xref: /linux/tools/perf/util/machine.c (revision 217b7d41ea2038e52991b7a600a0b958330d8ae6)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39 
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45 
46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
47 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip);
48 
49 static struct dso *machine__kernel_dso(struct machine *machine)
50 {
51 	return machine->vmlinux_map->dso;
52 }
53 
54 static void dsos__init(struct dsos *dsos)
55 {
56 	INIT_LIST_HEAD(&dsos->head);
57 	dsos->root = RB_ROOT;
58 	init_rwsem(&dsos->lock);
59 }
60 
61 static void machine__threads_init(struct machine *machine)
62 {
63 	int i;
64 
65 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
66 		struct threads *threads = &machine->threads[i];
67 		threads->entries = RB_ROOT_CACHED;
68 		init_rwsem(&threads->lock);
69 		threads->nr = 0;
70 		INIT_LIST_HEAD(&threads->dead);
71 		threads->last_match = NULL;
72 	}
73 }
74 
75 static int machine__set_mmap_name(struct machine *machine)
76 {
77 	if (machine__is_host(machine))
78 		machine->mmap_name = strdup("[kernel.kallsyms]");
79 	else if (machine__is_default_guest(machine))
80 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
81 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
82 			  machine->pid) < 0)
83 		machine->mmap_name = NULL;
84 
85 	return machine->mmap_name ? 0 : -ENOMEM;
86 }
87 
88 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
89 {
90 	char comm[64];
91 
92 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
93 	thread__set_comm(thread, comm, 0);
94 }
95 
96 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
97 {
98 	int err = -ENOMEM;
99 
100 	memset(machine, 0, sizeof(*machine));
101 	machine->kmaps = maps__new(machine);
102 	if (machine->kmaps == NULL)
103 		return -ENOMEM;
104 
105 	RB_CLEAR_NODE(&machine->rb_node);
106 	dsos__init(&machine->dsos);
107 
108 	machine__threads_init(machine);
109 
110 	machine->vdso_info = NULL;
111 	machine->env = NULL;
112 
113 	machine->pid = pid;
114 
115 	machine->id_hdr_size = 0;
116 	machine->kptr_restrict_warned = false;
117 	machine->comm_exec = false;
118 	machine->kernel_start = 0;
119 	machine->vmlinux_map = NULL;
120 
121 	machine->root_dir = strdup(root_dir);
122 	if (machine->root_dir == NULL)
123 		goto out;
124 
125 	if (machine__set_mmap_name(machine))
126 		goto out;
127 
128 	if (pid != HOST_KERNEL_ID) {
129 		struct thread *thread = machine__findnew_thread(machine, -1,
130 								pid);
131 
132 		if (thread == NULL)
133 			goto out;
134 
135 		thread__set_guest_comm(thread, pid);
136 		thread__put(thread);
137 	}
138 
139 	machine->current_tid = NULL;
140 	err = 0;
141 
142 out:
143 	if (err) {
144 		zfree(&machine->kmaps);
145 		zfree(&machine->root_dir);
146 		zfree(&machine->mmap_name);
147 	}
148 	return 0;
149 }
150 
151 struct machine *machine__new_host(void)
152 {
153 	struct machine *machine = malloc(sizeof(*machine));
154 
155 	if (machine != NULL) {
156 		machine__init(machine, "", HOST_KERNEL_ID);
157 
158 		if (machine__create_kernel_maps(machine) < 0)
159 			goto out_delete;
160 	}
161 
162 	return machine;
163 out_delete:
164 	free(machine);
165 	return NULL;
166 }
167 
168 struct machine *machine__new_kallsyms(void)
169 {
170 	struct machine *machine = machine__new_host();
171 	/*
172 	 * FIXME:
173 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
174 	 *    ask for not using the kcore parsing code, once this one is fixed
175 	 *    to create a map per module.
176 	 */
177 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
178 		machine__delete(machine);
179 		machine = NULL;
180 	}
181 
182 	return machine;
183 }
184 
185 static void dsos__purge(struct dsos *dsos)
186 {
187 	struct dso *pos, *n;
188 
189 	down_write(&dsos->lock);
190 
191 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
192 		RB_CLEAR_NODE(&pos->rb_node);
193 		pos->root = NULL;
194 		list_del_init(&pos->node);
195 		dso__put(pos);
196 	}
197 
198 	up_write(&dsos->lock);
199 }
200 
201 static void dsos__exit(struct dsos *dsos)
202 {
203 	dsos__purge(dsos);
204 	exit_rwsem(&dsos->lock);
205 }
206 
207 void machine__delete_threads(struct machine *machine)
208 {
209 	struct rb_node *nd;
210 	int i;
211 
212 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
213 		struct threads *threads = &machine->threads[i];
214 		down_write(&threads->lock);
215 		nd = rb_first_cached(&threads->entries);
216 		while (nd) {
217 			struct thread *t = rb_entry(nd, struct thread, rb_node);
218 
219 			nd = rb_next(nd);
220 			__machine__remove_thread(machine, t, false);
221 		}
222 		up_write(&threads->lock);
223 	}
224 }
225 
226 void machine__exit(struct machine *machine)
227 {
228 	int i;
229 
230 	if (machine == NULL)
231 		return;
232 
233 	machine__destroy_kernel_maps(machine);
234 	maps__delete(machine->kmaps);
235 	dsos__exit(&machine->dsos);
236 	machine__exit_vdso(machine);
237 	zfree(&machine->root_dir);
238 	zfree(&machine->mmap_name);
239 	zfree(&machine->current_tid);
240 	zfree(&machine->kallsyms_filename);
241 
242 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
243 		struct threads *threads = &machine->threads[i];
244 		struct thread *thread, *n;
245 		/*
246 		 * Forget about the dead, at this point whatever threads were
247 		 * left in the dead lists better have a reference count taken
248 		 * by who is using them, and then, when they drop those references
249 		 * and it finally hits zero, thread__put() will check and see that
250 		 * its not in the dead threads list and will not try to remove it
251 		 * from there, just calling thread__delete() straight away.
252 		 */
253 		list_for_each_entry_safe(thread, n, &threads->dead, node)
254 			list_del_init(&thread->node);
255 
256 		exit_rwsem(&threads->lock);
257 	}
258 }
259 
260 void machine__delete(struct machine *machine)
261 {
262 	if (machine) {
263 		machine__exit(machine);
264 		free(machine);
265 	}
266 }
267 
268 void machines__init(struct machines *machines)
269 {
270 	machine__init(&machines->host, "", HOST_KERNEL_ID);
271 	machines->guests = RB_ROOT_CACHED;
272 }
273 
274 void machines__exit(struct machines *machines)
275 {
276 	machine__exit(&machines->host);
277 	/* XXX exit guest */
278 }
279 
280 struct machine *machines__add(struct machines *machines, pid_t pid,
281 			      const char *root_dir)
282 {
283 	struct rb_node **p = &machines->guests.rb_root.rb_node;
284 	struct rb_node *parent = NULL;
285 	struct machine *pos, *machine = malloc(sizeof(*machine));
286 	bool leftmost = true;
287 
288 	if (machine == NULL)
289 		return NULL;
290 
291 	if (machine__init(machine, root_dir, pid) != 0) {
292 		free(machine);
293 		return NULL;
294 	}
295 
296 	while (*p != NULL) {
297 		parent = *p;
298 		pos = rb_entry(parent, struct machine, rb_node);
299 		if (pid < pos->pid)
300 			p = &(*p)->rb_left;
301 		else {
302 			p = &(*p)->rb_right;
303 			leftmost = false;
304 		}
305 	}
306 
307 	rb_link_node(&machine->rb_node, parent, p);
308 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
309 
310 	machine->machines = machines;
311 
312 	return machine;
313 }
314 
315 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
316 {
317 	struct rb_node *nd;
318 
319 	machines->host.comm_exec = comm_exec;
320 
321 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
322 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
323 
324 		machine->comm_exec = comm_exec;
325 	}
326 }
327 
328 struct machine *machines__find(struct machines *machines, pid_t pid)
329 {
330 	struct rb_node **p = &machines->guests.rb_root.rb_node;
331 	struct rb_node *parent = NULL;
332 	struct machine *machine;
333 	struct machine *default_machine = NULL;
334 
335 	if (pid == HOST_KERNEL_ID)
336 		return &machines->host;
337 
338 	while (*p != NULL) {
339 		parent = *p;
340 		machine = rb_entry(parent, struct machine, rb_node);
341 		if (pid < machine->pid)
342 			p = &(*p)->rb_left;
343 		else if (pid > machine->pid)
344 			p = &(*p)->rb_right;
345 		else
346 			return machine;
347 		if (!machine->pid)
348 			default_machine = machine;
349 	}
350 
351 	return default_machine;
352 }
353 
354 struct machine *machines__findnew(struct machines *machines, pid_t pid)
355 {
356 	char path[PATH_MAX];
357 	const char *root_dir = "";
358 	struct machine *machine = machines__find(machines, pid);
359 
360 	if (machine && (machine->pid == pid))
361 		goto out;
362 
363 	if ((pid != HOST_KERNEL_ID) &&
364 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
365 	    (symbol_conf.guestmount)) {
366 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
367 		if (access(path, R_OK)) {
368 			static struct strlist *seen;
369 
370 			if (!seen)
371 				seen = strlist__new(NULL, NULL);
372 
373 			if (!strlist__has_entry(seen, path)) {
374 				pr_err("Can't access file %s\n", path);
375 				strlist__add(seen, path);
376 			}
377 			machine = NULL;
378 			goto out;
379 		}
380 		root_dir = path;
381 	}
382 
383 	machine = machines__add(machines, pid, root_dir);
384 out:
385 	return machine;
386 }
387 
388 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
389 {
390 	struct machine *machine = machines__find(machines, pid);
391 
392 	if (!machine)
393 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
394 	return machine;
395 }
396 
397 /*
398  * A common case for KVM test programs is that the test program acts as the
399  * hypervisor, creating, running and destroying the virtual machine, and
400  * providing the guest object code from its own object code. In this case,
401  * the VM is not running an OS, but only the functions loaded into it by the
402  * hypervisor test program, and conveniently, loaded at the same virtual
403  * addresses.
404  *
405  * Normally to resolve addresses, MMAP events are needed to map addresses
406  * back to the object code and debug symbols for that object code.
407  *
408  * Currently, there is no way to get such mapping information from guests
409  * but, in the scenario described above, the guest has the same mappings
410  * as the hypervisor, so support for that scenario can be achieved.
411  *
412  * To support that, copy the host thread's maps to the guest thread's maps.
413  * Note, we do not discover the guest until we encounter a guest event,
414  * which works well because it is not until then that we know that the host
415  * thread's maps have been set up.
416  *
417  * This function returns the guest thread. Apart from keeping the data
418  * structures sane, using a thread belonging to the guest machine, instead
419  * of the host thread, allows it to have its own comm (refer
420  * thread__set_guest_comm()).
421  */
422 static struct thread *findnew_guest_code(struct machine *machine,
423 					 struct machine *host_machine,
424 					 pid_t pid)
425 {
426 	struct thread *host_thread;
427 	struct thread *thread;
428 	int err;
429 
430 	if (!machine)
431 		return NULL;
432 
433 	thread = machine__findnew_thread(machine, -1, pid);
434 	if (!thread)
435 		return NULL;
436 
437 	/* Assume maps are set up if there are any */
438 	if (thread->maps->nr_maps)
439 		return thread;
440 
441 	host_thread = machine__find_thread(host_machine, -1, pid);
442 	if (!host_thread)
443 		goto out_err;
444 
445 	thread__set_guest_comm(thread, pid);
446 
447 	/*
448 	 * Guest code can be found in hypervisor process at the same address
449 	 * so copy host maps.
450 	 */
451 	err = maps__clone(thread, host_thread->maps);
452 	thread__put(host_thread);
453 	if (err)
454 		goto out_err;
455 
456 	return thread;
457 
458 out_err:
459 	thread__zput(thread);
460 	return NULL;
461 }
462 
463 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
464 {
465 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
466 	struct machine *machine = machines__findnew(machines, pid);
467 
468 	return findnew_guest_code(machine, host_machine, pid);
469 }
470 
471 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
472 {
473 	struct machines *machines = machine->machines;
474 	struct machine *host_machine;
475 
476 	if (!machines)
477 		return NULL;
478 
479 	host_machine = machines__find(machines, HOST_KERNEL_ID);
480 
481 	return findnew_guest_code(machine, host_machine, pid);
482 }
483 
484 void machines__process_guests(struct machines *machines,
485 			      machine__process_t process, void *data)
486 {
487 	struct rb_node *nd;
488 
489 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
490 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
491 		process(pos, data);
492 	}
493 }
494 
495 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
496 {
497 	struct rb_node *node;
498 	struct machine *machine;
499 
500 	machines->host.id_hdr_size = id_hdr_size;
501 
502 	for (node = rb_first_cached(&machines->guests); node;
503 	     node = rb_next(node)) {
504 		machine = rb_entry(node, struct machine, rb_node);
505 		machine->id_hdr_size = id_hdr_size;
506 	}
507 
508 	return;
509 }
510 
511 static void machine__update_thread_pid(struct machine *machine,
512 				       struct thread *th, pid_t pid)
513 {
514 	struct thread *leader;
515 
516 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
517 		return;
518 
519 	th->pid_ = pid;
520 
521 	if (th->pid_ == th->tid)
522 		return;
523 
524 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
525 	if (!leader)
526 		goto out_err;
527 
528 	if (!leader->maps)
529 		leader->maps = maps__new(machine);
530 
531 	if (!leader->maps)
532 		goto out_err;
533 
534 	if (th->maps == leader->maps)
535 		return;
536 
537 	if (th->maps) {
538 		/*
539 		 * Maps are created from MMAP events which provide the pid and
540 		 * tid.  Consequently there never should be any maps on a thread
541 		 * with an unknown pid.  Just print an error if there are.
542 		 */
543 		if (!maps__empty(th->maps))
544 			pr_err("Discarding thread maps for %d:%d\n",
545 			       th->pid_, th->tid);
546 		maps__put(th->maps);
547 	}
548 
549 	th->maps = maps__get(leader->maps);
550 out_put:
551 	thread__put(leader);
552 	return;
553 out_err:
554 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
555 	goto out_put;
556 }
557 
558 /*
559  * Front-end cache - TID lookups come in blocks,
560  * so most of the time we dont have to look up
561  * the full rbtree:
562  */
563 static struct thread*
564 __threads__get_last_match(struct threads *threads, struct machine *machine,
565 			  int pid, int tid)
566 {
567 	struct thread *th;
568 
569 	th = threads->last_match;
570 	if (th != NULL) {
571 		if (th->tid == tid) {
572 			machine__update_thread_pid(machine, th, pid);
573 			return thread__get(th);
574 		}
575 
576 		threads->last_match = NULL;
577 	}
578 
579 	return NULL;
580 }
581 
582 static struct thread*
583 threads__get_last_match(struct threads *threads, struct machine *machine,
584 			int pid, int tid)
585 {
586 	struct thread *th = NULL;
587 
588 	if (perf_singlethreaded)
589 		th = __threads__get_last_match(threads, machine, pid, tid);
590 
591 	return th;
592 }
593 
594 static void
595 __threads__set_last_match(struct threads *threads, struct thread *th)
596 {
597 	threads->last_match = th;
598 }
599 
600 static void
601 threads__set_last_match(struct threads *threads, struct thread *th)
602 {
603 	if (perf_singlethreaded)
604 		__threads__set_last_match(threads, th);
605 }
606 
607 /*
608  * Caller must eventually drop thread->refcnt returned with a successful
609  * lookup/new thread inserted.
610  */
611 static struct thread *____machine__findnew_thread(struct machine *machine,
612 						  struct threads *threads,
613 						  pid_t pid, pid_t tid,
614 						  bool create)
615 {
616 	struct rb_node **p = &threads->entries.rb_root.rb_node;
617 	struct rb_node *parent = NULL;
618 	struct thread *th;
619 	bool leftmost = true;
620 
621 	th = threads__get_last_match(threads, machine, pid, tid);
622 	if (th)
623 		return th;
624 
625 	while (*p != NULL) {
626 		parent = *p;
627 		th = rb_entry(parent, struct thread, rb_node);
628 
629 		if (th->tid == tid) {
630 			threads__set_last_match(threads, th);
631 			machine__update_thread_pid(machine, th, pid);
632 			return thread__get(th);
633 		}
634 
635 		if (tid < th->tid)
636 			p = &(*p)->rb_left;
637 		else {
638 			p = &(*p)->rb_right;
639 			leftmost = false;
640 		}
641 	}
642 
643 	if (!create)
644 		return NULL;
645 
646 	th = thread__new(pid, tid);
647 	if (th != NULL) {
648 		rb_link_node(&th->rb_node, parent, p);
649 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
650 
651 		/*
652 		 * We have to initialize maps separately after rb tree is updated.
653 		 *
654 		 * The reason is that we call machine__findnew_thread
655 		 * within thread__init_maps to find the thread
656 		 * leader and that would screwed the rb tree.
657 		 */
658 		if (thread__init_maps(th, machine)) {
659 			rb_erase_cached(&th->rb_node, &threads->entries);
660 			RB_CLEAR_NODE(&th->rb_node);
661 			thread__put(th);
662 			return NULL;
663 		}
664 		/*
665 		 * It is now in the rbtree, get a ref
666 		 */
667 		thread__get(th);
668 		threads__set_last_match(threads, th);
669 		++threads->nr;
670 	}
671 
672 	return th;
673 }
674 
675 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
676 {
677 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
678 }
679 
680 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
681 				       pid_t tid)
682 {
683 	struct threads *threads = machine__threads(machine, tid);
684 	struct thread *th;
685 
686 	down_write(&threads->lock);
687 	th = __machine__findnew_thread(machine, pid, tid);
688 	up_write(&threads->lock);
689 	return th;
690 }
691 
692 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
693 				    pid_t tid)
694 {
695 	struct threads *threads = machine__threads(machine, tid);
696 	struct thread *th;
697 
698 	down_read(&threads->lock);
699 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
700 	up_read(&threads->lock);
701 	return th;
702 }
703 
704 /*
705  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
706  * So here a single thread is created for that, but actually there is a separate
707  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
708  * is only 1. That causes problems for some tools, requiring workarounds. For
709  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
710  */
711 struct thread *machine__idle_thread(struct machine *machine)
712 {
713 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
714 
715 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
716 	    thread__set_namespaces(thread, 0, NULL))
717 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
718 
719 	return thread;
720 }
721 
722 struct comm *machine__thread_exec_comm(struct machine *machine,
723 				       struct thread *thread)
724 {
725 	if (machine->comm_exec)
726 		return thread__exec_comm(thread);
727 	else
728 		return thread__comm(thread);
729 }
730 
731 int machine__process_comm_event(struct machine *machine, union perf_event *event,
732 				struct perf_sample *sample)
733 {
734 	struct thread *thread = machine__findnew_thread(machine,
735 							event->comm.pid,
736 							event->comm.tid);
737 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
738 	int err = 0;
739 
740 	if (exec)
741 		machine->comm_exec = true;
742 
743 	if (dump_trace)
744 		perf_event__fprintf_comm(event, stdout);
745 
746 	if (thread == NULL ||
747 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
748 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
749 		err = -1;
750 	}
751 
752 	thread__put(thread);
753 
754 	return err;
755 }
756 
757 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
758 				      union perf_event *event,
759 				      struct perf_sample *sample __maybe_unused)
760 {
761 	struct thread *thread = machine__findnew_thread(machine,
762 							event->namespaces.pid,
763 							event->namespaces.tid);
764 	int err = 0;
765 
766 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
767 		  "\nWARNING: kernel seems to support more namespaces than perf"
768 		  " tool.\nTry updating the perf tool..\n\n");
769 
770 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
771 		  "\nWARNING: perf tool seems to support more namespaces than"
772 		  " the kernel.\nTry updating the kernel..\n\n");
773 
774 	if (dump_trace)
775 		perf_event__fprintf_namespaces(event, stdout);
776 
777 	if (thread == NULL ||
778 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
779 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
780 		err = -1;
781 	}
782 
783 	thread__put(thread);
784 
785 	return err;
786 }
787 
788 int machine__process_cgroup_event(struct machine *machine,
789 				  union perf_event *event,
790 				  struct perf_sample *sample __maybe_unused)
791 {
792 	struct cgroup *cgrp;
793 
794 	if (dump_trace)
795 		perf_event__fprintf_cgroup(event, stdout);
796 
797 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
798 	if (cgrp == NULL)
799 		return -ENOMEM;
800 
801 	return 0;
802 }
803 
804 int machine__process_lost_event(struct machine *machine __maybe_unused,
805 				union perf_event *event, struct perf_sample *sample __maybe_unused)
806 {
807 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
808 		    event->lost.id, event->lost.lost);
809 	return 0;
810 }
811 
812 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
813 					union perf_event *event, struct perf_sample *sample)
814 {
815 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
816 		    sample->id, event->lost_samples.lost);
817 	return 0;
818 }
819 
820 static struct dso *machine__findnew_module_dso(struct machine *machine,
821 					       struct kmod_path *m,
822 					       const char *filename)
823 {
824 	struct dso *dso;
825 
826 	down_write(&machine->dsos.lock);
827 
828 	dso = __dsos__find(&machine->dsos, m->name, true);
829 	if (!dso) {
830 		dso = __dsos__addnew(&machine->dsos, m->name);
831 		if (dso == NULL)
832 			goto out_unlock;
833 
834 		dso__set_module_info(dso, m, machine);
835 		dso__set_long_name(dso, strdup(filename), true);
836 		dso->kernel = DSO_SPACE__KERNEL;
837 	}
838 
839 	dso__get(dso);
840 out_unlock:
841 	up_write(&machine->dsos.lock);
842 	return dso;
843 }
844 
845 int machine__process_aux_event(struct machine *machine __maybe_unused,
846 			       union perf_event *event)
847 {
848 	if (dump_trace)
849 		perf_event__fprintf_aux(event, stdout);
850 	return 0;
851 }
852 
853 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
854 					union perf_event *event)
855 {
856 	if (dump_trace)
857 		perf_event__fprintf_itrace_start(event, stdout);
858 	return 0;
859 }
860 
861 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
862 					    union perf_event *event)
863 {
864 	if (dump_trace)
865 		perf_event__fprintf_aux_output_hw_id(event, stdout);
866 	return 0;
867 }
868 
869 int machine__process_switch_event(struct machine *machine __maybe_unused,
870 				  union perf_event *event)
871 {
872 	if (dump_trace)
873 		perf_event__fprintf_switch(event, stdout);
874 	return 0;
875 }
876 
877 static int machine__process_ksymbol_register(struct machine *machine,
878 					     union perf_event *event,
879 					     struct perf_sample *sample __maybe_unused)
880 {
881 	struct symbol *sym;
882 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
883 
884 	if (!map) {
885 		struct dso *dso = dso__new(event->ksymbol.name);
886 
887 		if (dso) {
888 			dso->kernel = DSO_SPACE__KERNEL;
889 			map = map__new2(0, dso);
890 			dso__put(dso);
891 		}
892 
893 		if (!dso || !map) {
894 			return -ENOMEM;
895 		}
896 
897 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
898 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
899 			map->dso->data.file_size = event->ksymbol.len;
900 			dso__set_loaded(map->dso);
901 		}
902 
903 		map->start = event->ksymbol.addr;
904 		map->end = map->start + event->ksymbol.len;
905 		maps__insert(machine__kernel_maps(machine), map);
906 		map__put(map);
907 		dso__set_loaded(dso);
908 
909 		if (is_bpf_image(event->ksymbol.name)) {
910 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
911 			dso__set_long_name(dso, "", false);
912 		}
913 	}
914 
915 	sym = symbol__new(map->map_ip(map, map->start),
916 			  event->ksymbol.len,
917 			  0, 0, event->ksymbol.name);
918 	if (!sym)
919 		return -ENOMEM;
920 	dso__insert_symbol(map->dso, sym);
921 	return 0;
922 }
923 
924 static int machine__process_ksymbol_unregister(struct machine *machine,
925 					       union perf_event *event,
926 					       struct perf_sample *sample __maybe_unused)
927 {
928 	struct symbol *sym;
929 	struct map *map;
930 
931 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
932 	if (!map)
933 		return 0;
934 
935 	if (map != machine->vmlinux_map)
936 		maps__remove(machine__kernel_maps(machine), map);
937 	else {
938 		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
939 		if (sym)
940 			dso__delete_symbol(map->dso, sym);
941 	}
942 
943 	return 0;
944 }
945 
946 int machine__process_ksymbol(struct machine *machine __maybe_unused,
947 			     union perf_event *event,
948 			     struct perf_sample *sample)
949 {
950 	if (dump_trace)
951 		perf_event__fprintf_ksymbol(event, stdout);
952 
953 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
954 		return machine__process_ksymbol_unregister(machine, event,
955 							   sample);
956 	return machine__process_ksymbol_register(machine, event, sample);
957 }
958 
959 int machine__process_text_poke(struct machine *machine, union perf_event *event,
960 			       struct perf_sample *sample __maybe_unused)
961 {
962 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
963 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
964 
965 	if (dump_trace)
966 		perf_event__fprintf_text_poke(event, machine, stdout);
967 
968 	if (!event->text_poke.new_len)
969 		return 0;
970 
971 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
972 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
973 		return 0;
974 	}
975 
976 	if (map && map->dso) {
977 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
978 		int ret;
979 
980 		/*
981 		 * Kernel maps might be changed when loading symbols so loading
982 		 * must be done prior to using kernel maps.
983 		 */
984 		map__load(map);
985 		ret = dso__data_write_cache_addr(map->dso, map, machine,
986 						 event->text_poke.addr,
987 						 new_bytes,
988 						 event->text_poke.new_len);
989 		if (ret != event->text_poke.new_len)
990 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
991 				 event->text_poke.addr);
992 	} else {
993 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
994 			 event->text_poke.addr);
995 	}
996 
997 	return 0;
998 }
999 
1000 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1001 					      const char *filename)
1002 {
1003 	struct map *map = NULL;
1004 	struct kmod_path m;
1005 	struct dso *dso;
1006 
1007 	if (kmod_path__parse_name(&m, filename))
1008 		return NULL;
1009 
1010 	dso = machine__findnew_module_dso(machine, &m, filename);
1011 	if (dso == NULL)
1012 		goto out;
1013 
1014 	map = map__new2(start, dso);
1015 	if (map == NULL)
1016 		goto out;
1017 
1018 	maps__insert(machine__kernel_maps(machine), map);
1019 
1020 	/* Put the map here because maps__insert already got it */
1021 	map__put(map);
1022 out:
1023 	/* put the dso here, corresponding to  machine__findnew_module_dso */
1024 	dso__put(dso);
1025 	zfree(&m.name);
1026 	return map;
1027 }
1028 
1029 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1030 {
1031 	struct rb_node *nd;
1032 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1033 
1034 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1035 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1036 		ret += __dsos__fprintf(&pos->dsos.head, fp);
1037 	}
1038 
1039 	return ret;
1040 }
1041 
1042 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1043 				     bool (skip)(struct dso *dso, int parm), int parm)
1044 {
1045 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1046 }
1047 
1048 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1049 				     bool (skip)(struct dso *dso, int parm), int parm)
1050 {
1051 	struct rb_node *nd;
1052 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1053 
1054 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1055 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1056 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1057 	}
1058 	return ret;
1059 }
1060 
1061 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1062 {
1063 	int i;
1064 	size_t printed = 0;
1065 	struct dso *kdso = machine__kernel_dso(machine);
1066 
1067 	if (kdso->has_build_id) {
1068 		char filename[PATH_MAX];
1069 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1070 					   false))
1071 			printed += fprintf(fp, "[0] %s\n", filename);
1072 	}
1073 
1074 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1075 		printed += fprintf(fp, "[%d] %s\n",
1076 				   i + kdso->has_build_id, vmlinux_path[i]);
1077 
1078 	return printed;
1079 }
1080 
1081 size_t machine__fprintf(struct machine *machine, FILE *fp)
1082 {
1083 	struct rb_node *nd;
1084 	size_t ret;
1085 	int i;
1086 
1087 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1088 		struct threads *threads = &machine->threads[i];
1089 
1090 		down_read(&threads->lock);
1091 
1092 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
1093 
1094 		for (nd = rb_first_cached(&threads->entries); nd;
1095 		     nd = rb_next(nd)) {
1096 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
1097 
1098 			ret += thread__fprintf(pos, fp);
1099 		}
1100 
1101 		up_read(&threads->lock);
1102 	}
1103 	return ret;
1104 }
1105 
1106 static struct dso *machine__get_kernel(struct machine *machine)
1107 {
1108 	const char *vmlinux_name = machine->mmap_name;
1109 	struct dso *kernel;
1110 
1111 	if (machine__is_host(machine)) {
1112 		if (symbol_conf.vmlinux_name)
1113 			vmlinux_name = symbol_conf.vmlinux_name;
1114 
1115 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1116 						 "[kernel]", DSO_SPACE__KERNEL);
1117 	} else {
1118 		if (symbol_conf.default_guest_vmlinux_name)
1119 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1120 
1121 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1122 						 "[guest.kernel]",
1123 						 DSO_SPACE__KERNEL_GUEST);
1124 	}
1125 
1126 	if (kernel != NULL && (!kernel->has_build_id))
1127 		dso__read_running_kernel_build_id(kernel, machine);
1128 
1129 	return kernel;
1130 }
1131 
1132 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1133 				    size_t bufsz)
1134 {
1135 	if (machine__is_default_guest(machine))
1136 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1137 	else
1138 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1139 }
1140 
1141 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1142 
1143 /* Figure out the start address of kernel map from /proc/kallsyms.
1144  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1145  * symbol_name if it's not that important.
1146  */
1147 static int machine__get_running_kernel_start(struct machine *machine,
1148 					     const char **symbol_name,
1149 					     u64 *start, u64 *end)
1150 {
1151 	char filename[PATH_MAX];
1152 	int i, err = -1;
1153 	const char *name;
1154 	u64 addr = 0;
1155 
1156 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1157 
1158 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1159 		return 0;
1160 
1161 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1162 		err = kallsyms__get_function_start(filename, name, &addr);
1163 		if (!err)
1164 			break;
1165 	}
1166 
1167 	if (err)
1168 		return -1;
1169 
1170 	if (symbol_name)
1171 		*symbol_name = name;
1172 
1173 	*start = addr;
1174 
1175 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1176 	if (!err)
1177 		*end = addr;
1178 
1179 	return 0;
1180 }
1181 
1182 int machine__create_extra_kernel_map(struct machine *machine,
1183 				     struct dso *kernel,
1184 				     struct extra_kernel_map *xm)
1185 {
1186 	struct kmap *kmap;
1187 	struct map *map;
1188 
1189 	map = map__new2(xm->start, kernel);
1190 	if (!map)
1191 		return -1;
1192 
1193 	map->end   = xm->end;
1194 	map->pgoff = xm->pgoff;
1195 
1196 	kmap = map__kmap(map);
1197 
1198 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1199 
1200 	maps__insert(machine__kernel_maps(machine), map);
1201 
1202 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1203 		  kmap->name, map->start, map->end);
1204 
1205 	map__put(map);
1206 
1207 	return 0;
1208 }
1209 
1210 static u64 find_entry_trampoline(struct dso *dso)
1211 {
1212 	/* Duplicates are removed so lookup all aliases */
1213 	const char *syms[] = {
1214 		"_entry_trampoline",
1215 		"__entry_trampoline_start",
1216 		"entry_SYSCALL_64_trampoline",
1217 	};
1218 	struct symbol *sym = dso__first_symbol(dso);
1219 	unsigned int i;
1220 
1221 	for (; sym; sym = dso__next_symbol(sym)) {
1222 		if (sym->binding != STB_GLOBAL)
1223 			continue;
1224 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1225 			if (!strcmp(sym->name, syms[i]))
1226 				return sym->start;
1227 		}
1228 	}
1229 
1230 	return 0;
1231 }
1232 
1233 /*
1234  * These values can be used for kernels that do not have symbols for the entry
1235  * trampolines in kallsyms.
1236  */
1237 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1238 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1239 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1240 
1241 /* Map x86_64 PTI entry trampolines */
1242 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1243 					  struct dso *kernel)
1244 {
1245 	struct maps *kmaps = machine__kernel_maps(machine);
1246 	int nr_cpus_avail, cpu;
1247 	bool found = false;
1248 	struct map *map;
1249 	u64 pgoff;
1250 
1251 	/*
1252 	 * In the vmlinux case, pgoff is a virtual address which must now be
1253 	 * mapped to a vmlinux offset.
1254 	 */
1255 	maps__for_each_entry(kmaps, map) {
1256 		struct kmap *kmap = __map__kmap(map);
1257 		struct map *dest_map;
1258 
1259 		if (!kmap || !is_entry_trampoline(kmap->name))
1260 			continue;
1261 
1262 		dest_map = maps__find(kmaps, map->pgoff);
1263 		if (dest_map != map)
1264 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1265 		found = true;
1266 	}
1267 	if (found || machine->trampolines_mapped)
1268 		return 0;
1269 
1270 	pgoff = find_entry_trampoline(kernel);
1271 	if (!pgoff)
1272 		return 0;
1273 
1274 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1275 
1276 	/* Add a 1 page map for each CPU's entry trampoline */
1277 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1278 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1279 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1280 			 X86_64_ENTRY_TRAMPOLINE;
1281 		struct extra_kernel_map xm = {
1282 			.start = va,
1283 			.end   = va + page_size,
1284 			.pgoff = pgoff,
1285 		};
1286 
1287 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1288 
1289 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1290 			return -1;
1291 	}
1292 
1293 	machine->trampolines_mapped = nr_cpus_avail;
1294 
1295 	return 0;
1296 }
1297 
1298 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1299 					     struct dso *kernel __maybe_unused)
1300 {
1301 	return 0;
1302 }
1303 
1304 static int
1305 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1306 {
1307 	/* In case of renewal the kernel map, destroy previous one */
1308 	machine__destroy_kernel_maps(machine);
1309 
1310 	machine->vmlinux_map = map__new2(0, kernel);
1311 	if (machine->vmlinux_map == NULL)
1312 		return -1;
1313 
1314 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1315 	maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1316 	return 0;
1317 }
1318 
1319 void machine__destroy_kernel_maps(struct machine *machine)
1320 {
1321 	struct kmap *kmap;
1322 	struct map *map = machine__kernel_map(machine);
1323 
1324 	if (map == NULL)
1325 		return;
1326 
1327 	kmap = map__kmap(map);
1328 	maps__remove(machine__kernel_maps(machine), map);
1329 	if (kmap && kmap->ref_reloc_sym) {
1330 		zfree((char **)&kmap->ref_reloc_sym->name);
1331 		zfree(&kmap->ref_reloc_sym);
1332 	}
1333 
1334 	map__zput(machine->vmlinux_map);
1335 }
1336 
1337 int machines__create_guest_kernel_maps(struct machines *machines)
1338 {
1339 	int ret = 0;
1340 	struct dirent **namelist = NULL;
1341 	int i, items = 0;
1342 	char path[PATH_MAX];
1343 	pid_t pid;
1344 	char *endp;
1345 
1346 	if (symbol_conf.default_guest_vmlinux_name ||
1347 	    symbol_conf.default_guest_modules ||
1348 	    symbol_conf.default_guest_kallsyms) {
1349 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1350 	}
1351 
1352 	if (symbol_conf.guestmount) {
1353 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1354 		if (items <= 0)
1355 			return -ENOENT;
1356 		for (i = 0; i < items; i++) {
1357 			if (!isdigit(namelist[i]->d_name[0])) {
1358 				/* Filter out . and .. */
1359 				continue;
1360 			}
1361 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1362 			if ((*endp != '\0') ||
1363 			    (endp == namelist[i]->d_name) ||
1364 			    (errno == ERANGE)) {
1365 				pr_debug("invalid directory (%s). Skipping.\n",
1366 					 namelist[i]->d_name);
1367 				continue;
1368 			}
1369 			sprintf(path, "%s/%s/proc/kallsyms",
1370 				symbol_conf.guestmount,
1371 				namelist[i]->d_name);
1372 			ret = access(path, R_OK);
1373 			if (ret) {
1374 				pr_debug("Can't access file %s\n", path);
1375 				goto failure;
1376 			}
1377 			machines__create_kernel_maps(machines, pid);
1378 		}
1379 failure:
1380 		free(namelist);
1381 	}
1382 
1383 	return ret;
1384 }
1385 
1386 void machines__destroy_kernel_maps(struct machines *machines)
1387 {
1388 	struct rb_node *next = rb_first_cached(&machines->guests);
1389 
1390 	machine__destroy_kernel_maps(&machines->host);
1391 
1392 	while (next) {
1393 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1394 
1395 		next = rb_next(&pos->rb_node);
1396 		rb_erase_cached(&pos->rb_node, &machines->guests);
1397 		machine__delete(pos);
1398 	}
1399 }
1400 
1401 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1402 {
1403 	struct machine *machine = machines__findnew(machines, pid);
1404 
1405 	if (machine == NULL)
1406 		return -1;
1407 
1408 	return machine__create_kernel_maps(machine);
1409 }
1410 
1411 int machine__load_kallsyms(struct machine *machine, const char *filename)
1412 {
1413 	struct map *map = machine__kernel_map(machine);
1414 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1415 
1416 	if (ret > 0) {
1417 		dso__set_loaded(map->dso);
1418 		/*
1419 		 * Since /proc/kallsyms will have multiple sessions for the
1420 		 * kernel, with modules between them, fixup the end of all
1421 		 * sections.
1422 		 */
1423 		maps__fixup_end(machine__kernel_maps(machine));
1424 	}
1425 
1426 	return ret;
1427 }
1428 
1429 int machine__load_vmlinux_path(struct machine *machine)
1430 {
1431 	struct map *map = machine__kernel_map(machine);
1432 	int ret = dso__load_vmlinux_path(map->dso, map);
1433 
1434 	if (ret > 0)
1435 		dso__set_loaded(map->dso);
1436 
1437 	return ret;
1438 }
1439 
1440 static char *get_kernel_version(const char *root_dir)
1441 {
1442 	char version[PATH_MAX];
1443 	FILE *file;
1444 	char *name, *tmp;
1445 	const char *prefix = "Linux version ";
1446 
1447 	sprintf(version, "%s/proc/version", root_dir);
1448 	file = fopen(version, "r");
1449 	if (!file)
1450 		return NULL;
1451 
1452 	tmp = fgets(version, sizeof(version), file);
1453 	fclose(file);
1454 	if (!tmp)
1455 		return NULL;
1456 
1457 	name = strstr(version, prefix);
1458 	if (!name)
1459 		return NULL;
1460 	name += strlen(prefix);
1461 	tmp = strchr(name, ' ');
1462 	if (tmp)
1463 		*tmp = '\0';
1464 
1465 	return strdup(name);
1466 }
1467 
1468 static bool is_kmod_dso(struct dso *dso)
1469 {
1470 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1471 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1472 }
1473 
1474 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1475 {
1476 	char *long_name;
1477 	struct map *map = maps__find_by_name(maps, m->name);
1478 
1479 	if (map == NULL)
1480 		return 0;
1481 
1482 	long_name = strdup(path);
1483 	if (long_name == NULL)
1484 		return -ENOMEM;
1485 
1486 	dso__set_long_name(map->dso, long_name, true);
1487 	dso__kernel_module_get_build_id(map->dso, "");
1488 
1489 	/*
1490 	 * Full name could reveal us kmod compression, so
1491 	 * we need to update the symtab_type if needed.
1492 	 */
1493 	if (m->comp && is_kmod_dso(map->dso)) {
1494 		map->dso->symtab_type++;
1495 		map->dso->comp = m->comp;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1502 {
1503 	struct dirent *dent;
1504 	DIR *dir = opendir(dir_name);
1505 	int ret = 0;
1506 
1507 	if (!dir) {
1508 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1509 		return -1;
1510 	}
1511 
1512 	while ((dent = readdir(dir)) != NULL) {
1513 		char path[PATH_MAX];
1514 		struct stat st;
1515 
1516 		/*sshfs might return bad dent->d_type, so we have to stat*/
1517 		path__join(path, sizeof(path), dir_name, dent->d_name);
1518 		if (stat(path, &st))
1519 			continue;
1520 
1521 		if (S_ISDIR(st.st_mode)) {
1522 			if (!strcmp(dent->d_name, ".") ||
1523 			    !strcmp(dent->d_name, ".."))
1524 				continue;
1525 
1526 			/* Do not follow top-level source and build symlinks */
1527 			if (depth == 0) {
1528 				if (!strcmp(dent->d_name, "source") ||
1529 				    !strcmp(dent->d_name, "build"))
1530 					continue;
1531 			}
1532 
1533 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1534 			if (ret < 0)
1535 				goto out;
1536 		} else {
1537 			struct kmod_path m;
1538 
1539 			ret = kmod_path__parse_name(&m, dent->d_name);
1540 			if (ret)
1541 				goto out;
1542 
1543 			if (m.kmod)
1544 				ret = maps__set_module_path(maps, path, &m);
1545 
1546 			zfree(&m.name);
1547 
1548 			if (ret)
1549 				goto out;
1550 		}
1551 	}
1552 
1553 out:
1554 	closedir(dir);
1555 	return ret;
1556 }
1557 
1558 static int machine__set_modules_path(struct machine *machine)
1559 {
1560 	char *version;
1561 	char modules_path[PATH_MAX];
1562 
1563 	version = get_kernel_version(machine->root_dir);
1564 	if (!version)
1565 		return -1;
1566 
1567 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1568 		 machine->root_dir, version);
1569 	free(version);
1570 
1571 	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1572 }
1573 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1574 				u64 *size __maybe_unused,
1575 				const char *name __maybe_unused)
1576 {
1577 	return 0;
1578 }
1579 
1580 static int machine__create_module(void *arg, const char *name, u64 start,
1581 				  u64 size)
1582 {
1583 	struct machine *machine = arg;
1584 	struct map *map;
1585 
1586 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1587 		return -1;
1588 
1589 	map = machine__addnew_module_map(machine, start, name);
1590 	if (map == NULL)
1591 		return -1;
1592 	map->end = start + size;
1593 
1594 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1595 
1596 	return 0;
1597 }
1598 
1599 static int machine__create_modules(struct machine *machine)
1600 {
1601 	const char *modules;
1602 	char path[PATH_MAX];
1603 
1604 	if (machine__is_default_guest(machine)) {
1605 		modules = symbol_conf.default_guest_modules;
1606 	} else {
1607 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1608 		modules = path;
1609 	}
1610 
1611 	if (symbol__restricted_filename(modules, "/proc/modules"))
1612 		return -1;
1613 
1614 	if (modules__parse(modules, machine, machine__create_module))
1615 		return -1;
1616 
1617 	if (!machine__set_modules_path(machine))
1618 		return 0;
1619 
1620 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1621 
1622 	return 0;
1623 }
1624 
1625 static void machine__set_kernel_mmap(struct machine *machine,
1626 				     u64 start, u64 end)
1627 {
1628 	machine->vmlinux_map->start = start;
1629 	machine->vmlinux_map->end   = end;
1630 	/*
1631 	 * Be a bit paranoid here, some perf.data file came with
1632 	 * a zero sized synthesized MMAP event for the kernel.
1633 	 */
1634 	if (start == 0 && end == 0)
1635 		machine->vmlinux_map->end = ~0ULL;
1636 }
1637 
1638 static void machine__update_kernel_mmap(struct machine *machine,
1639 				     u64 start, u64 end)
1640 {
1641 	struct map *map = machine__kernel_map(machine);
1642 
1643 	map__get(map);
1644 	maps__remove(machine__kernel_maps(machine), map);
1645 
1646 	machine__set_kernel_mmap(machine, start, end);
1647 
1648 	maps__insert(machine__kernel_maps(machine), map);
1649 	map__put(map);
1650 }
1651 
1652 int machine__create_kernel_maps(struct machine *machine)
1653 {
1654 	struct dso *kernel = machine__get_kernel(machine);
1655 	const char *name = NULL;
1656 	struct map *map;
1657 	u64 start = 0, end = ~0ULL;
1658 	int ret;
1659 
1660 	if (kernel == NULL)
1661 		return -1;
1662 
1663 	ret = __machine__create_kernel_maps(machine, kernel);
1664 	if (ret < 0)
1665 		goto out_put;
1666 
1667 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1668 		if (machine__is_host(machine))
1669 			pr_debug("Problems creating module maps, "
1670 				 "continuing anyway...\n");
1671 		else
1672 			pr_debug("Problems creating module maps for guest %d, "
1673 				 "continuing anyway...\n", machine->pid);
1674 	}
1675 
1676 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1677 		if (name &&
1678 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1679 			machine__destroy_kernel_maps(machine);
1680 			ret = -1;
1681 			goto out_put;
1682 		}
1683 
1684 		/*
1685 		 * we have a real start address now, so re-order the kmaps
1686 		 * assume it's the last in the kmaps
1687 		 */
1688 		machine__update_kernel_mmap(machine, start, end);
1689 	}
1690 
1691 	if (machine__create_extra_kernel_maps(machine, kernel))
1692 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1693 
1694 	if (end == ~0ULL) {
1695 		/* update end address of the kernel map using adjacent module address */
1696 		map = map__next(machine__kernel_map(machine));
1697 		if (map)
1698 			machine__set_kernel_mmap(machine, start, map->start);
1699 	}
1700 
1701 out_put:
1702 	dso__put(kernel);
1703 	return ret;
1704 }
1705 
1706 static bool machine__uses_kcore(struct machine *machine)
1707 {
1708 	struct dso *dso;
1709 
1710 	list_for_each_entry(dso, &machine->dsos.head, node) {
1711 		if (dso__is_kcore(dso))
1712 			return true;
1713 	}
1714 
1715 	return false;
1716 }
1717 
1718 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1719 					     struct extra_kernel_map *xm)
1720 {
1721 	return machine__is(machine, "x86_64") &&
1722 	       is_entry_trampoline(xm->name);
1723 }
1724 
1725 static int machine__process_extra_kernel_map(struct machine *machine,
1726 					     struct extra_kernel_map *xm)
1727 {
1728 	struct dso *kernel = machine__kernel_dso(machine);
1729 
1730 	if (kernel == NULL)
1731 		return -1;
1732 
1733 	return machine__create_extra_kernel_map(machine, kernel, xm);
1734 }
1735 
1736 static int machine__process_kernel_mmap_event(struct machine *machine,
1737 					      struct extra_kernel_map *xm,
1738 					      struct build_id *bid)
1739 {
1740 	struct map *map;
1741 	enum dso_space_type dso_space;
1742 	bool is_kernel_mmap;
1743 	const char *mmap_name = machine->mmap_name;
1744 
1745 	/* If we have maps from kcore then we do not need or want any others */
1746 	if (machine__uses_kcore(machine))
1747 		return 0;
1748 
1749 	if (machine__is_host(machine))
1750 		dso_space = DSO_SPACE__KERNEL;
1751 	else
1752 		dso_space = DSO_SPACE__KERNEL_GUEST;
1753 
1754 	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1755 	if (!is_kernel_mmap && !machine__is_host(machine)) {
1756 		/*
1757 		 * If the event was recorded inside the guest and injected into
1758 		 * the host perf.data file, then it will match a host mmap_name,
1759 		 * so try that - see machine__set_mmap_name().
1760 		 */
1761 		mmap_name = "[kernel.kallsyms]";
1762 		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1763 	}
1764 	if (xm->name[0] == '/' ||
1765 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1766 		map = machine__addnew_module_map(machine, xm->start,
1767 						 xm->name);
1768 		if (map == NULL)
1769 			goto out_problem;
1770 
1771 		map->end = map->start + xm->end - xm->start;
1772 
1773 		if (build_id__is_defined(bid))
1774 			dso__set_build_id(map->dso, bid);
1775 
1776 	} else if (is_kernel_mmap) {
1777 		const char *symbol_name = xm->name + strlen(mmap_name);
1778 		/*
1779 		 * Should be there already, from the build-id table in
1780 		 * the header.
1781 		 */
1782 		struct dso *kernel = NULL;
1783 		struct dso *dso;
1784 
1785 		down_read(&machine->dsos.lock);
1786 
1787 		list_for_each_entry(dso, &machine->dsos.head, node) {
1788 
1789 			/*
1790 			 * The cpumode passed to is_kernel_module is not the
1791 			 * cpumode of *this* event. If we insist on passing
1792 			 * correct cpumode to is_kernel_module, we should
1793 			 * record the cpumode when we adding this dso to the
1794 			 * linked list.
1795 			 *
1796 			 * However we don't really need passing correct
1797 			 * cpumode.  We know the correct cpumode must be kernel
1798 			 * mode (if not, we should not link it onto kernel_dsos
1799 			 * list).
1800 			 *
1801 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1802 			 * is_kernel_module() treats it as a kernel cpumode.
1803 			 */
1804 
1805 			if (!dso->kernel ||
1806 			    is_kernel_module(dso->long_name,
1807 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1808 				continue;
1809 
1810 
1811 			kernel = dso;
1812 			break;
1813 		}
1814 
1815 		up_read(&machine->dsos.lock);
1816 
1817 		if (kernel == NULL)
1818 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1819 		if (kernel == NULL)
1820 			goto out_problem;
1821 
1822 		kernel->kernel = dso_space;
1823 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1824 			dso__put(kernel);
1825 			goto out_problem;
1826 		}
1827 
1828 		if (strstr(kernel->long_name, "vmlinux"))
1829 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1830 
1831 		machine__update_kernel_mmap(machine, xm->start, xm->end);
1832 
1833 		if (build_id__is_defined(bid))
1834 			dso__set_build_id(kernel, bid);
1835 
1836 		/*
1837 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1838 		 * symbol. Effectively having zero here means that at record
1839 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1840 		 */
1841 		if (xm->pgoff != 0) {
1842 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1843 							symbol_name,
1844 							xm->pgoff);
1845 		}
1846 
1847 		if (machine__is_default_guest(machine)) {
1848 			/*
1849 			 * preload dso of guest kernel and modules
1850 			 */
1851 			dso__load(kernel, machine__kernel_map(machine));
1852 		}
1853 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1854 		return machine__process_extra_kernel_map(machine, xm);
1855 	}
1856 	return 0;
1857 out_problem:
1858 	return -1;
1859 }
1860 
1861 int machine__process_mmap2_event(struct machine *machine,
1862 				 union perf_event *event,
1863 				 struct perf_sample *sample)
1864 {
1865 	struct thread *thread;
1866 	struct map *map;
1867 	struct dso_id dso_id = {
1868 		.maj = event->mmap2.maj,
1869 		.min = event->mmap2.min,
1870 		.ino = event->mmap2.ino,
1871 		.ino_generation = event->mmap2.ino_generation,
1872 	};
1873 	struct build_id __bid, *bid = NULL;
1874 	int ret = 0;
1875 
1876 	if (dump_trace)
1877 		perf_event__fprintf_mmap2(event, stdout);
1878 
1879 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1880 		bid = &__bid;
1881 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1882 	}
1883 
1884 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1885 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1886 		struct extra_kernel_map xm = {
1887 			.start = event->mmap2.start,
1888 			.end   = event->mmap2.start + event->mmap2.len,
1889 			.pgoff = event->mmap2.pgoff,
1890 		};
1891 
1892 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1893 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1894 		if (ret < 0)
1895 			goto out_problem;
1896 		return 0;
1897 	}
1898 
1899 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1900 					event->mmap2.tid);
1901 	if (thread == NULL)
1902 		goto out_problem;
1903 
1904 	map = map__new(machine, event->mmap2.start,
1905 			event->mmap2.len, event->mmap2.pgoff,
1906 			&dso_id, event->mmap2.prot,
1907 			event->mmap2.flags, bid,
1908 			event->mmap2.filename, thread);
1909 
1910 	if (map == NULL)
1911 		goto out_problem_map;
1912 
1913 	ret = thread__insert_map(thread, map);
1914 	if (ret)
1915 		goto out_problem_insert;
1916 
1917 	thread__put(thread);
1918 	map__put(map);
1919 	return 0;
1920 
1921 out_problem_insert:
1922 	map__put(map);
1923 out_problem_map:
1924 	thread__put(thread);
1925 out_problem:
1926 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1927 	return 0;
1928 }
1929 
1930 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1931 				struct perf_sample *sample)
1932 {
1933 	struct thread *thread;
1934 	struct map *map;
1935 	u32 prot = 0;
1936 	int ret = 0;
1937 
1938 	if (dump_trace)
1939 		perf_event__fprintf_mmap(event, stdout);
1940 
1941 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1942 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1943 		struct extra_kernel_map xm = {
1944 			.start = event->mmap.start,
1945 			.end   = event->mmap.start + event->mmap.len,
1946 			.pgoff = event->mmap.pgoff,
1947 		};
1948 
1949 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1950 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1951 		if (ret < 0)
1952 			goto out_problem;
1953 		return 0;
1954 	}
1955 
1956 	thread = machine__findnew_thread(machine, event->mmap.pid,
1957 					 event->mmap.tid);
1958 	if (thread == NULL)
1959 		goto out_problem;
1960 
1961 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1962 		prot = PROT_EXEC;
1963 
1964 	map = map__new(machine, event->mmap.start,
1965 			event->mmap.len, event->mmap.pgoff,
1966 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1967 
1968 	if (map == NULL)
1969 		goto out_problem_map;
1970 
1971 	ret = thread__insert_map(thread, map);
1972 	if (ret)
1973 		goto out_problem_insert;
1974 
1975 	thread__put(thread);
1976 	map__put(map);
1977 	return 0;
1978 
1979 out_problem_insert:
1980 	map__put(map);
1981 out_problem_map:
1982 	thread__put(thread);
1983 out_problem:
1984 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1985 	return 0;
1986 }
1987 
1988 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1989 {
1990 	struct threads *threads = machine__threads(machine, th->tid);
1991 
1992 	if (threads->last_match == th)
1993 		threads__set_last_match(threads, NULL);
1994 
1995 	if (lock)
1996 		down_write(&threads->lock);
1997 
1998 	BUG_ON(refcount_read(&th->refcnt) == 0);
1999 
2000 	rb_erase_cached(&th->rb_node, &threads->entries);
2001 	RB_CLEAR_NODE(&th->rb_node);
2002 	--threads->nr;
2003 	/*
2004 	 * Move it first to the dead_threads list, then drop the reference,
2005 	 * if this is the last reference, then the thread__delete destructor
2006 	 * will be called and we will remove it from the dead_threads list.
2007 	 */
2008 	list_add_tail(&th->node, &threads->dead);
2009 
2010 	/*
2011 	 * We need to do the put here because if this is the last refcount,
2012 	 * then we will be touching the threads->dead head when removing the
2013 	 * thread.
2014 	 */
2015 	thread__put(th);
2016 
2017 	if (lock)
2018 		up_write(&threads->lock);
2019 }
2020 
2021 void machine__remove_thread(struct machine *machine, struct thread *th)
2022 {
2023 	return __machine__remove_thread(machine, th, true);
2024 }
2025 
2026 int machine__process_fork_event(struct machine *machine, union perf_event *event,
2027 				struct perf_sample *sample)
2028 {
2029 	struct thread *thread = machine__find_thread(machine,
2030 						     event->fork.pid,
2031 						     event->fork.tid);
2032 	struct thread *parent = machine__findnew_thread(machine,
2033 							event->fork.ppid,
2034 							event->fork.ptid);
2035 	bool do_maps_clone = true;
2036 	int err = 0;
2037 
2038 	if (dump_trace)
2039 		perf_event__fprintf_task(event, stdout);
2040 
2041 	/*
2042 	 * There may be an existing thread that is not actually the parent,
2043 	 * either because we are processing events out of order, or because the
2044 	 * (fork) event that would have removed the thread was lost. Assume the
2045 	 * latter case and continue on as best we can.
2046 	 */
2047 	if (parent->pid_ != (pid_t)event->fork.ppid) {
2048 		dump_printf("removing erroneous parent thread %d/%d\n",
2049 			    parent->pid_, parent->tid);
2050 		machine__remove_thread(machine, parent);
2051 		thread__put(parent);
2052 		parent = machine__findnew_thread(machine, event->fork.ppid,
2053 						 event->fork.ptid);
2054 	}
2055 
2056 	/* if a thread currently exists for the thread id remove it */
2057 	if (thread != NULL) {
2058 		machine__remove_thread(machine, thread);
2059 		thread__put(thread);
2060 	}
2061 
2062 	thread = machine__findnew_thread(machine, event->fork.pid,
2063 					 event->fork.tid);
2064 	/*
2065 	 * When synthesizing FORK events, we are trying to create thread
2066 	 * objects for the already running tasks on the machine.
2067 	 *
2068 	 * Normally, for a kernel FORK event, we want to clone the parent's
2069 	 * maps because that is what the kernel just did.
2070 	 *
2071 	 * But when synthesizing, this should not be done.  If we do, we end up
2072 	 * with overlapping maps as we process the synthesized MMAP2 events that
2073 	 * get delivered shortly thereafter.
2074 	 *
2075 	 * Use the FORK event misc flags in an internal way to signal this
2076 	 * situation, so we can elide the map clone when appropriate.
2077 	 */
2078 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2079 		do_maps_clone = false;
2080 
2081 	if (thread == NULL || parent == NULL ||
2082 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2083 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2084 		err = -1;
2085 	}
2086 	thread__put(thread);
2087 	thread__put(parent);
2088 
2089 	return err;
2090 }
2091 
2092 int machine__process_exit_event(struct machine *machine, union perf_event *event,
2093 				struct perf_sample *sample __maybe_unused)
2094 {
2095 	struct thread *thread = machine__find_thread(machine,
2096 						     event->fork.pid,
2097 						     event->fork.tid);
2098 
2099 	if (dump_trace)
2100 		perf_event__fprintf_task(event, stdout);
2101 
2102 	if (thread != NULL) {
2103 		thread__exited(thread);
2104 		thread__put(thread);
2105 	}
2106 
2107 	return 0;
2108 }
2109 
2110 int machine__process_event(struct machine *machine, union perf_event *event,
2111 			   struct perf_sample *sample)
2112 {
2113 	int ret;
2114 
2115 	switch (event->header.type) {
2116 	case PERF_RECORD_COMM:
2117 		ret = machine__process_comm_event(machine, event, sample); break;
2118 	case PERF_RECORD_MMAP:
2119 		ret = machine__process_mmap_event(machine, event, sample); break;
2120 	case PERF_RECORD_NAMESPACES:
2121 		ret = machine__process_namespaces_event(machine, event, sample); break;
2122 	case PERF_RECORD_CGROUP:
2123 		ret = machine__process_cgroup_event(machine, event, sample); break;
2124 	case PERF_RECORD_MMAP2:
2125 		ret = machine__process_mmap2_event(machine, event, sample); break;
2126 	case PERF_RECORD_FORK:
2127 		ret = machine__process_fork_event(machine, event, sample); break;
2128 	case PERF_RECORD_EXIT:
2129 		ret = machine__process_exit_event(machine, event, sample); break;
2130 	case PERF_RECORD_LOST:
2131 		ret = machine__process_lost_event(machine, event, sample); break;
2132 	case PERF_RECORD_AUX:
2133 		ret = machine__process_aux_event(machine, event); break;
2134 	case PERF_RECORD_ITRACE_START:
2135 		ret = machine__process_itrace_start_event(machine, event); break;
2136 	case PERF_RECORD_LOST_SAMPLES:
2137 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2138 	case PERF_RECORD_SWITCH:
2139 	case PERF_RECORD_SWITCH_CPU_WIDE:
2140 		ret = machine__process_switch_event(machine, event); break;
2141 	case PERF_RECORD_KSYMBOL:
2142 		ret = machine__process_ksymbol(machine, event, sample); break;
2143 	case PERF_RECORD_BPF_EVENT:
2144 		ret = machine__process_bpf(machine, event, sample); break;
2145 	case PERF_RECORD_TEXT_POKE:
2146 		ret = machine__process_text_poke(machine, event, sample); break;
2147 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2148 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2149 	default:
2150 		ret = -1;
2151 		break;
2152 	}
2153 
2154 	return ret;
2155 }
2156 
2157 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2158 {
2159 	if (!regexec(regex, sym->name, 0, NULL, 0))
2160 		return true;
2161 	return false;
2162 }
2163 
2164 static void ip__resolve_ams(struct thread *thread,
2165 			    struct addr_map_symbol *ams,
2166 			    u64 ip)
2167 {
2168 	struct addr_location al;
2169 
2170 	memset(&al, 0, sizeof(al));
2171 	/*
2172 	 * We cannot use the header.misc hint to determine whether a
2173 	 * branch stack address is user, kernel, guest, hypervisor.
2174 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2175 	 * Thus, we have to try consecutively until we find a match
2176 	 * or else, the symbol is unknown
2177 	 */
2178 	thread__find_cpumode_addr_location(thread, ip, &al);
2179 
2180 	ams->addr = ip;
2181 	ams->al_addr = al.addr;
2182 	ams->al_level = al.level;
2183 	ams->ms.maps = al.maps;
2184 	ams->ms.sym = al.sym;
2185 	ams->ms.map = al.map;
2186 	ams->phys_addr = 0;
2187 	ams->data_page_size = 0;
2188 }
2189 
2190 static void ip__resolve_data(struct thread *thread,
2191 			     u8 m, struct addr_map_symbol *ams,
2192 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2193 {
2194 	struct addr_location al;
2195 
2196 	memset(&al, 0, sizeof(al));
2197 
2198 	thread__find_symbol(thread, m, addr, &al);
2199 
2200 	ams->addr = addr;
2201 	ams->al_addr = al.addr;
2202 	ams->al_level = al.level;
2203 	ams->ms.maps = al.maps;
2204 	ams->ms.sym = al.sym;
2205 	ams->ms.map = al.map;
2206 	ams->phys_addr = phys_addr;
2207 	ams->data_page_size = daddr_page_size;
2208 }
2209 
2210 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2211 				     struct addr_location *al)
2212 {
2213 	struct mem_info *mi = mem_info__new();
2214 
2215 	if (!mi)
2216 		return NULL;
2217 
2218 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2219 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2220 			 sample->addr, sample->phys_addr,
2221 			 sample->data_page_size);
2222 	mi->data_src.val = sample->data_src;
2223 
2224 	return mi;
2225 }
2226 
2227 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2228 {
2229 	struct map *map = ms->map;
2230 	char *srcline = NULL;
2231 
2232 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2233 		return srcline;
2234 
2235 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2236 	if (!srcline) {
2237 		bool show_sym = false;
2238 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2239 
2240 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2241 				      ms->sym, show_sym, show_addr, ip);
2242 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2243 	}
2244 
2245 	return srcline;
2246 }
2247 
2248 struct iterations {
2249 	int nr_loop_iter;
2250 	u64 cycles;
2251 };
2252 
2253 static int add_callchain_ip(struct thread *thread,
2254 			    struct callchain_cursor *cursor,
2255 			    struct symbol **parent,
2256 			    struct addr_location *root_al,
2257 			    u8 *cpumode,
2258 			    u64 ip,
2259 			    bool branch,
2260 			    struct branch_flags *flags,
2261 			    struct iterations *iter,
2262 			    u64 branch_from)
2263 {
2264 	struct map_symbol ms;
2265 	struct addr_location al;
2266 	int nr_loop_iter = 0;
2267 	u64 iter_cycles = 0;
2268 	const char *srcline = NULL;
2269 
2270 	al.filtered = 0;
2271 	al.sym = NULL;
2272 	al.srcline = NULL;
2273 	if (!cpumode) {
2274 		thread__find_cpumode_addr_location(thread, ip, &al);
2275 	} else {
2276 		if (ip >= PERF_CONTEXT_MAX) {
2277 			switch (ip) {
2278 			case PERF_CONTEXT_HV:
2279 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2280 				break;
2281 			case PERF_CONTEXT_KERNEL:
2282 				*cpumode = PERF_RECORD_MISC_KERNEL;
2283 				break;
2284 			case PERF_CONTEXT_USER:
2285 				*cpumode = PERF_RECORD_MISC_USER;
2286 				break;
2287 			default:
2288 				pr_debug("invalid callchain context: "
2289 					 "%"PRId64"\n", (s64) ip);
2290 				/*
2291 				 * It seems the callchain is corrupted.
2292 				 * Discard all.
2293 				 */
2294 				callchain_cursor_reset(cursor);
2295 				return 1;
2296 			}
2297 			return 0;
2298 		}
2299 		thread__find_symbol(thread, *cpumode, ip, &al);
2300 	}
2301 
2302 	if (al.sym != NULL) {
2303 		if (perf_hpp_list.parent && !*parent &&
2304 		    symbol__match_regex(al.sym, &parent_regex))
2305 			*parent = al.sym;
2306 		else if (have_ignore_callees && root_al &&
2307 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2308 			/* Treat this symbol as the root,
2309 			   forgetting its callees. */
2310 			*root_al = al;
2311 			callchain_cursor_reset(cursor);
2312 		}
2313 	}
2314 
2315 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2316 		return 0;
2317 
2318 	if (iter) {
2319 		nr_loop_iter = iter->nr_loop_iter;
2320 		iter_cycles = iter->cycles;
2321 	}
2322 
2323 	ms.maps = al.maps;
2324 	ms.map = al.map;
2325 	ms.sym = al.sym;
2326 
2327 	if (!branch && append_inlines(cursor, &ms, ip) == 0)
2328 		return 0;
2329 
2330 	srcline = callchain_srcline(&ms, al.addr);
2331 	return callchain_cursor_append(cursor, ip, &ms,
2332 				       branch, flags, nr_loop_iter,
2333 				       iter_cycles, branch_from, srcline);
2334 }
2335 
2336 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2337 					   struct addr_location *al)
2338 {
2339 	unsigned int i;
2340 	const struct branch_stack *bs = sample->branch_stack;
2341 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2342 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2343 
2344 	if (!bi)
2345 		return NULL;
2346 
2347 	for (i = 0; i < bs->nr; i++) {
2348 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2349 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2350 		bi[i].flags = entries[i].flags;
2351 	}
2352 	return bi;
2353 }
2354 
2355 static void save_iterations(struct iterations *iter,
2356 			    struct branch_entry *be, int nr)
2357 {
2358 	int i;
2359 
2360 	iter->nr_loop_iter++;
2361 	iter->cycles = 0;
2362 
2363 	for (i = 0; i < nr; i++)
2364 		iter->cycles += be[i].flags.cycles;
2365 }
2366 
2367 #define CHASHSZ 127
2368 #define CHASHBITS 7
2369 #define NO_ENTRY 0xff
2370 
2371 #define PERF_MAX_BRANCH_DEPTH 127
2372 
2373 /* Remove loops. */
2374 static int remove_loops(struct branch_entry *l, int nr,
2375 			struct iterations *iter)
2376 {
2377 	int i, j, off;
2378 	unsigned char chash[CHASHSZ];
2379 
2380 	memset(chash, NO_ENTRY, sizeof(chash));
2381 
2382 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2383 
2384 	for (i = 0; i < nr; i++) {
2385 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2386 
2387 		/* no collision handling for now */
2388 		if (chash[h] == NO_ENTRY) {
2389 			chash[h] = i;
2390 		} else if (l[chash[h]].from == l[i].from) {
2391 			bool is_loop = true;
2392 			/* check if it is a real loop */
2393 			off = 0;
2394 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2395 				if (l[j].from != l[i + off].from) {
2396 					is_loop = false;
2397 					break;
2398 				}
2399 			if (is_loop) {
2400 				j = nr - (i + off);
2401 				if (j > 0) {
2402 					save_iterations(iter + i + off,
2403 						l + i, off);
2404 
2405 					memmove(iter + i, iter + i + off,
2406 						j * sizeof(*iter));
2407 
2408 					memmove(l + i, l + i + off,
2409 						j * sizeof(*l));
2410 				}
2411 
2412 				nr -= off;
2413 			}
2414 		}
2415 	}
2416 	return nr;
2417 }
2418 
2419 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2420 				       struct callchain_cursor *cursor,
2421 				       struct perf_sample *sample,
2422 				       struct symbol **parent,
2423 				       struct addr_location *root_al,
2424 				       u64 branch_from,
2425 				       bool callee, int end)
2426 {
2427 	struct ip_callchain *chain = sample->callchain;
2428 	u8 cpumode = PERF_RECORD_MISC_USER;
2429 	int err, i;
2430 
2431 	if (callee) {
2432 		for (i = 0; i < end + 1; i++) {
2433 			err = add_callchain_ip(thread, cursor, parent,
2434 					       root_al, &cpumode, chain->ips[i],
2435 					       false, NULL, NULL, branch_from);
2436 			if (err)
2437 				return err;
2438 		}
2439 		return 0;
2440 	}
2441 
2442 	for (i = end; i >= 0; i--) {
2443 		err = add_callchain_ip(thread, cursor, parent,
2444 				       root_al, &cpumode, chain->ips[i],
2445 				       false, NULL, NULL, branch_from);
2446 		if (err)
2447 			return err;
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 static void save_lbr_cursor_node(struct thread *thread,
2454 				 struct callchain_cursor *cursor,
2455 				 int idx)
2456 {
2457 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2458 
2459 	if (!lbr_stitch)
2460 		return;
2461 
2462 	if (cursor->pos == cursor->nr) {
2463 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2464 		return;
2465 	}
2466 
2467 	if (!cursor->curr)
2468 		cursor->curr = cursor->first;
2469 	else
2470 		cursor->curr = cursor->curr->next;
2471 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2472 	       sizeof(struct callchain_cursor_node));
2473 
2474 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2475 	cursor->pos++;
2476 }
2477 
2478 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2479 				    struct callchain_cursor *cursor,
2480 				    struct perf_sample *sample,
2481 				    struct symbol **parent,
2482 				    struct addr_location *root_al,
2483 				    u64 *branch_from,
2484 				    bool callee)
2485 {
2486 	struct branch_stack *lbr_stack = sample->branch_stack;
2487 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2488 	u8 cpumode = PERF_RECORD_MISC_USER;
2489 	int lbr_nr = lbr_stack->nr;
2490 	struct branch_flags *flags;
2491 	int err, i;
2492 	u64 ip;
2493 
2494 	/*
2495 	 * The curr and pos are not used in writing session. They are cleared
2496 	 * in callchain_cursor_commit() when the writing session is closed.
2497 	 * Using curr and pos to track the current cursor node.
2498 	 */
2499 	if (thread->lbr_stitch) {
2500 		cursor->curr = NULL;
2501 		cursor->pos = cursor->nr;
2502 		if (cursor->nr) {
2503 			cursor->curr = cursor->first;
2504 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2505 				cursor->curr = cursor->curr->next;
2506 		}
2507 	}
2508 
2509 	if (callee) {
2510 		/* Add LBR ip from first entries.to */
2511 		ip = entries[0].to;
2512 		flags = &entries[0].flags;
2513 		*branch_from = entries[0].from;
2514 		err = add_callchain_ip(thread, cursor, parent,
2515 				       root_al, &cpumode, ip,
2516 				       true, flags, NULL,
2517 				       *branch_from);
2518 		if (err)
2519 			return err;
2520 
2521 		/*
2522 		 * The number of cursor node increases.
2523 		 * Move the current cursor node.
2524 		 * But does not need to save current cursor node for entry 0.
2525 		 * It's impossible to stitch the whole LBRs of previous sample.
2526 		 */
2527 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2528 			if (!cursor->curr)
2529 				cursor->curr = cursor->first;
2530 			else
2531 				cursor->curr = cursor->curr->next;
2532 			cursor->pos++;
2533 		}
2534 
2535 		/* Add LBR ip from entries.from one by one. */
2536 		for (i = 0; i < lbr_nr; i++) {
2537 			ip = entries[i].from;
2538 			flags = &entries[i].flags;
2539 			err = add_callchain_ip(thread, cursor, parent,
2540 					       root_al, &cpumode, ip,
2541 					       true, flags, NULL,
2542 					       *branch_from);
2543 			if (err)
2544 				return err;
2545 			save_lbr_cursor_node(thread, cursor, i);
2546 		}
2547 		return 0;
2548 	}
2549 
2550 	/* Add LBR ip from entries.from one by one. */
2551 	for (i = lbr_nr - 1; i >= 0; i--) {
2552 		ip = entries[i].from;
2553 		flags = &entries[i].flags;
2554 		err = add_callchain_ip(thread, cursor, parent,
2555 				       root_al, &cpumode, ip,
2556 				       true, flags, NULL,
2557 				       *branch_from);
2558 		if (err)
2559 			return err;
2560 		save_lbr_cursor_node(thread, cursor, i);
2561 	}
2562 
2563 	/* Add LBR ip from first entries.to */
2564 	ip = entries[0].to;
2565 	flags = &entries[0].flags;
2566 	*branch_from = entries[0].from;
2567 	err = add_callchain_ip(thread, cursor, parent,
2568 			       root_al, &cpumode, ip,
2569 			       true, flags, NULL,
2570 			       *branch_from);
2571 	if (err)
2572 		return err;
2573 
2574 	return 0;
2575 }
2576 
2577 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2578 					     struct callchain_cursor *cursor)
2579 {
2580 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2581 	struct callchain_cursor_node *cnode;
2582 	struct stitch_list *stitch_node;
2583 	int err;
2584 
2585 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2586 		cnode = &stitch_node->cursor;
2587 
2588 		err = callchain_cursor_append(cursor, cnode->ip,
2589 					      &cnode->ms,
2590 					      cnode->branch,
2591 					      &cnode->branch_flags,
2592 					      cnode->nr_loop_iter,
2593 					      cnode->iter_cycles,
2594 					      cnode->branch_from,
2595 					      cnode->srcline);
2596 		if (err)
2597 			return err;
2598 	}
2599 	return 0;
2600 }
2601 
2602 static struct stitch_list *get_stitch_node(struct thread *thread)
2603 {
2604 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2605 	struct stitch_list *stitch_node;
2606 
2607 	if (!list_empty(&lbr_stitch->free_lists)) {
2608 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2609 					       struct stitch_list, node);
2610 		list_del(&stitch_node->node);
2611 
2612 		return stitch_node;
2613 	}
2614 
2615 	return malloc(sizeof(struct stitch_list));
2616 }
2617 
2618 static bool has_stitched_lbr(struct thread *thread,
2619 			     struct perf_sample *cur,
2620 			     struct perf_sample *prev,
2621 			     unsigned int max_lbr,
2622 			     bool callee)
2623 {
2624 	struct branch_stack *cur_stack = cur->branch_stack;
2625 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2626 	struct branch_stack *prev_stack = prev->branch_stack;
2627 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2628 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2629 	int i, j, nr_identical_branches = 0;
2630 	struct stitch_list *stitch_node;
2631 	u64 cur_base, distance;
2632 
2633 	if (!cur_stack || !prev_stack)
2634 		return false;
2635 
2636 	/* Find the physical index of the base-of-stack for current sample. */
2637 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2638 
2639 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2640 						     (max_lbr + prev_stack->hw_idx - cur_base);
2641 	/* Previous sample has shorter stack. Nothing can be stitched. */
2642 	if (distance + 1 > prev_stack->nr)
2643 		return false;
2644 
2645 	/*
2646 	 * Check if there are identical LBRs between two samples.
2647 	 * Identical LBRs must have same from, to and flags values. Also,
2648 	 * they have to be saved in the same LBR registers (same physical
2649 	 * index).
2650 	 *
2651 	 * Starts from the base-of-stack of current sample.
2652 	 */
2653 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2654 		if ((prev_entries[i].from != cur_entries[j].from) ||
2655 		    (prev_entries[i].to != cur_entries[j].to) ||
2656 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2657 			break;
2658 		nr_identical_branches++;
2659 	}
2660 
2661 	if (!nr_identical_branches)
2662 		return false;
2663 
2664 	/*
2665 	 * Save the LBRs between the base-of-stack of previous sample
2666 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2667 	 * These LBRs will be stitched later.
2668 	 */
2669 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2670 
2671 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2672 			continue;
2673 
2674 		stitch_node = get_stitch_node(thread);
2675 		if (!stitch_node)
2676 			return false;
2677 
2678 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2679 		       sizeof(struct callchain_cursor_node));
2680 
2681 		if (callee)
2682 			list_add(&stitch_node->node, &lbr_stitch->lists);
2683 		else
2684 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2685 	}
2686 
2687 	return true;
2688 }
2689 
2690 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2691 {
2692 	if (thread->lbr_stitch)
2693 		return true;
2694 
2695 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2696 	if (!thread->lbr_stitch)
2697 		goto err;
2698 
2699 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2700 	if (!thread->lbr_stitch->prev_lbr_cursor)
2701 		goto free_lbr_stitch;
2702 
2703 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2704 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2705 
2706 	return true;
2707 
2708 free_lbr_stitch:
2709 	zfree(&thread->lbr_stitch);
2710 err:
2711 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2712 	thread->lbr_stitch_enable = false;
2713 	return false;
2714 }
2715 
2716 /*
2717  * Resolve LBR callstack chain sample
2718  * Return:
2719  * 1 on success get LBR callchain information
2720  * 0 no available LBR callchain information, should try fp
2721  * negative error code on other errors.
2722  */
2723 static int resolve_lbr_callchain_sample(struct thread *thread,
2724 					struct callchain_cursor *cursor,
2725 					struct perf_sample *sample,
2726 					struct symbol **parent,
2727 					struct addr_location *root_al,
2728 					int max_stack,
2729 					unsigned int max_lbr)
2730 {
2731 	bool callee = (callchain_param.order == ORDER_CALLEE);
2732 	struct ip_callchain *chain = sample->callchain;
2733 	int chain_nr = min(max_stack, (int)chain->nr), i;
2734 	struct lbr_stitch *lbr_stitch;
2735 	bool stitched_lbr = false;
2736 	u64 branch_from = 0;
2737 	int err;
2738 
2739 	for (i = 0; i < chain_nr; i++) {
2740 		if (chain->ips[i] == PERF_CONTEXT_USER)
2741 			break;
2742 	}
2743 
2744 	/* LBR only affects the user callchain */
2745 	if (i == chain_nr)
2746 		return 0;
2747 
2748 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2749 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2750 		lbr_stitch = thread->lbr_stitch;
2751 
2752 		stitched_lbr = has_stitched_lbr(thread, sample,
2753 						&lbr_stitch->prev_sample,
2754 						max_lbr, callee);
2755 
2756 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2757 			list_replace_init(&lbr_stitch->lists,
2758 					  &lbr_stitch->free_lists);
2759 		}
2760 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2761 	}
2762 
2763 	if (callee) {
2764 		/* Add kernel ip */
2765 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2766 						  parent, root_al, branch_from,
2767 						  true, i);
2768 		if (err)
2769 			goto error;
2770 
2771 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2772 					       root_al, &branch_from, true);
2773 		if (err)
2774 			goto error;
2775 
2776 		if (stitched_lbr) {
2777 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2778 			if (err)
2779 				goto error;
2780 		}
2781 
2782 	} else {
2783 		if (stitched_lbr) {
2784 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2785 			if (err)
2786 				goto error;
2787 		}
2788 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2789 					       root_al, &branch_from, false);
2790 		if (err)
2791 			goto error;
2792 
2793 		/* Add kernel ip */
2794 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2795 						  parent, root_al, branch_from,
2796 						  false, i);
2797 		if (err)
2798 			goto error;
2799 	}
2800 	return 1;
2801 
2802 error:
2803 	return (err < 0) ? err : 0;
2804 }
2805 
2806 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2807 			     struct callchain_cursor *cursor,
2808 			     struct symbol **parent,
2809 			     struct addr_location *root_al,
2810 			     u8 *cpumode, int ent)
2811 {
2812 	int err = 0;
2813 
2814 	while (--ent >= 0) {
2815 		u64 ip = chain->ips[ent];
2816 
2817 		if (ip >= PERF_CONTEXT_MAX) {
2818 			err = add_callchain_ip(thread, cursor, parent,
2819 					       root_al, cpumode, ip,
2820 					       false, NULL, NULL, 0);
2821 			break;
2822 		}
2823 	}
2824 	return err;
2825 }
2826 
2827 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2828 		struct thread *thread, int usr_idx)
2829 {
2830 	if (machine__normalized_is(thread->maps->machine, "arm64"))
2831 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2832 	else
2833 		return 0;
2834 }
2835 
2836 static int thread__resolve_callchain_sample(struct thread *thread,
2837 					    struct callchain_cursor *cursor,
2838 					    struct evsel *evsel,
2839 					    struct perf_sample *sample,
2840 					    struct symbol **parent,
2841 					    struct addr_location *root_al,
2842 					    int max_stack)
2843 {
2844 	struct branch_stack *branch = sample->branch_stack;
2845 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2846 	struct ip_callchain *chain = sample->callchain;
2847 	int chain_nr = 0;
2848 	u8 cpumode = PERF_RECORD_MISC_USER;
2849 	int i, j, err, nr_entries, usr_idx;
2850 	int skip_idx = -1;
2851 	int first_call = 0;
2852 	u64 leaf_frame_caller;
2853 
2854 	if (chain)
2855 		chain_nr = chain->nr;
2856 
2857 	if (evsel__has_branch_callstack(evsel)) {
2858 		struct perf_env *env = evsel__env(evsel);
2859 
2860 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2861 						   root_al, max_stack,
2862 						   !env ? 0 : env->max_branches);
2863 		if (err)
2864 			return (err < 0) ? err : 0;
2865 	}
2866 
2867 	/*
2868 	 * Based on DWARF debug information, some architectures skip
2869 	 * a callchain entry saved by the kernel.
2870 	 */
2871 	skip_idx = arch_skip_callchain_idx(thread, chain);
2872 
2873 	/*
2874 	 * Add branches to call stack for easier browsing. This gives
2875 	 * more context for a sample than just the callers.
2876 	 *
2877 	 * This uses individual histograms of paths compared to the
2878 	 * aggregated histograms the normal LBR mode uses.
2879 	 *
2880 	 * Limitations for now:
2881 	 * - No extra filters
2882 	 * - No annotations (should annotate somehow)
2883 	 */
2884 
2885 	if (branch && callchain_param.branch_callstack) {
2886 		int nr = min(max_stack, (int)branch->nr);
2887 		struct branch_entry be[nr];
2888 		struct iterations iter[nr];
2889 
2890 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2891 			pr_warning("corrupted branch chain. skipping...\n");
2892 			goto check_calls;
2893 		}
2894 
2895 		for (i = 0; i < nr; i++) {
2896 			if (callchain_param.order == ORDER_CALLEE) {
2897 				be[i] = entries[i];
2898 
2899 				if (chain == NULL)
2900 					continue;
2901 
2902 				/*
2903 				 * Check for overlap into the callchain.
2904 				 * The return address is one off compared to
2905 				 * the branch entry. To adjust for this
2906 				 * assume the calling instruction is not longer
2907 				 * than 8 bytes.
2908 				 */
2909 				if (i == skip_idx ||
2910 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2911 					first_call++;
2912 				else if (be[i].from < chain->ips[first_call] &&
2913 				    be[i].from >= chain->ips[first_call] - 8)
2914 					first_call++;
2915 			} else
2916 				be[i] = entries[branch->nr - i - 1];
2917 		}
2918 
2919 		memset(iter, 0, sizeof(struct iterations) * nr);
2920 		nr = remove_loops(be, nr, iter);
2921 
2922 		for (i = 0; i < nr; i++) {
2923 			err = add_callchain_ip(thread, cursor, parent,
2924 					       root_al,
2925 					       NULL, be[i].to,
2926 					       true, &be[i].flags,
2927 					       NULL, be[i].from);
2928 
2929 			if (!err)
2930 				err = add_callchain_ip(thread, cursor, parent, root_al,
2931 						       NULL, be[i].from,
2932 						       true, &be[i].flags,
2933 						       &iter[i], 0);
2934 			if (err == -EINVAL)
2935 				break;
2936 			if (err)
2937 				return err;
2938 		}
2939 
2940 		if (chain_nr == 0)
2941 			return 0;
2942 
2943 		chain_nr -= nr;
2944 	}
2945 
2946 check_calls:
2947 	if (chain && callchain_param.order != ORDER_CALLEE) {
2948 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2949 					&cpumode, chain->nr - first_call);
2950 		if (err)
2951 			return (err < 0) ? err : 0;
2952 	}
2953 	for (i = first_call, nr_entries = 0;
2954 	     i < chain_nr && nr_entries < max_stack; i++) {
2955 		u64 ip;
2956 
2957 		if (callchain_param.order == ORDER_CALLEE)
2958 			j = i;
2959 		else
2960 			j = chain->nr - i - 1;
2961 
2962 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2963 		if (j == skip_idx)
2964 			continue;
2965 #endif
2966 		ip = chain->ips[j];
2967 		if (ip < PERF_CONTEXT_MAX)
2968                        ++nr_entries;
2969 		else if (callchain_param.order != ORDER_CALLEE) {
2970 			err = find_prev_cpumode(chain, thread, cursor, parent,
2971 						root_al, &cpumode, j);
2972 			if (err)
2973 				return (err < 0) ? err : 0;
2974 			continue;
2975 		}
2976 
2977 		/*
2978 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2979 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2980 		 * the index will be different in order to add the missing frame
2981 		 * at the right place.
2982 		 */
2983 
2984 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2985 
2986 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2987 
2988 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2989 
2990 			/*
2991 			 * check if leaf_frame_Caller != ip to not add the same
2992 			 * value twice.
2993 			 */
2994 
2995 			if (leaf_frame_caller && leaf_frame_caller != ip) {
2996 
2997 				err = add_callchain_ip(thread, cursor, parent,
2998 					       root_al, &cpumode, leaf_frame_caller,
2999 					       false, NULL, NULL, 0);
3000 				if (err)
3001 					return (err < 0) ? err : 0;
3002 			}
3003 		}
3004 
3005 		err = add_callchain_ip(thread, cursor, parent,
3006 				       root_al, &cpumode, ip,
3007 				       false, NULL, NULL, 0);
3008 
3009 		if (err)
3010 			return (err < 0) ? err : 0;
3011 	}
3012 
3013 	return 0;
3014 }
3015 
3016 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3017 {
3018 	struct symbol *sym = ms->sym;
3019 	struct map *map = ms->map;
3020 	struct inline_node *inline_node;
3021 	struct inline_list *ilist;
3022 	u64 addr;
3023 	int ret = 1;
3024 
3025 	if (!symbol_conf.inline_name || !map || !sym)
3026 		return ret;
3027 
3028 	addr = map__map_ip(map, ip);
3029 	addr = map__rip_2objdump(map, addr);
3030 
3031 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
3032 	if (!inline_node) {
3033 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
3034 		if (!inline_node)
3035 			return ret;
3036 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
3037 	}
3038 
3039 	list_for_each_entry(ilist, &inline_node->val, list) {
3040 		struct map_symbol ilist_ms = {
3041 			.maps = ms->maps,
3042 			.map = map,
3043 			.sym = ilist->symbol,
3044 		};
3045 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3046 					      NULL, 0, 0, 0, ilist->srcline);
3047 
3048 		if (ret != 0)
3049 			return ret;
3050 	}
3051 
3052 	return ret;
3053 }
3054 
3055 static int unwind_entry(struct unwind_entry *entry, void *arg)
3056 {
3057 	struct callchain_cursor *cursor = arg;
3058 	const char *srcline = NULL;
3059 	u64 addr = entry->ip;
3060 
3061 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3062 		return 0;
3063 
3064 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3065 		return 0;
3066 
3067 	/*
3068 	 * Convert entry->ip from a virtual address to an offset in
3069 	 * its corresponding binary.
3070 	 */
3071 	if (entry->ms.map)
3072 		addr = map__map_ip(entry->ms.map, entry->ip);
3073 
3074 	srcline = callchain_srcline(&entry->ms, addr);
3075 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3076 				       false, NULL, 0, 0, 0, srcline);
3077 }
3078 
3079 static int thread__resolve_callchain_unwind(struct thread *thread,
3080 					    struct callchain_cursor *cursor,
3081 					    struct evsel *evsel,
3082 					    struct perf_sample *sample,
3083 					    int max_stack)
3084 {
3085 	/* Can we do dwarf post unwind? */
3086 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3087 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3088 		return 0;
3089 
3090 	/* Bail out if nothing was captured. */
3091 	if ((!sample->user_regs.regs) ||
3092 	    (!sample->user_stack.size))
3093 		return 0;
3094 
3095 	return unwind__get_entries(unwind_entry, cursor,
3096 				   thread, sample, max_stack, false);
3097 }
3098 
3099 int thread__resolve_callchain(struct thread *thread,
3100 			      struct callchain_cursor *cursor,
3101 			      struct evsel *evsel,
3102 			      struct perf_sample *sample,
3103 			      struct symbol **parent,
3104 			      struct addr_location *root_al,
3105 			      int max_stack)
3106 {
3107 	int ret = 0;
3108 
3109 	callchain_cursor_reset(cursor);
3110 
3111 	if (callchain_param.order == ORDER_CALLEE) {
3112 		ret = thread__resolve_callchain_sample(thread, cursor,
3113 						       evsel, sample,
3114 						       parent, root_al,
3115 						       max_stack);
3116 		if (ret)
3117 			return ret;
3118 		ret = thread__resolve_callchain_unwind(thread, cursor,
3119 						       evsel, sample,
3120 						       max_stack);
3121 	} else {
3122 		ret = thread__resolve_callchain_unwind(thread, cursor,
3123 						       evsel, sample,
3124 						       max_stack);
3125 		if (ret)
3126 			return ret;
3127 		ret = thread__resolve_callchain_sample(thread, cursor,
3128 						       evsel, sample,
3129 						       parent, root_al,
3130 						       max_stack);
3131 	}
3132 
3133 	return ret;
3134 }
3135 
3136 int machine__for_each_thread(struct machine *machine,
3137 			     int (*fn)(struct thread *thread, void *p),
3138 			     void *priv)
3139 {
3140 	struct threads *threads;
3141 	struct rb_node *nd;
3142 	struct thread *thread;
3143 	int rc = 0;
3144 	int i;
3145 
3146 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3147 		threads = &machine->threads[i];
3148 		for (nd = rb_first_cached(&threads->entries); nd;
3149 		     nd = rb_next(nd)) {
3150 			thread = rb_entry(nd, struct thread, rb_node);
3151 			rc = fn(thread, priv);
3152 			if (rc != 0)
3153 				return rc;
3154 		}
3155 
3156 		list_for_each_entry(thread, &threads->dead, node) {
3157 			rc = fn(thread, priv);
3158 			if (rc != 0)
3159 				return rc;
3160 		}
3161 	}
3162 	return rc;
3163 }
3164 
3165 int machines__for_each_thread(struct machines *machines,
3166 			      int (*fn)(struct thread *thread, void *p),
3167 			      void *priv)
3168 {
3169 	struct rb_node *nd;
3170 	int rc = 0;
3171 
3172 	rc = machine__for_each_thread(&machines->host, fn, priv);
3173 	if (rc != 0)
3174 		return rc;
3175 
3176 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3177 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3178 
3179 		rc = machine__for_each_thread(machine, fn, priv);
3180 		if (rc != 0)
3181 			return rc;
3182 	}
3183 	return rc;
3184 }
3185 
3186 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3187 {
3188 	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3189 		return -1;
3190 
3191 	return machine->current_tid[cpu];
3192 }
3193 
3194 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3195 			     pid_t tid)
3196 {
3197 	struct thread *thread;
3198 	const pid_t init_val = -1;
3199 
3200 	if (cpu < 0)
3201 		return -EINVAL;
3202 
3203 	if (realloc_array_as_needed(machine->current_tid,
3204 				    machine->current_tid_sz,
3205 				    (unsigned int)cpu,
3206 				    &init_val))
3207 		return -ENOMEM;
3208 
3209 	machine->current_tid[cpu] = tid;
3210 
3211 	thread = machine__findnew_thread(machine, pid, tid);
3212 	if (!thread)
3213 		return -ENOMEM;
3214 
3215 	thread->cpu = cpu;
3216 	thread__put(thread);
3217 
3218 	return 0;
3219 }
3220 
3221 /*
3222  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3223  * machine__normalized_is() if a normalized arch is needed.
3224  */
3225 bool machine__is(struct machine *machine, const char *arch)
3226 {
3227 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3228 }
3229 
3230 bool machine__normalized_is(struct machine *machine, const char *arch)
3231 {
3232 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3233 }
3234 
3235 int machine__nr_cpus_avail(struct machine *machine)
3236 {
3237 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3238 }
3239 
3240 int machine__get_kernel_start(struct machine *machine)
3241 {
3242 	struct map *map = machine__kernel_map(machine);
3243 	int err = 0;
3244 
3245 	/*
3246 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3247 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3248 	 * all addresses including kernel addresses are less than 2^32.  In
3249 	 * that case (32-bit system), if the kernel mapping is unknown, all
3250 	 * addresses will be assumed to be in user space - see
3251 	 * machine__kernel_ip().
3252 	 */
3253 	machine->kernel_start = 1ULL << 63;
3254 	if (map) {
3255 		err = map__load(map);
3256 		/*
3257 		 * On x86_64, PTI entry trampolines are less than the
3258 		 * start of kernel text, but still above 2^63. So leave
3259 		 * kernel_start = 1ULL << 63 for x86_64.
3260 		 */
3261 		if (!err && !machine__is(machine, "x86_64"))
3262 			machine->kernel_start = map->start;
3263 	}
3264 	return err;
3265 }
3266 
3267 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3268 {
3269 	u8 addr_cpumode = cpumode;
3270 	bool kernel_ip;
3271 
3272 	if (!machine->single_address_space)
3273 		goto out;
3274 
3275 	kernel_ip = machine__kernel_ip(machine, addr);
3276 	switch (cpumode) {
3277 	case PERF_RECORD_MISC_KERNEL:
3278 	case PERF_RECORD_MISC_USER:
3279 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3280 					   PERF_RECORD_MISC_USER;
3281 		break;
3282 	case PERF_RECORD_MISC_GUEST_KERNEL:
3283 	case PERF_RECORD_MISC_GUEST_USER:
3284 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3285 					   PERF_RECORD_MISC_GUEST_USER;
3286 		break;
3287 	default:
3288 		break;
3289 	}
3290 out:
3291 	return addr_cpumode;
3292 }
3293 
3294 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3295 {
3296 	return dsos__findnew_id(&machine->dsos, filename, id);
3297 }
3298 
3299 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3300 {
3301 	return machine__findnew_dso_id(machine, filename, NULL);
3302 }
3303 
3304 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3305 {
3306 	struct machine *machine = vmachine;
3307 	struct map *map;
3308 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3309 
3310 	if (sym == NULL)
3311 		return NULL;
3312 
3313 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3314 	*addrp = map->unmap_ip(map, sym->start);
3315 	return sym->name;
3316 }
3317 
3318 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3319 {
3320 	struct dso *pos;
3321 	int err = 0;
3322 
3323 	list_for_each_entry(pos, &machine->dsos.head, node) {
3324 		if (fn(pos, machine, priv))
3325 			err = -1;
3326 	}
3327 	return err;
3328 }
3329 
3330 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3331 {
3332 	struct maps *maps = machine__kernel_maps(machine);
3333 	struct map *map;
3334 	int err = 0;
3335 
3336 	for (map = maps__first(maps); map != NULL; map = map__next(map)) {
3337 		err = fn(map, priv);
3338 		if (err != 0) {
3339 			break;
3340 		}
3341 	}
3342 	return err;
3343 }
3344 
3345 bool machine__is_lock_function(struct machine *machine, u64 addr)
3346 {
3347 	if (!machine->sched.text_start) {
3348 		struct map *kmap;
3349 		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3350 
3351 		if (!sym) {
3352 			/* to avoid retry */
3353 			machine->sched.text_start = 1;
3354 			return false;
3355 		}
3356 
3357 		machine->sched.text_start = kmap->unmap_ip(kmap, sym->start);
3358 
3359 		/* should not fail from here */
3360 		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3361 		machine->sched.text_end = kmap->unmap_ip(kmap, sym->start);
3362 
3363 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3364 		machine->lock.text_start = kmap->unmap_ip(kmap, sym->start);
3365 
3366 		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3367 		machine->lock.text_end = kmap->unmap_ip(kmap, sym->start);
3368 	}
3369 
3370 	/* failed to get kernel symbols */
3371 	if (machine->sched.text_start == 1)
3372 		return false;
3373 
3374 	/* mutex and rwsem functions are in sched text section */
3375 	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3376 		return true;
3377 
3378 	/* spinlock functions are in lock text section */
3379 	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3380 		return true;
3381 
3382 	return false;
3383 }
3384