1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "path.h" 20 #include "srcline.h" 21 #include "symbol.h" 22 #include "sort.h" 23 #include "strlist.h" 24 #include "target.h" 25 #include "thread.h" 26 #include "util.h" 27 #include "vdso.h" 28 #include <stdbool.h> 29 #include <sys/types.h> 30 #include <sys/stat.h> 31 #include <unistd.h> 32 #include "unwind.h" 33 #include "linux/hash.h" 34 #include "asm/bug.h" 35 #include "bpf-event.h" 36 #include <internal/lib.h> // page_size 37 #include "cgroup.h" 38 #include "arm64-frame-pointer-unwind-support.h" 39 40 #include <linux/ctype.h> 41 #include <symbol/kallsyms.h> 42 #include <linux/mman.h> 43 #include <linux/string.h> 44 #include <linux/zalloc.h> 45 46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 47 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip); 48 49 static struct dso *machine__kernel_dso(struct machine *machine) 50 { 51 return machine->vmlinux_map->dso; 52 } 53 54 static void dsos__init(struct dsos *dsos) 55 { 56 INIT_LIST_HEAD(&dsos->head); 57 dsos->root = RB_ROOT; 58 init_rwsem(&dsos->lock); 59 } 60 61 static void machine__threads_init(struct machine *machine) 62 { 63 int i; 64 65 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 66 struct threads *threads = &machine->threads[i]; 67 threads->entries = RB_ROOT_CACHED; 68 init_rwsem(&threads->lock); 69 threads->nr = 0; 70 INIT_LIST_HEAD(&threads->dead); 71 threads->last_match = NULL; 72 } 73 } 74 75 static int machine__set_mmap_name(struct machine *machine) 76 { 77 if (machine__is_host(machine)) 78 machine->mmap_name = strdup("[kernel.kallsyms]"); 79 else if (machine__is_default_guest(machine)) 80 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 81 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 82 machine->pid) < 0) 83 machine->mmap_name = NULL; 84 85 return machine->mmap_name ? 0 : -ENOMEM; 86 } 87 88 static void thread__set_guest_comm(struct thread *thread, pid_t pid) 89 { 90 char comm[64]; 91 92 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 93 thread__set_comm(thread, comm, 0); 94 } 95 96 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 97 { 98 int err = -ENOMEM; 99 100 memset(machine, 0, sizeof(*machine)); 101 machine->kmaps = maps__new(machine); 102 if (machine->kmaps == NULL) 103 return -ENOMEM; 104 105 RB_CLEAR_NODE(&machine->rb_node); 106 dsos__init(&machine->dsos); 107 108 machine__threads_init(machine); 109 110 machine->vdso_info = NULL; 111 machine->env = NULL; 112 113 machine->pid = pid; 114 115 machine->id_hdr_size = 0; 116 machine->kptr_restrict_warned = false; 117 machine->comm_exec = false; 118 machine->kernel_start = 0; 119 machine->vmlinux_map = NULL; 120 121 machine->root_dir = strdup(root_dir); 122 if (machine->root_dir == NULL) 123 goto out; 124 125 if (machine__set_mmap_name(machine)) 126 goto out; 127 128 if (pid != HOST_KERNEL_ID) { 129 struct thread *thread = machine__findnew_thread(machine, -1, 130 pid); 131 132 if (thread == NULL) 133 goto out; 134 135 thread__set_guest_comm(thread, pid); 136 thread__put(thread); 137 } 138 139 machine->current_tid = NULL; 140 err = 0; 141 142 out: 143 if (err) { 144 zfree(&machine->kmaps); 145 zfree(&machine->root_dir); 146 zfree(&machine->mmap_name); 147 } 148 return 0; 149 } 150 151 struct machine *machine__new_host(void) 152 { 153 struct machine *machine = malloc(sizeof(*machine)); 154 155 if (machine != NULL) { 156 machine__init(machine, "", HOST_KERNEL_ID); 157 158 if (machine__create_kernel_maps(machine) < 0) 159 goto out_delete; 160 } 161 162 return machine; 163 out_delete: 164 free(machine); 165 return NULL; 166 } 167 168 struct machine *machine__new_kallsyms(void) 169 { 170 struct machine *machine = machine__new_host(); 171 /* 172 * FIXME: 173 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 174 * ask for not using the kcore parsing code, once this one is fixed 175 * to create a map per module. 176 */ 177 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 178 machine__delete(machine); 179 machine = NULL; 180 } 181 182 return machine; 183 } 184 185 static void dsos__purge(struct dsos *dsos) 186 { 187 struct dso *pos, *n; 188 189 down_write(&dsos->lock); 190 191 list_for_each_entry_safe(pos, n, &dsos->head, node) { 192 RB_CLEAR_NODE(&pos->rb_node); 193 pos->root = NULL; 194 list_del_init(&pos->node); 195 dso__put(pos); 196 } 197 198 up_write(&dsos->lock); 199 } 200 201 static void dsos__exit(struct dsos *dsos) 202 { 203 dsos__purge(dsos); 204 exit_rwsem(&dsos->lock); 205 } 206 207 void machine__delete_threads(struct machine *machine) 208 { 209 struct rb_node *nd; 210 int i; 211 212 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 213 struct threads *threads = &machine->threads[i]; 214 down_write(&threads->lock); 215 nd = rb_first_cached(&threads->entries); 216 while (nd) { 217 struct thread *t = rb_entry(nd, struct thread, rb_node); 218 219 nd = rb_next(nd); 220 __machine__remove_thread(machine, t, false); 221 } 222 up_write(&threads->lock); 223 } 224 } 225 226 void machine__exit(struct machine *machine) 227 { 228 int i; 229 230 if (machine == NULL) 231 return; 232 233 machine__destroy_kernel_maps(machine); 234 maps__delete(machine->kmaps); 235 dsos__exit(&machine->dsos); 236 machine__exit_vdso(machine); 237 zfree(&machine->root_dir); 238 zfree(&machine->mmap_name); 239 zfree(&machine->current_tid); 240 zfree(&machine->kallsyms_filename); 241 242 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 243 struct threads *threads = &machine->threads[i]; 244 struct thread *thread, *n; 245 /* 246 * Forget about the dead, at this point whatever threads were 247 * left in the dead lists better have a reference count taken 248 * by who is using them, and then, when they drop those references 249 * and it finally hits zero, thread__put() will check and see that 250 * its not in the dead threads list and will not try to remove it 251 * from there, just calling thread__delete() straight away. 252 */ 253 list_for_each_entry_safe(thread, n, &threads->dead, node) 254 list_del_init(&thread->node); 255 256 exit_rwsem(&threads->lock); 257 } 258 } 259 260 void machine__delete(struct machine *machine) 261 { 262 if (machine) { 263 machine__exit(machine); 264 free(machine); 265 } 266 } 267 268 void machines__init(struct machines *machines) 269 { 270 machine__init(&machines->host, "", HOST_KERNEL_ID); 271 machines->guests = RB_ROOT_CACHED; 272 } 273 274 void machines__exit(struct machines *machines) 275 { 276 machine__exit(&machines->host); 277 /* XXX exit guest */ 278 } 279 280 struct machine *machines__add(struct machines *machines, pid_t pid, 281 const char *root_dir) 282 { 283 struct rb_node **p = &machines->guests.rb_root.rb_node; 284 struct rb_node *parent = NULL; 285 struct machine *pos, *machine = malloc(sizeof(*machine)); 286 bool leftmost = true; 287 288 if (machine == NULL) 289 return NULL; 290 291 if (machine__init(machine, root_dir, pid) != 0) { 292 free(machine); 293 return NULL; 294 } 295 296 while (*p != NULL) { 297 parent = *p; 298 pos = rb_entry(parent, struct machine, rb_node); 299 if (pid < pos->pid) 300 p = &(*p)->rb_left; 301 else { 302 p = &(*p)->rb_right; 303 leftmost = false; 304 } 305 } 306 307 rb_link_node(&machine->rb_node, parent, p); 308 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 309 310 machine->machines = machines; 311 312 return machine; 313 } 314 315 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 316 { 317 struct rb_node *nd; 318 319 machines->host.comm_exec = comm_exec; 320 321 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 322 struct machine *machine = rb_entry(nd, struct machine, rb_node); 323 324 machine->comm_exec = comm_exec; 325 } 326 } 327 328 struct machine *machines__find(struct machines *machines, pid_t pid) 329 { 330 struct rb_node **p = &machines->guests.rb_root.rb_node; 331 struct rb_node *parent = NULL; 332 struct machine *machine; 333 struct machine *default_machine = NULL; 334 335 if (pid == HOST_KERNEL_ID) 336 return &machines->host; 337 338 while (*p != NULL) { 339 parent = *p; 340 machine = rb_entry(parent, struct machine, rb_node); 341 if (pid < machine->pid) 342 p = &(*p)->rb_left; 343 else if (pid > machine->pid) 344 p = &(*p)->rb_right; 345 else 346 return machine; 347 if (!machine->pid) 348 default_machine = machine; 349 } 350 351 return default_machine; 352 } 353 354 struct machine *machines__findnew(struct machines *machines, pid_t pid) 355 { 356 char path[PATH_MAX]; 357 const char *root_dir = ""; 358 struct machine *machine = machines__find(machines, pid); 359 360 if (machine && (machine->pid == pid)) 361 goto out; 362 363 if ((pid != HOST_KERNEL_ID) && 364 (pid != DEFAULT_GUEST_KERNEL_ID) && 365 (symbol_conf.guestmount)) { 366 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 367 if (access(path, R_OK)) { 368 static struct strlist *seen; 369 370 if (!seen) 371 seen = strlist__new(NULL, NULL); 372 373 if (!strlist__has_entry(seen, path)) { 374 pr_err("Can't access file %s\n", path); 375 strlist__add(seen, path); 376 } 377 machine = NULL; 378 goto out; 379 } 380 root_dir = path; 381 } 382 383 machine = machines__add(machines, pid, root_dir); 384 out: 385 return machine; 386 } 387 388 struct machine *machines__find_guest(struct machines *machines, pid_t pid) 389 { 390 struct machine *machine = machines__find(machines, pid); 391 392 if (!machine) 393 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); 394 return machine; 395 } 396 397 /* 398 * A common case for KVM test programs is that the test program acts as the 399 * hypervisor, creating, running and destroying the virtual machine, and 400 * providing the guest object code from its own object code. In this case, 401 * the VM is not running an OS, but only the functions loaded into it by the 402 * hypervisor test program, and conveniently, loaded at the same virtual 403 * addresses. 404 * 405 * Normally to resolve addresses, MMAP events are needed to map addresses 406 * back to the object code and debug symbols for that object code. 407 * 408 * Currently, there is no way to get such mapping information from guests 409 * but, in the scenario described above, the guest has the same mappings 410 * as the hypervisor, so support for that scenario can be achieved. 411 * 412 * To support that, copy the host thread's maps to the guest thread's maps. 413 * Note, we do not discover the guest until we encounter a guest event, 414 * which works well because it is not until then that we know that the host 415 * thread's maps have been set up. 416 * 417 * This function returns the guest thread. Apart from keeping the data 418 * structures sane, using a thread belonging to the guest machine, instead 419 * of the host thread, allows it to have its own comm (refer 420 * thread__set_guest_comm()). 421 */ 422 static struct thread *findnew_guest_code(struct machine *machine, 423 struct machine *host_machine, 424 pid_t pid) 425 { 426 struct thread *host_thread; 427 struct thread *thread; 428 int err; 429 430 if (!machine) 431 return NULL; 432 433 thread = machine__findnew_thread(machine, -1, pid); 434 if (!thread) 435 return NULL; 436 437 /* Assume maps are set up if there are any */ 438 if (thread->maps->nr_maps) 439 return thread; 440 441 host_thread = machine__find_thread(host_machine, -1, pid); 442 if (!host_thread) 443 goto out_err; 444 445 thread__set_guest_comm(thread, pid); 446 447 /* 448 * Guest code can be found in hypervisor process at the same address 449 * so copy host maps. 450 */ 451 err = maps__clone(thread, host_thread->maps); 452 thread__put(host_thread); 453 if (err) 454 goto out_err; 455 456 return thread; 457 458 out_err: 459 thread__zput(thread); 460 return NULL; 461 } 462 463 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid) 464 { 465 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID); 466 struct machine *machine = machines__findnew(machines, pid); 467 468 return findnew_guest_code(machine, host_machine, pid); 469 } 470 471 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid) 472 { 473 struct machines *machines = machine->machines; 474 struct machine *host_machine; 475 476 if (!machines) 477 return NULL; 478 479 host_machine = machines__find(machines, HOST_KERNEL_ID); 480 481 return findnew_guest_code(machine, host_machine, pid); 482 } 483 484 void machines__process_guests(struct machines *machines, 485 machine__process_t process, void *data) 486 { 487 struct rb_node *nd; 488 489 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 490 struct machine *pos = rb_entry(nd, struct machine, rb_node); 491 process(pos, data); 492 } 493 } 494 495 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 496 { 497 struct rb_node *node; 498 struct machine *machine; 499 500 machines->host.id_hdr_size = id_hdr_size; 501 502 for (node = rb_first_cached(&machines->guests); node; 503 node = rb_next(node)) { 504 machine = rb_entry(node, struct machine, rb_node); 505 machine->id_hdr_size = id_hdr_size; 506 } 507 508 return; 509 } 510 511 static void machine__update_thread_pid(struct machine *machine, 512 struct thread *th, pid_t pid) 513 { 514 struct thread *leader; 515 516 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 517 return; 518 519 th->pid_ = pid; 520 521 if (th->pid_ == th->tid) 522 return; 523 524 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 525 if (!leader) 526 goto out_err; 527 528 if (!leader->maps) 529 leader->maps = maps__new(machine); 530 531 if (!leader->maps) 532 goto out_err; 533 534 if (th->maps == leader->maps) 535 return; 536 537 if (th->maps) { 538 /* 539 * Maps are created from MMAP events which provide the pid and 540 * tid. Consequently there never should be any maps on a thread 541 * with an unknown pid. Just print an error if there are. 542 */ 543 if (!maps__empty(th->maps)) 544 pr_err("Discarding thread maps for %d:%d\n", 545 th->pid_, th->tid); 546 maps__put(th->maps); 547 } 548 549 th->maps = maps__get(leader->maps); 550 out_put: 551 thread__put(leader); 552 return; 553 out_err: 554 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 555 goto out_put; 556 } 557 558 /* 559 * Front-end cache - TID lookups come in blocks, 560 * so most of the time we dont have to look up 561 * the full rbtree: 562 */ 563 static struct thread* 564 __threads__get_last_match(struct threads *threads, struct machine *machine, 565 int pid, int tid) 566 { 567 struct thread *th; 568 569 th = threads->last_match; 570 if (th != NULL) { 571 if (th->tid == tid) { 572 machine__update_thread_pid(machine, th, pid); 573 return thread__get(th); 574 } 575 576 threads->last_match = NULL; 577 } 578 579 return NULL; 580 } 581 582 static struct thread* 583 threads__get_last_match(struct threads *threads, struct machine *machine, 584 int pid, int tid) 585 { 586 struct thread *th = NULL; 587 588 if (perf_singlethreaded) 589 th = __threads__get_last_match(threads, machine, pid, tid); 590 591 return th; 592 } 593 594 static void 595 __threads__set_last_match(struct threads *threads, struct thread *th) 596 { 597 threads->last_match = th; 598 } 599 600 static void 601 threads__set_last_match(struct threads *threads, struct thread *th) 602 { 603 if (perf_singlethreaded) 604 __threads__set_last_match(threads, th); 605 } 606 607 /* 608 * Caller must eventually drop thread->refcnt returned with a successful 609 * lookup/new thread inserted. 610 */ 611 static struct thread *____machine__findnew_thread(struct machine *machine, 612 struct threads *threads, 613 pid_t pid, pid_t tid, 614 bool create) 615 { 616 struct rb_node **p = &threads->entries.rb_root.rb_node; 617 struct rb_node *parent = NULL; 618 struct thread *th; 619 bool leftmost = true; 620 621 th = threads__get_last_match(threads, machine, pid, tid); 622 if (th) 623 return th; 624 625 while (*p != NULL) { 626 parent = *p; 627 th = rb_entry(parent, struct thread, rb_node); 628 629 if (th->tid == tid) { 630 threads__set_last_match(threads, th); 631 machine__update_thread_pid(machine, th, pid); 632 return thread__get(th); 633 } 634 635 if (tid < th->tid) 636 p = &(*p)->rb_left; 637 else { 638 p = &(*p)->rb_right; 639 leftmost = false; 640 } 641 } 642 643 if (!create) 644 return NULL; 645 646 th = thread__new(pid, tid); 647 if (th != NULL) { 648 rb_link_node(&th->rb_node, parent, p); 649 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 650 651 /* 652 * We have to initialize maps separately after rb tree is updated. 653 * 654 * The reason is that we call machine__findnew_thread 655 * within thread__init_maps to find the thread 656 * leader and that would screwed the rb tree. 657 */ 658 if (thread__init_maps(th, machine)) { 659 rb_erase_cached(&th->rb_node, &threads->entries); 660 RB_CLEAR_NODE(&th->rb_node); 661 thread__put(th); 662 return NULL; 663 } 664 /* 665 * It is now in the rbtree, get a ref 666 */ 667 thread__get(th); 668 threads__set_last_match(threads, th); 669 ++threads->nr; 670 } 671 672 return th; 673 } 674 675 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 676 { 677 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 678 } 679 680 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 681 pid_t tid) 682 { 683 struct threads *threads = machine__threads(machine, tid); 684 struct thread *th; 685 686 down_write(&threads->lock); 687 th = __machine__findnew_thread(machine, pid, tid); 688 up_write(&threads->lock); 689 return th; 690 } 691 692 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 693 pid_t tid) 694 { 695 struct threads *threads = machine__threads(machine, tid); 696 struct thread *th; 697 698 down_read(&threads->lock); 699 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 700 up_read(&threads->lock); 701 return th; 702 } 703 704 /* 705 * Threads are identified by pid and tid, and the idle task has pid == tid == 0. 706 * So here a single thread is created for that, but actually there is a separate 707 * idle task per cpu, so there should be one 'struct thread' per cpu, but there 708 * is only 1. That causes problems for some tools, requiring workarounds. For 709 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). 710 */ 711 struct thread *machine__idle_thread(struct machine *machine) 712 { 713 struct thread *thread = machine__findnew_thread(machine, 0, 0); 714 715 if (!thread || thread__set_comm(thread, "swapper", 0) || 716 thread__set_namespaces(thread, 0, NULL)) 717 pr_err("problem inserting idle task for machine pid %d\n", machine->pid); 718 719 return thread; 720 } 721 722 struct comm *machine__thread_exec_comm(struct machine *machine, 723 struct thread *thread) 724 { 725 if (machine->comm_exec) 726 return thread__exec_comm(thread); 727 else 728 return thread__comm(thread); 729 } 730 731 int machine__process_comm_event(struct machine *machine, union perf_event *event, 732 struct perf_sample *sample) 733 { 734 struct thread *thread = machine__findnew_thread(machine, 735 event->comm.pid, 736 event->comm.tid); 737 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 738 int err = 0; 739 740 if (exec) 741 machine->comm_exec = true; 742 743 if (dump_trace) 744 perf_event__fprintf_comm(event, stdout); 745 746 if (thread == NULL || 747 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 748 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 749 err = -1; 750 } 751 752 thread__put(thread); 753 754 return err; 755 } 756 757 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 758 union perf_event *event, 759 struct perf_sample *sample __maybe_unused) 760 { 761 struct thread *thread = machine__findnew_thread(machine, 762 event->namespaces.pid, 763 event->namespaces.tid); 764 int err = 0; 765 766 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 767 "\nWARNING: kernel seems to support more namespaces than perf" 768 " tool.\nTry updating the perf tool..\n\n"); 769 770 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 771 "\nWARNING: perf tool seems to support more namespaces than" 772 " the kernel.\nTry updating the kernel..\n\n"); 773 774 if (dump_trace) 775 perf_event__fprintf_namespaces(event, stdout); 776 777 if (thread == NULL || 778 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 779 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 780 err = -1; 781 } 782 783 thread__put(thread); 784 785 return err; 786 } 787 788 int machine__process_cgroup_event(struct machine *machine, 789 union perf_event *event, 790 struct perf_sample *sample __maybe_unused) 791 { 792 struct cgroup *cgrp; 793 794 if (dump_trace) 795 perf_event__fprintf_cgroup(event, stdout); 796 797 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 798 if (cgrp == NULL) 799 return -ENOMEM; 800 801 return 0; 802 } 803 804 int machine__process_lost_event(struct machine *machine __maybe_unused, 805 union perf_event *event, struct perf_sample *sample __maybe_unused) 806 { 807 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 808 event->lost.id, event->lost.lost); 809 return 0; 810 } 811 812 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 813 union perf_event *event, struct perf_sample *sample) 814 { 815 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 816 sample->id, event->lost_samples.lost); 817 return 0; 818 } 819 820 static struct dso *machine__findnew_module_dso(struct machine *machine, 821 struct kmod_path *m, 822 const char *filename) 823 { 824 struct dso *dso; 825 826 down_write(&machine->dsos.lock); 827 828 dso = __dsos__find(&machine->dsos, m->name, true); 829 if (!dso) { 830 dso = __dsos__addnew(&machine->dsos, m->name); 831 if (dso == NULL) 832 goto out_unlock; 833 834 dso__set_module_info(dso, m, machine); 835 dso__set_long_name(dso, strdup(filename), true); 836 dso->kernel = DSO_SPACE__KERNEL; 837 } 838 839 dso__get(dso); 840 out_unlock: 841 up_write(&machine->dsos.lock); 842 return dso; 843 } 844 845 int machine__process_aux_event(struct machine *machine __maybe_unused, 846 union perf_event *event) 847 { 848 if (dump_trace) 849 perf_event__fprintf_aux(event, stdout); 850 return 0; 851 } 852 853 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 854 union perf_event *event) 855 { 856 if (dump_trace) 857 perf_event__fprintf_itrace_start(event, stdout); 858 return 0; 859 } 860 861 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused, 862 union perf_event *event) 863 { 864 if (dump_trace) 865 perf_event__fprintf_aux_output_hw_id(event, stdout); 866 return 0; 867 } 868 869 int machine__process_switch_event(struct machine *machine __maybe_unused, 870 union perf_event *event) 871 { 872 if (dump_trace) 873 perf_event__fprintf_switch(event, stdout); 874 return 0; 875 } 876 877 static int machine__process_ksymbol_register(struct machine *machine, 878 union perf_event *event, 879 struct perf_sample *sample __maybe_unused) 880 { 881 struct symbol *sym; 882 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 883 884 if (!map) { 885 struct dso *dso = dso__new(event->ksymbol.name); 886 887 if (dso) { 888 dso->kernel = DSO_SPACE__KERNEL; 889 map = map__new2(0, dso); 890 dso__put(dso); 891 } 892 893 if (!dso || !map) { 894 return -ENOMEM; 895 } 896 897 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 898 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 899 map->dso->data.file_size = event->ksymbol.len; 900 dso__set_loaded(map->dso); 901 } 902 903 map->start = event->ksymbol.addr; 904 map->end = map->start + event->ksymbol.len; 905 maps__insert(machine__kernel_maps(machine), map); 906 map__put(map); 907 dso__set_loaded(dso); 908 909 if (is_bpf_image(event->ksymbol.name)) { 910 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 911 dso__set_long_name(dso, "", false); 912 } 913 } 914 915 sym = symbol__new(map->map_ip(map, map->start), 916 event->ksymbol.len, 917 0, 0, event->ksymbol.name); 918 if (!sym) 919 return -ENOMEM; 920 dso__insert_symbol(map->dso, sym); 921 return 0; 922 } 923 924 static int machine__process_ksymbol_unregister(struct machine *machine, 925 union perf_event *event, 926 struct perf_sample *sample __maybe_unused) 927 { 928 struct symbol *sym; 929 struct map *map; 930 931 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr); 932 if (!map) 933 return 0; 934 935 if (map != machine->vmlinux_map) 936 maps__remove(machine__kernel_maps(machine), map); 937 else { 938 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start)); 939 if (sym) 940 dso__delete_symbol(map->dso, sym); 941 } 942 943 return 0; 944 } 945 946 int machine__process_ksymbol(struct machine *machine __maybe_unused, 947 union perf_event *event, 948 struct perf_sample *sample) 949 { 950 if (dump_trace) 951 perf_event__fprintf_ksymbol(event, stdout); 952 953 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 954 return machine__process_ksymbol_unregister(machine, event, 955 sample); 956 return machine__process_ksymbol_register(machine, event, sample); 957 } 958 959 int machine__process_text_poke(struct machine *machine, union perf_event *event, 960 struct perf_sample *sample __maybe_unused) 961 { 962 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr); 963 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 964 965 if (dump_trace) 966 perf_event__fprintf_text_poke(event, machine, stdout); 967 968 if (!event->text_poke.new_len) 969 return 0; 970 971 if (cpumode != PERF_RECORD_MISC_KERNEL) { 972 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 973 return 0; 974 } 975 976 if (map && map->dso) { 977 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 978 int ret; 979 980 /* 981 * Kernel maps might be changed when loading symbols so loading 982 * must be done prior to using kernel maps. 983 */ 984 map__load(map); 985 ret = dso__data_write_cache_addr(map->dso, map, machine, 986 event->text_poke.addr, 987 new_bytes, 988 event->text_poke.new_len); 989 if (ret != event->text_poke.new_len) 990 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 991 event->text_poke.addr); 992 } else { 993 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 994 event->text_poke.addr); 995 } 996 997 return 0; 998 } 999 1000 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 1001 const char *filename) 1002 { 1003 struct map *map = NULL; 1004 struct kmod_path m; 1005 struct dso *dso; 1006 1007 if (kmod_path__parse_name(&m, filename)) 1008 return NULL; 1009 1010 dso = machine__findnew_module_dso(machine, &m, filename); 1011 if (dso == NULL) 1012 goto out; 1013 1014 map = map__new2(start, dso); 1015 if (map == NULL) 1016 goto out; 1017 1018 maps__insert(machine__kernel_maps(machine), map); 1019 1020 /* Put the map here because maps__insert already got it */ 1021 map__put(map); 1022 out: 1023 /* put the dso here, corresponding to machine__findnew_module_dso */ 1024 dso__put(dso); 1025 zfree(&m.name); 1026 return map; 1027 } 1028 1029 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 1030 { 1031 struct rb_node *nd; 1032 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 1033 1034 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1035 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1036 ret += __dsos__fprintf(&pos->dsos.head, fp); 1037 } 1038 1039 return ret; 1040 } 1041 1042 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 1043 bool (skip)(struct dso *dso, int parm), int parm) 1044 { 1045 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 1046 } 1047 1048 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 1049 bool (skip)(struct dso *dso, int parm), int parm) 1050 { 1051 struct rb_node *nd; 1052 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 1053 1054 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 1055 struct machine *pos = rb_entry(nd, struct machine, rb_node); 1056 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 1057 } 1058 return ret; 1059 } 1060 1061 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 1062 { 1063 int i; 1064 size_t printed = 0; 1065 struct dso *kdso = machine__kernel_dso(machine); 1066 1067 if (kdso->has_build_id) { 1068 char filename[PATH_MAX]; 1069 if (dso__build_id_filename(kdso, filename, sizeof(filename), 1070 false)) 1071 printed += fprintf(fp, "[0] %s\n", filename); 1072 } 1073 1074 for (i = 0; i < vmlinux_path__nr_entries; ++i) 1075 printed += fprintf(fp, "[%d] %s\n", 1076 i + kdso->has_build_id, vmlinux_path[i]); 1077 1078 return printed; 1079 } 1080 1081 size_t machine__fprintf(struct machine *machine, FILE *fp) 1082 { 1083 struct rb_node *nd; 1084 size_t ret; 1085 int i; 1086 1087 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 1088 struct threads *threads = &machine->threads[i]; 1089 1090 down_read(&threads->lock); 1091 1092 ret = fprintf(fp, "Threads: %u\n", threads->nr); 1093 1094 for (nd = rb_first_cached(&threads->entries); nd; 1095 nd = rb_next(nd)) { 1096 struct thread *pos = rb_entry(nd, struct thread, rb_node); 1097 1098 ret += thread__fprintf(pos, fp); 1099 } 1100 1101 up_read(&threads->lock); 1102 } 1103 return ret; 1104 } 1105 1106 static struct dso *machine__get_kernel(struct machine *machine) 1107 { 1108 const char *vmlinux_name = machine->mmap_name; 1109 struct dso *kernel; 1110 1111 if (machine__is_host(machine)) { 1112 if (symbol_conf.vmlinux_name) 1113 vmlinux_name = symbol_conf.vmlinux_name; 1114 1115 kernel = machine__findnew_kernel(machine, vmlinux_name, 1116 "[kernel]", DSO_SPACE__KERNEL); 1117 } else { 1118 if (symbol_conf.default_guest_vmlinux_name) 1119 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 1120 1121 kernel = machine__findnew_kernel(machine, vmlinux_name, 1122 "[guest.kernel]", 1123 DSO_SPACE__KERNEL_GUEST); 1124 } 1125 1126 if (kernel != NULL && (!kernel->has_build_id)) 1127 dso__read_running_kernel_build_id(kernel, machine); 1128 1129 return kernel; 1130 } 1131 1132 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 1133 size_t bufsz) 1134 { 1135 if (machine__is_default_guest(machine)) 1136 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1137 else 1138 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1139 } 1140 1141 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1142 1143 /* Figure out the start address of kernel map from /proc/kallsyms. 1144 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1145 * symbol_name if it's not that important. 1146 */ 1147 static int machine__get_running_kernel_start(struct machine *machine, 1148 const char **symbol_name, 1149 u64 *start, u64 *end) 1150 { 1151 char filename[PATH_MAX]; 1152 int i, err = -1; 1153 const char *name; 1154 u64 addr = 0; 1155 1156 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1157 1158 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1159 return 0; 1160 1161 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1162 err = kallsyms__get_function_start(filename, name, &addr); 1163 if (!err) 1164 break; 1165 } 1166 1167 if (err) 1168 return -1; 1169 1170 if (symbol_name) 1171 *symbol_name = name; 1172 1173 *start = addr; 1174 1175 err = kallsyms__get_function_start(filename, "_etext", &addr); 1176 if (!err) 1177 *end = addr; 1178 1179 return 0; 1180 } 1181 1182 int machine__create_extra_kernel_map(struct machine *machine, 1183 struct dso *kernel, 1184 struct extra_kernel_map *xm) 1185 { 1186 struct kmap *kmap; 1187 struct map *map; 1188 1189 map = map__new2(xm->start, kernel); 1190 if (!map) 1191 return -1; 1192 1193 map->end = xm->end; 1194 map->pgoff = xm->pgoff; 1195 1196 kmap = map__kmap(map); 1197 1198 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1199 1200 maps__insert(machine__kernel_maps(machine), map); 1201 1202 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1203 kmap->name, map->start, map->end); 1204 1205 map__put(map); 1206 1207 return 0; 1208 } 1209 1210 static u64 find_entry_trampoline(struct dso *dso) 1211 { 1212 /* Duplicates are removed so lookup all aliases */ 1213 const char *syms[] = { 1214 "_entry_trampoline", 1215 "__entry_trampoline_start", 1216 "entry_SYSCALL_64_trampoline", 1217 }; 1218 struct symbol *sym = dso__first_symbol(dso); 1219 unsigned int i; 1220 1221 for (; sym; sym = dso__next_symbol(sym)) { 1222 if (sym->binding != STB_GLOBAL) 1223 continue; 1224 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1225 if (!strcmp(sym->name, syms[i])) 1226 return sym->start; 1227 } 1228 } 1229 1230 return 0; 1231 } 1232 1233 /* 1234 * These values can be used for kernels that do not have symbols for the entry 1235 * trampolines in kallsyms. 1236 */ 1237 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1238 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1239 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1240 1241 /* Map x86_64 PTI entry trampolines */ 1242 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1243 struct dso *kernel) 1244 { 1245 struct maps *kmaps = machine__kernel_maps(machine); 1246 int nr_cpus_avail, cpu; 1247 bool found = false; 1248 struct map *map; 1249 u64 pgoff; 1250 1251 /* 1252 * In the vmlinux case, pgoff is a virtual address which must now be 1253 * mapped to a vmlinux offset. 1254 */ 1255 maps__for_each_entry(kmaps, map) { 1256 struct kmap *kmap = __map__kmap(map); 1257 struct map *dest_map; 1258 1259 if (!kmap || !is_entry_trampoline(kmap->name)) 1260 continue; 1261 1262 dest_map = maps__find(kmaps, map->pgoff); 1263 if (dest_map != map) 1264 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1265 found = true; 1266 } 1267 if (found || machine->trampolines_mapped) 1268 return 0; 1269 1270 pgoff = find_entry_trampoline(kernel); 1271 if (!pgoff) 1272 return 0; 1273 1274 nr_cpus_avail = machine__nr_cpus_avail(machine); 1275 1276 /* Add a 1 page map for each CPU's entry trampoline */ 1277 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1278 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1279 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1280 X86_64_ENTRY_TRAMPOLINE; 1281 struct extra_kernel_map xm = { 1282 .start = va, 1283 .end = va + page_size, 1284 .pgoff = pgoff, 1285 }; 1286 1287 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1288 1289 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1290 return -1; 1291 } 1292 1293 machine->trampolines_mapped = nr_cpus_avail; 1294 1295 return 0; 1296 } 1297 1298 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1299 struct dso *kernel __maybe_unused) 1300 { 1301 return 0; 1302 } 1303 1304 static int 1305 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1306 { 1307 /* In case of renewal the kernel map, destroy previous one */ 1308 machine__destroy_kernel_maps(machine); 1309 1310 machine->vmlinux_map = map__new2(0, kernel); 1311 if (machine->vmlinux_map == NULL) 1312 return -1; 1313 1314 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1315 maps__insert(machine__kernel_maps(machine), machine->vmlinux_map); 1316 return 0; 1317 } 1318 1319 void machine__destroy_kernel_maps(struct machine *machine) 1320 { 1321 struct kmap *kmap; 1322 struct map *map = machine__kernel_map(machine); 1323 1324 if (map == NULL) 1325 return; 1326 1327 kmap = map__kmap(map); 1328 maps__remove(machine__kernel_maps(machine), map); 1329 if (kmap && kmap->ref_reloc_sym) { 1330 zfree((char **)&kmap->ref_reloc_sym->name); 1331 zfree(&kmap->ref_reloc_sym); 1332 } 1333 1334 map__zput(machine->vmlinux_map); 1335 } 1336 1337 int machines__create_guest_kernel_maps(struct machines *machines) 1338 { 1339 int ret = 0; 1340 struct dirent **namelist = NULL; 1341 int i, items = 0; 1342 char path[PATH_MAX]; 1343 pid_t pid; 1344 char *endp; 1345 1346 if (symbol_conf.default_guest_vmlinux_name || 1347 symbol_conf.default_guest_modules || 1348 symbol_conf.default_guest_kallsyms) { 1349 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1350 } 1351 1352 if (symbol_conf.guestmount) { 1353 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1354 if (items <= 0) 1355 return -ENOENT; 1356 for (i = 0; i < items; i++) { 1357 if (!isdigit(namelist[i]->d_name[0])) { 1358 /* Filter out . and .. */ 1359 continue; 1360 } 1361 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1362 if ((*endp != '\0') || 1363 (endp == namelist[i]->d_name) || 1364 (errno == ERANGE)) { 1365 pr_debug("invalid directory (%s). Skipping.\n", 1366 namelist[i]->d_name); 1367 continue; 1368 } 1369 sprintf(path, "%s/%s/proc/kallsyms", 1370 symbol_conf.guestmount, 1371 namelist[i]->d_name); 1372 ret = access(path, R_OK); 1373 if (ret) { 1374 pr_debug("Can't access file %s\n", path); 1375 goto failure; 1376 } 1377 machines__create_kernel_maps(machines, pid); 1378 } 1379 failure: 1380 free(namelist); 1381 } 1382 1383 return ret; 1384 } 1385 1386 void machines__destroy_kernel_maps(struct machines *machines) 1387 { 1388 struct rb_node *next = rb_first_cached(&machines->guests); 1389 1390 machine__destroy_kernel_maps(&machines->host); 1391 1392 while (next) { 1393 struct machine *pos = rb_entry(next, struct machine, rb_node); 1394 1395 next = rb_next(&pos->rb_node); 1396 rb_erase_cached(&pos->rb_node, &machines->guests); 1397 machine__delete(pos); 1398 } 1399 } 1400 1401 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1402 { 1403 struct machine *machine = machines__findnew(machines, pid); 1404 1405 if (machine == NULL) 1406 return -1; 1407 1408 return machine__create_kernel_maps(machine); 1409 } 1410 1411 int machine__load_kallsyms(struct machine *machine, const char *filename) 1412 { 1413 struct map *map = machine__kernel_map(machine); 1414 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1415 1416 if (ret > 0) { 1417 dso__set_loaded(map->dso); 1418 /* 1419 * Since /proc/kallsyms will have multiple sessions for the 1420 * kernel, with modules between them, fixup the end of all 1421 * sections. 1422 */ 1423 maps__fixup_end(machine__kernel_maps(machine)); 1424 } 1425 1426 return ret; 1427 } 1428 1429 int machine__load_vmlinux_path(struct machine *machine) 1430 { 1431 struct map *map = machine__kernel_map(machine); 1432 int ret = dso__load_vmlinux_path(map->dso, map); 1433 1434 if (ret > 0) 1435 dso__set_loaded(map->dso); 1436 1437 return ret; 1438 } 1439 1440 static char *get_kernel_version(const char *root_dir) 1441 { 1442 char version[PATH_MAX]; 1443 FILE *file; 1444 char *name, *tmp; 1445 const char *prefix = "Linux version "; 1446 1447 sprintf(version, "%s/proc/version", root_dir); 1448 file = fopen(version, "r"); 1449 if (!file) 1450 return NULL; 1451 1452 tmp = fgets(version, sizeof(version), file); 1453 fclose(file); 1454 if (!tmp) 1455 return NULL; 1456 1457 name = strstr(version, prefix); 1458 if (!name) 1459 return NULL; 1460 name += strlen(prefix); 1461 tmp = strchr(name, ' '); 1462 if (tmp) 1463 *tmp = '\0'; 1464 1465 return strdup(name); 1466 } 1467 1468 static bool is_kmod_dso(struct dso *dso) 1469 { 1470 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1471 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1472 } 1473 1474 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1475 { 1476 char *long_name; 1477 struct map *map = maps__find_by_name(maps, m->name); 1478 1479 if (map == NULL) 1480 return 0; 1481 1482 long_name = strdup(path); 1483 if (long_name == NULL) 1484 return -ENOMEM; 1485 1486 dso__set_long_name(map->dso, long_name, true); 1487 dso__kernel_module_get_build_id(map->dso, ""); 1488 1489 /* 1490 * Full name could reveal us kmod compression, so 1491 * we need to update the symtab_type if needed. 1492 */ 1493 if (m->comp && is_kmod_dso(map->dso)) { 1494 map->dso->symtab_type++; 1495 map->dso->comp = m->comp; 1496 } 1497 1498 return 0; 1499 } 1500 1501 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1502 { 1503 struct dirent *dent; 1504 DIR *dir = opendir(dir_name); 1505 int ret = 0; 1506 1507 if (!dir) { 1508 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1509 return -1; 1510 } 1511 1512 while ((dent = readdir(dir)) != NULL) { 1513 char path[PATH_MAX]; 1514 struct stat st; 1515 1516 /*sshfs might return bad dent->d_type, so we have to stat*/ 1517 path__join(path, sizeof(path), dir_name, dent->d_name); 1518 if (stat(path, &st)) 1519 continue; 1520 1521 if (S_ISDIR(st.st_mode)) { 1522 if (!strcmp(dent->d_name, ".") || 1523 !strcmp(dent->d_name, "..")) 1524 continue; 1525 1526 /* Do not follow top-level source and build symlinks */ 1527 if (depth == 0) { 1528 if (!strcmp(dent->d_name, "source") || 1529 !strcmp(dent->d_name, "build")) 1530 continue; 1531 } 1532 1533 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1534 if (ret < 0) 1535 goto out; 1536 } else { 1537 struct kmod_path m; 1538 1539 ret = kmod_path__parse_name(&m, dent->d_name); 1540 if (ret) 1541 goto out; 1542 1543 if (m.kmod) 1544 ret = maps__set_module_path(maps, path, &m); 1545 1546 zfree(&m.name); 1547 1548 if (ret) 1549 goto out; 1550 } 1551 } 1552 1553 out: 1554 closedir(dir); 1555 return ret; 1556 } 1557 1558 static int machine__set_modules_path(struct machine *machine) 1559 { 1560 char *version; 1561 char modules_path[PATH_MAX]; 1562 1563 version = get_kernel_version(machine->root_dir); 1564 if (!version) 1565 return -1; 1566 1567 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1568 machine->root_dir, version); 1569 free(version); 1570 1571 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0); 1572 } 1573 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1574 u64 *size __maybe_unused, 1575 const char *name __maybe_unused) 1576 { 1577 return 0; 1578 } 1579 1580 static int machine__create_module(void *arg, const char *name, u64 start, 1581 u64 size) 1582 { 1583 struct machine *machine = arg; 1584 struct map *map; 1585 1586 if (arch__fix_module_text_start(&start, &size, name) < 0) 1587 return -1; 1588 1589 map = machine__addnew_module_map(machine, start, name); 1590 if (map == NULL) 1591 return -1; 1592 map->end = start + size; 1593 1594 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1595 1596 return 0; 1597 } 1598 1599 static int machine__create_modules(struct machine *machine) 1600 { 1601 const char *modules; 1602 char path[PATH_MAX]; 1603 1604 if (machine__is_default_guest(machine)) { 1605 modules = symbol_conf.default_guest_modules; 1606 } else { 1607 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1608 modules = path; 1609 } 1610 1611 if (symbol__restricted_filename(modules, "/proc/modules")) 1612 return -1; 1613 1614 if (modules__parse(modules, machine, machine__create_module)) 1615 return -1; 1616 1617 if (!machine__set_modules_path(machine)) 1618 return 0; 1619 1620 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1621 1622 return 0; 1623 } 1624 1625 static void machine__set_kernel_mmap(struct machine *machine, 1626 u64 start, u64 end) 1627 { 1628 machine->vmlinux_map->start = start; 1629 machine->vmlinux_map->end = end; 1630 /* 1631 * Be a bit paranoid here, some perf.data file came with 1632 * a zero sized synthesized MMAP event for the kernel. 1633 */ 1634 if (start == 0 && end == 0) 1635 machine->vmlinux_map->end = ~0ULL; 1636 } 1637 1638 static void machine__update_kernel_mmap(struct machine *machine, 1639 u64 start, u64 end) 1640 { 1641 struct map *map = machine__kernel_map(machine); 1642 1643 map__get(map); 1644 maps__remove(machine__kernel_maps(machine), map); 1645 1646 machine__set_kernel_mmap(machine, start, end); 1647 1648 maps__insert(machine__kernel_maps(machine), map); 1649 map__put(map); 1650 } 1651 1652 int machine__create_kernel_maps(struct machine *machine) 1653 { 1654 struct dso *kernel = machine__get_kernel(machine); 1655 const char *name = NULL; 1656 struct map *map; 1657 u64 start = 0, end = ~0ULL; 1658 int ret; 1659 1660 if (kernel == NULL) 1661 return -1; 1662 1663 ret = __machine__create_kernel_maps(machine, kernel); 1664 if (ret < 0) 1665 goto out_put; 1666 1667 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1668 if (machine__is_host(machine)) 1669 pr_debug("Problems creating module maps, " 1670 "continuing anyway...\n"); 1671 else 1672 pr_debug("Problems creating module maps for guest %d, " 1673 "continuing anyway...\n", machine->pid); 1674 } 1675 1676 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1677 if (name && 1678 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1679 machine__destroy_kernel_maps(machine); 1680 ret = -1; 1681 goto out_put; 1682 } 1683 1684 /* 1685 * we have a real start address now, so re-order the kmaps 1686 * assume it's the last in the kmaps 1687 */ 1688 machine__update_kernel_mmap(machine, start, end); 1689 } 1690 1691 if (machine__create_extra_kernel_maps(machine, kernel)) 1692 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1693 1694 if (end == ~0ULL) { 1695 /* update end address of the kernel map using adjacent module address */ 1696 map = map__next(machine__kernel_map(machine)); 1697 if (map) 1698 machine__set_kernel_mmap(machine, start, map->start); 1699 } 1700 1701 out_put: 1702 dso__put(kernel); 1703 return ret; 1704 } 1705 1706 static bool machine__uses_kcore(struct machine *machine) 1707 { 1708 struct dso *dso; 1709 1710 list_for_each_entry(dso, &machine->dsos.head, node) { 1711 if (dso__is_kcore(dso)) 1712 return true; 1713 } 1714 1715 return false; 1716 } 1717 1718 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1719 struct extra_kernel_map *xm) 1720 { 1721 return machine__is(machine, "x86_64") && 1722 is_entry_trampoline(xm->name); 1723 } 1724 1725 static int machine__process_extra_kernel_map(struct machine *machine, 1726 struct extra_kernel_map *xm) 1727 { 1728 struct dso *kernel = machine__kernel_dso(machine); 1729 1730 if (kernel == NULL) 1731 return -1; 1732 1733 return machine__create_extra_kernel_map(machine, kernel, xm); 1734 } 1735 1736 static int machine__process_kernel_mmap_event(struct machine *machine, 1737 struct extra_kernel_map *xm, 1738 struct build_id *bid) 1739 { 1740 struct map *map; 1741 enum dso_space_type dso_space; 1742 bool is_kernel_mmap; 1743 const char *mmap_name = machine->mmap_name; 1744 1745 /* If we have maps from kcore then we do not need or want any others */ 1746 if (machine__uses_kcore(machine)) 1747 return 0; 1748 1749 if (machine__is_host(machine)) 1750 dso_space = DSO_SPACE__KERNEL; 1751 else 1752 dso_space = DSO_SPACE__KERNEL_GUEST; 1753 1754 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1755 if (!is_kernel_mmap && !machine__is_host(machine)) { 1756 /* 1757 * If the event was recorded inside the guest and injected into 1758 * the host perf.data file, then it will match a host mmap_name, 1759 * so try that - see machine__set_mmap_name(). 1760 */ 1761 mmap_name = "[kernel.kallsyms]"; 1762 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0; 1763 } 1764 if (xm->name[0] == '/' || 1765 (!is_kernel_mmap && xm->name[0] == '[')) { 1766 map = machine__addnew_module_map(machine, xm->start, 1767 xm->name); 1768 if (map == NULL) 1769 goto out_problem; 1770 1771 map->end = map->start + xm->end - xm->start; 1772 1773 if (build_id__is_defined(bid)) 1774 dso__set_build_id(map->dso, bid); 1775 1776 } else if (is_kernel_mmap) { 1777 const char *symbol_name = xm->name + strlen(mmap_name); 1778 /* 1779 * Should be there already, from the build-id table in 1780 * the header. 1781 */ 1782 struct dso *kernel = NULL; 1783 struct dso *dso; 1784 1785 down_read(&machine->dsos.lock); 1786 1787 list_for_each_entry(dso, &machine->dsos.head, node) { 1788 1789 /* 1790 * The cpumode passed to is_kernel_module is not the 1791 * cpumode of *this* event. If we insist on passing 1792 * correct cpumode to is_kernel_module, we should 1793 * record the cpumode when we adding this dso to the 1794 * linked list. 1795 * 1796 * However we don't really need passing correct 1797 * cpumode. We know the correct cpumode must be kernel 1798 * mode (if not, we should not link it onto kernel_dsos 1799 * list). 1800 * 1801 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1802 * is_kernel_module() treats it as a kernel cpumode. 1803 */ 1804 1805 if (!dso->kernel || 1806 is_kernel_module(dso->long_name, 1807 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1808 continue; 1809 1810 1811 kernel = dso; 1812 break; 1813 } 1814 1815 up_read(&machine->dsos.lock); 1816 1817 if (kernel == NULL) 1818 kernel = machine__findnew_dso(machine, machine->mmap_name); 1819 if (kernel == NULL) 1820 goto out_problem; 1821 1822 kernel->kernel = dso_space; 1823 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1824 dso__put(kernel); 1825 goto out_problem; 1826 } 1827 1828 if (strstr(kernel->long_name, "vmlinux")) 1829 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1830 1831 machine__update_kernel_mmap(machine, xm->start, xm->end); 1832 1833 if (build_id__is_defined(bid)) 1834 dso__set_build_id(kernel, bid); 1835 1836 /* 1837 * Avoid using a zero address (kptr_restrict) for the ref reloc 1838 * symbol. Effectively having zero here means that at record 1839 * time /proc/sys/kernel/kptr_restrict was non zero. 1840 */ 1841 if (xm->pgoff != 0) { 1842 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1843 symbol_name, 1844 xm->pgoff); 1845 } 1846 1847 if (machine__is_default_guest(machine)) { 1848 /* 1849 * preload dso of guest kernel and modules 1850 */ 1851 dso__load(kernel, machine__kernel_map(machine)); 1852 } 1853 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1854 return machine__process_extra_kernel_map(machine, xm); 1855 } 1856 return 0; 1857 out_problem: 1858 return -1; 1859 } 1860 1861 int machine__process_mmap2_event(struct machine *machine, 1862 union perf_event *event, 1863 struct perf_sample *sample) 1864 { 1865 struct thread *thread; 1866 struct map *map; 1867 struct dso_id dso_id = { 1868 .maj = event->mmap2.maj, 1869 .min = event->mmap2.min, 1870 .ino = event->mmap2.ino, 1871 .ino_generation = event->mmap2.ino_generation, 1872 }; 1873 struct build_id __bid, *bid = NULL; 1874 int ret = 0; 1875 1876 if (dump_trace) 1877 perf_event__fprintf_mmap2(event, stdout); 1878 1879 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1880 bid = &__bid; 1881 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1882 } 1883 1884 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1885 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1886 struct extra_kernel_map xm = { 1887 .start = event->mmap2.start, 1888 .end = event->mmap2.start + event->mmap2.len, 1889 .pgoff = event->mmap2.pgoff, 1890 }; 1891 1892 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1893 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1894 if (ret < 0) 1895 goto out_problem; 1896 return 0; 1897 } 1898 1899 thread = machine__findnew_thread(machine, event->mmap2.pid, 1900 event->mmap2.tid); 1901 if (thread == NULL) 1902 goto out_problem; 1903 1904 map = map__new(machine, event->mmap2.start, 1905 event->mmap2.len, event->mmap2.pgoff, 1906 &dso_id, event->mmap2.prot, 1907 event->mmap2.flags, bid, 1908 event->mmap2.filename, thread); 1909 1910 if (map == NULL) 1911 goto out_problem_map; 1912 1913 ret = thread__insert_map(thread, map); 1914 if (ret) 1915 goto out_problem_insert; 1916 1917 thread__put(thread); 1918 map__put(map); 1919 return 0; 1920 1921 out_problem_insert: 1922 map__put(map); 1923 out_problem_map: 1924 thread__put(thread); 1925 out_problem: 1926 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1927 return 0; 1928 } 1929 1930 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1931 struct perf_sample *sample) 1932 { 1933 struct thread *thread; 1934 struct map *map; 1935 u32 prot = 0; 1936 int ret = 0; 1937 1938 if (dump_trace) 1939 perf_event__fprintf_mmap(event, stdout); 1940 1941 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1942 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1943 struct extra_kernel_map xm = { 1944 .start = event->mmap.start, 1945 .end = event->mmap.start + event->mmap.len, 1946 .pgoff = event->mmap.pgoff, 1947 }; 1948 1949 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1950 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1951 if (ret < 0) 1952 goto out_problem; 1953 return 0; 1954 } 1955 1956 thread = machine__findnew_thread(machine, event->mmap.pid, 1957 event->mmap.tid); 1958 if (thread == NULL) 1959 goto out_problem; 1960 1961 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1962 prot = PROT_EXEC; 1963 1964 map = map__new(machine, event->mmap.start, 1965 event->mmap.len, event->mmap.pgoff, 1966 NULL, prot, 0, NULL, event->mmap.filename, thread); 1967 1968 if (map == NULL) 1969 goto out_problem_map; 1970 1971 ret = thread__insert_map(thread, map); 1972 if (ret) 1973 goto out_problem_insert; 1974 1975 thread__put(thread); 1976 map__put(map); 1977 return 0; 1978 1979 out_problem_insert: 1980 map__put(map); 1981 out_problem_map: 1982 thread__put(thread); 1983 out_problem: 1984 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1985 return 0; 1986 } 1987 1988 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1989 { 1990 struct threads *threads = machine__threads(machine, th->tid); 1991 1992 if (threads->last_match == th) 1993 threads__set_last_match(threads, NULL); 1994 1995 if (lock) 1996 down_write(&threads->lock); 1997 1998 BUG_ON(refcount_read(&th->refcnt) == 0); 1999 2000 rb_erase_cached(&th->rb_node, &threads->entries); 2001 RB_CLEAR_NODE(&th->rb_node); 2002 --threads->nr; 2003 /* 2004 * Move it first to the dead_threads list, then drop the reference, 2005 * if this is the last reference, then the thread__delete destructor 2006 * will be called and we will remove it from the dead_threads list. 2007 */ 2008 list_add_tail(&th->node, &threads->dead); 2009 2010 /* 2011 * We need to do the put here because if this is the last refcount, 2012 * then we will be touching the threads->dead head when removing the 2013 * thread. 2014 */ 2015 thread__put(th); 2016 2017 if (lock) 2018 up_write(&threads->lock); 2019 } 2020 2021 void machine__remove_thread(struct machine *machine, struct thread *th) 2022 { 2023 return __machine__remove_thread(machine, th, true); 2024 } 2025 2026 int machine__process_fork_event(struct machine *machine, union perf_event *event, 2027 struct perf_sample *sample) 2028 { 2029 struct thread *thread = machine__find_thread(machine, 2030 event->fork.pid, 2031 event->fork.tid); 2032 struct thread *parent = machine__findnew_thread(machine, 2033 event->fork.ppid, 2034 event->fork.ptid); 2035 bool do_maps_clone = true; 2036 int err = 0; 2037 2038 if (dump_trace) 2039 perf_event__fprintf_task(event, stdout); 2040 2041 /* 2042 * There may be an existing thread that is not actually the parent, 2043 * either because we are processing events out of order, or because the 2044 * (fork) event that would have removed the thread was lost. Assume the 2045 * latter case and continue on as best we can. 2046 */ 2047 if (parent->pid_ != (pid_t)event->fork.ppid) { 2048 dump_printf("removing erroneous parent thread %d/%d\n", 2049 parent->pid_, parent->tid); 2050 machine__remove_thread(machine, parent); 2051 thread__put(parent); 2052 parent = machine__findnew_thread(machine, event->fork.ppid, 2053 event->fork.ptid); 2054 } 2055 2056 /* if a thread currently exists for the thread id remove it */ 2057 if (thread != NULL) { 2058 machine__remove_thread(machine, thread); 2059 thread__put(thread); 2060 } 2061 2062 thread = machine__findnew_thread(machine, event->fork.pid, 2063 event->fork.tid); 2064 /* 2065 * When synthesizing FORK events, we are trying to create thread 2066 * objects for the already running tasks on the machine. 2067 * 2068 * Normally, for a kernel FORK event, we want to clone the parent's 2069 * maps because that is what the kernel just did. 2070 * 2071 * But when synthesizing, this should not be done. If we do, we end up 2072 * with overlapping maps as we process the synthesized MMAP2 events that 2073 * get delivered shortly thereafter. 2074 * 2075 * Use the FORK event misc flags in an internal way to signal this 2076 * situation, so we can elide the map clone when appropriate. 2077 */ 2078 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 2079 do_maps_clone = false; 2080 2081 if (thread == NULL || parent == NULL || 2082 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 2083 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 2084 err = -1; 2085 } 2086 thread__put(thread); 2087 thread__put(parent); 2088 2089 return err; 2090 } 2091 2092 int machine__process_exit_event(struct machine *machine, union perf_event *event, 2093 struct perf_sample *sample __maybe_unused) 2094 { 2095 struct thread *thread = machine__find_thread(machine, 2096 event->fork.pid, 2097 event->fork.tid); 2098 2099 if (dump_trace) 2100 perf_event__fprintf_task(event, stdout); 2101 2102 if (thread != NULL) { 2103 thread__exited(thread); 2104 thread__put(thread); 2105 } 2106 2107 return 0; 2108 } 2109 2110 int machine__process_event(struct machine *machine, union perf_event *event, 2111 struct perf_sample *sample) 2112 { 2113 int ret; 2114 2115 switch (event->header.type) { 2116 case PERF_RECORD_COMM: 2117 ret = machine__process_comm_event(machine, event, sample); break; 2118 case PERF_RECORD_MMAP: 2119 ret = machine__process_mmap_event(machine, event, sample); break; 2120 case PERF_RECORD_NAMESPACES: 2121 ret = machine__process_namespaces_event(machine, event, sample); break; 2122 case PERF_RECORD_CGROUP: 2123 ret = machine__process_cgroup_event(machine, event, sample); break; 2124 case PERF_RECORD_MMAP2: 2125 ret = machine__process_mmap2_event(machine, event, sample); break; 2126 case PERF_RECORD_FORK: 2127 ret = machine__process_fork_event(machine, event, sample); break; 2128 case PERF_RECORD_EXIT: 2129 ret = machine__process_exit_event(machine, event, sample); break; 2130 case PERF_RECORD_LOST: 2131 ret = machine__process_lost_event(machine, event, sample); break; 2132 case PERF_RECORD_AUX: 2133 ret = machine__process_aux_event(machine, event); break; 2134 case PERF_RECORD_ITRACE_START: 2135 ret = machine__process_itrace_start_event(machine, event); break; 2136 case PERF_RECORD_LOST_SAMPLES: 2137 ret = machine__process_lost_samples_event(machine, event, sample); break; 2138 case PERF_RECORD_SWITCH: 2139 case PERF_RECORD_SWITCH_CPU_WIDE: 2140 ret = machine__process_switch_event(machine, event); break; 2141 case PERF_RECORD_KSYMBOL: 2142 ret = machine__process_ksymbol(machine, event, sample); break; 2143 case PERF_RECORD_BPF_EVENT: 2144 ret = machine__process_bpf(machine, event, sample); break; 2145 case PERF_RECORD_TEXT_POKE: 2146 ret = machine__process_text_poke(machine, event, sample); break; 2147 case PERF_RECORD_AUX_OUTPUT_HW_ID: 2148 ret = machine__process_aux_output_hw_id_event(machine, event); break; 2149 default: 2150 ret = -1; 2151 break; 2152 } 2153 2154 return ret; 2155 } 2156 2157 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2158 { 2159 if (!regexec(regex, sym->name, 0, NULL, 0)) 2160 return true; 2161 return false; 2162 } 2163 2164 static void ip__resolve_ams(struct thread *thread, 2165 struct addr_map_symbol *ams, 2166 u64 ip) 2167 { 2168 struct addr_location al; 2169 2170 memset(&al, 0, sizeof(al)); 2171 /* 2172 * We cannot use the header.misc hint to determine whether a 2173 * branch stack address is user, kernel, guest, hypervisor. 2174 * Branches may straddle the kernel/user/hypervisor boundaries. 2175 * Thus, we have to try consecutively until we find a match 2176 * or else, the symbol is unknown 2177 */ 2178 thread__find_cpumode_addr_location(thread, ip, &al); 2179 2180 ams->addr = ip; 2181 ams->al_addr = al.addr; 2182 ams->al_level = al.level; 2183 ams->ms.maps = al.maps; 2184 ams->ms.sym = al.sym; 2185 ams->ms.map = al.map; 2186 ams->phys_addr = 0; 2187 ams->data_page_size = 0; 2188 } 2189 2190 static void ip__resolve_data(struct thread *thread, 2191 u8 m, struct addr_map_symbol *ams, 2192 u64 addr, u64 phys_addr, u64 daddr_page_size) 2193 { 2194 struct addr_location al; 2195 2196 memset(&al, 0, sizeof(al)); 2197 2198 thread__find_symbol(thread, m, addr, &al); 2199 2200 ams->addr = addr; 2201 ams->al_addr = al.addr; 2202 ams->al_level = al.level; 2203 ams->ms.maps = al.maps; 2204 ams->ms.sym = al.sym; 2205 ams->ms.map = al.map; 2206 ams->phys_addr = phys_addr; 2207 ams->data_page_size = daddr_page_size; 2208 } 2209 2210 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2211 struct addr_location *al) 2212 { 2213 struct mem_info *mi = mem_info__new(); 2214 2215 if (!mi) 2216 return NULL; 2217 2218 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2219 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2220 sample->addr, sample->phys_addr, 2221 sample->data_page_size); 2222 mi->data_src.val = sample->data_src; 2223 2224 return mi; 2225 } 2226 2227 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2228 { 2229 struct map *map = ms->map; 2230 char *srcline = NULL; 2231 2232 if (!map || callchain_param.key == CCKEY_FUNCTION) 2233 return srcline; 2234 2235 srcline = srcline__tree_find(&map->dso->srclines, ip); 2236 if (!srcline) { 2237 bool show_sym = false; 2238 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2239 2240 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2241 ms->sym, show_sym, show_addr, ip); 2242 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2243 } 2244 2245 return srcline; 2246 } 2247 2248 struct iterations { 2249 int nr_loop_iter; 2250 u64 cycles; 2251 }; 2252 2253 static int add_callchain_ip(struct thread *thread, 2254 struct callchain_cursor *cursor, 2255 struct symbol **parent, 2256 struct addr_location *root_al, 2257 u8 *cpumode, 2258 u64 ip, 2259 bool branch, 2260 struct branch_flags *flags, 2261 struct iterations *iter, 2262 u64 branch_from) 2263 { 2264 struct map_symbol ms; 2265 struct addr_location al; 2266 int nr_loop_iter = 0; 2267 u64 iter_cycles = 0; 2268 const char *srcline = NULL; 2269 2270 al.filtered = 0; 2271 al.sym = NULL; 2272 al.srcline = NULL; 2273 if (!cpumode) { 2274 thread__find_cpumode_addr_location(thread, ip, &al); 2275 } else { 2276 if (ip >= PERF_CONTEXT_MAX) { 2277 switch (ip) { 2278 case PERF_CONTEXT_HV: 2279 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2280 break; 2281 case PERF_CONTEXT_KERNEL: 2282 *cpumode = PERF_RECORD_MISC_KERNEL; 2283 break; 2284 case PERF_CONTEXT_USER: 2285 *cpumode = PERF_RECORD_MISC_USER; 2286 break; 2287 default: 2288 pr_debug("invalid callchain context: " 2289 "%"PRId64"\n", (s64) ip); 2290 /* 2291 * It seems the callchain is corrupted. 2292 * Discard all. 2293 */ 2294 callchain_cursor_reset(cursor); 2295 return 1; 2296 } 2297 return 0; 2298 } 2299 thread__find_symbol(thread, *cpumode, ip, &al); 2300 } 2301 2302 if (al.sym != NULL) { 2303 if (perf_hpp_list.parent && !*parent && 2304 symbol__match_regex(al.sym, &parent_regex)) 2305 *parent = al.sym; 2306 else if (have_ignore_callees && root_al && 2307 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2308 /* Treat this symbol as the root, 2309 forgetting its callees. */ 2310 *root_al = al; 2311 callchain_cursor_reset(cursor); 2312 } 2313 } 2314 2315 if (symbol_conf.hide_unresolved && al.sym == NULL) 2316 return 0; 2317 2318 if (iter) { 2319 nr_loop_iter = iter->nr_loop_iter; 2320 iter_cycles = iter->cycles; 2321 } 2322 2323 ms.maps = al.maps; 2324 ms.map = al.map; 2325 ms.sym = al.sym; 2326 2327 if (!branch && append_inlines(cursor, &ms, ip) == 0) 2328 return 0; 2329 2330 srcline = callchain_srcline(&ms, al.addr); 2331 return callchain_cursor_append(cursor, ip, &ms, 2332 branch, flags, nr_loop_iter, 2333 iter_cycles, branch_from, srcline); 2334 } 2335 2336 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2337 struct addr_location *al) 2338 { 2339 unsigned int i; 2340 const struct branch_stack *bs = sample->branch_stack; 2341 struct branch_entry *entries = perf_sample__branch_entries(sample); 2342 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2343 2344 if (!bi) 2345 return NULL; 2346 2347 for (i = 0; i < bs->nr; i++) { 2348 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2349 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2350 bi[i].flags = entries[i].flags; 2351 } 2352 return bi; 2353 } 2354 2355 static void save_iterations(struct iterations *iter, 2356 struct branch_entry *be, int nr) 2357 { 2358 int i; 2359 2360 iter->nr_loop_iter++; 2361 iter->cycles = 0; 2362 2363 for (i = 0; i < nr; i++) 2364 iter->cycles += be[i].flags.cycles; 2365 } 2366 2367 #define CHASHSZ 127 2368 #define CHASHBITS 7 2369 #define NO_ENTRY 0xff 2370 2371 #define PERF_MAX_BRANCH_DEPTH 127 2372 2373 /* Remove loops. */ 2374 static int remove_loops(struct branch_entry *l, int nr, 2375 struct iterations *iter) 2376 { 2377 int i, j, off; 2378 unsigned char chash[CHASHSZ]; 2379 2380 memset(chash, NO_ENTRY, sizeof(chash)); 2381 2382 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2383 2384 for (i = 0; i < nr; i++) { 2385 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2386 2387 /* no collision handling for now */ 2388 if (chash[h] == NO_ENTRY) { 2389 chash[h] = i; 2390 } else if (l[chash[h]].from == l[i].from) { 2391 bool is_loop = true; 2392 /* check if it is a real loop */ 2393 off = 0; 2394 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2395 if (l[j].from != l[i + off].from) { 2396 is_loop = false; 2397 break; 2398 } 2399 if (is_loop) { 2400 j = nr - (i + off); 2401 if (j > 0) { 2402 save_iterations(iter + i + off, 2403 l + i, off); 2404 2405 memmove(iter + i, iter + i + off, 2406 j * sizeof(*iter)); 2407 2408 memmove(l + i, l + i + off, 2409 j * sizeof(*l)); 2410 } 2411 2412 nr -= off; 2413 } 2414 } 2415 } 2416 return nr; 2417 } 2418 2419 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2420 struct callchain_cursor *cursor, 2421 struct perf_sample *sample, 2422 struct symbol **parent, 2423 struct addr_location *root_al, 2424 u64 branch_from, 2425 bool callee, int end) 2426 { 2427 struct ip_callchain *chain = sample->callchain; 2428 u8 cpumode = PERF_RECORD_MISC_USER; 2429 int err, i; 2430 2431 if (callee) { 2432 for (i = 0; i < end + 1; i++) { 2433 err = add_callchain_ip(thread, cursor, parent, 2434 root_al, &cpumode, chain->ips[i], 2435 false, NULL, NULL, branch_from); 2436 if (err) 2437 return err; 2438 } 2439 return 0; 2440 } 2441 2442 for (i = end; i >= 0; i--) { 2443 err = add_callchain_ip(thread, cursor, parent, 2444 root_al, &cpumode, chain->ips[i], 2445 false, NULL, NULL, branch_from); 2446 if (err) 2447 return err; 2448 } 2449 2450 return 0; 2451 } 2452 2453 static void save_lbr_cursor_node(struct thread *thread, 2454 struct callchain_cursor *cursor, 2455 int idx) 2456 { 2457 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2458 2459 if (!lbr_stitch) 2460 return; 2461 2462 if (cursor->pos == cursor->nr) { 2463 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2464 return; 2465 } 2466 2467 if (!cursor->curr) 2468 cursor->curr = cursor->first; 2469 else 2470 cursor->curr = cursor->curr->next; 2471 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2472 sizeof(struct callchain_cursor_node)); 2473 2474 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2475 cursor->pos++; 2476 } 2477 2478 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2479 struct callchain_cursor *cursor, 2480 struct perf_sample *sample, 2481 struct symbol **parent, 2482 struct addr_location *root_al, 2483 u64 *branch_from, 2484 bool callee) 2485 { 2486 struct branch_stack *lbr_stack = sample->branch_stack; 2487 struct branch_entry *entries = perf_sample__branch_entries(sample); 2488 u8 cpumode = PERF_RECORD_MISC_USER; 2489 int lbr_nr = lbr_stack->nr; 2490 struct branch_flags *flags; 2491 int err, i; 2492 u64 ip; 2493 2494 /* 2495 * The curr and pos are not used in writing session. They are cleared 2496 * in callchain_cursor_commit() when the writing session is closed. 2497 * Using curr and pos to track the current cursor node. 2498 */ 2499 if (thread->lbr_stitch) { 2500 cursor->curr = NULL; 2501 cursor->pos = cursor->nr; 2502 if (cursor->nr) { 2503 cursor->curr = cursor->first; 2504 for (i = 0; i < (int)(cursor->nr - 1); i++) 2505 cursor->curr = cursor->curr->next; 2506 } 2507 } 2508 2509 if (callee) { 2510 /* Add LBR ip from first entries.to */ 2511 ip = entries[0].to; 2512 flags = &entries[0].flags; 2513 *branch_from = entries[0].from; 2514 err = add_callchain_ip(thread, cursor, parent, 2515 root_al, &cpumode, ip, 2516 true, flags, NULL, 2517 *branch_from); 2518 if (err) 2519 return err; 2520 2521 /* 2522 * The number of cursor node increases. 2523 * Move the current cursor node. 2524 * But does not need to save current cursor node for entry 0. 2525 * It's impossible to stitch the whole LBRs of previous sample. 2526 */ 2527 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2528 if (!cursor->curr) 2529 cursor->curr = cursor->first; 2530 else 2531 cursor->curr = cursor->curr->next; 2532 cursor->pos++; 2533 } 2534 2535 /* Add LBR ip from entries.from one by one. */ 2536 for (i = 0; i < lbr_nr; i++) { 2537 ip = entries[i].from; 2538 flags = &entries[i].flags; 2539 err = add_callchain_ip(thread, cursor, parent, 2540 root_al, &cpumode, ip, 2541 true, flags, NULL, 2542 *branch_from); 2543 if (err) 2544 return err; 2545 save_lbr_cursor_node(thread, cursor, i); 2546 } 2547 return 0; 2548 } 2549 2550 /* Add LBR ip from entries.from one by one. */ 2551 for (i = lbr_nr - 1; i >= 0; i--) { 2552 ip = entries[i].from; 2553 flags = &entries[i].flags; 2554 err = add_callchain_ip(thread, cursor, parent, 2555 root_al, &cpumode, ip, 2556 true, flags, NULL, 2557 *branch_from); 2558 if (err) 2559 return err; 2560 save_lbr_cursor_node(thread, cursor, i); 2561 } 2562 2563 /* Add LBR ip from first entries.to */ 2564 ip = entries[0].to; 2565 flags = &entries[0].flags; 2566 *branch_from = entries[0].from; 2567 err = add_callchain_ip(thread, cursor, parent, 2568 root_al, &cpumode, ip, 2569 true, flags, NULL, 2570 *branch_from); 2571 if (err) 2572 return err; 2573 2574 return 0; 2575 } 2576 2577 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2578 struct callchain_cursor *cursor) 2579 { 2580 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2581 struct callchain_cursor_node *cnode; 2582 struct stitch_list *stitch_node; 2583 int err; 2584 2585 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2586 cnode = &stitch_node->cursor; 2587 2588 err = callchain_cursor_append(cursor, cnode->ip, 2589 &cnode->ms, 2590 cnode->branch, 2591 &cnode->branch_flags, 2592 cnode->nr_loop_iter, 2593 cnode->iter_cycles, 2594 cnode->branch_from, 2595 cnode->srcline); 2596 if (err) 2597 return err; 2598 } 2599 return 0; 2600 } 2601 2602 static struct stitch_list *get_stitch_node(struct thread *thread) 2603 { 2604 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2605 struct stitch_list *stitch_node; 2606 2607 if (!list_empty(&lbr_stitch->free_lists)) { 2608 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2609 struct stitch_list, node); 2610 list_del(&stitch_node->node); 2611 2612 return stitch_node; 2613 } 2614 2615 return malloc(sizeof(struct stitch_list)); 2616 } 2617 2618 static bool has_stitched_lbr(struct thread *thread, 2619 struct perf_sample *cur, 2620 struct perf_sample *prev, 2621 unsigned int max_lbr, 2622 bool callee) 2623 { 2624 struct branch_stack *cur_stack = cur->branch_stack; 2625 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2626 struct branch_stack *prev_stack = prev->branch_stack; 2627 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2628 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2629 int i, j, nr_identical_branches = 0; 2630 struct stitch_list *stitch_node; 2631 u64 cur_base, distance; 2632 2633 if (!cur_stack || !prev_stack) 2634 return false; 2635 2636 /* Find the physical index of the base-of-stack for current sample. */ 2637 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2638 2639 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2640 (max_lbr + prev_stack->hw_idx - cur_base); 2641 /* Previous sample has shorter stack. Nothing can be stitched. */ 2642 if (distance + 1 > prev_stack->nr) 2643 return false; 2644 2645 /* 2646 * Check if there are identical LBRs between two samples. 2647 * Identical LBRs must have same from, to and flags values. Also, 2648 * they have to be saved in the same LBR registers (same physical 2649 * index). 2650 * 2651 * Starts from the base-of-stack of current sample. 2652 */ 2653 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2654 if ((prev_entries[i].from != cur_entries[j].from) || 2655 (prev_entries[i].to != cur_entries[j].to) || 2656 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2657 break; 2658 nr_identical_branches++; 2659 } 2660 2661 if (!nr_identical_branches) 2662 return false; 2663 2664 /* 2665 * Save the LBRs between the base-of-stack of previous sample 2666 * and the base-of-stack of current sample into lbr_stitch->lists. 2667 * These LBRs will be stitched later. 2668 */ 2669 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2670 2671 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2672 continue; 2673 2674 stitch_node = get_stitch_node(thread); 2675 if (!stitch_node) 2676 return false; 2677 2678 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2679 sizeof(struct callchain_cursor_node)); 2680 2681 if (callee) 2682 list_add(&stitch_node->node, &lbr_stitch->lists); 2683 else 2684 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2685 } 2686 2687 return true; 2688 } 2689 2690 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2691 { 2692 if (thread->lbr_stitch) 2693 return true; 2694 2695 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2696 if (!thread->lbr_stitch) 2697 goto err; 2698 2699 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2700 if (!thread->lbr_stitch->prev_lbr_cursor) 2701 goto free_lbr_stitch; 2702 2703 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2704 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2705 2706 return true; 2707 2708 free_lbr_stitch: 2709 zfree(&thread->lbr_stitch); 2710 err: 2711 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2712 thread->lbr_stitch_enable = false; 2713 return false; 2714 } 2715 2716 /* 2717 * Resolve LBR callstack chain sample 2718 * Return: 2719 * 1 on success get LBR callchain information 2720 * 0 no available LBR callchain information, should try fp 2721 * negative error code on other errors. 2722 */ 2723 static int resolve_lbr_callchain_sample(struct thread *thread, 2724 struct callchain_cursor *cursor, 2725 struct perf_sample *sample, 2726 struct symbol **parent, 2727 struct addr_location *root_al, 2728 int max_stack, 2729 unsigned int max_lbr) 2730 { 2731 bool callee = (callchain_param.order == ORDER_CALLEE); 2732 struct ip_callchain *chain = sample->callchain; 2733 int chain_nr = min(max_stack, (int)chain->nr), i; 2734 struct lbr_stitch *lbr_stitch; 2735 bool stitched_lbr = false; 2736 u64 branch_from = 0; 2737 int err; 2738 2739 for (i = 0; i < chain_nr; i++) { 2740 if (chain->ips[i] == PERF_CONTEXT_USER) 2741 break; 2742 } 2743 2744 /* LBR only affects the user callchain */ 2745 if (i == chain_nr) 2746 return 0; 2747 2748 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2749 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2750 lbr_stitch = thread->lbr_stitch; 2751 2752 stitched_lbr = has_stitched_lbr(thread, sample, 2753 &lbr_stitch->prev_sample, 2754 max_lbr, callee); 2755 2756 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2757 list_replace_init(&lbr_stitch->lists, 2758 &lbr_stitch->free_lists); 2759 } 2760 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2761 } 2762 2763 if (callee) { 2764 /* Add kernel ip */ 2765 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2766 parent, root_al, branch_from, 2767 true, i); 2768 if (err) 2769 goto error; 2770 2771 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2772 root_al, &branch_from, true); 2773 if (err) 2774 goto error; 2775 2776 if (stitched_lbr) { 2777 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2778 if (err) 2779 goto error; 2780 } 2781 2782 } else { 2783 if (stitched_lbr) { 2784 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2785 if (err) 2786 goto error; 2787 } 2788 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2789 root_al, &branch_from, false); 2790 if (err) 2791 goto error; 2792 2793 /* Add kernel ip */ 2794 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2795 parent, root_al, branch_from, 2796 false, i); 2797 if (err) 2798 goto error; 2799 } 2800 return 1; 2801 2802 error: 2803 return (err < 0) ? err : 0; 2804 } 2805 2806 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2807 struct callchain_cursor *cursor, 2808 struct symbol **parent, 2809 struct addr_location *root_al, 2810 u8 *cpumode, int ent) 2811 { 2812 int err = 0; 2813 2814 while (--ent >= 0) { 2815 u64 ip = chain->ips[ent]; 2816 2817 if (ip >= PERF_CONTEXT_MAX) { 2818 err = add_callchain_ip(thread, cursor, parent, 2819 root_al, cpumode, ip, 2820 false, NULL, NULL, 0); 2821 break; 2822 } 2823 } 2824 return err; 2825 } 2826 2827 static u64 get_leaf_frame_caller(struct perf_sample *sample, 2828 struct thread *thread, int usr_idx) 2829 { 2830 if (machine__normalized_is(thread->maps->machine, "arm64")) 2831 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx); 2832 else 2833 return 0; 2834 } 2835 2836 static int thread__resolve_callchain_sample(struct thread *thread, 2837 struct callchain_cursor *cursor, 2838 struct evsel *evsel, 2839 struct perf_sample *sample, 2840 struct symbol **parent, 2841 struct addr_location *root_al, 2842 int max_stack) 2843 { 2844 struct branch_stack *branch = sample->branch_stack; 2845 struct branch_entry *entries = perf_sample__branch_entries(sample); 2846 struct ip_callchain *chain = sample->callchain; 2847 int chain_nr = 0; 2848 u8 cpumode = PERF_RECORD_MISC_USER; 2849 int i, j, err, nr_entries, usr_idx; 2850 int skip_idx = -1; 2851 int first_call = 0; 2852 u64 leaf_frame_caller; 2853 2854 if (chain) 2855 chain_nr = chain->nr; 2856 2857 if (evsel__has_branch_callstack(evsel)) { 2858 struct perf_env *env = evsel__env(evsel); 2859 2860 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2861 root_al, max_stack, 2862 !env ? 0 : env->max_branches); 2863 if (err) 2864 return (err < 0) ? err : 0; 2865 } 2866 2867 /* 2868 * Based on DWARF debug information, some architectures skip 2869 * a callchain entry saved by the kernel. 2870 */ 2871 skip_idx = arch_skip_callchain_idx(thread, chain); 2872 2873 /* 2874 * Add branches to call stack for easier browsing. This gives 2875 * more context for a sample than just the callers. 2876 * 2877 * This uses individual histograms of paths compared to the 2878 * aggregated histograms the normal LBR mode uses. 2879 * 2880 * Limitations for now: 2881 * - No extra filters 2882 * - No annotations (should annotate somehow) 2883 */ 2884 2885 if (branch && callchain_param.branch_callstack) { 2886 int nr = min(max_stack, (int)branch->nr); 2887 struct branch_entry be[nr]; 2888 struct iterations iter[nr]; 2889 2890 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2891 pr_warning("corrupted branch chain. skipping...\n"); 2892 goto check_calls; 2893 } 2894 2895 for (i = 0; i < nr; i++) { 2896 if (callchain_param.order == ORDER_CALLEE) { 2897 be[i] = entries[i]; 2898 2899 if (chain == NULL) 2900 continue; 2901 2902 /* 2903 * Check for overlap into the callchain. 2904 * The return address is one off compared to 2905 * the branch entry. To adjust for this 2906 * assume the calling instruction is not longer 2907 * than 8 bytes. 2908 */ 2909 if (i == skip_idx || 2910 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2911 first_call++; 2912 else if (be[i].from < chain->ips[first_call] && 2913 be[i].from >= chain->ips[first_call] - 8) 2914 first_call++; 2915 } else 2916 be[i] = entries[branch->nr - i - 1]; 2917 } 2918 2919 memset(iter, 0, sizeof(struct iterations) * nr); 2920 nr = remove_loops(be, nr, iter); 2921 2922 for (i = 0; i < nr; i++) { 2923 err = add_callchain_ip(thread, cursor, parent, 2924 root_al, 2925 NULL, be[i].to, 2926 true, &be[i].flags, 2927 NULL, be[i].from); 2928 2929 if (!err) 2930 err = add_callchain_ip(thread, cursor, parent, root_al, 2931 NULL, be[i].from, 2932 true, &be[i].flags, 2933 &iter[i], 0); 2934 if (err == -EINVAL) 2935 break; 2936 if (err) 2937 return err; 2938 } 2939 2940 if (chain_nr == 0) 2941 return 0; 2942 2943 chain_nr -= nr; 2944 } 2945 2946 check_calls: 2947 if (chain && callchain_param.order != ORDER_CALLEE) { 2948 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2949 &cpumode, chain->nr - first_call); 2950 if (err) 2951 return (err < 0) ? err : 0; 2952 } 2953 for (i = first_call, nr_entries = 0; 2954 i < chain_nr && nr_entries < max_stack; i++) { 2955 u64 ip; 2956 2957 if (callchain_param.order == ORDER_CALLEE) 2958 j = i; 2959 else 2960 j = chain->nr - i - 1; 2961 2962 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2963 if (j == skip_idx) 2964 continue; 2965 #endif 2966 ip = chain->ips[j]; 2967 if (ip < PERF_CONTEXT_MAX) 2968 ++nr_entries; 2969 else if (callchain_param.order != ORDER_CALLEE) { 2970 err = find_prev_cpumode(chain, thread, cursor, parent, 2971 root_al, &cpumode, j); 2972 if (err) 2973 return (err < 0) ? err : 0; 2974 continue; 2975 } 2976 2977 /* 2978 * PERF_CONTEXT_USER allows us to locate where the user stack ends. 2979 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER, 2980 * the index will be different in order to add the missing frame 2981 * at the right place. 2982 */ 2983 2984 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1; 2985 2986 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) { 2987 2988 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx); 2989 2990 /* 2991 * check if leaf_frame_Caller != ip to not add the same 2992 * value twice. 2993 */ 2994 2995 if (leaf_frame_caller && leaf_frame_caller != ip) { 2996 2997 err = add_callchain_ip(thread, cursor, parent, 2998 root_al, &cpumode, leaf_frame_caller, 2999 false, NULL, NULL, 0); 3000 if (err) 3001 return (err < 0) ? err : 0; 3002 } 3003 } 3004 3005 err = add_callchain_ip(thread, cursor, parent, 3006 root_al, &cpumode, ip, 3007 false, NULL, NULL, 0); 3008 3009 if (err) 3010 return (err < 0) ? err : 0; 3011 } 3012 3013 return 0; 3014 } 3015 3016 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 3017 { 3018 struct symbol *sym = ms->sym; 3019 struct map *map = ms->map; 3020 struct inline_node *inline_node; 3021 struct inline_list *ilist; 3022 u64 addr; 3023 int ret = 1; 3024 3025 if (!symbol_conf.inline_name || !map || !sym) 3026 return ret; 3027 3028 addr = map__map_ip(map, ip); 3029 addr = map__rip_2objdump(map, addr); 3030 3031 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 3032 if (!inline_node) { 3033 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 3034 if (!inline_node) 3035 return ret; 3036 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 3037 } 3038 3039 list_for_each_entry(ilist, &inline_node->val, list) { 3040 struct map_symbol ilist_ms = { 3041 .maps = ms->maps, 3042 .map = map, 3043 .sym = ilist->symbol, 3044 }; 3045 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 3046 NULL, 0, 0, 0, ilist->srcline); 3047 3048 if (ret != 0) 3049 return ret; 3050 } 3051 3052 return ret; 3053 } 3054 3055 static int unwind_entry(struct unwind_entry *entry, void *arg) 3056 { 3057 struct callchain_cursor *cursor = arg; 3058 const char *srcline = NULL; 3059 u64 addr = entry->ip; 3060 3061 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 3062 return 0; 3063 3064 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 3065 return 0; 3066 3067 /* 3068 * Convert entry->ip from a virtual address to an offset in 3069 * its corresponding binary. 3070 */ 3071 if (entry->ms.map) 3072 addr = map__map_ip(entry->ms.map, entry->ip); 3073 3074 srcline = callchain_srcline(&entry->ms, addr); 3075 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 3076 false, NULL, 0, 0, 0, srcline); 3077 } 3078 3079 static int thread__resolve_callchain_unwind(struct thread *thread, 3080 struct callchain_cursor *cursor, 3081 struct evsel *evsel, 3082 struct perf_sample *sample, 3083 int max_stack) 3084 { 3085 /* Can we do dwarf post unwind? */ 3086 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 3087 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 3088 return 0; 3089 3090 /* Bail out if nothing was captured. */ 3091 if ((!sample->user_regs.regs) || 3092 (!sample->user_stack.size)) 3093 return 0; 3094 3095 return unwind__get_entries(unwind_entry, cursor, 3096 thread, sample, max_stack, false); 3097 } 3098 3099 int thread__resolve_callchain(struct thread *thread, 3100 struct callchain_cursor *cursor, 3101 struct evsel *evsel, 3102 struct perf_sample *sample, 3103 struct symbol **parent, 3104 struct addr_location *root_al, 3105 int max_stack) 3106 { 3107 int ret = 0; 3108 3109 callchain_cursor_reset(cursor); 3110 3111 if (callchain_param.order == ORDER_CALLEE) { 3112 ret = thread__resolve_callchain_sample(thread, cursor, 3113 evsel, sample, 3114 parent, root_al, 3115 max_stack); 3116 if (ret) 3117 return ret; 3118 ret = thread__resolve_callchain_unwind(thread, cursor, 3119 evsel, sample, 3120 max_stack); 3121 } else { 3122 ret = thread__resolve_callchain_unwind(thread, cursor, 3123 evsel, sample, 3124 max_stack); 3125 if (ret) 3126 return ret; 3127 ret = thread__resolve_callchain_sample(thread, cursor, 3128 evsel, sample, 3129 parent, root_al, 3130 max_stack); 3131 } 3132 3133 return ret; 3134 } 3135 3136 int machine__for_each_thread(struct machine *machine, 3137 int (*fn)(struct thread *thread, void *p), 3138 void *priv) 3139 { 3140 struct threads *threads; 3141 struct rb_node *nd; 3142 struct thread *thread; 3143 int rc = 0; 3144 int i; 3145 3146 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 3147 threads = &machine->threads[i]; 3148 for (nd = rb_first_cached(&threads->entries); nd; 3149 nd = rb_next(nd)) { 3150 thread = rb_entry(nd, struct thread, rb_node); 3151 rc = fn(thread, priv); 3152 if (rc != 0) 3153 return rc; 3154 } 3155 3156 list_for_each_entry(thread, &threads->dead, node) { 3157 rc = fn(thread, priv); 3158 if (rc != 0) 3159 return rc; 3160 } 3161 } 3162 return rc; 3163 } 3164 3165 int machines__for_each_thread(struct machines *machines, 3166 int (*fn)(struct thread *thread, void *p), 3167 void *priv) 3168 { 3169 struct rb_node *nd; 3170 int rc = 0; 3171 3172 rc = machine__for_each_thread(&machines->host, fn, priv); 3173 if (rc != 0) 3174 return rc; 3175 3176 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 3177 struct machine *machine = rb_entry(nd, struct machine, rb_node); 3178 3179 rc = machine__for_each_thread(machine, fn, priv); 3180 if (rc != 0) 3181 return rc; 3182 } 3183 return rc; 3184 } 3185 3186 pid_t machine__get_current_tid(struct machine *machine, int cpu) 3187 { 3188 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz) 3189 return -1; 3190 3191 return machine->current_tid[cpu]; 3192 } 3193 3194 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3195 pid_t tid) 3196 { 3197 struct thread *thread; 3198 const pid_t init_val = -1; 3199 3200 if (cpu < 0) 3201 return -EINVAL; 3202 3203 if (realloc_array_as_needed(machine->current_tid, 3204 machine->current_tid_sz, 3205 (unsigned int)cpu, 3206 &init_val)) 3207 return -ENOMEM; 3208 3209 machine->current_tid[cpu] = tid; 3210 3211 thread = machine__findnew_thread(machine, pid, tid); 3212 if (!thread) 3213 return -ENOMEM; 3214 3215 thread->cpu = cpu; 3216 thread__put(thread); 3217 3218 return 0; 3219 } 3220 3221 /* 3222 * Compares the raw arch string. N.B. see instead perf_env__arch() or 3223 * machine__normalized_is() if a normalized arch is needed. 3224 */ 3225 bool machine__is(struct machine *machine, const char *arch) 3226 { 3227 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3228 } 3229 3230 bool machine__normalized_is(struct machine *machine, const char *arch) 3231 { 3232 return machine && !strcmp(perf_env__arch(machine->env), arch); 3233 } 3234 3235 int machine__nr_cpus_avail(struct machine *machine) 3236 { 3237 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3238 } 3239 3240 int machine__get_kernel_start(struct machine *machine) 3241 { 3242 struct map *map = machine__kernel_map(machine); 3243 int err = 0; 3244 3245 /* 3246 * The only addresses above 2^63 are kernel addresses of a 64-bit 3247 * kernel. Note that addresses are unsigned so that on a 32-bit system 3248 * all addresses including kernel addresses are less than 2^32. In 3249 * that case (32-bit system), if the kernel mapping is unknown, all 3250 * addresses will be assumed to be in user space - see 3251 * machine__kernel_ip(). 3252 */ 3253 machine->kernel_start = 1ULL << 63; 3254 if (map) { 3255 err = map__load(map); 3256 /* 3257 * On x86_64, PTI entry trampolines are less than the 3258 * start of kernel text, but still above 2^63. So leave 3259 * kernel_start = 1ULL << 63 for x86_64. 3260 */ 3261 if (!err && !machine__is(machine, "x86_64")) 3262 machine->kernel_start = map->start; 3263 } 3264 return err; 3265 } 3266 3267 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3268 { 3269 u8 addr_cpumode = cpumode; 3270 bool kernel_ip; 3271 3272 if (!machine->single_address_space) 3273 goto out; 3274 3275 kernel_ip = machine__kernel_ip(machine, addr); 3276 switch (cpumode) { 3277 case PERF_RECORD_MISC_KERNEL: 3278 case PERF_RECORD_MISC_USER: 3279 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3280 PERF_RECORD_MISC_USER; 3281 break; 3282 case PERF_RECORD_MISC_GUEST_KERNEL: 3283 case PERF_RECORD_MISC_GUEST_USER: 3284 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3285 PERF_RECORD_MISC_GUEST_USER; 3286 break; 3287 default: 3288 break; 3289 } 3290 out: 3291 return addr_cpumode; 3292 } 3293 3294 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3295 { 3296 return dsos__findnew_id(&machine->dsos, filename, id); 3297 } 3298 3299 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3300 { 3301 return machine__findnew_dso_id(machine, filename, NULL); 3302 } 3303 3304 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3305 { 3306 struct machine *machine = vmachine; 3307 struct map *map; 3308 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3309 3310 if (sym == NULL) 3311 return NULL; 3312 3313 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3314 *addrp = map->unmap_ip(map, sym->start); 3315 return sym->name; 3316 } 3317 3318 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3319 { 3320 struct dso *pos; 3321 int err = 0; 3322 3323 list_for_each_entry(pos, &machine->dsos.head, node) { 3324 if (fn(pos, machine, priv)) 3325 err = -1; 3326 } 3327 return err; 3328 } 3329 3330 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv) 3331 { 3332 struct maps *maps = machine__kernel_maps(machine); 3333 struct map *map; 3334 int err = 0; 3335 3336 for (map = maps__first(maps); map != NULL; map = map__next(map)) { 3337 err = fn(map, priv); 3338 if (err != 0) { 3339 break; 3340 } 3341 } 3342 return err; 3343 } 3344 3345 bool machine__is_lock_function(struct machine *machine, u64 addr) 3346 { 3347 if (!machine->sched.text_start) { 3348 struct map *kmap; 3349 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap); 3350 3351 if (!sym) { 3352 /* to avoid retry */ 3353 machine->sched.text_start = 1; 3354 return false; 3355 } 3356 3357 machine->sched.text_start = kmap->unmap_ip(kmap, sym->start); 3358 3359 /* should not fail from here */ 3360 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap); 3361 machine->sched.text_end = kmap->unmap_ip(kmap, sym->start); 3362 3363 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap); 3364 machine->lock.text_start = kmap->unmap_ip(kmap, sym->start); 3365 3366 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap); 3367 machine->lock.text_end = kmap->unmap_ip(kmap, sym->start); 3368 } 3369 3370 /* failed to get kernel symbols */ 3371 if (machine->sched.text_start == 1) 3372 return false; 3373 3374 /* mutex and rwsem functions are in sched text section */ 3375 if (machine->sched.text_start <= addr && addr < machine->sched.text_end) 3376 return true; 3377 3378 /* spinlock functions are in lock text section */ 3379 if (machine->lock.text_start <= addr && addr < machine->lock.text_end) 3380 return true; 3381 3382 return false; 3383 } 3384