER_CALLEE) 2832 j = i; 2833 else 2834 j = chain->nr - i - 1; 2835 2836 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2837 if (j == skip_idx) 2838 continue; 2839 #endif 2840 ip = chain->ips[j]; 2841 if (ip < PERF_CONTEXT_MAX) 2842 ++nr_entries; 2843 else if (callchain_param.order != ORDER_CALLEE) { 2844 err = find_prev_cpumode(chain, thread, cursor, parent, 2845 root_al, &cpumode, j, symbols); 2846 if (err) 2847 return (err < 0) ? err : 0; 2848 continue; 2849 } 2850 2851 /* 2852 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 2853 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 2854 * the index will be different in order to add the missing frame 2855 * at the right place. 2856 */ 2857 2858 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 2859 2860 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 2861 2862 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 2863 2864 /* 2865 * check if leaf_frame_Caller != ip to not add the same 2866 * value twice. 2867 */ 2868 2869 if (leaf_frame_caller && leaf_frame_caller != ip) { 2870 2871 err = add_callchain_ip(thread, cursor, parent, 2872 root_al, &cpumode, leaf_frame_caller, 2873 false, NULL, NULL, 0, symbols); 2874 if (err) 2875 return (err < 0) ? err : 0; 2876 } 2877 } 2878 2879 err = add_callchain_ip(thread, cursor, parent, 2880 root_al, &cpumode, ip, 2881 false, NULL, NULL, 0, symbols); 2882 2883 if (err) 2884 return (err < 0) ? err : 0; 2885 } 2886 2887 return 0; 2888 } 2889 2890 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2891 { 2892 struct symbol *sym = ms->sym; 2893 struct map *map = ms->map; 2894 struct inline_node *inline_node; 2895 struct inline_list *ilist; 2896 struct dso *dso; 2897 u64 addr; 2898 int ret = 1; 2899 struct map_symbol ilist_ms; 2900 2901 if (!symbol_conf.inline_name || !map || !sym) 2902 return ret; 2903 2904 addr = map__dso_map_ip(map, ip); 2905 addr = map__rip_2objdump(map, addr); 2906 dso = map__dso(map); 2907 2908 inline_node = inlines__tree_find(dso__inlined_nodes(dso), addr); 2909 if (!inline_node) { 2910 inline_node = dso__parse_addr_inlines(dso, addr, sym); 2911 if (!inline_node) 2912 return ret; 2913 inlines__tree_insert(dso__inlined_nodes(dso), inline_node); 2914 } 2915 2916 ilist_ms = (struct map_symbol) { 2917 .maps = maps__get(ms->maps), 2918 .map = map__get(map), 2919 }; 2920 list_for_each_entry(ilist, &inline_node->val, list) { 2921 ilist_ms.sym = ilist->symbol; 2922 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2923 NULL, 0, 0, 0, ilist->srcline); 2924 2925 if (ret != 0) 2926 return ret; 2927 } 2928 map_symbol__exit(&ilist_ms); 2929 2930 return ret; 2931 } 2932 2933 static int unwind_entry(struct unwind_entry *entry, void *arg) 2934 { 2935 struct callchain_cursor *cursor = arg; 2936 const char *srcline = NULL; 2937 u64 addr = entry->ip; 2938 2939 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2940 return 0; 2941 2942 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2943 return 0; 2944 2945 /* 2946 * Convert entry->ip from a virtual address to an offset in 2947 * its corresponding binary. 2948 */ 2949 if (entry->ms.map) 2950 addr = map__dso_map_ip(entry->ms.map, entry->ip); 2951 2952 srcline = callchain_srcline(&entry->ms, addr); 2953 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2954 false, NULL, 0, 0, 0, srcline); 2955 } 2956 2957 static int thread__resolve_callchain_unwind(struct thread *thread, 2958 struct callchain_cursor *cursor, 2959 struct evsel *evsel, 2960 struct perf_sample *sample, 2961 int max_stack, bool symbols) 2962 { 2963 /* Can we do dwarf post unwind? */ 2964 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2965 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2966 return 0; 2967 2968 /* Bail out if nothing was captured. */ 2969 if (!sample->user_regs || !sample->user_regs->regs || 2970 !sample->user_stack.size) 2971 return 0; 2972 2973 if (!symbols) 2974 pr_debug("Not resolving symbols with an unwinder isn't currently supported\n"); 2975 2976 return unwind__get_entries(unwind_entry, cursor, 2977 thread, sample, max_stack, false); 2978 } 2979 2980 int __thread__resolve_callchain(struct thread *thread, 2981 struct callchain_cursor *cursor, 2982 struct evsel *evsel, 2983 struct perf_sample *sample, 2984 struct symbol **parent, 2985 struct addr_location *root_al, 2986 int max_stack, 2987 bool symbols) 2988 { 2989 int ret = 0; 2990 2991 if (cursor == NULL) 2992 return -ENOMEM; 2993 2994 callchain_cursor_reset(cursor); 2995 2996 if (callchain_param.order == ORDER_CALLEE) { 2997 ret = thread__resolve_callchain_sample(thread, cursor, 2998 evsel, sample, 2999 parent, root_al, 3000 max_stack, symbols); 3001 if (ret) 3002 return ret; 3003 ret = thread__resolve_callchain_unwind(thread, cursor, 3004 evsel, sample, 3005 max_stack, symbols); 3006 } else { 3007 ret = thread__resolve_callchain_unwind(thread, cursor, 3008 evsel, sample, 3009 max_stack, symbols); 3010 if (ret) 3011 return ret; 3012 ret = thread__resolve_callchain_sample(thread, cursor, 3013 evsel, sample, 3014 parent, root_al, 3015 max_stack, symbols); 3016 } 3017 3018 return ret; 3019 } 3020 3021 int machine__for_each_thread(struct machine *machine, 3022 int (*fn)(struct thread *thread, void *p), 3023 void *priv) 3024 { 3025 return threads__for_each_thread(&machine->threads, fn, priv); 3026 } 3027 3028 int machines__for_each_thread(struct machines *machines, 3029 int (*fn)(struct thread *thread, void *p), 3030 void *priv) 3031 { 3032 struct rb_node *nd; 3033 int rc = 0; 3034 3035 rc = machine__for_each_thread(&machines->host, fn, priv); 3036 if (rc != 0) 3037 return rc; 3038 3039 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3040 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3041 3042 rc = machine__for_each_thread(machine, fn, priv); 3043 if (rc != 0) 3044 return rc; 3045 } 3046 return rc; 3047 } 3048 3049 3050 static int thread_list_cb(struct thread *thread, void *data) 3051 { 3052 struct list_head *list = data; 3053 struct thread_list *entry = malloc(sizeof(*entry)); 3054 3055 if (!entry) 3056 return -ENOMEM; 3057 3058 entry->thread = thread__get(thread); 3059 list_add_tail(&entry->list, list); 3060 return 0; 3061 } 3062 3063 int machine__thread_list(struct machine *machine, struct list_head *list) 3064 { 3065 return machine__for_each_thread(machine, thread_list_cb, list); 3066 } 3067 3068 void thread_list__delete(struct list_head *list) 3069 { 3070 struct thread_list *pos, *next; 3071 3072 list_for_each_entry_safe(pos, next, list, list) { 3073 thread__zput(pos->thread); 3074 list_del(&pos->list); 3075 free(pos); 3076 } 3077 } 3078 3079 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3080 { 3081 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3082 return -1; 3083 3084 return machine->current_tid[cpu]; 3085 } 3086 3087 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3088 pid_t tid) 3089 { 3090 struct thread *thread; 3091 const pid_t init_val = -1; 3092 3093 if (cpu < 0) 3094 return -EINVAL; 3095 3096 if (realloc_array_as_needed(machine->current_tid, 3097 machine->current_tid_sz, 3098 (unsigned int)cpu, 3099 &init_val)) 3100 return -ENOMEM; 3101 3102 machine->current_tid[cpu] = tid; 3103 3104 thread = machine__findnew_thread(machine, pid, tid); 3105 if (!thread) 3106 return -ENOMEM; 3107 3108 thread__set_cpu(thread, cpu); 3109 thread__put(thread); 3110 3111 return 0; 3112 } 3113 3114 /* 3115 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3116 * machine__normalized_is() if a normalized arch is needed. 3117 */ 3118 bool machine__is(struct machine *machine, const char *arch) 3119 { 3120 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3121 } 3122 3123 bool machine__normalized_is(struct machine *machine, const char *arch) 3124 { 3125 return machine && !strcmp(perf_env__arch(machine->env), arch); 3126 } 3127 3128 int machine__nr_cpus_avail(struct machine *machine) 3129 { 3130 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3131 } 3132 3133 int machine__get_kernel_start(struct machine *machine) 3134 { 3135 struct map *map = machine__kernel_map(machine); 3136 int err = 0; 3137 3138 /* 3139 * The only addresses above 2^63 are kernel addresses of a 64-bit 3140 * kernel. Note that addresses are unsigned so that on a 32-bit system 3141 * all addresses including kernel addresses are less than 2^32. In 3142 * that case (32-bit system), if the kernel mapping is unknown, all 3143 * addresses will be assumed to be in user space - see 3144 * machine__kernel_ip(). 3145 */ 3146 machine->kernel_start = 1ULL << 63; 3147 if (map) { 3148 err = map__load(map); 3149 /* 3150 * On x86_64, PTI entry trampolines are less than the 3151 * start of kernel text, but still above 2^63. So leave 3152 * kernel_start = 1ULL << 63 for x86_64. 3153 */ 3154 if (!err && !machine__is(machine, "x86_64")) 3155 machine->kernel_start = map__start(map); 3156 } 3157 return err; 3158 } 3159 3160 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3161 { 3162 u8 addr_cpumode = cpumode; 3163 bool kernel_ip; 3164 3165 if (!machine->single_address_space) 3166 goto out; 3167 3168 kernel_ip = machine__kernel_ip(machine, addr); 3169 switch (cpumode) { 3170 case PERF_RECORD_MISC_KERNEL: 3171 case PERF_RECORD_MISC_USER: 3172 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3173 PERF_RECORD_MISC_USER; 3174 break; 3175 case PERF_RECORD_MISC_GUEST_KERNEL: 3176 case PERF_RECORD_MISC_GUEST_USER: 3177 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3178 PERF_RECORD_MISC_GUEST_USER; 3179 break; 3180 default: 3181 break; 3182 } 3183 out: 3184 return addr_cpumode; 3185 } 3186 3187 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, 3188 const struct dso_id *id) 3189 { 3190 return dsos__findnew_id(&machine->dsos, filename, id); 3191 } 3192 3193 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3194 { 3195 return machine__findnew_dso_id(machine, filename, &dso_id_empty); 3196 } 3197 3198 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3199 { 3200 struct machine *machine = vmachine; 3201 struct map *map; 3202 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3203 3204 if (sym == NULL) 3205 return NULL; 3206 3207 *modp = __map__is_kmodule(map) ? (char *)dso__short_name(map__dso(map)) : NULL; 3208 *addrp = map__unmap_ip(map, sym->start); 3209 return sym->name; 3210 } 3211 3212 struct machine__for_each_dso_cb_args { 3213 struct machine *machine; 3214 machine__dso_t fn; 3215 void *priv; 3216 }; 3217 3218 static int machine__for_each_dso_cb(struct dso *dso, void *data) 3219 { 3220 struct machine__for_each_dso_cb_args *args = data; 3221 3222 return args->fn(dso, args->machine, args->priv); 3223 } 3224 3225 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3226 { 3227 struct machine__for_each_dso_cb_args args = { 3228 .machine = machine, 3229 .fn = fn, 3230 .priv = priv, 3231 }; 3232 3233 return dsos__for_each_dso(&machine->dsos, machine__for_each_dso_cb, &args); 3234 } 3235 3236 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3237 { 3238 struct maps *maps = machine__kernel_maps(machine); 3239 3240 return maps__for_each_map(maps, fn, priv); 3241 } 3242 3243 bool machine__is_lock_function(struct machine *machine, u64 addr) 3244 { 3245 if (!machine->sched.text_start) { 3246 struct map *kmap; 3247 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3248 3249 if (!sym) { 3250 /* to avoid retry */ 3251 machine->sched.text_start = 1; 3252 return false; 3253 } 3254 3255 machine->sched.text_start = map__unmap_ip(kmap, sym->start); 3256 3257 /* should not fail from here */ 3258 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3259 machine->sched.text_end = map__unmap_ip(kmap, sym->start); 3260 3261 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3262 machine->lock.text_start = map__unmap_ip(kmap, sym->start); 3263 3264 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3265 machine->lock.text_end = map__unmap_ip(kmap, sym->start); 3266 3267 sym = machine__find_kernel_symbol_by_name(machine, "__traceiter_contention_begin", &kmap); 3268 if (sym) { 3269 machine->traceiter.text_start = map__unmap_ip(kmap, sym->start); 3270 machine->traceiter.text_end = map__unmap_ip(kmap, sym->end); 3271 } 3272 sym = machine__find_kernel_symbol_by_name(machine, "trace_contention_begin", &kmap); 3273 if (sym) { 3274 machine->trace.text_start = map__unmap_ip(kmap, sym->start); 3275 machine->trace.text_end = map__unmap_ip(kmap, sym->end); 3276 } 3277 } 3278 3279 /* failed to get kernel symbols */ 3280 if (machine->sched.text_start == 1) 3281 return false; 3282 3283 /* mutex and rwsem functions are in sched text section */ 3284 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3285 return true; 3286 3287 /* spinlock functions are in lock text section */ 3288 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3289 return true; 3290 3291 /* traceiter functions currently don't have their own section 3292 * but we consider them lock functions 3293 */ 3294 if (machine->traceiter.text_start != 0) { 3295 if (machine->traceiter.text_start <= addr && addr < machine->traceiter.text_end) 3296 return true; 3297 } 3298 3299 if (machine->trace.text_start != 0) { 3300 if (machine->trace.text_start <= addr && addr < machine->trace.text_end) 3301 return true; 3302 } 3303 3304 return false; 3305 } 3306 3307 int machine__hit_all_dsos(struct machine *machine) 3308 { 3309 return dsos__hit_all(&machine->dsos); 3310 } 3311